等离子体物理学导论L5.
等离子体物理(江西师范大学物理与通信电子学院黄子骏)
![等离子体物理(江西师范大学物理与通信电子学院黄子骏)](https://img.taocdn.com/s3/m/08bc5e7727284b73f242509a.png)
朗道阻尼的物理图像
漂移 和冲浪类比 交换能量
非捕获粒子的动能
考虑初始条件
非磁化等离子体中静电波色散关系的一般形 式
色散关系和平衡态分布函数有关,分布函数不 同可以出现波的阻尼或增长
等离子体色散函数
两个极端处理:冷等离子体近似
热等离子体近似
离子声波及其朗道阻尼
非线性效应
等离子体鞘层
3. 磁通不变量Φ
(五)带电粒子在高频电磁波中运动
•弱电磁波中的颤抖运动
•电子在强激光场中的相对论运动
•电子加速
(六)若非均匀恒定电磁场中回旋中心漂移运动
若非均匀性:磁场和电场在空间变化的特征长度比回旋半径长很 多 漂移速度的一般表达式:
vD
E b B
qB
b B
m v R c B qB Rc
圆偏振波
回旋共振
哨声波 法拉第旋转
等离子体的平衡与稳定
磁流体力学方程 磁面和磁通 平衡时,磁感线和电流线均位于等压面上 双流不稳定性 能量原理 单流体处理 理想流体力学方程
直线箍缩等离子体柱的的不稳定性
边界上没有扰动,不稳定性只在等离子体内部发 生,通常称为内模
1、m不为0 内交换模
m=1时,等离子体住由于初始扰动发生弯曲时, 弯曲部位凹侧磁场增强,凸侧磁场减弱等离子体 住更弯曲 2、m为0的内交换模 腊肠模
均 匀 磁 场 中 运 动
拉莫尔回旋
角速度 抗磁性
c
m
dv dt
qv B
c qB / m
v
2T / m
沿磁场方向做匀速直线运动,垂直磁场方向做匀速圆周运动 轨迹:螺旋线
等离子体物理学导论
![等离子体物理学导论](https://img.taocdn.com/s3/m/28bf9e6d58fafab069dc02a1.png)
电阻扩散时间、能量约束时间、 各种波动周期等 Q: 量值可跨越几十个数量级,能否用统一的数学 描述方法描述这些不同的等离子体呢?
A: 表示各参数的相对量级关系的无量纲参数是解决问题的关键! 例如:磁雷诺数:磁场对流项与磁扩散项之比、
等离子体beta参数:等离子体热压与磁压之比
• 等离子体响应时间
3)、德拜屏蔽概念成立的前提是: 德拜球内 存在足够多的粒子
nD3 1
也叫等离子体参数,是等离子体粒子间平均动 能与平均相互作用势能之比的一个度量.
等离子体判据小结:
判据一、等离子体存在的时空尺度 时间:必须远大于响应时间 空间:必须远大于德拜长度
t
>> pe
L >> D
E J 欧姆定律
eneE Fei 0 力的平衡:电场力=摩擦力Feimene ei (ue
ui )
me e
eiJ
摩擦力=单位时间内通过碰撞引起的动量交换
电阻 与 碰撞频率与等离子体振荡频率之比正相关
1.5、等离子体的描述方法 (经典、非相对论体系) 等离子体的各种时空尺度: 空间:德拜半径、电子回旋半径、离子回旋半径、
Newton方程: m dv/dt = q(E + v X B)
Maxwell方程组求出 带电粒子的电磁场
对应于当前迅速发展的粒 子模拟技术
缺点:自由度太多, 计算量极大
Laplace:Give me the initial data on the particles and I’ll predict the future of the universe
1.4 库仑碰撞 库仑碰撞频率 1.5 等离子体物理学研究和描述方法
物理类导论:等离子体物理与高新技术
![物理类导论:等离子体物理与高新技术](https://img.taocdn.com/s3/m/e0c60d575a8102d277a22f00.png)
等离子体与中性气体的区别
(1)等离子体是一种电离气体,还有带电的粒子,如电子和离子,但宏 观(整体)上又不显电性;
a. 温度: 电子温度、离子温度、中性粒子的温度 1个电子伏 (eV) = 11650K
b. 密度: 电子密度、离子密度、中性粒子的密度
准电中性条件: 电子密度 离子密度 = 等离子体密度
低温气体放电等离子体: 电子温度 1 – 10 eV 等离子体密度 108 – 1013 cm-3
聚变等离子体: 电子温度 1 – 20 keV 等离子体密度 1020 – 1025 cm-3
4. 在早期的容性耦合放电中,为单频电源驱动放电,而且电源的频 率为 f=13.56MHz。第一代等离子体刻蚀源。
5. 最近几年,出现的双频电源驱动放电,两个电源的频率不同,如: 60/2 MHz,27/2 MHz。两个电源可以施加在同一个电极或不同的 电极。
(b) 感性耦合
盘香形线圈
ICP source with planar coils
•离解过程 AB + e A + B + e
•弹性碰撞 A+ + e A +e
2、气体放电的类型
(1)DC glow discharges(直流放电) (2)RF glow discharges (射频放电) (3)Microwave discharges (微波放电)
1、直流辉光
阴极
等离子体
中性气体不含有带电的粒子,只含有一些中性的粒子,如原子分子。
等离子体物理学
![等离子体物理学](https://img.taocdn.com/s3/m/2dcf7dff4bfe04a1b0717fd5360cba1aa8118cc6.png)
等离⼦体物理学§2 等离⼦体物理学研究等离⼦体的形成、性质和运动规律的⼀门学科。
宇宙间的物质绝⼤部分处于等离⼦体状态。
天体物理学和空间物理学所研究的对象中,如太阳耀斑、⽇冕、⽇珥、太阳⿊⼦、太阳风、地球电离层、极光以及⼀般恒星、星云、脉冲星等等,都涉及等离⼦体。
处于等离⼦状态的轻核,在聚变过程中释放了⼤量的能量,因此,这个过程的实现,将为⼈类开发取之不尽的能源。
要利⽤这种能量,必须解决等离⼦体的约束、加热等物理问题。
所以,等离⼦体物理学是天体物理学、空间物理学和受控热核聚变研究的实验与理论基础。
此外,低温等离⼦体的多项技术应⽤,如磁流体发电、等离⼦体冶炼、等离⼦体化⼯、⽓体放电型的电⼦器件,以及⽕箭推进剂等研究,也都离不开等离⼦体物理学。
⾦属及半导体中电⼦⽓的运动规律,也与等离⼦体物理有联系。
⼀发展简史19世纪以来对⽓体放电的研究;19世纪中叶开始天体物理学及20世纪对空间物理学的研究;1950年前后开始对受控热核聚变的研究;以及低温等离⼦体技术应⽤的研究,从四个⽅⾯推动了这门学科的发展。
19世纪30年代英国的M.法拉第以及其后的J.J.汤姆孙、J.S.E.汤森德等⼈相继研究⽓体放电现象,这实际上是等离⼦体实验研究的起步时期。
1879年英国的W.克鲁克斯采⽤“物质第四态”这个名词来描述⽓体放电管中的电离⽓体。
美国的I.朗缪尔在1928年⾸先引⼊等离⼦体这个名词,等离⼦体物理学才正式问世。
1929年美国的L.汤克斯和朗缪尔指出了等离⼦体中电⼦密度的疏密波(即朗缪尔波)。
对空间等离⼦体的探索,也在20世纪初开始。
1902年英国的O.亥维赛等为了解释⽆线电波可以远距离传播的现象,推测地球上空存在着能反射电磁波的电离层。
这个假说为英国的E.V.阿普顿⽤实验证实。
英国的D.R.哈特⾥(1931)和阿普顿(1932)提出了电离层的折射率公式,并得到磁化等离⼦体的⾊散⽅程。
1941年英国的S.查普曼和V.C.A.费拉罗认为太阳会发射出⾼速带电粒⼦流,粒⼦流会把地磁场包围,并使它受压缩⽽变形。
等离子体物理-第五章-1
![等离子体物理-第五章-1](https://img.taocdn.com/s3/m/ba3ea46dddccda38376baf2e.png)
§5.2存在磁场时弱电离等离子体中的扩散
要研究双极扩散,原则上要利用封闭面上粒子通
量的散度相等:
i
i
e
5.24 对 和 ,其形式分别为: n i i nE Di n i nEz Di z z 5.25 n e e nE De n e nEz De z z
对于某种粒子,粒子流的通量,即单位时间穿过
单位截面的粒子数量应为: n nE D n
j j j j
5.8
5.9
当E=0,得到中性气体的扩散定律:
Dn
§5.1无磁场弱电离等离子体中的扩散
3、双极扩散
存在电场E和密度梯度 n,就会造成粒子扩散。 实际上等离子体总是有界的,在边界上,密度为 零,必然出现密度梯度,从而引起扩散。 由于扩散,等离子体的电中性就可能由于通量Γ 不同而遭到破坏,导致等离子体崩溃。
下,由于
2 c 1 2 2
5.23
§5.2存在磁场时弱电离等离子体中的扩散
通过对强磁场和无磁场两种情况下扩散系数的比
较,发现强磁场作用下,粒子的碰撞产生的作用 与无磁场时有完全不同的效果。 无磁场时,碰撞降低了粒子扩散的速度。 而强磁场下,粒子束搏在某一根磁力线附近作回 旋运动,不能向外扩散,正是由于碰撞才造成粒 子脱离原来的磁力线的机会,从而产生扩散。
D , D 2 2 1 c 1 c2 2
垂直迁移率
5.21
垂直扩散系数
n 1 ( E D ) ( ) n 1
2 2 E D c
等离子体物理学导论ppt课件
![等离子体物理学导论ppt课件](https://img.taocdn.com/s3/m/1f780e617275a417866fb84ae45c3b3567ecddca.png)
3、等离子体响应时间: 静态等离子体的德拜长度,主要取决于低温成分的德 拜长度。在较快的过程中,离子不能响应其变化,在 鞘层内不能随时达到热平衡的玻尔兹曼分布,只起到 常数本底作用,此时等离子体的德拜长度只由电子成 份决定。 等离子体的响应时间: 1)、建立德拜屏蔽所需要的时间 2)、等离子体对外加电荷扰动的响应时间 3)、电子以平均的热速度跨越鞘层空间所
)1/ 2 , lD
(lD2i
l ) 2 1/ 2 De
提示:
A1:是的,排空同号电荷,调整粒子密度 A2: 低温成份(稳态过程)、
由电子德拜长度决定(短时间尺度运动过程)
4、德拜屏蔽是一个统计意义上的概念,表现在上述推导过程
中使用的热平衡分布特征,电势的连续性等概念成立的前
提是: 德拜球内存在足够多的粒子
德拜屏蔽概念的几个要点: 1、电屏蔽、维持准中性 2、基本尺度:空间尺度 3、响应时间:时间尺度 4、统计意义:等离子体参数
等离子体概念成立的两个判据: 时空尺度、统计意义
后面还有一个,共同保障集体效应的发挥!
三、 等离子体Langmuir振荡: 等离子体振荡示意图
x=0
物理图像:密度扰动电荷分离(大于德拜半径尺度)电场 驱动粒子(电子、离子)运动“过冲”运动 往返振荡等离子体最重要的本征频率: 电子、离子振荡频率
1. 捕获与约束 逃逸与屏蔽 (反抗约束) 由自由能与捕获能平衡决定! 德拜长度: 1、随数密度增加而减小,即更 小范围内便可获得足够多的屏蔽用的粒子
2、随温度升高而增大:温度代表粒子 自由能,零温度则屏蔽电子缩为薄壳
德拜屏蔽是两个过程竞争的结果: 约束与逃逸 (反抗约束) 屏蔽与准中性 由自由能与相互作用能平衡决定!
消除流行的错误的温度概念: 荧光灯管内的电子温度为20,000K 日冕气体温度高达百万度,却烧不开一杯水
等离子体物理学导论L5
![等离子体物理学导论L5](https://img.taocdn.com/s3/m/8e43250f52ea551810a6875b.png)
2.1.3 重力漂移 (注: 仅将 qE 换成 mg 即可) 即可)
重力漂移方向与电荷相关, 重力漂移方向与电荷相关,电子与离子漂 移方向相反,这种漂移有产生空间电荷分 移方向相反, 离的趋势,进而产生电场或者电流, 离的趋势,进而产生电场或者电流,使得 磁场系统发生变化 (写出电流表达式 电流的主要载体 写出电流表达式/电流的主要载体 写出电流表达式 电流的主要载体) 思考: 离子的质量大,反而漂移速度快 反而漂移速度快? 思考 离子的质量大 反而漂移速度快
四种描述方法 • 单粒子轨道理论 • 粒子模拟PIC • Kinetic Vlasov-Maxwell方程组
• MHD 逐层近似
第二章. 第二章 带电粒子在电磁场中的运动 Motion of charged particles in fields
对于给定的电磁场、求解单粒子运动方程: 对于给定的电磁场、求解单粒子运动方程:
引起的漂移: 其它非电场力 F 引起的漂移:
注: 本章后面求漂移速度的指导思想就是 (1) 引导中心近似,将回旋运动单独解开 引导中心近似, (2) 将各种扰动形式化为外力项或等效外力项
课堂思考: 课堂思考: Q:在磁场趋于零时, :在磁场趋于零时, 会得到漂移速度无穷 大的结果,如何理解? 大的结果,如何理解?
Introduction to Plasma Physics 等离子体物理学导论 主讲: 主讲: 陈 耀 山东大学空间科学研究院 2009.3 – 2009.6
• 回顾
1.4 库仑碰撞 库仑碰撞频率 1.5 等离子体物理学研究和描述方法
Kb3/2 几个要点: 几个要点: 德拜屏蔽过程将等离子体粒子间的相互作用分为 两种,一为球内粒子的库仑相互作用, 两种,一为球内粒子的库仑相互作用,二为球外 粒子的集体相互作用; 粒子的集体相互作用; 库仑碰撞以小角度散射或远碰撞为主要形式; 库仑碰撞以小角度散射或远碰撞为主要形式;远 碰撞等效碰撞截面是近碰撞的几十倍 碰撞频率与温度的3/2次幂成反比,这是库仑碰 碰撞频率与温度的3/2次幂成反比, 3/2次幂成反比 撞的重要特点, 撞的重要特点,与中性粒子间的碰撞对温度的依 赖完全不同。温度越高,库仑碰撞的频率越小. 赖完全不同。温度越高,库仑碰撞的频率越小. 数密度越高, 数密度越高,碰撞频率越高
等离子体物理学课件
![等离子体物理学课件](https://img.taocdn.com/s3/m/d4b0a8879fc3d5bbfd0a79563c1ec5da50e2d6a7.png)
等离子体的基本性质
电磁性质
• 等离子体在电场和磁场下的行为 • 等离子体的电导率和介电常数
动力学性质
• 等离子体的输运过程 • 等离子体的热力学性质
等离子体在天体物理中的应用
恒星爆炸中的等离子体
讨论等离子体在恒星爆炸和体的研究
探索行星际空间中等离子体的特性和影响
2 等离子体在新能源领域的应用
讨论等离子体技术在太阳能和风能等新能源技术中的应用
3 等离子体在生物医学中的应用
介绍等离子体在癌症治疗和生物材料领域的发展和研究进展
结语
展望等离子体物理学的未来,谢谢阅读!
等离子体物理学课件
本课件将介绍等离子体的基本概念、产生方式、基本性质,以及在天体物理、 实验室研究和前沿领域中的应用。
等离子体的基本概念
• 解释等离子体的概念 • 比较等离子体与其他物态的差异
等离子体的产生
1 切割/焊接技术中的等离子体
探讨等离子体在金属切割和焊接过程中的作用和产生方式
2 等离子体的发光现象
等离子体的实验室研究
1
实验室设备简介
介绍用于研究等离子体的实验室设备,
等离子体实验的基本技术
2
包括等离子体发生器和诊断工具
讨论实验中的主要技术,如等离子体
控制和诊断方法
3
等离子体实验的数据分析方法
介绍分析实验数据的常见方法,以及 结果的解释
等离子体学的前沿领域
1 等离子体在核聚变中的应用
探索等离子体在核聚变反应中的重要性,并解释其在未来能源领域的潜力
等离子体物理学导论L课件
![等离子体物理学导论L课件](https://img.taocdn.com/s3/m/5509d932f56527d3240c844769eae009591ba27c.png)
05 等离子体物理学 的挑战与前景
等离子体物理学的挑战
实验难度大
等离子体物理实验通常需要在极 端条件下进行,如高温、高压、 强磁场等,这给实验设计和实施
带来了很大的挑战。
理论模型复杂
等离子体是一种高度复杂的系统, 其理论模型涉及到多个物理过程和 相互作用,这使得理论分析变得非 常困难。
数值模拟难度高
描述等离子体中粒子的运 动规律。
碰撞理论
等离子体中粒子间的碰撞 过程和碰撞频率的计算。
03 等离子体的产生 与维持
高温等离子体的产生方式
核聚变
利用氢核聚变反应产生 高温等离子体,是实现 可控核聚变的关键步骤
。
核裂变
利用重核裂变反应产生 高温等离子体,是核能 利用的重要方式之一。
电弧放电
通过高电压、大电流产 生电弧放电,使气体加 热至高温等离子体状态
3
等离子体物理与地球科学的交叉
等离子体物理在地球科学中有广泛的应用,如电 离层和磁层的研究、太阳风和地球磁场的相互作 用研究等。
THANKS
感谢观看
等离子体在材料科学中的应用
总结词
等离子体在材料科学中广泛应用于表面处理、材料合成和刻蚀等领域,具有高效、环保 等优点。
详细描述
等离子体通过高能粒子和活性基团对材料表面进行轰击和化学反应,实现表面清洗、刻 蚀、镀膜和合成等功能。与传统的机械或化学方法相比,等离子体处理具有更高的效率
和更好的环保性。在金属、玻璃、塑料等各种材料的表面处理和加工中有广泛应用。
。
激光诱导
利用高能激光束照射气 体,通过激光与气体的 相互作用产生高温等离
子体。
低温等离子体的产生与特性
电晕放电
等离子体物理学理论分解
![等离子体物理学理论分解](https://img.taocdn.com/s3/m/2d98facc0975f46527d3e12b.png)
等离子体物理学理论姓名:摘要:本文简要介绍了等离子体的概念,等离子体的发展史,等离子体按焰温度和所处状态的分类,并且例举了在地球上和地球外的常见等离子体,也简单介绍了等离子体在冶炼、喷涂、焊接、刻蚀、隐身和核聚变各个方面的应用。
另外,对等离子体的现状做了介绍,对其前景也做了展望。
而主要介绍了等离子体物理学的理论,包括粒子轨道理论,磁流体力学和等离子体动力论三个方面,并一一展开详细介绍了这三个理论,最后得出三大理论相互联系的结论。
关键词:等离子体;粒子轨道理论;漂移;等离子体动力论;湍流;孤立子;等离子体中波;引言:大家早已熟知物体的固体、液体和气体三态。
将固体加热到熔点时,粒子的平均动能超过晶格的结合能,固体会变成液体;将液体加热到沸点时,粒子的动能会超过粒子之间的结合能,液体会变成气体。
如果把气体进一步加热,气体则会部分电离或者完全电离,则原子变成离子。
如果正离子和负离子数目相等即为等离子体。
自20世纪50年代以来,等离子体物理学已发展成为物理学的一个十分活跃的分支。
在实验上,已经取得很大的成就。
在理论上,利用粒子轨道理论、磁流体力学和动力论已经阐明等离子体的很多性质和运动规律,相信随着人们对等离子体性质研究的不断深入,我们会能够将其应用在更多领域。
一.等离子体概念从广义上说,等离子体是泛指一些具有足够的能量自由的带电粒子,其运动以受电磁场力作用为主的物质,例如,半导体、电解液都是等离子体。
从狭义上讲,等离子体是普通气体温度升高时,气体粒子的热运动加剧,使粒子之间发生强烈碰撞,大量原子或分子中的电子被撞掉,当温度高达百万开到1亿开,所有气体原子全部电离.电离出的自由电子总的负电量与正离子总的正电量相等.这种高度电离的、宏观上呈中性的气体叫等离子体【1】。
等离子体又叫做电浆,它广泛存在于宇宙中,常被视为是除去固﹑液﹑气外,物质存在的第四态。
二.等离子体的发展简史【1】--19世纪30年代英国的M.法拉第以及其后的J.J.汤姆孙、J.S.E.汤森德等人相继研究气体放电现象。
等离子体物理学简介
![等离子体物理学简介](https://img.taocdn.com/s3/m/b6c3508264ce0508763231126edb6f1aff0071be.png)
等离子体物理学简介随着科技的飞速进步,等离子体物理学作为物理学中的一个新兴领域逐渐被人们所熟知。
那么,等离子体究竟是什么呢?它有哪些独特的性质?本文将全面地介绍等离子体的基本概念、性质以及应用,帮助读者对这一领域有更深刻的了解。
一、等离子体的定义等离子体(Plasma)是一种不同于固体、液体和气体的物质状态。
从微观角度看,等离子体由正离子、电子、自由基等带电粒子组成,具有高度活动性和导电性。
等离子体产生的条件可以是物质受到高温、高压、强电场、强辐射等能量输入,导致电离、电子解离等反应,从而产生等离子体。
二、等离子体的性质等离子体具有许多独特的物理性质,例如电导率高、热容小、反应速度快等。
1. 高导电性:等离子体的导电性比普通气体高很多,这是由于等离子体中存在大量电离的带电粒子,使其具有导电性。
2. 热容小:等离子体的热容小于固体和液体,因此它具有热膨胀系数小的特点。
这也使得等离子体更易于产生高温等物理过程。
3. 反应速度快:等离子体中存在大量活跃的离子、原子和自由基,其反应速度很快,从而在很短的时间内完成化学反应。
4. 电磁性能强:等离子体中带电粒子对电磁场的响应速度很快,而且电子的自由度很高,因此等离子体对电磁场的反应速度很快。
三、等离子体的应用等离子体的应用十分广泛,主要包括以下领域:1. 电力工程:等离子体技术已经被广泛应用于电力工程中,例如等离子体切割和等离子体喷涂等。
2. 半导体工业:半导体材料生长和表面处理可以用等离子体技术来实现。
3. 医学领域:等离子体技术可以用于消毒、杀菌、癌症治疗等。
4. 航天科技:等离子体技术也被应用于太阳能帆板的制作以及宇宙飞船的推进。
四、等离子体研究中的挑战尽管等离子体物理应用广泛,但对等离子体本身进行深入研究仍面临着许多挑战。
这些挑战包括:1. 复杂性问题:等离子体具有很高的复杂性,包括非线性、饱和与不稳定性等问题。
2. 模型建立问题:由于计算方式和模型的种类较多,模型之间的差异较大,因此建立模型和计算也是个重要的挑战。
等离子体物理原理简介
![等离子体物理原理简介](https://img.taocdn.com/s3/m/a56a37f8b1717fd5360cba1aa8114431b90d8ebf.png)
• 洛仑兹模型
• 经典情形下,谐振束缚电荷运动方程为
mx
dx dt
m
2 0
x
eE0eit
• •
特解为
x
eE0eit
m
1
2
2 0
i
已令
/m
• 极化强度为
NZe2
E
P NZex
m
2
2 0
i
• 则相对介电常数为 P / 0E r 1
r
1
NZe2
0m
2
1
2 0
i
• 考虑到电荷多种分布则推广为
r
v D1
mv2 2qB3
B B
曲率漂移 引入等效的离心力及等效电场
E mv2// n
q
利用熟知的漂移公式
v
EB B2
得到曲率漂移速度为
vD2
mv 2 / / qB2 R2
RB
总的漂移速度为
vD
m qB 2 R 2
v2//
v2 2
R
B
• Ⅱ绝热不变量 经典力学中作用量积分为不变量
Ji pidx
• 等离子体是一种特殊的滤波器,当雷达频率低于等离子体频率时,雷 达波被全反射,等离子体能以电磁波反射体的形式对雷达进行电子干 扰,即通过雷达波往返传播途径弯曲,雷达显示屏上出现的是攻击武 器的虚像,而不是武器的真实位置。当雷达频率高于等离子体频率时, 雷达波能进入等离子体被吸收,从而使雷达接受到的攻击武器的信号 大为减弱。
在磁场中有
J P dl
带入正则动量即
P peA
J mB r2 eB r2 u
即磁矩为不变量 磁镜原理可以用来约束热等离子体以产生热核能。