红外光谱分析全解

合集下载

红外光谱图解析方法大全

红外光谱图解析方法大全

红外光谱图解析大全一、预备知识(1)根据分子式计算不饱和度公式:不饱和度Ω=n4+1+(n3-n1)/2其中:n4:化合价为4价的原子个数(主要是C原子),n3:化合价为3价的原子个数(主要是N原子),n1:化合价为1价的原子个数(主要是H,X原子)(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔2200~2100 cm-1,烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);(4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。

二、熟记健值1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。

2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H面外弯曲振动(1000~675cm-1)。

3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。

4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H面外弯曲振动880~680cm-1。

红外光谱(最全-最详细明了)

红外光谱(最全-最详细明了)

1. 收集谱图数据
通过红外光谱仪获取样品的光 谱数据。
3. 峰识别与标记
识别谱图中的特征峰,并对其 进行标记。
5. 结果输出
得出样品成分的红外光谱解析 结果。
谱图解析技巧
1. 峰归属参考
查阅相关资料,了解常见官能团或分子结构 的红外光谱峰归属。
3. 多谱图比对
将待测样品谱图与标准样品谱图进行比对, 提高解析准确性。
红外光谱与其他谱学的联用技术
红外光谱与拉曼光谱联用
拉曼光谱可以提供分子振动信息,与红外光 谱结合,可更全面地解析分子结构和化学组 成。
红外光谱与核磁共振谱联用
核磁共振谱可以提供分子内部结构的详细信息,与 红外光谱结合,有助于深入理解分子结构和化学键 。
红外光谱与质谱联用
质谱可以提供分子质量和结构信息,与红外 光谱结合,有助于对复杂化合物进行鉴定和 分析。
红外光谱在大数据与人工智能领域的应用
红外光谱数据的处理与分析
利用大数据技术对大量红外光谱数据进行处理、分析和挖掘,提取有用的化学和物理信息 。
人工智能在红外光谱中的应用
利用人工智能技术对红外光谱数据进行模式识别和预测,提高红外光谱的解析能力和应用 范围。
红外光谱数据库的建立与完善
建立和完善红外光谱数据库,为科研和工业界提供方便、快捷的红外光谱查询和服务。
分子振动与转动能级
1 2
分子振动
分子中的原子或分子的振动,产生振动能级间的 跃迁。
转动能级
分子整体的转动,产生转动能级间的跃迁。
3
振动与转动能级间的耦合
某些特定的振动模式会导致分子的转动能级发生 跃迁。
红外光谱的吸收峰与跃迁类型
吸收峰
由于分子振动或转动能级间的跃迁,导致光谱上出现暗线或 暗带。

红外光谱谱图解析完整版

红外光谱谱图解析完整版
双键伸缩振动区 (4)1500 670 cm-1
X—Y伸缩, X—H变形振动区
2020/4/1
2、确定分子官能团和基团的吸收峰
(1) X—H伸缩振动区(4000 2500 cm-1 ) ① —O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强吸收;
中红外区: 远红外区:纯转动能 级跃迁,变角、骨架 振动;异构体、金属 有机物、氢键
2020/4/1
一、认识红外光谱图
2020/4/1
1、红外光谱图
峰强:Vs(Very strong): 很强;s(strong):强; m(medium):中强; w(weak):弱。 峰形:表示形状的为宽峰、尖峰 、肩峰、双峰等类型
变形振动 亚甲基
2020/4/1
甲基的振动形式
伸缩振动 甲基:
对称 υs(CH3) 2870 ㎝-1
变形振动 甲基
2020/4/1
对称δs(CH3)1380㎝-1
不对称 υas(CH3) 2960㎝-1
不对称δas(CH3)1460㎝-1
二、解析红外光谱图
2020/4/1
一个未知化合物仅用红外光谱解析结构是十分困难的。一般在光谱解析
前,要做未知物的初步分析 红外光谱谱图的解析更带有经验性、灵活性。 解析主要是在掌握影响振动频率的因素及各类化合物的红外特征吸收谱
带的基础上,按峰区分析,指认某谱带的可能归属,结合其他峰区的相关 峰,确定其归属。
在此基础上,再仔细归属指纹区的有关谱带,综合分析,提出化合物的 可能结构。
必要时查阅标图谱或与其他谱(1H NMR,13C NMR,MS)配合, 确证其结构。
2020/4/1

红外光谱分析

红外光谱分析

在特征频率区,不同化合物的同一种官能团 吸收振动总是出现在一个窄的波数范围内,但 不是一个固定波数,具体出现在哪里与基团所 处的环境有关,这就是红外光谱用于有机物结 构分析的依据。
影响基团频率位移的具体因素
电子效应
空间效应 氢键
1)电子效应
a.诱导效应:通过静电诱导作用使分子中电子云分布发生变 化引起K的改变,从而影响振动频率。

振动频率与基团折合质量的关系
基团 C-H C-C C-Cl C-I 折合质量 (m) 0.9 6 7.3 8.9 振动频率 ( /cm-1) 2800~3100 约 1000 约 625 约 500
2.3.2
基团频率区的划分
分区依据:由于有机物数目庞大,而组成有
机物的基团有限;基团的振动频率取决于K 和 m,同种基团的频率相近。
划分方法:
基团特征频率区 氢键区 叁键区和累积双键区 双键区 单键区
指纹区
基团频率区的划分
区域名称 氢键区 频率范围
4000~2500cm-1
基团及振动形式
O-H、C-H、N-H 等的伸缩振动 CC、CN、NN和
叁键和 累积双键区
2500~2000cm-1
C=C=C、N=C=O 等的伸缩振动
的振动频率越大,吸收峰将出现在高波数区(短波长区); 反之,出现在低波数区(高波长区)。 例1 水分子
2)峰数
峰数与分子自由度有关。无瞬间偶基距变化时,
无红外吸收。
分子振动数目 线性分子: 3n-5个 非线性分子: 3n-6个
(3)瞬间偶基距变化大,吸收峰强;键两端原子电负性相
差越大(极性越大),吸收峰越强; 例2 CO2分子
键类型: 力常数: 峰位:

红外光谱分析

红外光谱分析
当样品或溴化钾晶体含有微量水分时,会在~3300cm-1附近出现吸收峰,如含水量较大,谱图上在~1630cm-1处也有吸收峰(羟基无此峰),若要鉴别微量水与羟基,可观察指纹区内是否有羟基的吸收峰,或将干燥后的样品用石蜡油调糊作图,或将样品溶于溶剂中,以溶液样品作图,从而排除微量水的干扰。游离羟基的吸收因在较高波数(~3600cm-1),且峰形尖锐,因而不会与水的吸收混淆。
(2)空间障碍
分子中的大基团在空间的位阻作用,迫使邻近基团间的键角变小或共轭体系的共平面性被偏离或被破坏时,振动波数发生变化。
(Ⅰ)(Ⅱ)(Ⅲ)
υC=O1663cm-11686cm-11693cm-1
Ⅰ为典型的α、β不饱和酮,Ⅲ的邻位均被立体位阻大的甲基取代,羰与双键的共轭体系被破坏,羰基的振动频率升至1693cm-1,Ⅱ介于Ⅰ和Ⅲ之间。
υC=C1650cm-11660cm-11680cm-11750cm-1
环的张力对环内双键的影响:环变小,张力增大,环内双键p成分增加,键长变长,振动波数减小。而环外的=C-H键由于s成分增加,键长变短,振动波数增加。
υC=C1639cm-11623cm-11566cm-1
υ=CH3017cm-13040cm-13060cm-1
氧、氮和硫等原子有孤电子对,能与相邻的不饱和基团共轭,为了与双健的π电子云共轭相区分,称其为中介效应(M)。此种效应使不饱和基团的振动波数降低,而自身连接的化学键振动波数升高。最典型的例子是酰胺的羰基吸收。
酰胺分子由于中介效应降低了羰基的双键性,吸收频率移向低波数。一般酰胺羰基的振动频率不超过1690cm-1。N-H键变成=N-H,伸缩振动波数升高。酰胺胺基的振动频率比一般胺基的振动频率要高。
例:
υC=O1728cm-11751cm-1~1869cm-1

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。

辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。

3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。

图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。

N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。

为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。

U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。

泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。

特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。

红外光谱(最全最详细明了)课件

红外光谱(最全最详细明了)课件

THANKS
感谢观看样ຫໍສະໝຸດ 制备固体样品液体样品
气体样品
注意事项
研磨成粉末,与KBr混合 压片或涂在ZnSe窗片上

稀释在适当的溶剂中, 涂在CaF2或ZnSe窗片
上。
通过干燥管进入光谱仪 。
避免样品中的水分和二 氧化碳干扰,确保样品
纯净。
实验操作
打开红外光谱仪电源,预热 稳定。
调整仪器至最佳状态,如光 路对中、调零等。
对实验操作的要求
总结词
红外光谱实验操作需要一定的技巧和经验,以确保结 果的准确性和可靠性。
详细描述
红外光谱实验涉及到样品的制备、仪器操作和谱图解析 等多个环节。每个环节都需要一定的技巧和经验,以确 保结果的准确性和可靠性。例如,在样品的制备过程中 ,需要选择合适的制样方法,以获得均匀、平整的样品 ;在仪器操作中,需要正确设置参数,以保证谱图的质 量;在谱图解析中,需要具备丰富的经验和专业知识, 以准确解析谱图特征。因此,进行红外光谱实验的人员 需要经过专业培训和实践经验的积累。
红外光谱(最全最详细 明了)课件
contents
目录
• 红外光谱基本原理 • 红外光谱与分子结构的关系 • 红外光谱的应用 • 红外光谱实验技术 • 红外光谱的局限性
01
红外光谱基本原理
红外光谱的产生
分子振动
分子中的原子或分子的振动,导致偶 极矩变化。
偶极矩变化
辐射吸收
分子吸收特定波长的红外光,导致振 动能级跃迁。
02
01 03
放入样品,记录光谱。
实验结束后,关闭仪器,清 理样品。
04
05
注意事项:保持室内温度和 湿度的稳定,避免仪器受到

5红外光谱分析

5红外光谱分析

伸缩
3700-3500 3600-3000 1420-1350 1500-1340 1500-1200 1200-1010 1100-800
弯曲
1200-600 1650-1600 900-800 900-700 800-600 680-580 560-420
42
红外-拉曼
5 典型红外图谱(7)
化学键 -CH3 -CH-
16
红外-拉曼
4 红外分析方法(3)
17
4 红外分析方法(5)
红外光谱测定中的样品处理技术 1
液体样品 固体样品 气体样品
液膜法 溶液法 水溶液测定
压片法 调糊法(或重烃油法,Nujol法) 薄膜法 ATR法、显微红外、DR、PAS、RAS 气体池
18
红外光谱测定中的样品处理技术 2
1液膜法
用组合窗板进行测定
(KBr从4000-250cm-1都是透明的,即 不产生红外吸收)
34
红外-拉曼
5 典型红外图谱(1)
3500 cm-1: O-H stretching vibrations. 1600 cm-1 :O-H bending vibration band.
~1100 cm-1:Si-O-Si fundamental vibration.
➢Examination of materials that are not amenable to the film analysis method
➢Analysis of extremely thin films applies on the top surfaces
➢Sample in solution
12
红外-拉曼
3 红外吸收产生的原理(8)

红外光谱详解课件

红外光谱详解课件

06
习题与思考题
基础概念题
题目1
简述红外光谱的基本原理
答案1
红外光谱是利用物质对红外光的吸收特性来研究物质分子结构和组成的一种方法。当红 外光与物质分子相互作用时,某些波长的光被吸收,形成特定的光谱图,通过分析这些
光谱图可以了解物质分子的振动和转动能级。
基础概念题
要点一
题目2
列举红外光谱中的主要吸收区域
要点二
答案2
红外光谱主要分为四个吸收区域,分别是近红外区( 12500-4000 cm^-1)、中红外区(4000-400 cm^-1) 、远红外区(400-10 cm^-1)和超远红外区(10-5 cm^-1)。其中中红外区是研究分子振动和转动能级的主 要区域。
光谱解析题
题目3
根据给定的红外光谱图,分析可能的物质组 成
分子转动
02
分子除了振动外,还会发生转动,转动也会产生能量变化,从
而吸收特定波长的红外光。
分子振动和转动与红外光谱的关系
03
分子振动和转动产生的能量变化与红外光的能量相匹配时,光
子会被吸收,形成红外光谱。
分子振动与转动
振动模式
分子中的原子或分子的振动模式决定 了其吸收特定波长的红外光。不同化 学键或基团具有独特的振动模式,形 成了特征的红外光谱。
镜反射后相干叠加。
检测器
检测器用于检测干涉仪产生的相干 光束,将光信号转换为电信号。
光谱采集系统
光谱采集系统负责收集检测器输出 的电信号,并将其转换为光谱数据 。
傅里叶变换红外光谱技术
傅里叶变换
傅里叶变换是一种数学方法,用于将干涉图转换为光谱图 。通过傅里叶变换,可以获得样品的红外光谱。
分辨率

红外光谱谱图解析

红外光谱谱图解析
C H3
C H3 C C H3 C H3
03:44:07
CH3 δ s C—C骨架振动
1385-1380cm-1
1155cm-1
1:1
1372-1368cm-1
1170cm-1
1391-1381cm-1 1368-1366cm-1
1405-1385cm-1 1372-1365cm-1
4:5 1195 cm-1
双键伸缩振动区 (4)1500 670 cm-1
X—Y伸缩, X—H变形振动区
03:44:07
2、确定分子官能团和基团的吸收峰
(1) X—H伸缩振动区(4000 2500 cm-1 ) ① —O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强吸收;
CH
03:44:07
υ (C-H)
3080 cm-1 3030 cm-1
3080 cm-1 3030 cm-1 3300 cm-1
03:44:07
(二)计算不饱和度
定义: 不饱和度是指分子结构中达到饱和所缺一价元素的“对”数。如: 乙烯变成饱和烷烃需要两个氢原子,不饱和度为1。 计算: 可按下式进行不饱和度的计算:
UN= (2 + 4n6 + 3n5 + 2n4 + n3 – n1 )/ 2 n6,n5, n4 , n3 , n1 分别为分子中六价,五价,……,一价元素数目。 作用: 由分子的不饱和度可以推断分子中含有双键,三键,环,芳环的 数目,验证谱图解析的正确性。 例: C9H8O2 UN = (2 +29 – 8 )/ 2 = 6
必要时查阅标图谱或与其他谱(1H NMR,13C NMR,MS)配合, 确证其结构。

红外光谱分析全解

红外光谱分析全解

2、分子振动的形式与谱带
分子的振动形式可分成两类:
亚甲基(-CH2-)的几种基本振动形式及红外吸收谱: 1)伸缩振动:
反对称
as: 2926cm-1 (s)
对称
s: 2853cm-1(s)
2)弯曲振动
面内弯曲振动:
剪式
:1468cm-1 (m)
摇摆
:720cm-1 -C-(CH2)n,n≥4
由于检测器产生的信号很微小,因此,必须将信 号放大,才能记录成红外光谱。
三、红外分光光度计的操作性能及影响因素
1.分辨率 分辨率是仪器的重要性能之一,它表示仪器分开
相邻光谱波数(或波长)的能力。普通红外分光光度 计的分辨率至少应为2cm-1或1cm-1,更精密的仪器, 如付里叶变换光谱仪的分辨率可达到0.1cm-1,甚至 更小。
如果样品太厚或过浓,会使许多主要吸收谱带超 出标尺刻度,彼此连成一片,看不出准确的波数位置 和精细结构。图(4-17 A )中就是样品太厚的谱。为 了得到一张完整的红外光谱图往往需要采用多种厚度 的样品。
2、样品中不应含有游离水。水的存在不但干扰试样 的吸收谱面貌,而且会腐蚀吸收槽窗。同时也要注意 光路中不应有CO2,它也会干扰吸收谱的形态。 3、对于多组分的试样,在进行红外光谱测绘前应尽 可能将组分分离(可以有多种方法,如化学萃取、选 择性溶解、气相色谱、重结晶等),否则谱带重叠, 以致无法解释谱图。 4、样品表面反射的影响
光谱有关的能量变化主要是Er、Ev、Ee三者,每一种能
量也都是量子化的。
电子的能级最大,从基
态到激发态的能级间隔Ee = 1~20eV;分子振动能级间隔 Ev = 0.05~1.0eV,分子转动 能级间隔Er =0.001~0.05eV。 电子跃迁所吸收的辐射是在

红外光谱分析步骤 红外光谱工作原理

红外光谱分析步骤 红外光谱工作原理

红外光谱分析步骤红外光谱工作原理红外光谱法是利用物质分子对红外辐射的吸收,并由其振动或转动运动引起偶极矩的精变化,产生分子振动和转动能级从基态到激发态的跃迁,得到由分子振动能级和转动能级变化产生的振动-转动光谱,又称为红外光谱。

红外光谱法是一种鉴别化合物和确定物质分子结构的常用分析手段,不仅可以对物质进行定性分析,还可对单一组分或混合物中各组分进行定量分析,尤其是在对于一些较难分离并在紫外、可见区找不到明显特征峰的样品,可以方便、迅速地完成定量分析。

红外光谱分析步骤1.首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=(2C+2-H-Cl+N)/2其中:Cl为卤素原子。

例如:比如苯:C6H6,不饱和度=(2*6+2-6)/2=4,3个双键加一个环,正好为4个不饱和度。

2.分析3300~2800cm-1区域C-H伸缩振动吸收;以3000cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收。

3.若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:?炔2200~2100cm-1,烯1680~1640cm-1,芳环1600,1580,1500,1450cm-1泛峰。

若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反;邻、间、对)。

4.碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。

5.解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在。

近红外光谱仪的两种分析方法近红外光谱仪主要是依靠近红外光谱原理来进来一系列的测量,而近红外光谱又是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光谱有关的能量变化主要是Er、Ev、Ee三者,每一种能
量也都是量子化的。
电子的能级最大,从基
态到激发态的能级间隔Ee = 1~20eV;分子振动能级间隔 Ev = 0.05~1.0eV,分子转动 能级间隔Er =0.001~0.05eV。 电子跃迁所吸收的辐射是在
可见光、紫外和X射线区, 分子转动能级跃迁所吸收的
3、气体样品:气体样品的测定可使用窗板间隔 为2.5-10cm的大容量气体槽,抽真空后,向槽内 导入待测气体直接测定。红外吸收强度可通过 控制气体槽压力来控制。测定时避免水蒸气。
二、制样方法对红外光谱图质量的影响
1、样品的浓度和厚度 在作一般定性的工作时,样品的厚度均选择在
10~30um之间,如样品制得过薄或浓度过低(图417B) ,常常使弱的甚至中等强度的吸收谱带显示不 出来,只呈现模糊的轮廓,从而失去了谱图的特征。
波数(cm ) 1
104
波长(m)
光谱工作者把红外光分为三个区域,如下表。
二、红外光谱
1、红外光谱图
当用一束具有连续波长的红外光照射一物质时, 如果物质分子中原子间的振动频率恰好与红外光波段 的某一振动频率相同,则会引起共振吸收,使透过物 质的红外光强度减弱。因此,若将透过物质的红外光 用单色器进行色散,就可以得到带有暗条的谱带。如 果用波长或波数作横坐标,以百分吸收率或透过率为 纵坐标,把这些谱带记录下来,就得到了该物质的红 外光谱图。
如果样品太厚或过浓,会使许多主要吸收谱带超 出标尺刻度,彼此连成一片,看不出准确的波数位置 和精细结构。图(4-17 A )中就是样品太厚的谱。为 了得到一张完整的红外光谱图往往需要采用多种厚度 的样品。
2、样品中不应含有游离水。水的存在不但干扰试样 的吸收谱面貌,而且会腐蚀吸收槽窗。同时也要注意 光路中不应有CO2,它也会干扰吸收谱的形态。 3、对于多组分的试样,在进行红外光谱测绘前应尽 可能将组分分离(可以有多种方法,如化学萃取、选 择性溶解、气相色谱、重结晶等),否则谱带重叠, 以致无法解释谱图。 4、样品表面反射的影响
透过率/%
4000 80 70 60 50 40 30 20 10
0 -10
4000
高岭石{Al4[Si4O10](OH)8 }红外吸收光谱
3500
3000
2500
2000
1500
1000
500 80
70
60
50
40
30
20
10
0
3500
3000
2500
2000
波 数/cm-1
1500
1000
-10 500
(3)谱带的强度:与样品的厚度、种类及其 含量有关,与偶极矩变化有关。IR可对某一 基团定量分析。 (4)谱带的形状:与结晶程度及相对含量有 关。结晶差说明晶体结构中键长与键角有差 别,引起振动频率有一定变化范围,每一谱 带形状就不稳定。可用半高宽表示(width at half full maximum, WHFM)。
第三节 红外光谱实验技术
一、红外光谱分析样品制备
1、固体样品
KBr压片法:固体样品常用压片法,它也是固体样品红外
测定的标准方法。将固体样品0.5-2.0mg与150mg左右的 KBr一起粉碎,用压片机压成薄片。薄片应透明均匀。
制样过程: 1)称样。样品:0.5-2mg,KBr:150mg。 2)研磨混合。将样品与KBr混合均匀,充分研 磨。 3)压片。将样品倒入压模中均匀堆积,在油压机 上缓慢加压至15MPa,维持1分钟即可获得透明 薄片。
由于检测器产生的信号很微小,因此,必须将信 号放大,才能记录成红外光谱。
三、红外分光光度计的操作性能及影响因素
1.分辨率 分辨率是仪器的重要性能之一,它表示仪器分开
相邻光谱波数(或波长)的能力。普通红外分光光度 计的分辨率至少应为2cm-1或1cm-1,更精密的仪器, 如付里叶变换光谱仪的分辨率可达到0.1cm-1,甚至 更小。
红外光谱 图中,横坐标:吸收波长()或波数(), 表示吸收峰位置; 纵坐标:透过率(T%)或吸光度(A), 表示吸收峰强度。
高岭石{Al4[Si4O10](OH)8 }红外吸收光谱
透过率/%
80 70 60 50 40 30 20 10
0 -10
4000
3500
3000
2500
2000
波 数/cm-1
3.检测器 检测器的作用是把红外光信号变成电信号。由于
进入检测器的红外光信号很弱,因此,一般检测器需 要具备以下条件:①灵敏的红外光接收面;②对红外 光没有选择吸收;③热灵敏度高;④热容量低;⑤响 应快;⑥因电子的热振动产生的噪音小。常用的红外 光检测器有以下几种:热电偶,测热辐射计,高莱槽, 热释电检测器和光电导检测器。 4.放大器和记录系统
光源 单色器 检测器 电子放大器 记录系统
1.光源 理想的红外光源应该是能够发射高强度连续波
长红外光的物体。高温黑体符合这个条件。目前 对 中红外区实用的红外光源,常用比较接近黑体特性 的能斯特灯和硅碳棒。 2.单色器
单色器由狭缝、反射镜和色散元件通过一定的 方式组合而成。其功能是把通过样品槽和参比槽进 入入射狭缝的复色光分解为单色光射到检测器上加 以测量。
(5)谱带的划分:
高岭石{Al4[Si4O10](OH)8 }红外吸收光谱
透过率/%
80 70 60 50 40 30 20 10
0 -10
4000
3500
3000
2500
2000
波 数/cm-1
1500
1000
80 70 60 50 40 30 20 10 0 -10 500
三、红外光谱产生的原理
调糊法:将固体样品(5-10mg)放入研钵中充分研细, 滴1-2滴重油调成糊状,涂在盐片上用组合窗板组装 后测定。
薄膜法:适用于高分子化合物的测定。将样品溶于挥 发性溶剂后倒在洁净的玻璃板上,在减压干燥器中 使溶剂挥发后形成薄膜,固定后进行测定。
粉末法:是把固体样品研磨制2μm左右的细粉,悬浮 在易挥发的液体中,然后移至盐窗上,待溶剂挥发 后即形成一均匀薄层,不适用于定量分析。
红外分光光度计测量分辨率主要决定于狭缝的宽 度,光谱狭缝宽度愈小,仪器的分辨率愈好。所以为 提高仪器的分辨率,应尽可能使狭缝的宽度小。
图4-16是聚苯乙烯膜C—H伸缩振动吸收区分辨率与狭 缝宽度的关系。由于狭缝宽不仅分辨率降低,而且谱带形 状和强度也发生变化。
2.测量准确度 指仪器记录的样品真实透过度的准确程度。影响测
4000
高岭石{Al4[Si4O10](OH)8 }红外吸收光谱
3500
3000
2500
2000
1500
1000
500 80
70
60
50
40
30
20
10
0
3500
3000
2500
2000
波 数/cm-1
1500
1000
-10 500
第二节 红外分光光度计
一、红外分光光度计的结构和原理
下图为光栅型分光光度计的结构图。 自光源发出两束强度相等的红外光,分别通过样 品池和参比池到达扇形镜(又叫斩光器),这是一个 半圆型的反射镜,以一定的频率匀速旋转,使样品光 路和参比光路的光交替地入射到单色器上。两束红外 光经单色器色散后形成光谱带进入到检测器,由检测 器和放大记录系统记录成红外光谱图。
1、分子内部的能级
分子的运动可分为平动、转动、振动和分子内电子的 运动。每种运动状态都属于一定的能级。因此,分子的 总能量可以表示为:
E = E0 +Et + Er + Ev + Ee
E0是分子内在的能量,不随分子运动而改变,即所谓
的零点能。Et、Er、Ev和Ee分别表示分子的平动、转动、
振动和电子运动的能量。由于分子平动Et的能量只和温度 的变化直接相关,在分子平动时不会产生光谱。这样,与
3.扫描速度
较精确的红外分光光度计都可以连续改变或分档改 变扫描速度,最快的最慢挡之间的进度差可达数百倍。 一般红外分光光度计作4000~400cm-1 全程扫描时约 15min即可。
4.波数校正
波数的准确度对作物质的结构分析是最重要的参数。 引起仪器波数读数产生误差的原因很多,有仪器的原因, 也有人为的原因,如记录纸放置的位置是否正确,空气 湿度引起记录纸的伸缩也会造成误差。由于记录纸已印 好坐标(波数),对分批购得的记录纸,都应作坐标的 校正。
第一节 红外光谱的基本原理
一、红外光
光是一种电磁波,根据其波长范围的不同而被命名为各种 不同性质的光,如下图所示。其中波长在0.75~1000μm范围的 电磁波,是从可见光区外延到微波区的一段电磁波,习惯上叫 做红外光。
红外光通常用波长λ表示,但在红外光谱中习惯用波数 ΰ表示,单位为cm-1,两者的关系是:
如果样品无红外吸收,通过样品池和参比 池的红外光完全相同,则检测器无电流信号输 出;当样品有红外吸收时,通过样品池和参比 池的红外光强度不等,进入检测器后产生与强 度差成正比的电信号并放大输出,最终得到一 个表示不同波数下透过率的红外吸收光谱。
二、红外分光光度计的组成
红外光谱仪主要由 五部分组成:
辐射是在远红外与微波区。
分子的振动能级跃迁所吸收
的辐射主要是在 核能级 电子K、L层 原子的次外电子 层,晶体场分裂 分子振动
电子自旋亚能级
核自旋
电磁波 γ X UV,V
IR,
Microwave Radio
λ
对应光谱
〈0.01nm) Mossbauer谱
1500
1000
80 70 60 50 40 30 20 10 0 -10 500
相关文档
最新文档