近红外光谱分析及其应用简介
浅谈近红外光谱分析在药品检测中的应用
浅谈近红外光谱分析在药品检测中的应用近红外光谱分析是一种基于分子振动谱的无损检测技术,广泛应用于化工、食品、医药等领域。
在药品检测中,近红外光谱分析技术具有快速、准确、无损、高效等优点,已经成为药品行业中不可或缺的检测手段。
本文将就近红外光谱分析在药品检测中的应用进行浅谈。
一、近红外光谱分析原理近红外光谱分析原理是通过物质与光的相互作用,分析物质内部的分子振动、转动和延伸振动等信息,从而实现对样品成分、结构、性质等的分析。
在近红外光谱区域,分子内的一些结合键和官能团吸收、散射、辐射电磁波所产生的光谱可用于分析物质的成分和性质。
近红外光谱分析技术可以快速、准确地获取样品的光谱信息,并通过专门的数据处理软件进行定量和定性分析。
1. 药品成分分析在制药过程中,药品的成分及其含量是非常重要的参数。
通过近红外光谱分析技术可以快速准确地确定药品中各种成分的含量,包括药物成分、助剂成分等。
通过建立合适的光谱库和定量模型,可以对药品的成分进行快速检测,保证药品的质量。
2. 药品质量控制药品的质量受到制备工艺、原材料选择、存储条件等多方面因素的影响,通过近红外光谱分析技术可以对药品的质量进行实时监测和控制。
可以通过光谱分析技术对药片的含量均匀性、药液的稳定性等进行检测,及时发现并解决质量问题,保证药品的质量稳定性。
3. 药品真伪鉴别随着全球药品贸易的不断增加,药品的真伪鉴别成为一个重要的问题。
通过近红外光谱分析技术可以对药品进行快速鉴别,包括原材料鉴定、药品真伪鉴别等。
通过建立光谱库和模型,可以对不同药品进行快速鉴别,保障患者用药安全。
4. 药品生产过程控制近红外光谱分析技术还可以用于药品生产过程中的实时监测和控制,包括原材料检测、反应过程监控、成品检验等。
通过光谱分析技术可以实现对制药过程中各个环节的快速、无损检测,保障药品的生产质量和安全性。
1. 多模式光谱采集技术当前,近红外光谱分析已经不仅仅局限于单一的样品分析,而是发展为多模式光谱采集技术,包括透射光谱、反射光谱、光纤光谱等。
近红外光谱分析的原理技术与应用
近红外光谱分析的原理技术与应用引言近红外光谱分析是一种非破坏性、快速、准确的分析技术,广泛应用于食品、医药、化妆品、环境监测等领域。
本文将介绍近红外光谱分析的原理、技术和应用。
近红外光谱分析的原理近红外光谱分析利用物质吸收或反射近红外光时产生的特征光谱来分析物质的成分和性质。
近红外光谱分析主要基于以下两个原理:1.分子振动吸收原理:物质中的化学键振动会引起近红外光的吸收,吸收峰的位置与化学键的特异性有关。
2.红外光与物质的相互作用原理:物质吸收了红外光后,其分子内部发生改变,从而产生特征的近红外光谱。
近红外光谱分析的技术近红外光谱分析的技术主要包括光源、光谱仪和数据处理三个方面。
光源常用的光源有白炽灯、光电二极管和激光等。
其中白炽灯发射连续谱,适用于宽波长范围的分析;光电二极管具有快速响应和高稳定性,常用于近红外光谱分析仪器;激光具有较高的亮度和窄的波长范围,适用于特定波长范围的分析。
光谱仪常用的光谱仪有分光镜、光栅和红外线摄像机等。
分光镜通过将近红外光谱聚焦到光栅上,并通过旋转光栅来选择不同波长光线;光栅则将不同波长的光线分散成不同的角度形成光谱;红外线摄像机可通过感应近红外光谱并将其转换成数字信号。
数据处理近红外光谱分析的数据处理通常包括预处理、特征提取和模型建立等步骤。
预处理常用的方法有光谱校正、光谱平滑和光谱标准化等;特征提取可使用主成分分析、偏最小二乘回归等方法;模型建立则可以采用多元回归分析、支持向量机等模型进行建立。
近红外光谱分析的应用近红外光谱分析在多个领域具有广泛应用,以下为几个常见的应用示例:•食品质量检测:近红外光谱分析可用于检测食品中的营养成分、添加剂和污染物等,以保证食品的安全和质量。
•药物分析:近红外光谱分析可用于药品的成分分析、质量控制以及伪药的鉴定等。
•化妆品分析:近红外光谱分析可用于分析化妆品中的成分、性质和质量,以确保产品的合规性和安全性。
•环境监测:近红外光谱分析可用于监测土壤、水质和大气中的污染物,以帮助保护环境和预防环境污染。
近红外光谱(NIR)分析技术的应用
近红外光谱(NIR)分析技术的应用近红外光谱(NIR)分析技术的应用近红外光谱分析是近20年来发展最为迅速的高新技术之一,该技术分析样品具有方便、快速、高效、准确和成本较低,不破坏样品,不消耗化学试剂,不污染环境等优点,因此该技术受到越来越多人的青睐。
一、近红外光谱的工作原理有机物以及部分无机物分子中各种含氢基团在受到近红外线照射时,被激发产生共振,同时吸收一部分光的能量,测量其对光的吸收情况,可以得到极为复杂的红外图谱,这种图谱表示被测物质的特征。
不同物质在近红外区域有丰富的吸收光谱,每种成分都有特定的吸收特征。
因此,NIR能反映物质的组成和结构信息,从而可以作为获取信息的一种有效载体。
二、近红外光谱仪的应用NIR分析技术的测量过程分为校正和预测两部分(如图一所示),(1)校正:①选择校正样品集,②对校正样品集分别测得其光谱数据和理化基础数据,③将光谱数据和基础数据,用适当的化学计量方法建立校正模型;(2)预测:采集未知样品的光谱数据,与校正模型相对应,计算出样品的组分。
由此可知,建立一个准确的校正模型是近红外光谱分析技术应用中的重中之重。
图一2.1 定标建模2.1.1 为什么要建立近红外校正模型2.1.1.1 建立近红外校正模型的最终目标是获得一个长期稳定的和可预测的模型。
2.1.1.2 近红外光谱分析是间接的(第二手)分析方法,所以①需要定标样品集;②利用定标样品集的参比分析数据与近红外光谱建立校正模型;③近红外分析准确度与参比方法数据准确度高度相关;④近红外分析精度一般优于参比方法分析精度。
2.1.2 模型的建立与验证步骤2.1.2.1 扫描样品近红外光谱准确扫描校正样品集中各个样品规范的近红外光谱:为了克服近红外光谱测定的不稳定性的困难,必须严格控制包括制样、装样、测试条件、仪器参数等测量参数在内的测量条件。
利用该校正校品集建立的数学模型,也只能适用于按这个的测量条件所测量光谱的样品。
现代近红外光谱技术及应用进展
现代近红外光谱技术及应用进展近红外光谱技术是一种快速、高效、无损的分析技术,广泛应用于化学、食品、药物等领域。
尤其是随着科学技术的发展,现代近红外光谱技术在样品制备、光谱采集、数据处理等方面都有了显著的提升,极大地扩展了近红外光谱技术的应用范围。
近红外光谱是指介于可见光和中红外光之间的电磁波,波长范围为700-2500nm。
现代近红外光谱技术利用近红外光子的能量和量子力学中的跃迁原理,通过对样品进行照射,使样品中的分子吸收近红外光子的能量后从基态跃迁到激发态,再返回基态时发出特征光谱。
通过对特征光谱进行定性和定量分析,可以获取样品的组成、结构和性质等信息。
化学分析:现代近红外光谱技术在化学分析领域的应用主要体现在有机物和无机物的定性和定量分析上。
例如,利用近红外光谱技术对石油样品进行定性和定量分析,可以有效地识别石油中的不同组分,同时也可以对石油中的含硫量、含氮量等进行快速准确的测定。
食品质量检测:在食品质量检测方面,现代近红外光谱技术可以用于食品成分分析、食品质量评估和食品掺假检测等。
例如,利用近红外光谱技术对奶粉进行检测,可以快速准确地检测出奶粉中的蛋白质、脂肪、糖等主要成分的含量。
药物研究:现代近红外光谱技术在药物研究方面的应用主要体现在药物成分分析、药物代谢研究和药物疗效评估等方面。
例如,利用近红外光谱技术对中药材进行检测,可以快速准确地测定中药材中的有效成分含量,为中药材的质量控制提供了一种有效的手段。
近年来,现代近红外光谱技术在国内外都取得了显著的研究进展。
在国内,中国科学院上海药物研究所利用近红外光谱技术对中药材进行有效成分的快速检测,取得了重要的成果。
国内的一些高校和研究机构也在近红外光谱技术的研究和应用方面开展了大量的工作,推动了近红外光谱技术的发展。
在国外,近红外光谱技术已经成为药物研发和食品质量检测的重要手段。
例如,荷兰的菲利普公司成功开发出了一款基于近红外光谱技术的药物代谢研究仪器,可以为新药的开发和疗效评估提供快速准确的数据支持。
近红外光谱仪的原理和应用
近红外光谱仪的原理和应用1. 简介近红外光谱仪(Near-Infrared Spectrometer)是一种用来分析物质组成和化学结构的有效工具。
它利用近红外光区的特性,通过对光的吸收、反射和散射等特征进行量化,来获得样品的光谱信息。
本文将介绍近红外光谱仪的工作原理及其常见的应用领域。
2. 原理近红外光谱仪的原理基于样品与近红外光之间的相互作用。
近红外光波长范围通常为700至2500纳米,介于可见光和红外光之间。
以下是近红外光谱仪的工作原理:•光源发射:近红外光谱仪通常采用LED或激光二极管等光源发射特定波长的近红外光。
•样品交互:发射的光经过样品散射、吸收或透射后,携带了样品的化学信息。
•光谱检测:经过样品后的光线进入光谱仪的光路系统,光谱仪中的探测器对不同波长的光进行检测和测量。
•数据处理:检测到的光信号经过放大、滤波和数学处理等步骤,得到样品的光谱图谱。
•分析与解读:通过比对样品的光谱图谱与已知物质的库光谱进行分析,可以推断样品的成分和结构等信息。
3. 应用近红外光谱仪在许多领域中得到了广泛应用。
以下是一些常见的应用领域:3.1 农业•农产品品质检测:近红外光谱仪可以分析农产品中的水分、脂肪、蛋白质等成分,用于农产品的质量鉴定和分类。
•土壤分析:通过近红外光谱仪可以分析土壤中的有机质、pH值、养分含量等,为土壤肥力评估和施肥方案提供依据。
3.2 化学与制药•药物分析:近红外光谱仪可以分析药物中的活性成分含量、溶解度等指标,用于药物质量控制和药物效果评估。
•化学品鉴定:通过比对已知化学品的光谱库,近红外光谱仪可以识别未知化学品的成分和纯度。
3.3 环境监测•水质分析:近红外光谱仪可以快速分析水质中的溶解有机物、无机离子等参数,用于水质监测和环境保护。
•大气检测:通过近红外光谱仪可以实时监测大气中的气体成分,例如二氧化碳、氨等,用于大气污染监测和空气质量评估。
3.4 食品安全•食品成分分析:近红外光谱仪可以分析食品中的营养成分、添加剂、重金属等物质的含量,用于食品质量检测和食品安全控制。
近红外光谱技术的应用及前景
近红外光谱技术的应用及前景光谱学是一种分析物质组成与结构的重要科技手段。
在科学、工业和医学等领域都有广泛的应用。
其中,红外光谱技术是目前应用最广泛的一种光谱学技术之一。
而在红外光谱技术中,近红外光谱技术也日渐受到人们的重视,被广泛应用于许多领域,比如农业、食品加工、制药、医疗等。
接下来,本文将探讨近红外光谱技术的应用及前景。
一、近红外光谱技术的基本原理近红外光谱技术是通过红外光经过样品后,检测其吸收光谱来确定物质组成的一种分析方法。
它与通常的红外光谱技术相似,但其工作波长范围略有不同。
近红外光谱技术所使用的工作波长范围一般为800-2500纳米,而在这个波段内,物质的光学吸收一般是由化学键振动和分子的二次振动引起的。
实际应用中,通过近红外光谱技术得到的光谱可以被用作定量分析或者鉴定过程中的指纹图谱。
这些光谱信息可以通过一系列数学统计学方法进行分析,用来研究样本中的结构和成分。
二、近红外光谱技术的应用近红外光谱技术被广泛应用于农业、制造业、食品加工、制药、医疗等行业。
下面将分别探讨这些应用场景。
1. 农业在农业中,近红外光谱技术被用来分析土壤质量、农作物的成分、动物饲料的成分等。
例如,利用近红外光谱技术,可以准确测量肉类和饲料中的蛋白质、脂肪和纤维素含量,帮助农民更好地调整饮食和生产方式。
2. 制造业在制造业中,近红外光谱技术可以作为一种无损检测方法,可以检测所需物料的成分、质量和其它属性,从而提高制造过程的质量和效率。
例如,在造纸厂,可以使用近红外光谱技术检测纸浆的厚度和纤维质量,使生产过程更加精确和高效。
3. 食品加工在食品加工业中,近红外光谱技术可以被用来检测食品中的成分、营养物质和质量。
例如,人们可以通过近红外光谱技术来检测牛奶中的脂肪、蛋白质和酸度等指标,这可以帮助从生产商到消费者有效地管理食品和营养素。
4. 制药在制药领域,近红外光谱技术可以被用来检测和定量化药物中的成分。
这项技术可以在制造过程中进行无损检测,从而提高药物的质量和成分的纯度。
近红外光谱的应用
近红外光谱的应用近红外光谱(NIR)是一种广泛应用于许多领域的分析技术。
该技术利用了近红外光波段(780-2500纳米)的吸收、散射和反射特性,可以提供有关物质的组成、结构和性质的信息。
由于其非破坏性、无需样品处理的特点,近红外光谱在药物制造、食品安全、环境监测、农业生产等方面得到了广泛应用。
一、药物制造近红外光谱在药物制造过程中起着重要作用。
通过分析药物样品的光谱特征,可以检测药物的成分、含量、纯度和稳定性,确保药物质量符合要求。
同时,它还可以快速检测原料药的质量,提高生产效率和监控药物生产过程中的变异性。
二、食品安全近红外光谱在食品安全领域的应用越来越广泛。
通过光谱的分析,可以检测食品中的营养成分、添加剂、重金属和农药等有害物质。
这种无损检测方法可以大大提高食品质量检测的速度和准确性,确保食品安全,保护消费者的健康。
三、环境监测NIR光谱技术在环境监测中的应用主要包括大气污染监测、水质监测和土壤分析。
通过分析光谱数据,可以快速检测大气中的有害气体、水体中的污染物和土壤中的养分含量。
这种方法无需对样品进行预处理,可以实时监测环境参数,帮助保护环境和预警环境污染。
四、农业生产NIR光谱技术在农业生产中的应用主要包括农作物品种鉴定、土壤肥力评价和农产品质量检测等。
通过分析农产品或土壤样品的光谱特征,可以识别农作物品种、评价土壤的营养状况,提供农业生产的决策依据。
此外,还可以通过检测农产品的水分含量和营养成分,评估农产品的品质和质量。
总结起来,近红外光谱技术在药物制造、食品安全、环境监测和农业生产中具有广泛的应用前景。
随着仪器技术的不断发展,近红外光谱的应用范围将进一步扩大,并在更多领域中发挥其优势。
近红外光谱分析原理
近红外光谱分析原理近红外光谱分析是一种常用的无损检测技术,通过测量样品在近红外光波段的吸收和反射特性,来分析和鉴定物质的成分和性质。
本文将详细介绍近红外光谱分析的原理及其应用。
一、原理概述近红外光波长范围通常被定义为从780纳米到2500纳米,相对于可见光波长而言,在这一范围内物质对光的吸收较小。
近红外光谱分析利用了样品在这一波长范围内的吸收特性,通过测量样品对不同波长光的吸收程度来确定样品的成分和性质。
二、光谱仪构成近红外光谱仪通常由光源、样品接口、分光器、检测器和数据处理系统等组成。
光源产生近红外光,样品接口将光传递到样品上,并接收样品反射或透射的光信号。
分光器将光信号按照波长进行分离,并送入检测器进行信号检测。
最后,数据处理系统对检测到的光谱信号进行处理和分析。
三、样品制备近红外光谱分析的样品制备通常较为简单,大部分样品可以直接使用而无需特殊处理。
对于液体样品,可以直接放入透明的试剂盒或玻璃杯中进行测量;对于固体样品,通常需研磨成粉末或制备成透明的薄片,以确保光线可以透过样品进行测量。
四、光谱采集与分析光谱采集是近红外光谱分析的核心步骤,通过扫描一定波长范围内的光信号,得到样品在每个波长下的吸收光谱。
光谱分析可以通过两种方式进行:定性分析和定量分析。
定性分析通过与已知光谱库进行比对,判断样品的成分和特征。
光谱库中包含了不同物质的已知光谱特征,在采集到的光谱与光谱库进行匹配后,可以确定样品中是否含有特定物质。
定量分析则是通过建立样品的光谱特征与样品成分之间的数学模型,来估计或测定样品中的化学成分含量。
通常使用统计学方法和化学计量学模型进行定量分析。
五、应用领域近红外光谱分析在许多领域中得到广泛的应用。
例如,在农业中,可以通过近红外光谱分析检测农产品中的水分、蛋白质、糖分等成分,用于判断产品的质量和品种;在药品制造中,可以利用近红外光谱分析检测药品中的有效成分含量,用于质量控制;在环境监测中,可以通过近红外光谱分析检测土壤和水体中的污染物含量,用于环境保护等。
近红外光谱的原理及应用
近红外光谱的原理及应用前言近红外光谱是一种非破坏性的分析技术,被广泛应用于物质组分的测定、质量控制和环境监测等领域。
本文将介绍近红外光谱的原理及其在不同领域的应用。
一、近红外光谱的原理近红外光谱是指在波长范围为700 nm到2500 nm之间的光线所显示的谱图。
其原理基于物质吸收、散射和反射的特性。
近红外光谱仪通过收集样品对近红外光的吸收、散射或反射来获得样品的光谱信息。
其原理可简单总结为以下几个步骤:1.光源发出宽谱带光线,经过透镜或光纤导入光谱仪中。
2.经过光栅或棱镜的分光作用,将光线分解成不同波长的光,形成光谱。
3.样品与光谱仪中的探测器之间形成一个封闭的光学系统。
4.样品与光线相互作用,发生吸收、散射或反射。
这些相互作用引起光强度的变化。
5.光谱仪中的探测器记录这种光强度的变化,从而得到样品的光谱图。
二、近红外光谱的应用近红外光谱因其快速、非破坏性和高效的特点,在许多领域都有广泛的应用。
以下是近红外光谱在不同领域的应用示例:1. 食品行业•食品成分分析:近红外光谱可以用于分析食品中的脂肪、蛋白质、糖类等成分的含量,从而用于质量控制和产品检测。
这种非破坏性的分析方法可以避免传统化学分析所需的样品处理和分解过程。
•食品质量检测:通过比对样品近红外光谱与标准样品的光谱,可以检测食品中的变质程度、添加剂是否合格等质量指标。
2. 化工行业•原料组分分析:近红外光谱可以用于化工原料的成分分析,通过建立光谱与成分之间的关系模型,可以快速准确地确定原料的组分及其含量。
•反应过程监测:近红外光谱可以在线监测化工反应过程中的物质变化,实时掌握反应过程的动态信息,从而进行优化和调控。
3. 医药领域•药品质量控制:近红外光谱可以用于药品质量的快速检测和分析。
通过建立药品光谱与其成分、含量之间的关系模型,可以对药品进行快速准确的质量控制。
•药物研发:近红外光谱可以用于药物研发过程中的原料药分析、反应过程监测等,加快药物研发的速度和效率。
浅谈近红外光谱分析在药品检测中的应用
浅谈近红外光谱分析在药品检测中的应用近红外光谱分析是一种非破坏性的分析方法,通过探测样品在近红外波段的吸收、反射或透射光谱,来获取样品的化学和物理信息。
近红外光谱分析技术在药品检测中有着广泛的应用。
近红外光谱分析可以用于药品的快速鉴别。
不同药品在近红外波段的吸收、反射或透射光谱有所差异,通过建立近红外光谱库或采用统计分析方法,可以快速、准确地鉴别出不同药品的成分和质量。
近红外光谱分析可以用于药品中活性成分的含量测定。
药品的活性成分含量是评价其质量和疗效的重要指标之一。
传统的活性成分含量分析方法复杂、耗时且需要破坏样品,而近红外光谱分析可以通过建立定量模型,快速地测定药品中活性成分的含量,大大提高了分析效率。
近红外光谱分析可以用于药品中杂质的检测。
药品中的杂质对药品的质量和安全性有着重要影响,因此需要对药品中的杂质进行检测。
近红外光谱分析与化学计量学方法相结合,可以对药品中不同成分的含量进行定量分析,进而判断药品中的杂质含量是否超标。
近红外光谱分析还可以用于药品的质量控制。
药品的质量控制是保证药品安全性和疗效的重要环节,近红外光谱分析技术可以快速、准确地获取药品的化学和物理信息,从而判断药品是否符合质量要求。
通过建立近红外光谱库和对药品样品进行比对,可以实现对药品质量的快速筛查和监控。
近红外光谱分析技术在药品检测中具有广泛的应用前景。
它可以用于药品的鉴别、活性成分含量测定、杂质检测和质量控制,为药品的生产和质量监管提供了一种快速、准确、无损、低成本的分析手段。
随着近红外光谱分析技术的不断发展和完善,相信其在药品检测领域中的应用会越来越广泛。
近红外光谱技术在生物领域中的应用研究
近红外光谱技术在生物领域中的应用研究近年来,随着科学技术的不断发展,生物领域的研究也在不断深入。
其中,近红外光谱技术是一种非常有前景的技术,被广泛应用于生物医学领域、食品安全检测、环境污染监测等诸多领域。
本文将重点探讨近红外光谱技术在生物领域中的应用研究。
一、近红外光谱技术简介近红外光谱技术是一种无损检测技术,利用近红外光谱仪将样品反射、散射或透过的光谱信号进行采集、传输、处理及解析后,根据光谱特征进行质量分析、定量分析和成分分析等。
近红外光谱技术充分利用了近红外光谱能区(800-2500nm)的分子振动等特性,因其快速、无损、非破坏性及多元分析等优势,被广泛应用于农业、食品、生物、医药、环境和化学等领域。
二、1. 药物分析近红外光谱技术在药物分析方面具有很大应用前景。
常用的应用有定量分析、成分分析、残留检测和控制质量等方面。
例如,利用近红外光谱技术可以对含有荷包红素的传统汉药饮片进行无损检测,能够快速、准确地鉴别不同产地、不同品种的荷包红素饮片。
2. 生物医学领域近年来,近红外光谱技术在生物医学领域中的研究也越来越深入。
近红外光谱技术可以被用来诊断疾病、检测生物标志物和回收手术剩余物等等。
例如,2015年,一项研究发现,利用近红外光谱技术可以快速可靠地检测血液中葡萄糖水平的变化,这对于糖尿病的预防和治疗非常有帮助。
3. 食品安全检测食品安全是一个重要的问题。
近红外光谱技术可以被用来检测食品中的致病物和非法添加剂等信息。
例如,近年来,用近红外光谱技术检测奶制品中三氯磷等致癌物质的方法得到了广泛的应用和研究。
三、近红外光谱技术的优势和挑战⒈优势:快速、非破坏性、准确性高、环保、可在线检测、高效、成本低等。
⒉挑战:目前缺少可靠性、维护成本高、可靠性不足、标准不完善等。
四、结论近红外光谱技术在生物领域中具有很广阔的应用前景。
虽然该技术还面临着一些挑战,但是随着科学技术的不断发展,这些挑战也将随之逐渐克服。
浅谈近红外光谱分析在药品检测中的应用
浅谈近红外光谱分析在药品检测中的应用【摘要】近红外光谱分析在药品检测中具有重要意义,可以快速准确地检测药品成分,确保药品质量和安全。
本文首先介绍了近红外光谱分析的原理和方法,然后探讨了其在药品检测中的应用,包括质量控制、真伪鉴别和生产过程监测。
结论部分指出近红外光谱分析技术在药品检测领域具有广阔的发展前景,应用推广的潜力巨大,未来可望在药品行业中得到更广泛的应用。
通过本文的探讨,读者可以深入了解近红外光谱分析在药品检测中的重要性和应用前景,为相关研究及应用提供参考。
【关键词】近红外光谱分析、药品检测、应用意义、原理、方法、药品成分、质量控制、真伪鉴别、监测、前景、应用推广、未来发展方向。
1. 引言1.1 近红外光谱分析简介近红外光谱分析是一种基于物质与近红外光的相互作用原理,通过检测样品吸收、散射或透射近红外光的强度来获取样品的化学信息的分析技术。
近红外光谱在药品领域得到广泛应用,其原理是利用近红外光与药物分子之间的特定相互作用,通过检测药物分子对不同波长近红外光的吸收情况,可以实现对药品成分、结构及含量等信息的快速、准确、无损检测。
近红外光谱分析简便、快速且无需样品准备,同时减少了实验过程中对试剂和耗材的使用,节约了实验成本和时间。
近红外光谱分析技术在药品检测中具有巨大的潜力和应用前景。
通过近红外光谱分析,可以实现对药品成分的快速检测,大大提高了药品质量控制的效率和准确性。
近红外光谱还可用于药品真伪鉴别和生产过程监测,确保药品的安全性和有效性。
近红外光谱分析在药品检测中的应用意义重大,对提高药品质量、保障药品安全起着至关重要的作用。
1.2 药品检测的重要性药品检测的重要性在药品生产和流通环节中起着至关重要的作用。
药品作为涉及到人体生命健康的特殊商品,其质量和安全性是不容忽视的。
药品检测可以有效地确保药品的成分纯净、质量稳定,避免因药品不合格而引发的严重后果。
在药品流通环节中,药品检测也能够帮助监管部门对药品的真伪进行鉴别,遏制假冒伪劣药品的泛滥,保障广大患者的用药安全。
现代近红外光谱分析技术的原理及应用
现代近红外光谱分析技术的原理及应用1 简介近红外光(near infrared,NIR)是介于可见光(VIS)和中红外光(MIR或IR)之间的电磁波美国材料检测协会(ASTM)将近红外光谱区定义为波长780-2526nm的光谱区(波数为12820-3959cm-1)习惯上又将近红外区划分为近红外短波(780-1100nm)和近红外长波(1100-2526nm)两个区域。
从20世纪50年代起,近红外光谱技术就在农副产品分析中得到广泛应用,但是由于技术上的原因,在随后的20多年中进展不大。
进入20世纪80 年代后,随着计算机技术的迅速发展,以及化学计量学方法在解决光谱信息提取和消除背景干扰方面取得的良好效果,加之近红外光谱在测试技术上所独有的特点,人们对近红外光谱技术的价值有了进一步的了解从而进行了广泛的研究。
数字化光谱仪器与化学计量学方法的结合标志着现代近红外光谱技术的形成。
数字化近红外光谱技术在20 世纪90年代初开始商品化。
近年来,近红外光谱的应用技术获得了巨大发展,在许多领域得到应用,对推进生产和科研领域的技术进步发挥了巨大作用。
近红外光谱技术是90年代以来发展最快、最引人注目的光谱分析技术,测量信号的数字化和分析过程的绿色化使该技术具有典型的时代特征。
由于近红外光在常规光纤中有良好的传输特性,使近红外光谱技术在实时在线分析领域中得到很好的应用。
在工业发达国家,这种先进的分析技术已被普遍接受,例如1978年美国和加拿大采用近红外法代替凯氏法,作为分析小麦蛋白质的标准方法。
20世纪90年代初,外国厂商开始在我国销售近红外光谱分析仪器产品,但在很长时间内,进展不大,其原因主要是:首先,近红外光谱分析要求光谱仪器、光谱数据处理软件(主要是化学计量学软件)和应用样品模型结合为一体,缺一不可。
但被分析样品会由于样品产地的不同而不同,国内外的样品通常有差异,因此,进口仪器的应用模型一般不适合分析国内样品。
近红外光谱(NIR)分析技术的应用
近红外光谱(NIR)分析技术的应用近红外光谱分析是近20年来发展最为迅速的高新技术之一,该技术分析样品具有方便、快速、高效、准确和成本较低,不破坏样品,不消耗化学试剂,不污染环境等优点,因此该技术受到越来越多人的青睐。
一、近红外光谱的工作原理有机物以及部分无机物分子中各种含氢基团在受到近红外线照射时,被激发产生共振,同时吸收一部分光的能量,测量其对光的吸收情况,可以得到极为复杂的红外图谱,这种图谱表示被测物质的特征。
不同物质在近红外区域有丰富的吸收光谱,每种成分都有特定的吸收特征。
因此,NIR能反映物质的组成和结构信息,从而可以作为获取信息的一种有效载体。
二、近红外光谱仪的应用NIR分析技术的测量过程分为校正和预测两部分(如图一所示),(1)校正:①选择校正样品集,①对校正样品集分别测得其光谱数据和理化基础数据,①将光谱数据和基础数据,用适当的化学计量方法建立校正模型;(2)预测:采集未知样品的光谱数据,与校正模型相对应,计算出样品的组分。
由此可知,建立一个准确的校正模型是近红外光谱分析技术应用中的重中之重。
图一2.1 定标建模2.1.1 为什么要建立近红外校正模型2.1.1.1 建立近红外校正模型的最终目标是获得一个长期稳定的和可预测的模型。
2.1.1.2 近红外光谱分析是间接的(第二手)分析方法,所以①需要定标样品集;①利用定标样品集的参比分析数据与近红外光谱建立校正模型;③近红外分析准确度与参比方法数据准确度高度相关;④近红外分析精度一般优于参比方法分析精度。
2.1.2 模型的建立与验证步骤2.1.2.1 扫描样品近红外光谱准确扫描校正样品集中各个样品规范的近红外光谱:为了克服近红外光谱测定的不稳定性的困难,必须严格控制包括制样、装样、测试条件、仪器参数等测量参数在内的测量条件。
利用该校正校品集建立的数学模型,也只能适用于按这个的测量条件所测量光谱的样品。
2.1.2.2 测定样品成分(定量)按照标准方法(如饲料中的粗蛋白GB/T6432、水分GB/T6435、粗脂肪GB/T6433)准确测定样品集中每个样品的各种待测成分或性质(称为参考数据)。
近红外光谱法在药物分析中的应用
近红外光谱法在药物分析中的应用摘要:近年来,近红外光谱法在药物分析中的应用日益广泛。
本文对近红外光谱法的原理、技术特点、常用的数据处理方法和药物分析中的应用进行了综述,探讨了近红外光谱法在药物分析中的优势和局限性,以及未来可能的发展方向。
一、近红外光谱法的原理和技术特点近红外光谱法是一种无损、无污染和无需样品前处理的分析方法,它利用近红外光谱区域(780-2500 nm)的物质吸收谱信息来进行定性和定量分析,可分析物质的化学成分、结构和物理性质等信息。
近红外光谱法的优点在于分析速度快、经济、可重复性好、无需样品破坏和准确性良好等特点。
近红外光谱法的原理主要是基于化学键振动引起的光谱吸收和散射现象。
不同的化学键振动对应着不同的光谱带,它们的强度、位置和形状都与化学组成、结构和物理性质等密切相关。
利用与待分析样品相同的标准样品建立光谱和浓度之间的关系,就可以进行定量分析了。
近红外光谱法的技术特点主要有以下几个方面:1. 非破坏性分析利用近红外光谱法进行分析不需要破坏或改变样品的性质,因此可以避免样品对分析结果的影响。
2. 无需样品前处理近红外光谱法不需要样品前处理,可快速、准确地对多种药物进行分析,省去了样品处理的繁琐过程,使分析更加方便快捷。
3. 高精度和高可靠性近红外光谱法在谱图预处理、光谱定标和模型建立等方面都有高要求,在精度和可靠性方面表现出色。
4. 多元分析近红外光谱法可以同时定量和定性分析多种成分,具有较好的多元分析能力,可克服单一分析方法的缺点。
5. 分析速度快利用近红外光谱法进行分析速度快,可省去分析过程中烦琐的化学反应。
二、常用的数据处理方法由于近红外光谱法的光谱信息往往比较复杂,因此需要采用一些数据处理方法来优化光谱数据,提高分析精度和准确性。
1. 光谱预处理光谱预处理是一种对原始光谱数据进行处理的方法,其目的在于去除噪声、背景和光谱中的无用信息,以保留待分析物质的关键信息。
光谱预处理可以有效地降低光谱间的差异,提高光谱数据的接受性和模型的准确性。
近红外光谱分析的原理
近红外光谱分析的原理近红外光谱分析是一种常用的非破坏性分析技术,通过对样品中吸收、反射或透射近红外光的特性进行测量和分析,从而确定样品的组成、结构或性质。
它广泛应用于医药、食品、化工、环保等领域,为科学研究和工业生产提供了重要的帮助。
本文将从原理的角度介绍近红外光谱分析的基本原理和应用。
一、近红外光的特性近红外光波长范围通常定义为750到2500纳米,位于可见光和红外光之间。
它具有较强的穿透性,并且能够被许多物质所吸收。
近红外光与物质相互作用后,会引起物质中化学键的振动和分子的转动。
这些振动和转动能够产生一系列特征性吸收峰,形成物质的近红外光谱图。
每种物质的近红外光谱都是独特的,因此可以通过比对样品的光谱与已知物质的光谱库进行定性和定量分析。
二、近红外光谱仪的原理近红外光谱仪由光源、样品池、光谱分析器和数据处理软件组成。
首先,近红外光源会发出连续谱的光束,经过透射、反射或散射后进入光谱分析器。
光谱分析器会选择特定的光谱范围并分离出不同波长的光,然后通过光电探测器将光信号转化为电信号。
最后,数据处理软件会将电信号转化为光谱图,并对光谱图进行分析和解释。
三、近红外光谱分析的应用1. 成分分析:近红外光谱可以通过测量样品中特定化学键的振动频率来确定样品的成分。
例如,在药品生产中,可以使用近红外光谱分析仪来快速准确地检测药品中的活性成分和杂质。
2. 定量分析:通过建立标准曲线或建立定量模型,可以利用近红外光谱分析仪对样品中某种成分的含量进行定量分析。
例如,在食品加工中,可以使用近红外光谱分析仪对食品中的脂肪、蛋白质和糖等成分进行快速准确的测量。
3. 质量控制:近红外光谱分析可用于监测和控制工业生产过程中的样品质量。
通过对样品进行在线或离线的近红外光谱分析,可以及时发现质量变化和异常情况,并采取相应措施。
4. 物性分析:近红外光谱分析可以用于研究材料的物理和化学性质。
例如,在纺织业中,可以使用近红外光谱仪来分析纤维的质地、密度和含水量等物性参数。
近红外光谱技术在医学诊断中的应用
近红外光谱技术在医学诊断中的应用近红外光谱技术是一项先进的无损分析技术,近年来在医学诊断领域受到了越来越多的关注和应用。
它通过测量和分析物质在近红外光谱区域的吸收和散射特性,可以快速、准确地检测分析样本中的化学成分和生物分子信息,为医学诊断和治疗提供了全新的思路和方法。
一、近红外光谱技术在疾病诊断中的应用1.肿瘤诊断:近红外光谱技术可以通过分析患者血液或组织样本中的近红外光谱信号,探测肿瘤标志物的变化,从而实现早期肿瘤的诊断和定量判别。
该技术通过建立肿瘤光谱数据库和模型算法,能够对不同类型的肿瘤进行识别,为肿瘤治疗提供了依据和参考。
2.血糖检测:近红外光谱技术可以通过皮肤组织对近红外光的吸收和散射特性来非侵入性地测量人体的血糖浓度,实现连续、动态监测。
这对于糖尿病患者来说,可以避免频繁的采血和痛苦,提高生活质量和管理效果。
3.心血管疾病诊断:通过近红外光谱技术对血液中的脂质和蛋白质等成分进行测量,可以评估患者的心血管健康状况。
该技术可以检测血液中的氧合血红蛋白和脱氧血红蛋白含量的比例,以及脂质代谢产物的浓度,辅助医生进行心血管疾病的诊断和治疗。
4.胃肠道疾病诊断:近红外光谱技术可以通过分析患者呼气或经口摄入样本中的光谱信息,对胃肠道疾病进行早期筛查和诊断。
该技术可以检测胃肠道气体成分的变化,识别特定的生物标志物,辅助医生进行疾病鉴别和治疗方案制定。
二、近红外光谱技术在药物研发中的应用1.药物质量控制:近红外光谱技术可以通过快速扫描药物样品的光谱信息,判断药物的成分和纯度是否符合规定标准,实现药物质量的控制和监测。
该技术可以提高药物生产的效率和安全性,减少传统检测方法的时间和成本。
2.药物代谢研究:近红外光谱技术可以通过测量患者血液或尿液中的光谱信息,实时监测和分析药物在体内的代谢过程。
这对于药物疗效评估和个体化用药非常重要,可以帮助医生调整药物的剂量和方案,提高疗效和减少副作用。
3.药物疗效评价:近红外光谱技术可以通过测量患者体内药物的光谱信号,评估药物是否达到治疗效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近红外光谱分析及其应用简介1、近红外光谱分析及其在国际、国内分析领域的定位近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。
近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。
近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC (American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。
在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。
发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。
我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。
目前国内能够提供完整近红外光谱分析技术(近红外光谱分析仪器、化学计量学软件、应用模型的研发)的公司正处于发展阶段。
由于我国经济的快速发展,持续发展型经济与建立节约型社会方针的确定与贯彻我国生产、科研、教学领域和市场对产品的检测与控制要求迫切,按照国际经验,近红外光谱分析技术将是一种首选技术。
随着国产近红外光谱仪的研制和生产,近红外光谱分析技术在分析界必将为更多的人所认识和接受,会在越来越多的领域广泛应用。
2、近红外光谱分析与常规光谱分析方法的不同通常可以把基本紫外、可见光谱分析和红外光谱分析等称为常规光谱分析,近红外光谱分析由于谱区信息的不同,方法和仪器的不同使其与常规光谱分析有很大的差别。
2.1 近红外光谱分析谱区的不同近红外谱区的波长介于可见光与中红外光之间,该谱区的分析兼备了中红外谱区信息量丰富的优点与可见谱区使用方便的优点。
与中红外谱区一样,近红外光谱分析利用分子振动的信息,但本谱区主要是振动的倍频与合频信息,此谱区分析几乎可以实现所有与含氢基团有关的样品化学性质、物理性质,某些生物性质等多项目分析或同时分析,被认为是一种“具有解决全球农业分析潜力”的当代分析方法。
与紫外、可见、中红外谱区相比,物质对近红外谱区吸收的能力较弱,该谱区可以透入样品内部,取得样品内部的信息,因此近红外光谱分析样品可以不需要或者只要少量的物理前处理,便可用于各种快速分析,尤其适用于复杂样品的无损分析。
2.2近红外光谱分析方法的不同常规光谱分析一般要求样品通过前处理,使组分和浓度调整后再进行分析。
仪器测试结果只是给出样品对某一波长吸光度,吸光度和待测量(如浓度)间的关系是简单的线性关系;常规光谱分析只要仪器给出准确的吸光度,即可由用户自行建立的个性化工作曲线(属于各台仪器特定分析方法的)得到待测量。
近红外光谱分析是在复杂、重叠、变动的背景下提取弱信息,复杂样品近红外光谱和待测量间的关系是复杂的间接关系;近红外光谱分析必须借助化学计量学方法用全部波长点和待测量进行多元关联,建立光谱与待测量间关系的数学模型,依靠数学模型由光谱计算样品的待测量。
近红外光谱分析仪器不仅要给出吸光度,还须捆绑数学模型才能得到待测量。
2.3近红外光谱分析仪器的不同常规光谱分析一般由用户自备标样后测定标准曲线或工作曲线。
每种工作曲线只相对于某台仪器使用,这种分析属于相对分析,相对分析可以通过个性化的工作曲线校正仪器与方法的某些系统偏差,因而对仪器的精确度要求较高;相对于仪器的波长、吸光度准确度的要求较低。
近红外光谱分析依靠捆绑的数学模型,直接计算出样品的待测量,这种分析属于绝对分析,绝对分析对仪器的准确度与精确度要求较高。
但用户可以对不经过前处理的样品直接分析待测量。
近红外光谱分析建立数学模型的过程比较复杂、烦琐,为了避免用户自行建立个性化数学模型,厂家必须克服仪器的台间差异,为仪器捆绑统一的数学模型。
近红外光谱分析仪器要求整合精密、稳定的硬件和软件、数学模型;并需要资源、分析方法与分析经验等条件的集合才能实现,是一种难度较大的分析技术。
3、近红外光谱分析的特点3.1 近红外光谱分析应用方式的特点:近红外光谱的工作谱区信息量丰富,对样品有较强的透过能力。
近红外光谱分析能在几秒钟内对被测样品完成一次光谱的采集测量,瞬间即可依靠数学模型完成其多项性能指标的测定。
分析过程不产生污染、不消耗其它材料、不破坏样品,分析重现性好、成本低;可以实现快速分析、绿色分析、廉价分析,具有“多、快、好、省”的特点。
尤其是在复杂物、天然物的无损、微损分析、在线分析、原位分析、瞬间分析等领域具有常规分析无法比拟的优点。
近红外光谱分析技术对于适时的质量监控与大量样品分析是十分经济且快速的,由于建立近红外光谱方法之前须投入大量人力、物力和财力才能得到一个准确的校正模型。
因此近红外光谱分析对于没有相应的数学模型、零星样品的分析不太适用。
近红外光谱分析技术属于应用数学模型的间接分析,是二级的分析技术;一般不适合做实验室高精度,高稳定性分析;近红外光谱分析也不适合做微量分析。
3.2 近红外光谱分析方法学的特点:近红光谱外分析结果的准确度不但与待测样品有关,还取决于建模样品与模型(准确度与稳定性),优秀的模型可以使测定结果的准确度逼近经典方法。
近红外光谱分析的精确度可达到或超过经典方法;近红外光谱分析的速度较快,当分析模型建立后,分析的速度一般以秒为单位;近红外光谱分析的检测极限不易做得很低,一般只能做到10-3—10-4,难以应用于农业残留分析等领域。
近红外光谱分析的效率极高。
近红外光谱分析的仪器可以作成类似傻瓜式仪器,用户只要简单地培训即可操作仪器,使用模型(数学模型由仪器的开发人员或制造商来完成)进行分析,分析成本相对常规分析要低的多。
4、近红外光谱分析的应用领域:近红外光谱主要是反映与C-H、O-H、N-H、S-H等基团有关的样品结构、组成、性质的信息,因此分析范围几乎可覆盖所有的有机化合物和混合物。
加之其独有的诸多优点,决定了它应用领域的广阔,使其在许多行业中都能发挥重要作用。
主要的应用领域包括:石油及石油化工、农业、烟草、食品、饮料、制药、有机化工、精细化工、生命科学、医学临床、纺织、造纸、化妆品、地理地质、航空、遥感、质量监督、环境保护等领域。
在石化领域可测定油品的辛烷值、十六烷值、闪点、冰点、凝固点、馏程等;在农业领域可以测定谷物的蛋白质、氨基酸、醣、脂肪、纤维、水分等内部组份含量与硬度等性质;在医药领域可以测定药品中的有效成分、组成和含量;亦可进行样品的种类鉴别,如酒类和香水的真假辨别,环保废弃物的分检等。
(参阅《近红外光谱分析基础与应用》一书)我国近红外光谱分析主要应用于石化、农业、烟草、食品、饮料等领域,其他还可应用于宝石鉴定、遥感等方面。
以烟草分析为例,烟草常规分析包括总氮、总醣及烟碱等九种成分,通常采用流动注射分析方式,速度慢、成本高,对分析人员的技术要求也高。
采用近红外光谱分析方法一旦数学模型建立后,分析速度可以提高数十倍,分析成本会降低很多,分析的重复性超过常规方法;因此,近红外方法从90年代后,已经完全被烟草界认可。
我国主要烟草公司已普遍采用近红外分析技术,已装备了上百台高档近红外分析仪,用于现场、实验室与在线测量分析与原料监测。
我国著名的酒厂均采用近红外光谱仪,用于酒糟发酵等过程的监控。
5、近红外分析系统:近红外光谱分析必须通过数学模型,因此近红外分析要求仪器的硬件、软件和资源三位一体,缺一不可,通常还需要构建近红外分析网络系统,他们共同组成近红外分析系统。
优良的近红外光谱分析仪器用于产生准确的光谱;近红外分析软件(包括模型)用于解析光谱提取待测量信息;近红外分析资源(已知待测量的代表性样品、数学模型等)用于建立数学模型;近红外光谱分析的网络系统用于为仪器厂家和用户之间的网络支持。
5.1 近红外光谱分析的仪器:近红外光谱分析技术主要分成两个谱区:0.8~1.1μm称为短波近红外谱区,主要利用含氢基团高(4~5)倍频的信息,该谱区被物质吸收弱,透过能力强,适合于做透射分析,尤其适合于做整粒样品的透射分析,仪器的价格相对较低。
1.1~2.5μm称为中长波近红外谱区,主要利用含氢基团的低(2~3)倍频区,该谱区透过能力比短波近红外弱,适合做粉末样品的反射光谱分析。
近红外光谱仪按结构分,主要分为连续波长型和离散波长型。
前者分析谱区的光谱具有波长连续的特征;又分为色散型(单检测器或阵列检测器)与傅立叶变换型等,分析的范围相对较宽;后者利用滤光片或LED等,选用几个特征(离散的)波长进行分析,价格相对较便宜。
5.2 近红外光谱分析的软件:近红外光谱分析软件用于包括对近红外光谱的预处理(复原与压缩等功能算法),关联近红外光谱与待测量建立数学模型的算法,以及利用模型预测未知样品的光谱并对分析结果进行检验等功能。
5.3 近红外光谱分析的资源:为了建立优秀的近红外光谱分析模型,必须广泛收集样品并且用标准方法测定化学值,这些样品以及由此建立的数学模型需要耗费大量人力物力是近红外分析资源,这些资源的数据达到海量的规模,一般需要用数据库来管理。
5.4 近红外光谱分析的网络系统:近红外光谱分析的模型需要经常维护修正,这些工作的难度较大,需要专业人员的帮助,因此,近红外专用分析仪器厂商需要通过网络为用户提供各种技术支持。
主要参考文献主编:严衍禄,《近红外光谱分析基础与应用》,中国轻工业出版社2005年1月出版。