ANSYS基础教程——应力分析报告
ansys各应力
SX:X-Component ofstress;SY:Y-Component of stress;SZ:Z-Component ofstress--X,Y,Z轴方向应力。
SXY:XY Shear stress;SYZ:YZ Shearstress;SXZ:XZ Shear stress--X,Y,Z三个方向的剪应力。
S1:1stPrincipal stress;S2:2st Principal stress;,S3:3st Principalstress--第一、二、三主应力。
区分:首先把一个微元看成是一个正方体,那么假设三个主应力分别是F1F2F3,那么如果三个力中哪个力最大,就是F1,也是最大主应力,也叫第一主应力,第二大的叫第二主应力,最小的叫第三主应力,因此,是根据大小来定的。
SINT:stress intensity--应力强度,是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。
SEVQ:Von Mises是一种屈服准则,屈服准则的值我们通常叫等效应力。
Ansys后处理中'VonMises Stress'我们习惯称Mises等效应力,它遵循材料力学第四强度理论(形状改变比能理论)。
我们分析后查看应力,目的就是在于确定该结构的承载能力是否足够。
那么承载能力是如何定义的呢?比如混凝土、钢材,应该就是用万能压力机进行的单轴破坏试验吧。
也就是说,我们在ANSYS计算中得到的应力,总是要和单轴破坏试验得到的结果进行比对的。
所以,当有限元模型本身是一维或二维结构时,通过查看某一个方向,如plnsol,s,x等,是有意义的。
但三维实体结构中,应力分布要复杂得多,不能仅用单一方向上的应力来代表结构此处的确切应力值——于是就出现了强度理论学说。
材料力学中的四种强度理论1.第一强度理论:最大拉应力强度理论该理论认为,材料破坏的主要因素是最大拉应力,无论何种状态,只要最大拉应力达到材料的单向拉伸断裂时的最大拉应力,则材料断裂。
Ansys后处理-如何看应力
Ansys后处理-如何看应力点击数:3091 更新时间:2012-4-20 16:29:47SX:X-Component ofstress;SY:Y-Component of stress;SZ:Z-Component ofstress--X,Y,Z轴方向应力。
SXY:XY Shear stress;SYZ:YZ Shearstress;SXZ:XZ Shear stress--X,Y,Z三个方向的剪应力。
S1:1stPrincipal stress;S2:2st Principal stress;,S3:3st Principalstress--第一、二、三主应力。
区分:首先把一个微元看成是一个正方体,那么假设三个主应力分别是F1F2F3,那么如果三个力中哪个力最大,就是F1,也是最大主应力,也叫第一主应力,第二大的叫第二主应力,最小的叫第三主应力,因此,是根据大小来定的。
SINT:stress intensity--应力强度,是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。
SEVQ:Von Mises是一种屈服准则,屈服准则的值我们通常叫等效应力。
Ansys 后处理中'VonMises Stress'我们习惯称Mises等效应力,它遵循材料力学第四强度理论(形状改变比能理论)。
我们分析后查看应力,目的就是在于确定该结构的承载能力是否足够。
那么承载能力是如何定义的呢?比如混凝土、钢材,应该就是用万能压力机进行的单轴破坏试验吧。
也就是说,我们在ANSYS计算中得到的应力,总是要和单轴破坏试验得到的结果进行比对的。
所以,当有限元模型本身是一维或二维结构时,通过查看某一个方向,如plnsol,s,x等,是有意义的。
但三维实体结构中,应力分布要复杂得多,不能仅用单一方向上的应力来代表结构此处的确切应力值——于是就出现了强度理论学说。
材料力学中的四种强度理论1.第一强度理论:最大拉应力强度理论该理论认为,材料破坏的主要因素是最大拉应力,无论何种状态,只要最大拉应力达到材料的单向拉伸断裂时的最大拉应力,则材料断裂。
基于ansys的机械臂刚度和应力分析
中国科学技术大学有限元分析课程大作业基于ansys的机械臂刚度和应力分析——材料及结构对机械臂的刚度影响张海滨SA11009045钱文欢SA11009906熊星SA11009034一、研究背景机械臂是面向工业领域的多关节机械手,是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。
它可以接受人类指挥,也可以按照预先编排的程序运行,现代的机械臂还可以根据人工智能技术制定的原则纲领行动。
机械臂由主体、驱动系统和控制系统三个基本部分组成。
主体即机座和执行机构,包括臂部、腕部和手部。
大多数机械臂有3~6个运动自由度,其中腕部通常有1~3个运动自由度;驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作;控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。
图1 六自由度机械臂如图1所示为六自由度机械臂。
而机械臂在工作中需要承受一定的载荷,这会引起杆件的弹性变形,从而导致机械臂工作时产生一定的误差。
为了保证机械臂在运动中的定位误差,机械臂杆件结构需要有较高的刚性。
下面就机械臂杆件刚性的提高,从材料的选择、结构设计等方面进行有限元分析。
二、模型建立并导入到ansys使用solidworks进行机械臂三维模型的建立。
根据实验室相关尺寸建立模型如下图2、3。
其中图2形象的展现了其三维外观,而图3的前视图方便说明起尺寸大小。
图2 机械臂的三维模型图图3 机械臂的三维模型前视图由于是为了研究机械臂末端的应力、应变,所以为了在ansys 中分析方便,在保留主体结构设计的前提下,可将该机械臂结构进行简化,得到如图4的第一种结构模型图。
且图4中为简化后结构的主体,其后在对不同结构设计的讨论中,需对该模型进行修改。
其中模型的体积为V A=18528979.98mm3=0.01853m3。
图4 简化后的结构模型1的三维图和基本尺寸将图4所示的模型导入到ansys中:(1)先在solidworks中把模型另存为Parasolid(*.x_t)格式(注意模型名字必须是英文,Ansys不接受中外,可保存为jxb.x_t);(2)然后打开Ansys,在File下选择import-PARA,找到之前保存的Parasolid(*.x_t)格式的模型,将其导入;(3)在顶上菜单栏对话框中选择PoltCtrls—Style—Solid Model Facets,如图6所示。
ANSYS悬臂梁等效应力分析教程
mikeliu65
工程软件教程系列
第 9 步,施加约束。
单击打开图示对话框。
- 11 -
mikeliu65
工程软件教程系列
在弹出的对话框内输入需要的面的编号或者选择对应的面。 按照下图路径打开编号显示目录。
在弹出的对话框内勾选 AREA number。单击 ok 退出。
- 12 -
mikeliu65
单击 line 下的 set,
。弹出 element size on picked line 对话框,
单击 pick all。在弹出的对话框里,设置线段网格大小。设置每一段网格长度为 0.05m。单击 ok,完成线段长度设置。
-9-
mikeliu65
工程软件教程系列
单击 mesh tool,弹出 mesh tool 对话框。选择 HEX 单击 mesh,开始划分网格。在弹出的 mesh volumes 对话框里单击 pick all。完成网格划分。
设置完成后如下图:
-6-
mikeliu65
工程软件教程系列
第 7 步,建立体悬臂梁三维实体。
点开下图所示的路径,在弹出的窗口里输入如下参数。
-7-
mikeliu65
工程软件教程系列
点击 ok,完成三维实体创建。
-8-
mikeliu65
工程软件教程系列
第 8 步,划分网格。
单击 mesh tool,弹出 mesh tool 对话框。
-1-
mikeliu65
工程软件教程系列
第 1 步打开软件,设置文件保存路径。
打开 ansys12.0
,设置文件保存路径,在 working 内输
入保存路径。例如我的保存路径设为 F:\mikeliu65\chapter-1
ansys入门之三(应力分析)
应力分析 - 前处理
...网格划分
指定网格控制 是网格划分的第二步。
ANSYS 中有许多可用的网格控制。现在, 我们 介绍一个指定网格密度的简单方法,智能网格划 分。
智能网格划分是一种运算法则,它按照线的长度, 曲率和对孔的近似确定模型中线的分割单元数。
30
你只需要指定从1(最细网格)到10(最粗网格) 的“尺寸水平”,其他的由ANSYS处理。
19
应力分析 - 前处理
...网格划分
实常数
20
实常数用于描述那些由单元几何模型不能完全确 定的几何形状。 例如:
梁单元是由连接两个节点的线来定义的,这只定义了梁的长度。 要指明梁的横截面属性,如面积和惯性矩,就要用到实常数。 壳单元是由四面体或四边形来定义的,这只定义了壳的表面积, 要指明壳的厚度,必须用实常数。
维数 -- 2-D (仅有X-Y 平面), or 3-D.
假定的位移形函数 -- 线性及二次
ANSYS有超过150个的单元类型可供选择。对于 如何选取单元类型稍后介绍,现在,请看如何定
应力分析 - 前处理
...网格划分
定义单元类型:
Preprocessor > Element Type > Add/Edit/Delete [Add] 添加新单元类型 选择想要的类型(如 SOLID92) 并按 OK键 [Options] 指定附加的单元 选项 或使用 ET 命令: et,1,solid92
...网格划分
先定义好材料类型 的结构树 接着输入单个材料 的性质值 或使用 MP 命令
mp,ex,1,30e6 mp,prxy,1,.3
26
应力分析 - 前处理
ansys有限元分析报告02
姓名: 班级:10 机制二班 学号:1038
1、概述
图示为一个 130mm×200mm×15mm 的钢制平板,钢板上沿板的中 心线钻出三个孔(半径 12mm),钢板底部已施加约束,钢板顶 边受 300N/mm 均布拉力。忽略重力影响。材料属性:杨氏模量: 190GPa;泊松比:0.3 求:钢板的应力分布情况及变形情况(提 示可参看课本第三章实例,可采用 Plane82 单元模拟;也可三维 建模采用 Solid45 实体单元模拟,注意单位制! )
0.113e9 N。 最大应力在图中红色区域,最大应力为 最大应力在图中红色区域,最大应力为0.113e9 0.113e9N
单元类型。再修改单元类型选项(options)
� Main Menu>Preprocessor>Material Models 定义材料属性
� Main Menu>Preprocessor>Real Constants 定义的截面的厚度。
� Main Menu>Preprocessor>Mesh>MeshTool 直接用 meshtool 对模型进行自由 网格划分
0. 255 e8m 最大变形在图中红色区域,最大变形为 最大变形在图中红色区域,最大变形为0. 0.255 255ee-8 � 应力云图
Main Menu>General Posproc>Plot Results>Contour Plot>Nodal Solu 弹出对话框选择Stess>von Mises stress获取下图
� 将模型底边自由度完全约束;
Байду номын сангаас
� 顶部边加载 F = -300000 N/M
ansys实验报告
ansys实验报告ANSYS实验报告一、引言ANSYS是一款广泛应用于工程领域的有限元分析软件,它能够模拟和分析各种结构和物理现象。
本实验旨在通过使用ANSYS软件,对一个具体的工程问题进行模拟和分析,以探究其性能和行为。
二、实验目的本次实验的主要目的是通过ANSYS软件对一个简单的悬臂梁进行分析,研究其在不同加载条件下的应力和变形情况,并进一步了解悬臂梁的力学行为。
三、实验步骤1. 准备工作:安装并启动ANSYS软件,并导入悬臂梁的几何模型。
2. 材料定义:选择适当的材料,并设置其力学性质,如弹性模量和泊松比。
3. 约束条件:定义悬臂梁的边界条件,包括支撑点和加载点。
4. 加载条件:施加适当的力或压力到加载点,模拟实际工程中的加载情况。
5. 分析模型:选择适当的分析方法,如静力学分析或模态分析,对悬臂梁进行计算。
6. 结果分析:根据计算结果,分析悬臂梁在不同加载条件下的应力和变形情况,并进行比较和讨论。
四、实验结果经过计算和分析,我们得到了悬臂梁在不同加载条件下的应力和变形情况。
在静力学分析中,我们观察到加载点附近的应力集中现象,并且应力随着加载的增加而增大。
在模态分析中,我们研究了悬臂梁的固有频率和振型,并发现了一些共振现象。
五、讨论与分析根据实验结果,我们可以得出一些结论和讨论。
首先,悬臂梁在加载点附近容易发生应力集中,这可能导致结构的破坏和失效。
因此,在实际工程中,我们需要采取适当的措施来减轻应力集中的影响,如增加结构的刚度或改变加载方式。
其次,悬臂梁的固有频率和振型对结构的稳定性和动态响应有重要影响。
通过模态分析,我们可以确定悬臂梁的主要振动模态,并根据需要进行结构优化。
六、结论通过本次实验,我们成功地使用ANSYS软件对一个悬臂梁进行了模拟和分析。
通过对悬臂梁的应力和变形情况的研究,我们深入了解了悬臂梁的力学行为,并得出了一些有价值的结论和讨论。
在实际工程中,这些研究结果可以为设计和优化结构提供参考和指导。
ansys后处理各种应力解释
ANSYS后处理中应力查看总结-------------------------------------------------------------------------------------------------------SX:X-Component of stress;SY:Y-Component of stress;SZ:Z-Component of stress,X,Y,Z轴方向应力SXY:XY Shear stress;SYZ:YZ Shear stress;,SXZ:XZ Shear stress,X,Y,Z三个方向的剪应力。
S1:1st Principal stress;S2:2st Principal stress;,S3:3st Principal stress 第一、二、三主应力。
区分:首先把一个微元看成是一个正方体,那么假设三个主应力分别是F1F2F3,那么如果三个力中哪个力最大,就是F1,也是最大主应力,也叫第一主应力,第二大的叫第二主应力,最小的叫第三主应力,因此,是根据大小来定的。
SINT:stress intensity(应力强度),是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。
SEVQ:Von Mises是一种屈服准则,屈服准则的值我们通常叫等效应力。
Ansys后处理中'Von Mises Stress'我们习惯称Mises等效应力,它遵循材料力学第四强度理论(形状改变比能理论)。
我们分析后查看应力,目的就是在于确定该结构的承载能力是否足够。
那么承载能力是如何定义的呢?比如混凝土、钢材,应该就是用万能压力机进行的单轴破坏试验吧。
也就是说,我们在ANSYS计算中得到的应力,总是要和单轴破坏试验得到的结果进行比对的。
所以,当有限元模型本身是一维或二维结构时,通过查看某一个方向,如plnsol,s,x等,是有意义的。
但三维实体结构中,应力分布要复杂得多,不能仅用单一方向上的应力来代表结构此处的确切应力值——于是就出现了强度理论学说。
ANSYS分析报告
ANSYS建模分析报告书课题名称ANSYS建模分析姓名学号院系专业指导老师问题描述在ANSYS中建立如图一所示得支承图,假定平面支架沿厚度方向受力均匀,支承架厚度为3mm。
支承架由钢制成,钢得弹性模量为200Gpa,泊松比为0。
3、支承架左侧边被固定,沿支承架顶面施加均匀载荷,载荷与支架共平面,载荷大小为2000N/m、要求:绘制变形图,节点位移,分析支架得主应力与等效应力。
图1GUI操作步骤1、定义工作文件名与工作标题(1)定义工作文件名:执行Utility Menu〉 Jobname命令,在弹出【Change Jobname】对话框中输入“xuhao144139240174"。
选择【New log and e rror files】复选框,单击OK按钮、(2)定义工作标题:执行Utility Menu〉 Title命令,在弹出【ChangeTitle】对话框中输入“This isanalysis made by “xh144139240174”,单击OK按钮。
(3)重新显示:执行Utility Menu>Plot>Replot命令。
(4)关闭三角坐标符号:执行Utility Menu>PlotCtrls>Window Options命令,弹出【Window Options】对话框。
在【Location of triad】下拉列表框中选择“Not Shown”选项,单击OK按钮、2、定义单元类型与材料属性(1)选择单元类型:执行MainMenu〉Preprocessor〉ElementType>Add/Edit/Delete命令,弹出【Element Type】对话框。
单击Add、、、按钮,弹出【Library of ElementTypes】对话框。
选择“Structural Solid”与“Quad 8node 82"选项,单击OK按钮,然后单击Close按钮。
ANSYSworkbench结果后处理与强度理论与应力状态(BY木儿山下)
ANSYSworkbench结果后处理与强度理论与应力状态(BY木儿山下)在机械CAD上发一个原创后处理的心得。
新手可看,老鸟勿喷。
1.Workbench中查看第一、二、三、四及莫尔强度理论应力结果应力校核时,对于不同材料不同的应力状态应采用不同的强度理论1.1 脆性材料的单、二向应力状态,塑性材料的三向应力状态采用第一强度理论σ1≤[σ]Workbench查看结果,直接就是stress中的Maximum Principal Stress1.2 脆性材料的三向应力状态,塑性材料的单、二向应力状态采用三、四强度理论第三强度理论,(σ1-σ3)≤[σ]Workbench查看结果:需自定义输出结果,User Defined Result -----expression中输入“s1-s3”即可第四强度理论,sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]Workbench查看结果:Equivalent(VON-MISES) Stress1.3莫尔强度理论是在第三强度理论上考虑材料承受拉压不同(σ1-b*σ3)≤[σ] b=许用拉应力/许用压应力Workbench查看结果:需自定义输出结果,User Defined Result -----expression中输入“s1-b*s3”即可2.理论力学中计算的切应力在WORKbench中的显示(概念问题)一般做完结果看的是Equivalent(VON-MISES) Stress ,这个应力绝不是切应力,新手在看结果时往往会混淆这个概念。
而有时又要看切应力,这完全是一个概念倒腾问题,因为看切应力的目的其实就是第三强度理论。
需自定义输出结果,User Defined Result -----expression中输入“s1-s3”即可。
3.结果的柱坐标显示(显示切应变变形量)流程大概是这样的,首先建立一个柱坐标系,然后输入结果的时候coordinate system改为那个柱坐标系即可。
ansys模态分析报告及详细过程
压电变换器的自振频率分析及详细过程1.模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。
同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。
ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。
前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。
ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。
ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。
2.模态分析操作过程一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。
(1).建模模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。
(2).施加载荷和求解包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。
指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。
指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND.定义主自由度,仅缩减法使用。
ANSYS应力分析讲义-62页
应力分析 - 前处理
…几何模型
讲义
• 读入IGES 模型:
– Utility Menu > File > Import > IGES... • 在这个合成对话框中, 选择 No defeaturing * (缺省) 然后按 OK (接受其它所有选项)。 • 在第二个对话框中, 选择想要的文件然后按 OK。
– 或用 VLSCALE 命令:
• vlscale,all,,,25.4,25.4,25.4,,,1
2003年
应力分析 - 前处理
…几何模型
• Demo:
– 读入pipe.igs: • “No Defeaturing” 的方法 • 其它所有缺省设置
– 模型显示如图 – 保存 pipe.db
讲义
2003年
2003年
应力分析 - 前处理
…几何模型
讲义
• 当您需要对几何模型进行单位转换时,比例缩放是很有用处的,比如从英尺 转换为毫米时。
• 在 ANSYS中缩放模型:
– 首先保存数据库 -- Toolbar > SAVE_DB 或 SAVE命令 。
– 接着 Main Menu > Preprocessor > Operate > Scale > Volumes (在模型中选 择可能的高级图元) • [Pick All] 拾取所有的体 • 再输入沿 RX, RY, RZ 方向的比例因子 然后设置 IMOVE 为 “Moved” 而取代 f “Copied”
• 通常从有限元模型开始。
• 用一个实体模型来代表几何模型。
– 用一个CAD模式的数学模型代替结构的几何有限元模型。 – 作为模型,可能只包含实体或面。
ansys报告
简单台柱静力分析一、问题提出一工程用圆柱形金属支柱,咼约为25m 底面直径约为3m 其底座固定在地 基上,使用中主要受载来自于顶部结构的垂直向压力为 1000N 侧向风载荷约为 100N 。
金属支柱材料弹性模量为210GPa 泊松比为0.3。
试分析其使用过程中的 变形和危险点。
二、建模步骤1.建立工作文件名个工作标题 1) .定义工作文件名依次单击:Utility Menu^File — ChangeJobname 弹出 “ChangeJobname ”对话框,如图1所示,在“ [/FILNAM]Enter newjobname ”选项的输入栏中输入 工作文件名为“ EX2-T ,勾选“ New log and error files ”选项的“ Yes ”复选 框,单击“ OK 按钮关闭该对话框。
A change JobnameE/FIlLNAM] Ent&r newjobnamt New log and error files?Cancel17 Yes0<2).定义工作标题依次单击:Utility Meni—File —Change Title,弹出“ Change Title ”对话框,如图2所示,在“ [/TITLE]Enter newtitle ”选项的输入栏中输入“ The an alysis of a cyli nder body ”,单击“OK按钮关闭该对话框。
A Change TitleI/TITLE] Enter new title The analysis of a cylinder body 1Z45523115OK Cancel2.定义单元类型3.依次单击:Main Menu —Preprocessor —Element Type —Add/Edit/Delete ,弹出“Element Types”对话框,如图3所示。
单击“Add... ”按钮,弹出“Librarty ofElement Types ” 对话框,如图 4 所示。
焊接过程模拟与焊接变形、焊接Ansys应力有限元分析报告
焊接过程模拟与焊接变形、焊接Ansys应力有限元分析1.1 焊接变形与焊接应力焊接时,加热和冷却循环总会导致一定程度的变形,焊接变形对尺寸稳定性以与结构力学性能都有很大的影响,控制焊接变形在焊接加工中是一个关键的任务。
在钢结构焊接中,焊接工艺会使构件温度场产生不均匀变化,从而在构件中产生复杂的剩余应力分布。
剩余应力是一种自相平衡的力系,当构件承受荷载时,如受拉、受压等,荷载引起的应力将与截面剩余应力相叠加,从而使构件某些部位提前达到屈服强度,并发生塑性变形,故会严重降低构件的刚度和稳定性以与结构疲劳强度。
对构件进展焊接,在焊件上产生局部高温的不均匀温度场,焊接中心处温度可达1600℃,高温区的钢材会发生较大程度的膨胀伸长,但受到相邻钢材的约束,从而在焊件内引起较高的温度应力,并在焊接过程中,随时间和温度而不断变化,称其为焊接应力。
焊接应力较高的部位,甚至将达到钢材的屈服强度而发生塑性变形,因而钢材冷却后将有残存于焊件内的应力,称为焊接剩余应力。
并且在冷却过程中,钢材由于不能自由收缩,而受到拉伸,于是焊件中出现了一个与焊件加热方向大致相反的内应力场。
1.2 Ansys有限元焊接分析为通过对焊接过程的三维有限元模拟分析以与焊接后构件变形与剩余应力分布分析,为评估焊接对焊件的影响提供更加合理、有效、可靠的分析数据,并为焊接工艺提供一定的指导,为采用的焊接过程提供一定的分析依据,采用大型有限元计算软件Ansys作为分析工具对焊接过程与焊件的变形与剩余应力进展了分析。
ANSYS有2种方式来考虑热分析与力学分析之间的耦合,即直接耦合和间接耦合。
间接耦合法的处理思路为先进展温度场的模拟,然后将求出的结点温度作为体载荷施加在结构中,计算焊接剩余应力与变形。
即:(1)使用热分析的手段进展热分析,根据需要可采用瞬态分析与稳态分析模型,此处为瞬态分析。
(2)重新进入前处理中,将热分析单元转换为相应的结构分析单元,设置结构分析中材料属性,如弹性模量、泊松比、热膨胀系数等。
ANSYS基础教程-应力分析
·网格划分的三个步骤: – 定义单元属性 – 指定网格控制 – 生成网格 ·单元属性是网格划分前必须建立的有限单元模型属性。它们包括: – 单元类型 – 实常数 – 材料性质
请浏览后下载,资料供参考,期待您的好评与关注!
单元类型 ·单元类型是一个重要的选项,该选项决定如下的单元特性: – 自由度(DOF)设置. 例如,一个热单元类型有一个自由度:TEMP,而一个结构单元 类型可能有 6 个自由度: UX, UY, UZ, ROTX, ROTY,ROTZ. – 单元形状-- 块,四面体, 四边形,三角形等 – 维数-- 2-D (仅有 X-Y 平面), or 3-D. – 假定的位移形函数-- 线性及二次 ·ANSYS 有超过 150 个的单元类型可供选择。对于如何选取单元类型稍后介绍,现在, 请看如何定义单元类型。 ·定义单元类型: –Preprocessor > Element Type > Add/Edit/Delete ◆[Add]添加新单元类型 ◆选择想要的类型(如 SOLID92) 并按 OK 键 ◆[Options]指定附加的单元选项 –或使用 ET 命令: ◆et,1,solid92
·当你需要把几何模型的单位转换成另一套单位,比如说,从英寸到毫米,比例缩 放就显得十分必要。
·在 ANSYS 中缩放模型: –首先保存数据库--Toolbar > SAVE_DB 或使用 SAVE 命令。
请浏览后下载,资料供参考,期待您的好评与关注!
–接着 Main Menu > Preprocessor > Operate > Scale > Volumes (在模型上选择 相应的实体部分)
·既可以在 ANSYS 中创建实体模型,也可以从其他软件包中输入实体模型 ·两种方法的详细情况以后介绍,现在,我们简要地讨论如何输入一个 IGES 文件 和缩放所需的几何模型 ·IGES (Initial Graphics Exchange Specification) 是用来把实体几何模型从一 个软件包传递到另一个软件包的规范 –IGES 文件是 ASCII 码文件, 很容易在两个计算机系统间传递。 –许多软件包,包括 ANSYS 在内, 允许读写 IGES 文件。 ·输入 IGES 文件到 ANSYS 中: – Utility Menu > File > Import > IGES... ◆在弹出的对话框中,选择 No defeaturing *(缺省值) ,按下 OK (默认其他选项)。 ◆在第二个对话框中选择想要的文件并点击 OK.
ANSYS有限元分析-应力分析
2A. 应力分析
车床刀具
说明
施加不同的约束重新求解, 施加不同的约束重新求解,并与第一次 的结果进行比较。 的结果进行比较。
1) 2) 3) 4)
画位侈 列反力 画von Mises 应力 动态显示von Mises应力 动态显示 应力
January 20, 2001 Inventory #001442 W2-1
INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 - Part 1 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7 INTRODUCTION TO ANSYS 5.7
ANSYS 分析报告基本步骤
第一章 ANSYS 分析基本步骤(黑小2)本章目标(黑小3)学习完本章后,学员应该能够初步掌握ANSYS 分析问题的基本操作步骤.(揩小4)Lesson A. 分析过程2-1. ANSYS 分析过程中的三个主要步骤.2-2. ANSYS 分析步骤在GUI 中的体现. Lesson B. 文件管理2-3. ANSYS 文件系统: a. ANSYS 在分析过程中怎样使用文件. b. ANSYS 使用的文件名称的格式.c.确定 ANSYS 默认的文件名.2-4. ANSYS 的数据库: a.ANSYS 数据库中存储的数据.b. 数据库的存储操作.c.数据库的恢复操作.d. 怎样通过存储及恢复数据库文件修改错误. Lesson C. ANSYS 分析基本步骤训练 2-5. ANSYS 分析过程实例演练.Lesson A. 分析过程ANSYS 分析采用的是有限元分析技术。
在分析时,必须将实际问题的模型转化为有限元模型。
有限元分析(FEA) 是对物理现象(几何及载荷工况)的模拟,是对真实情况的数值近似。
通过划分单元,求解有限个数值来近似模拟真实环境的无限个未知量。
ObjectiveLesson Objectives1. 创建有限元模型 – 创建或读入几何模型. – 定义材料属性.– 划分单元 (节点及单元).2. 施加载荷进行求解 – 施加载荷及载荷选项. – 求解.3. 查看结果 – 查看分析结果.– 检验结果. (分析是否正确)分析的三个主要步骤可在主菜单中得到明确体现。
主菜单中各部分的顺序基本上是按着常规问题分析顺序设置的。
1.建立有限元模型2.施加载荷求解3.查看结果主菜单2-2. ANSYS 分析步骤在GUI 中的体现.1-1. ANSYS 分析过程中的三个主要步骤.Procedure1. .....2. .....3. .....1. 第一步创建有限元模型之主菜单体现主要部分:定义单元类型定义实常数定义材料建立实体模型等转变为有限元模型建立有限元模型2. 第二步施加荷载求解之主菜单体现主要部分:定义分析类型施加约束与荷载定义载荷步求解施加荷载求解3. 第三步查看结果之主菜单体现主要部分:读入结果显示图形结果显示列表结果定义单元表查看结果Lesson B. 文件管理ANSYS 文件及工作文件名:ANSYS 在分析过程中需要读写文件。
ansys有限元分析报告
ANSYS有限元分析报告1. 引言有限元分析(Finite Element Analysis, FEA)是一种常用的工程分析方法,可以用于预测材料和结构在各种工况下的行为和性能。
本报告旨在通过使用ANSYS软件进行有限元分析,对某一具体的工程问题进行模拟和分析,并得出相应的结论和建议。
2. 问题描述本次有限元分析的问题是研究某结构在受载情况下的应力分布和变形情况。
具体而言,我们关注的结构是一个柱形零件,其材料为XXX,尺寸为XXX。
该结构在受到垂直向下的均布载荷时,会发生弯曲变形和应力集中现象。
我们的目标是通过有限元方法对该结构进行分析,预测其应力分布情况,并评估其承载能力。
3. 模型建立我们使用ANSYS软件来建立和分析该结构的有限元模型。
首先,我们将导入该零件的几何数据,然后通过ANSYS的建模工具创建相应的有限元模型。
在建立模型的过程中,我们需要注意几何尺寸、材料特性、约束条件和加载方式等参数的设定,以确保模型的准确性和可靠性。
4. 材料属性和加载条件在进行有限元分析之前,我们需要确定材料的特性和加载条件。
根据提供的信息,我们将采用XXX材料的力学特性进行模拟。
同时,我们假设该结构受到均布载荷的作用,其大小为XXX。
这些参数将在后续的分析中使用。
5. 模型网格划分在进行有限元分析之前,我们需要对模型进行网格划分。
网格的密度和质量将直接影响分析结果的准确性和计算效率。
在本次分析中,我们将采用适当的网格划分策略,以满足准确性和计算效率的要求。
6. 模型分析和结果通过ANSYS软件进行有限元分析后,我们得到了该结构在受载情况下的应力分布和变形情况。
根据分析结果,我们可以观察到应力集中区域和变形程度,并根据材料的特性进行评估。
同时,我们可以通过对加载条件的变化进行分析,预测该结构的承载能力和安全系数。
7. 结论和建议根据有限元分析的结果,我们得出以下结论和建议:•该结构在受均布载荷作用下发生应力集中现象,需要对其进行加强和优化设计。
基于有限元ANSYS的压力容器应力分析报告
.压力容器分析报告页脚..目录1 设计分析依据 (1)1.1 设计参数 (1)1.2 计算及评定条件 (1)1.3 材料性能参数 (1)2 结构有限元分析 (2)2.1 理论基础 (2)2.2 有限元模型 (2)2.3 划分网格 (3)2.4 边界条件 (5)3 应力分析及评定 (5)3.1 应力分析 (5)3.2 应力强度校核 (6)4 分析结论 (8)4.1 上封头接头外侧 (9)4.2 上封头接头内侧 .................................................................114.3 上封头壁厚 .....................................................................134.4 筒体上 .........................................................................154.5 筒体左 .........................................................................174.6 下封头接着外侧 .................................................................194.7 下封头壁厚 .....................................................................21页脚..1 设计分析依据(1)压力容器安全技术监察规程(2)JB4732-1995 《钢制压力容器-分析设计标准》-2005确认版1.1 设计参数表1 设备基本设计参数正常设计压力 MPa 7.26.3 最高工作压力 MPa0~55 设计温度℃5~55℃工作温度压缩空气 46#汽轮机油工作介质1.0 焊接系数φ2.0 腐蚀裕度 mm4.0 容积第二容积类筒29.36 mm计算厚封29.031.2 计算及评定条件(1)静强度计算条件表2 设备载荷参数设计载荷工况工作载荷工况工作压力 7.2MPa 设计压力 6.3MPa工作温度 5~55设计温度 55℃℃注:在计算包括二次应力强度的组合应力强度时,应选用工作载荷进行计算,本报告中分别选用设计载荷进行计算,故采用设计载荷进行强度分析结果是偏安全的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
·输入IGES 文件到ANSYS中:
– Utility Menu > File > Import > IGES...
◆在弹出的对话框中,选择No defeaturing *(缺省值) ,按下OK (默认其他选项)。
◆在第二个对话框中选择想要的文件并点击OK.
ANSYS基础教程——应力分析
关键字:ANSYS应力分析ANSYS教程
信息化调查找茬投稿收藏评论好文推荐打印社区分享
应力分析是用来描述包括应力和应变在的结果量分析的通用术语,也就是结构分析,应力分析包括如下几个类型:静态分析瞬态动力分析、模态分析谱分析、谐响应分析显示动力学,本文主要是以线性静态分析为例来描述分析,主要容有: 分析步骤、几何建模、 网格划分。
·前处理
–创建或输入几何模型
–对几何模型划分网格
·求解
–施加载荷
–求解
·后处理
–结果评价
–检查结果的正确性
·注意!ANSYS 的主菜单也是按照前处理、求解、后处理来组织的;
·前处理器(在ANSYS中称为PREP7)提供了对程序的主要输入;
·前处理的主要功能是生成有限元模型,主要包括节点、单元和材料属性等的定义。也可以使用前处理器PREP7 施加载荷。
实常数
·实常数用于描述那些由单元几何模型不能完全确定的几何形状。例如:
–梁单元是由连接两个节点的线来定义的,这只定义了梁的长度。要指明梁的横截面属性,如面积和惯性矩,就要用到实常数。
–壳单元是由四面体或四边形来定义的,这只定义了壳的表面积,要指明壳的厚度,必须用实常数。
应力分析概述
·应力分析是用来描述包括应力和应变在的结果量分析的通用术语,也就是结构分析。
ANSYS 的应力分析包括如下几个类型:
●静态分析
●瞬态动力分析
●模态分析
●谱分析
●谐响应分析
●显示动力学
本文以一个线性静态分析为例来描述分析步骤,只要掌握了这个分析步骤,很快就会作其他分析。
A. 分析步骤
每个分析包含三个主要步骤:
–接着Main Menu > Preprocessor > Operate > Scale > Volumes (在模型上选择相应的实体部分)
◆使用[Pick All]拾取整个体
◆然后键入想要的比例系数(对RX, RY, RZ 的比例系数),设置IMOVE 为“Moved”,取代“Copied”
–或使用VLSCAL命令:
·通常先定义分析对象的几何模型。
·典型方法是用实体模型模拟几何模型。
–以CAD-类型的数学描述定义结构的几何模型。
–可能是实体或表面,这取决于分析对象的模型。
B. 几何关键点组成的。
–体由面围成,用来描述实体物体。
–面由线围成,用来描述物体的表面或者块、壳等。
–线由关键点组成,用来描述物体的边。
·两种方法的详细情况以后介绍,现在,我们简要地讨论如何输入一个IGES 文件和缩放所需的几何模型
·IGES (Initial Graphics Exchange Specification) 是用来把实体几何模型从一个软件包传递到另一个软件包的规
–IGES 文件是ASCII码文件, 很容易在两个计算机系统间传递。
–关键点是三维空间的位置, 用来描述物体的顶点。
·在实体模型间有一个在层次关系,关键点是实体的基础,线由点生成,面由线生成,体由面生成。
·这个层次的顺序与模型怎样建立无关。
·ANSYS 不允许直接删除或修改与高层次相连接的低层次实体。(稍后,将讨论哪些修改是许可的)
·既可以在ANSYS中创建实体模型,也可以从其他软件包中输入实体模型
◆vlscale,all,,,25.4,25.4,25.4,,,1
·演示:
–输入pipe.igs :
选择“No Defeaturing”方式
–确定模型显示方向
–保存pipe.db
·前处理
–几何模型
–网格划分
·求解
–加载
–求解
·后处理
–结果评价
–检查结果正确性
C.网格划分
·网格划分是用节点和单元等“填充”实体模型,创建有限元模型的过程。
– 或使用IGESIN 命令:
◆/aux15
◆ioptn,iges,nodefeat
◆igesin,filename,extension,directory
◆finish
·输入完成后, ANSYS会自动绘出几何模型图
·可以按需要修改几何模型
– ANSYS允许对输入的实体模型进行多项操作,这在以后论述
–请记住,只有有限元求解需要节点和单元,实体模型不需要。实体模型不参与有限元求解。
·网格划分的三个步骤:
–定义单元属性
–指定网格控制
–生成网格
·单元属性是网格划分前必须建立的有限单元模型属性。它们包括:
–单元类型
–实常数
–材料性质
单元类型
·单元类型是一个重要的选项,该选项决定如下的单元特性:
–自由度(DOF)设置.例如,一个热单元类型有一个自由度:TEMP,而一个结构单元类型可能有6个自由度:UX, UY, UZ, ROTX, ROTY,ROTZ.
◆[Add]添加新单元类型
◆选择想要的类型(如SOLID92)并按OK键
◆[Options]指定附加的单元选项
–或使用ET命令:
◆et,1,solid92
·注意:
–设置想要分析学科的选项(Main Menu > Preferences),这样将只显示所选学科的单元类型。
–应当在前处理阶段尽早地定义单元类型,因为GUI方式中菜单的过滤依赖于当前自由度的设置。例如,如果选择结构单元类型,则热载荷选项成灰色,或根本不出现。
–单元形状--块,四面体,四边形,三角形等
–维数-- 2-D (仅有X-Y平面), or 3-D.
–假定的位移形函数--线性及二次
·ANSYS有超过150个的单元类型可供选择。对于如何选取单元类型稍后介绍,现在,请看如何定义单元类型。
·定义单元类型:
–Preprocessor > Element Type > Add/Edit/Delete
– 现在,我们讨论如何在不同的单位设置下确定模型的比例。(注:缩放比例对输入的“Defeature” IGES无效.)
·当你需要把几何模型的单位转换成另一套单位,比如说,从英寸到毫米,比例缩放就显得十分必要。
·在ANSYS中缩放模型:
–首先保存数据库--Toolbar > SAVE_DB 或使用SAVE 命令。