锻件与铸件区别有什么
铸件和锻件的超声波探伤方法应用
• 白点是因钢中含氢量较高时由锻造过程中 残余应力热加工后的相变应力和热应力等 原因产生,是一种细微的氢裂纹,在白点 纵向断口上呈银白色的园点或椭圆形斑点, 故称白点。
• 热处理缺陷:裂纹。由热处理工艺参数 不良引起。
• 二、探伤方法概述 • 轴类锻件探伤
①纵波(直探头)可在轴的园周方向和轴端部探 测。
• Δ也可用二次底波B1和B2调。工件只有一 个厚度,如某饼型锻件厚300mm,直径很 大,可利用始波T和B1调(但不太准)因T 对零,B1对某刻度,如8格,此时忽略了探
头中引起混响和保护膜引起的延迟,严格 说调好后始波不在零位,而是略后左移。
• 双晶直探头:
• 可在JB/T4730-2005双晶直探头标准试块 上调节,使始波对零,深45mm平底孔在第 8格以内。
• 疏松是由钢锭凝固时形成的不致密和孔穴, 锻造时锻压比不够未全熔合造成,主要存 在于钢锭中心及头部。铸造引起裂纹主要 是指锻钢件表面上出现的较浅的龟状表面 缺陷也称龟裂,是由于原材料成份不当, 表面状况不好,加热温度和加热时间不合 适等原因产生。
• 锻造缺陷:折叠、白点、裂纹等。
• 锻造裂纹可出现在工件中不同位置,可由缩孔残 余在锻造时扩大产生,表面下气泡锻造产生,柱 状晶粗大引起,轴芯晶间裂纹锻造时引起,非金 属夹杂物引起,锻造加热不当引起,锻造变形不
• 测:当量、位置。如分散性夹层、夹杂等。
• 3. 密集缺陷□--可能是疏松、非金属夹杂、 白点或成群小裂纹。
• 定义:JB/T4730-2005标准术语和定义第 3.16条规定。
• 在荧光屏扫描线上相当于50mm声程范围内 有5个或5个以上缺陷反射信号,或在 50mm×50mm检测面上发现在同一深度范 围内有5个或5个以上缺陷反射信号。其反
锻件、铸件、冲压件的认识
1、(锻件)是金属被施加压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。
这种力量典型的通过使用铁锤或压力来实现。
铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。
在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。
锻件需要每片都是一致的,没有任何多孔性、多余空间、内含物或其他的瑕疵。
这种方法生产的元件,强度与重量比有一个高的比率。
这些元件通常被用在飞机结构中。
锻件的优点有可伸展的长度、可收缩的横截面;可收缩的长度、可伸展的横截面;可改变的长度、可改变的横截面。
锻件的种类有:自由锻造/手锻、热模锻/精密锻造、顶锻、滚锻和模锻。
2、(铸件)用铸造方法获得的金属物件,即把熔炼好的液态金属,用浇注、压射、吸入或其他方法注入预先准备好的铸型中,冷却后经落砂、清理和后处理,所得到的具有一定形状,尺寸和性能的物件。
3、(冲压件)通过冲床和模具对板材、带材、管材和型材等施加外力,使之产生塑性变形或分离,从而获得所需形状和尺寸的工件的成形加工方法,得到的工件就是冲压件。
冲压件是靠压力机和模具对板材、带材、管材和型材等施加外力,使之产生塑性变形或分离,从而获得所需形状和尺寸的工件(冲压件)的成形加工方法。
冲压和锻造同属塑性加工(或称压力加工),合称锻压。
冲压的坯料主要是热轧和冷轧的钢板和钢带。
全世界的钢材中,有60~70%是板材,其中大部分是经过冲压制成成品。
汽车的车身、底盘、油箱、散热器片,锅炉的汽包、容器的壳体、电机、电器的铁芯硅钢片等都是冲压加工的。
仪器仪表、家用电器、自行车、办公机械、生活器皿等产品中,也有大量冲压件。
冲压件与铸件、锻件相比,具有薄、匀、轻、强的特点。
冲压可制出其他方法难于制造的带有加强筋、肋、起伏或翻边的工件,以提高其刚性。
由于采用精密模具,工件精度可达微米级,且重复精度高、规格一致,可以冲压出孔窝、凸台等。
冷冲压件一般不再经切削加工,或仅需要少量的切削加工。
热冲压件精度和表面状态低于冷冲压件,但仍优于铸件、锻件,切削加工量少。
锻件缺陷的主要特征及产生的原因
1锻造概述1.1锻造利用冲击力或静压力使加热后的坯料在锻压设备上、下砧之间产生塑性变形,以获得所需尺寸、形状和质量的锻件加工方法称为锻造。
常用的锻造方法为自由锻、模锻、胎模锻。
1.2自由锻利用冲击力或静压力使经过加热的金属在锻压设备的上、下砧间向四周自由流动产生塑性变形,获得所需锻件的加工方法称为自由锻。
自由锻分为手工锻造和机器锻造两种。
手工锻造只能生产小型锻件,机器锻造是自由锻。
1.3锻造特点1.3.1自由锻造所用工具和设备简单,通用性好,成本低。
同铸造毛坯相比,自由锻消除了缩孔、缩松、气孔等缺陷,使毛坯具有更高的力学性能。
锻件形状简单,操作灵活。
1.3.2锻件和铸件相比锻件的优点1.3.2.1金属经过锻造加工后能改善其组织结构和力学性能。
铸造组织经过锻造方法热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、疏松、气孔、夹渣等压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。
1.3.2.2铸件的力学性能低于同材质的锻件力学性能。
此外,锻造加工能保证金属纤维组织的连续性,使锻件的纤维组织与锻件外形保持一致,金属流线完整,可保证零件具有良好的力学性能与长的使用寿命采用精密模锻、冷挤压、温挤压等工艺生产的锻件,都是铸件所无法比拟的。
1.3.2.3锻件是金属被施加压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。
这种力量典型的通过使用铁锤或压力来实现。
铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。
在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。
铸件是用各种铸造方法获得的金属成型物件,即把冶炼好的液态金属,用浇注、压射、吸入或其它浇铸方法注入预先准备好的铸型中,冷却后经落砂、清理和后处理等,所得到的具有一定形状,尺寸和性能的物件。
因此,它在重型机器及重要零件的制造上有特别重要的意义。
1.4应用领域自由锻造是靠人工操作来控制锻件的形状和尺寸的,所以锻件精度低,加工余量大,劳动强度大,生产率也不高,因此它主要应用于单件、小批量生产。
铸件和锻件的区别
铸件和锻件的区别关于铸件和锻件的区别主要有以下几点:1.铸件是材料在模具中整体浇注成型,它的应力分布均匀,对受压方向没有限制。
而锻件是由同一方向的力打压而成,它内部的应力就有方向性,只能承受有方向性的压力。
相同材料,相同壁厚的铸件和锻件,在强度和晶相结构上,锻件要优于铸件。
2.对阀门来说,相同磅级、相同材料的铸件阀门的壁厚要厚于锻件。
它的耐压强度是与锻件相等的。
3.铸件对于铸造工艺的要求比较高,最大的特点是可以做出比较复杂的形状,阀门本体结构以及流道都是不规则的,铸造可以一次性成型,只要工艺过关,可以铸造出大口径的阀门本体。
锻件的致密性比较好,但是对于太复杂的流道和外形无法一次成型,往往需要模块化进行,分开锻造再焊接在一起,由此锻件的尺寸受到一定限制。
4.锻件往往不能加工出复杂,流线型的流道。
流道的加工通过车削而成,内部形成很多尖角过渡,在这些尖角处极易造成应力不均,产生开裂.5.同时模块化焊接而成的设计, 锻造阀门的阀座口径相对固定,在某些阀门尺寸上,它的口径就偏小,影响流通能力。
造成阀门流阻的加大,整个系统效率的降低。
6.由于在大尺寸阀门锻造工艺的局限,同时为节约成本,目前许多厂家通常采用阀体中心部分铸件,两端锻件的结构。
7.无论是铸件,锻件。
在加工时,都有可能产品缺陷。
铸件的主要缺陷表现在沙眼,气泡等;锻件的主要缺陷表现在大晶粒,冷硬现象,裂纹,龟裂等。
为了获得合格的产品质量,相对应的铸件需要热处理消除铸造过程中的应力,同时采用X-射线,磁粉探伤,渗透检查等检测手段。
而对锻件来说,这就需要对焊缝的严格的热处理和相应的检测手段来保证。
锻件往往需要超声波检查。
另外,要提到的是焊接工艺制定非常严格,焊接工程师的资质也是保证产品质量的关键。
8. 无论阀门采用那种原材料,都需要制造商有严格的质量控制程序,标准的检测程序来确保阀门的质量。
锻件与铸件超声波探伤详细教程(附实例解析)讲解
第六章锻件与铸件超声波探伤第六章锻件与铸件超声波探伤锻件和铸件是各种机械设备及锅炉压力容器的重要毛坯件。
它们在生产加工过程中常会产生一些缺陷,影响设备的安全使用。
一些标准规定对某些锻件和铸件必须进行超声波探伤。
由于铸件晶粒粗大、透声性差,信噪比低,探伤困难大,因此本章重点计论锻件探伤问题,对铸件探伤只做简单介绍。
第一节锻件超声波探伤一、锻件加工及常见缺陷锻件是由热态钢锭经锻压变形而成。
锻压过程包括加热、形变和冷却。
锻件的方式大致分为镦粗、拔长和滚压。
镦粗是锻压力施加于坯料的两端,形变发生在横截面上。
拔长是锻压力施加于坯料的外圆,形变发生在长度方向。
滚压是先镦粗坯料,然后冲孔再插入芯棒并在外圆施加锻压力。
滚压既有纵向形变,又有横向形变。
其中镦粗主要用于饼类锻件。
拔长主要用于轴类锻件,而简类锻件一般先镦粗,后冲孔,再镦压。
为了改善锻件的绍织性能,锻后还要进行正火、退火或调质等热处理。
锻件缺陷可分为铸造缺陷、锻造缺陷和热处理缺陷。
铸造缺陷主要有:缩孔残余、疏松、夹杂、裂纹等。
锻造缺陷主要有:折叠、白点、裂纹等。
热处理缺陷主要有:裂纹等。
缩孔残余是铸锭中的缩孔在锻造时切头量不足残留下来的,多见于锻件的端部。
疏松是钢锭在凝固收缩时形成的不致密和孔穴,锻造时因锻造比不足而末全焊合,主要存在于钢锭中心及头部。
夹杂有内在夹杂、外来菲金属夹杂栩金属夹杂。
内在夹杂主要集中于钢锭中心及头部。
裂纹有铸造裂纹、锻造裂纹和热处理裂纹等。
奥氏体钢轴心晶间裂纹就是铸造引起的裂纹。
锻造和热处理不当,会在锻件表面或心部形成裂纹。
白点是锻件含氢最较高,锻后冷却过快,钢中溶解的氢来不及逸出,造成应力过大引起的开裂,白点主要集中于锻件大截面中心。
合金总量超过3.5~4.0%和Cr、Ni、Mn的合金钢大型锻件容易产生白点。
白点在钢中总是成群出现。
二、探伤方法概述按探伤时间分类,锻件探伤可分为原材料探伤和制造过程中的探伤,产品检验及在役检验。
区分普通压铸件与液态模锻件
连铸连锻工艺的本质,就是在用一台设备上,在同一套模具内,其铸造充型与锻造连续完成。 连铸连锻工艺并不是一种新的工艺,它的原理有很长的历史了。最典型、最简单的连铸连锻工艺,就是我们熟悉的液态模锻(熔汤锻造)工艺。而压铸模锻工艺,形象地说则是一种用自动化程度更高专用设备,生产出结构与普通压铸件一样复杂的液态模锻件。正因为如此,压铸模锻件与普通压铸件在外观上我们不易分别出来。 与连铸连锻工艺生产出来的毛坯质量相近的,是“先铸后锻”工艺。先铸后锻工艺我们很常见:毛坯生产共需两套模具,一套用于手工普通金属模铸造,另一套则用于使用摩擦冲床或液压机完成的精锻。 压铸模锻工艺是近年来才在国际上兴起的工艺,由于受专利技术的限制,该工艺在我国还不多见。广东肇庆鸿银机电科技有限公司是全国最早引入这项技术对外生产的。现已生产出包括跑车锻压活塞、小缸体、极限运动摩托车车架(6061材料)、小轮毂在内的各种毛坯。
4.如何区别这两种毛坯
从外形上,我们很难区别这两种工艺生产出来的毛坯。如果看到的是一只已加工后的零件,就更难区别了。 所以,我们只能倒过来分析与判断: 一是压铸件一般是“结构件”,而压铸模锻件则是“功能件”。“结构件”,与“功能件”是相对的。后者一般指要承受冲击、高温、压力、强度(力),以及要表面处理(如阳极氧化)、热处理(固熔强化)等。典型产品是发动机缸体、轮毂、活塞、连杆、刹车蹄、气动或液压阀体(如常见的三位五通阀)等。前者则如车门架、仪表面板、发动机外罩等。 二是从材料成份上判断。因为压铸件一般都是铸造类合金,对于其它牌号的合金,往往是用压铸模锻工艺生产。 三是从毛坯对其外表面的处理要求上判断。如铝压铸件,由于含有硅,且因压铸工艺生产出来的毛坯,外表面有显微气孔(俗称“水纹”),这种材料阳极氧化处理后表面会有“黑点”。所以,毛坯如要求阳极氧化,则这种毛坯都不会用普通压铸工艺生产。 四是从金相组织上进行判断。压铸件与压铸模锻件在金相上我们很容易区别。前者是枝晶状铸态组织,后者是均匀的破碎晶粒的锻态组织。
锻造和铸造的区别
锻造和铸造的区别
锻造与铸造都是用于制造器具的一个词语,但两者还是有区别的!
1、词语意义不同:
锻造:用锤击等方法,使在可塑状态下的金属材料成为具有一定形状和尺寸的工件,并改变它的物理性质。
只能制作外观简单的物件。
铸造:将金属熔化成液体后浇入模子里,经冷却凝固、清理后获得所需形状的铸件的加工方法。
可以制作形状复杂的各类物件。
2.制作工艺不同:
锻造:是一种利用锻压机械(人工锻打等)对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法
铸造:利用高温将金属融化,而后将液体金属浇铸到与零件形状相适应的铸造空腔中,待其冷却凝固后,以获得零件或毛坯的方法。
锻造与铸造的优缺点:
锻造优点:
通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。
相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。
锻造缺点:
在锻造生产中,易发生的外伤事故,因为是人工或者机器操作(失误风险!)
铸造优点:
1、可以生产形状复杂的零件,尤其是复杂内腔的毛坯。
2.适应性广,工业常用的金属材料均可铸造,几克到几百吨。
3.原材料来源广,价格低廉,如废钢、废件、切屑等。
铸造缺点:
1.机械性能不如锻件,如组织粗大,细节不完美等。
2.铸件质量不稳定,工序多,影响因素复杂,易产生许多缺陷。
铸造和锻造如何区别
个人收集整理仅供参考学习铸造和锻造如何区别铸造和锻造的区别:1、铸造:就是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件(零件或毛坯)的工艺过程。
现代机械制造工业的基础工艺。
铸造生产的毛坯成本低廉,对于形状复杂、特别是具有复杂内腔的零件,更能显示出它的经济性;同时它的适应性较广,且具有较好的综合机械性能。
但铸造生产所需的材料(如金属、木材、燃料、造型材料等)和设备(如冶金炉、混砂机、造型机、造芯机、落砂机、抛丸机、铸铁平板等)较多,且会产生粉尘、有害气体和噪声而污染环境。
铸造是人类掌握较早的一种金属热加工工艺,已有约6000年的历史。
公元前3200年,美索不达米亚出现铜青蛙铸件。
公元前13~前10世纪之间,中国已进入青铜铸件的全盛时期,工艺上已达到相当高的水平,如商代的重875千克的司母戊方鼎、战国的曾侯乙尊盘和西汉的透光镜等都是古代铸造的代表产品。
早期的铸造受陶器的影响较大,铸件大多为农业生产、宗教、生活等方面的工具或用具,艺术色彩较浓。
公元前513年,中国铸出了世界上最早见于文字记载的铸铁件——晋国铸鼎(约270千克重)。
公元8世纪前后,欧洲开始生产铸铁件。
18世纪的工业革命后,铸件进入为大工业服务的新时期。
进入20世纪,铸造的发展速度很快,先后开发出球墨铸铁,可锻铸铁,超低碳不锈钢以及铝铜、铝硅、铝镁合金,钛基、镍基合金等铸造金属材料,并发明了对灰铸铁进行孕育处理的新工艺。
50年代以后,出现了湿砂高压造型,化学硬化砂造型和造芯、负压造型以及其他特种铸造、抛丸清理等新工艺。
文档收集自网络,仅用于个人学习铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。
②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。
锻件与铸件区别
1、铸件的特点是容易获得其他方法不易获得的形状复杂的工件;铸件成本低;可以采用特殊工艺获得精密铸件,其表面不经加工即有理想的光洁度;铸件成形简单,比锻造价格便宜;但铸件内容易出现缺陷及非致密区,在强腐蚀及高压场合国内的技术一般不能保证锻件的质量.锻件是使用锻打设备对棒料进行锻打成型,一般无法锻打出比较复杂的工件,需要较大的加工量,但锻件组织结构比较致密,不容易出现内部缺陷,因此广泛用于要求高的部件加工,如阀座、阀芯、阀杆等,在高压及强腐蚀合金阀门中,锻件阀体也被大量采用。
2、尽管铸造技术已经有了巨大的发展,并利用计算机技术辅助优化结构设计和浇铸过程的流体几何设计,但是要达到1类或2类接受标准的X射线/MT或PT质量要求仍然是极端困难的,而这些都是核电站、热电站或石化工业内的苛刻环境所要求的标准。
因此就需要进行焊接改进。
.但是,在焊补后,铸件阀门的整体质量和可靠性就变得难于保证。
有时所有这些问题都遗留在铸件焊接金属框架里。
测试杆通常针对每个温度,但是它们的分析可能是不确定的。
即使圆形测试杆表明化学特性和物理特性是可接受的,逐渐本身仍然可能存在难于察觉的有损强度或防腐能力的内部缺陷。
.根据锅炉法典第IX节定期检查的要求,在使用过程中需要定期进行检查的内容包括,铸件金属的补焊,管道焊缝。
焊补位置的纪录因此必须保存,所以在工厂运行过程中,故障发生可能与原始的制造条件和标准有关。
在铸造过程中,浇铸到模腔内的金属在凝固过程中可能会产生收缩、分离或气孔,这些问题使得“浇铸”铸件无法被苛刻环境应用领域所接受。
收缩发生在两个过程中,温度高于熔点的金属冷却时产生收缩,随后在凝固过程中进一步收缩。
第一次增加熔化金属补偿,但是固态冷却过程中的补偿就要靠加大尺寸。
.分离,或熔化物的化学分离,是在模腔内壁固化出一层后的凝固过程中发生,在很长的温度变化期间,低流动性使得小固体颗粒-晶体-以树状结构形成和生长。
最初的晶体,紧靠着模腔内壁,合金含量最少。
304铸件和锻件屈服强度对比分析
304铸件和锻件屈服强度对比分析
304不锈钢是一种常见的不锈钢材料,常用于制造各种零件和构件。
在制造过程中,常用的加工方法包括铸造和锻造,其中铸造常用于制造铸件,而锻造常用于制造锻件。
1. 材料结构:304铸件与304锻件在材料结构上有所差异。
铸件的结晶形态是由冷却速度决定的,通常具有不均匀的晶粒结构,可能存在凝固缺陷。
而锻件由于经历了高温下的塑性变形和冷却过程,通常具有更加均匀细小的晶粒结构。
2. 内在应力:铸件在制造过程中可能会产生内在应力,其中一部分可以通过热处理来消除,但某些残余应力可能会保留下来。
而锻件经历了锻造和热处理过程,可以更好地消除内在应力。
3. 强度:一般情况下,锻件的强度要高于铸件。
锻件由于经历了塑性变形和热处理过程,粒得到了细化,结构更加致密,因此锻件通常具有更高的屈服强度和抗拉强度。
4. 韧性:铸件相对于锻件在韧性方面更好。
铸件的晶粒较大且不均匀,使其具有较高的冲击吸能能力。
而锻件的晶粒细小,强度高,但韧性相对较差。
尽管304铸件和锻件在材料结构、内在应力、强度和韧性方面存在差异,但一般情况下,304锻件具有更高的屈服强度,而304铸件相对更具韧性。
选择适合的加工方法需要根据具体的应用需求和工艺要求进行评估和选择。
锻件和铸件的声速
锻件和铸件的声速一、引言声速是指声波在介质中传播的速度,是介质特性之一。
在工程领域,锻件和铸件是常见的金属加工方法,它们在声速方面存在一定的差异。
本文将就锻件和铸件的声速进行探讨和比较。
二、锻件的声速锻件是以金属材料为原料,通过加热后进行塑性变形而制成的工件。
在锻造过程中,金属材料被加热至可塑性状态,然后通过锤击或压力加工等方式进行变形。
由于锻件的晶粒结构经过塑性变形,其晶粒细化程度高,晶界密度大,因此具有较高的声速。
锻件的声速受到多种因素的影响,如材料的种类、温度、晶粒结构等。
通常情况下,锻件的声速较高,一般在4000~7000 m/s之间。
不同材料的锻件声速也有所差异,例如钢锻件的声速约为5900 m/s,而铝锻件的声速约为6300 m/s。
三、铸件的声速铸件是通过将熔化的金属倒入模具中,然后冷却凝固而制成的工件。
相对于锻件而言,铸件制造工艺更加简单,适用范围更广。
然而,由于铸件的制造过程中没有经过塑性变形,其晶粒结构相对较大,晶界密度较低,因此铸件的声速较低。
铸件的声速同样受到多种因素的影响,如材料的种类、温度、晶粒结构等。
一般情况下,铸件的声速较低,一般在2000~4000 m/s之间。
不同材料的铸件声速也有所差异,例如铸铁件的声速约为3400 m/s,而铝合金铸件的声速约为6300 m/s。
四、锻件和铸件声速的比较从以上介绍可以看出,锻件和铸件在声速方面存在一定的差异。
锻件由于经过塑性变形,晶粒细化程度高,晶界密度大,因此其声速较高;而铸件由于没有经过塑性变形,晶粒结构相对较大,晶界密度较低,因此其声速较低。
锻件和铸件的声速还受到材料种类、温度等因素的影响。
不同材料的锻件和铸件声速差异较大,因此在具体工程应用中需要根据实际情况选择合适的加工方法和材料。
总结:锻件和铸件是常见的金属加工方法,在声速方面存在一定的差异。
锻件由于经过塑性变形,晶粒细化程度高,晶界密度大,因此其声速较高;而铸件由于没有经过塑性变形,晶粒结构相对较大,晶界密度较低,因此其声速较低。
铸造阀门和锻造阀门区别
铸造阀门和锻造阀门区别铸造阀门就是浇铸所成的阀门,一般铸造的阀门压力等级都比较低(如PN16、PN25、PN40,但也有高压的,可以到1500Lb、、2500Lb),口径大多数都为DN50以上。
锻造阀门就是锻打出来的,一般都是用在等级高的管路上,口径比较小,一般都在DN50以下。
铸造1、铸造:就是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件(零件或毛坯)的工艺过程。
现代机械制造工业的基础工艺。
2、铸造生产的毛坯成本低廉,对于形状复杂、特别是具有复杂内腔的零件,更能显示出它的经济性;同时它的适应性较广,且具有较好的综合机械性能。
3、但铸造生产所需的材料(如金属、木材、燃料、造型材料等)和设备(如冶金炉、混砂机、造型机、造芯机、落砂机、抛丸机、铸铁平板等)较多,且会产生粉尘、有害气体和噪声而污染环境。
4、铸造是人类掌握较早的一种金属热加工工艺,已有约6000年的历史。
公元前3200年,美索不达米亚出现铜青蛙铸件。
公元前13至公元前10世纪之间,中国已进入青铜铸件的全盛时期,工艺上已达到相当高的水平,如商代的重875千克的司母戊方鼎、战国的曾侯乙尊盘和西汉的透光镜等都是古代铸造的代表产品。
早期的铸造受陶器的影响较大,铸件大多为农业生产、宗教、生活等方面的工具或用具,艺术色彩较浓。
公元前513年,中国铸出了世界上最早见于文字记载的铸铁件——晋国铸鼎(约270千克重)。
公元8世纪前后,欧洲开始生产铸铁件。
18世纪的工业革命后,铸件进入为大工业服务的新时期。
进入20世纪,铸造的发展速度很快,先后开发出球墨铸铁,可锻铸铁,超低碳不锈钢以及铝铜、铝硅、铝镁合金,钛基、镍基合金等铸造金属材料,并发明了对灰铸铁进行孕育处理的新工艺。
50年代以后,出现了湿砂高压造型,化学硬化砂造型和造芯、负压造型以及其他特种铸造、抛丸清理等新工艺。
5、铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。
铸件法兰与锻件法兰的区别
这个从外观分析不太好分析,我将我的分析经验说说:一是价格上的区别:市场上卖的法兰,铸造的最便宜,铸锻的其次,纯锻打的相比价格要高。
这是指你到各个商店比价后才可以得出大概的结论。
二是做破坏性分析:将法兰割开两半,铸造的法兰有沙眼,纯锻造法兰没有沙眼。
铸锻的法兰有时候能发现有裂纹。
三是从法兰的尺寸和光洁度区分(这个不是内行一般看不出来。
):市场上铸造法兰一般尺寸负公差在1-5mm,边缘倒角不规矩,边孔毛刺不光滑。
因为便宜做工就不那么精细了。
锻造的法兰公差小或正公差。
铸钢法兰和铸铁法兰的区分:铸铁法兰韧性差,一般用锤子砸就能砸裂。
法兰的材质了一般都能接近低碳的吧,要不焊接会很容易裂的。
补充1:称重量.一样的法兰铸的和锻的重量不一样.补充2:提问的兄弟好像描述我有些不是太懂铸件和锻件仅从外观上就可以区别开来另外锻件外表光洁质地厚实。
我所不解的是还有一种材料和铸件一样都是铸造出来的名字叫可锻铸铁。
虽普通铸件和可锻铸铁件都是铸造件但机械性能却错的很远可锻铸铁可代替受力不大的锻件哟~兄弟其实铸件和锻件是很好区分的仅从质地和外观就可分辨比如低压水暖阀门的法兰价格低的都是铸件对于液压用高压阀门的法兰都是锻打毛坯经过车削加工成型现在还有一种是精铸件他和一般铸件不同密度高通常一次成型不用车削掉很多材料这种加工手段通常技术难度高价格也较贵些好处是既有铸造能得到复杂结构又能保证强度液压阀体通常采用这种加工方法价格很贵另外铸件又分铸铁和铸钢后者优于前者主要是材料不同。
补充3:铸造的是把钢融化了之后,变成铁水,倒在模子里,然后冷却后再进行加工,材质不能保证. 铸锻的工艺是铸完了之后再进行锻制,相对于铸锻会好一点儿.起码不是生铁了.纯锻呢,就是把方钢,钢锭子,材质有保证,烧红了,用空气锤锻成了形状.再进行加工.这个材质有保证,但最好的还是用中板加工的,直接中板的材质.直接割出了内外径,再进行加工,材质是最好的.也就是我们河北万润管业有限公司生产的法兰.我们网站*。
第八章锻件与铸件超声检测
图5 CSⅡ标准试块
试块序号 CSⅡ-1 CSⅡ-2 CSⅡ-3 CSⅡ-4
孔径 φ2 φ3 φ4 φ6
检测距离L 1 2 3 4 5 6 7 8 9
5
10
15
20
25
30
35
40
45
检测面是曲面时,应采用CS Ⅲ标准试块来测定由于曲率 不同而引起的声能损失,其形状和尺寸按图6所示。
图6 CS Ⅲ标准试块
非缺陷回波 1)三角反射波:圆柱形,1.3d、1.67d 2)迟到波:细长轴,B1之后0.76d间距 3)61°反射波: 缺陷或结构面成61°特定 角。 轮廓回波:各种轮廓。
JB/T4730.3-2005规定
缺陷记录 1记录当量直径超过φ4mm的单个缺陷的波幅和 位置 2密集区缺陷 3底波降低量应按表6的要求记录
工件材质衰减系数的测定
在工件无缺陷完好区域,选取三处检测面 与底面平行且有代表性的部位,调节仪器 使第一次底面回波幅度(B1或Bn)为满刻 度的50%,记录此时衰减器的读数,再调 节衰减器,使第二次底面回波幅度(B2或 Bm)为满刻度的50%,两次衰减器读数 之差即为(B1-B2)或(Bn-Bm)的dB差 值(不考虑底面反射损失)。 工件上三处衰减系数的平均值即作为该工 件的衰减系数。
图3-69 轴类锻件超声探测方向。 (a)直探头径向探测(b)直探头轴向探测(c)斜探头 周向探测(d)斜探头轴向探测。
(2)饼类锻件检测 饼类锻件主要经受 镦粗工艺,因而缺 陷分布主要平行于 端面。所以用直探 头在端面检测是最 主要的检测方法。
(3)筒形锻件检测 由于铸锭中质量最差 的中心部分已被冲孔 时去除,因而锻件质 量一般较好。筒形锻 件一般在端面及外圆 作直探头检测。但对 于壁厚较薄的筒形锻 件,须加用斜探头探 测
316l锻件和铸件标号
316l锻件和铸件标号316L不锈钢是一种低碳、低硫、高锆含量的超低碳不锈钢材料,具有良好的耐腐蚀性能和可焊性,广泛应用于化工、制药、食品加工等领域。
316L锻件和铸件在不锈钢制品中有着重要的应用,下面将详细介绍这两种材料的特点和标号。
316L锻件是指通过锻造工艺将316L不锈钢制品加工成所需形状的零件。
锻造是一种常见的金属成形工艺,通过加热金属材料至较高温度后施加压力,使金属在压力和温度作用下发生塑性变形,最终获得所需形状的零件。
316L锻件具有以下特点:1. 良好的耐蚀性:316L不锈钢具有良好的耐腐蚀性能,能在多种腐蚀介质中长期使用而不发生腐蚀。
因此,316L锻件适用于对耐腐蚀要求较高的工作环境。
2. 优异的力学性能:316L锻件的力学性能优于铸件,具有更高的强度和硬度。
锻造过程中,金属的晶粒发生细化,结构更加致密,使得材料的强度得到提高。
3. 准确的尺寸和形状:通过锻造工艺,可以精确控制316L锻件的尺寸和形状,使其能够满足精密机械设备的要求。
同时,锻件的表面光洁度较高,有利于提高产品的美观度。
316L铸件是指通过铸造工艺将316L不锈钢材料熔化后倒入模具中,经冷却凝固形成所需形状的零件。
铸造是一种常见的金属成形工艺,具有以下特点:1. 生产效率高:铸造工艺可以实现批量生产,适用于大规模生产316L铸件。
而且,铸造过程不需要太多的人工操作,减少了劳动成本。
2. 复杂形状:相比于锻件,铸件可以更容易地获得复杂形状的零件。
铸件可以通过设计合理的模具,在凝固过程中形成复杂的内部结构,满足不同工程的需求。
3. 更大的尺寸范围:铸件的尺寸范围比锻件更广泛,可以生产大尺寸的316L铸件。
这对于某些特殊领域的大型设备和构件来说非常重要。
对于316L锻件和铸件的标号,一般都遵循国际标准。
常见的标号方式有ASTM、ASME、ISO等。
例如:ASTM标准:- 锻件标号:ASTM A182 F316L- 铸件标号:ASTM A351 CF3MASME标准:- 锻件标号:ASME SA182 F316L- 铸件标号:ASME SA351 CF3MISO标准:- 锻件标号:ISO 15156-3-2009 316L Strain-Enhanced Test需要根据实际使用需求来选择合适的标号,同时注意与使用要求和产品规范相匹配。
模具钢铸造,锻造,冲压,铸造的区别
模具钢铸造,锻造,冲压,铸造的区别1。
锻造和铸造的区别(1)铸造:是把没有形状的金属液变成有形状的固体。
锻造:是把一种形状固体变成另一种形状的固体。
铸造好比是你玩蜡,你买了蜡(废钢,或生铁)然后将这个蜡化为液体,放入一个什么模子,这样你就得到不同形状的东西。
(固体-液体-固体锻造,好比是做面饼的过程,你把小的面团揉,放到模子里面,做成不同形状的产品。
差不多是固体在高温下,形状可变成别的形状(固体到固体)。
所谓铸造,是将熔融的金属浇铸到模型中获得铸件的过程。
铸造专业侧重的是金属熔炼过程,以及浇铸过程中工艺的控制。
锻造是固态下的塑性成型,有热加工,冷加工之分,像挤压、拉拔、墩粗,冲孔等都属于锻造。
(2)锻造是慢慢成型,铸造是一次成型铸造:熔融的液态金属填满型腔冷却。
制件中间易产生气孔。
锻造:主要是在高温下用挤压的方法成型。
可以细化制件中的晶粒。
2。
自由锻和模锻的区别自由锻是将加热好的金属坯料放在锻造设备的上,下砥铁之间,施加冲击力或压力,直接使坯料产生塑性变形,从而获得所需锻件的一种加工方法。
自由锻由于锻件形状简单,操作灵活,适用于单件,小批量及重型锻件的生产。
自由锻分手工自由锻和机器自由锻。
手工自由锻生产效率低,劳动强度大,仅用于修配或简单,小型,小批锻件的生产,在现代工业生产中,机器自由锻已成为锻造生产的主要方法,在重型机械制造中,它具有特别重要的作用。
模锻全称为模型锻造,将加热后的坯料放置在固定于模锻设备上的锻模内锻造成形的。
模锻可以在多种设备上进行。
在工业生产中,锤上模锻大都采用蒸汽-空气锤,吨位在5KN~300KN (0.5~30t)。
压力机上的模锻常用热模锻压力机,吨位在25000KN~63000KN。
模锻的锻模结构有单模堂锻模和多模膛锻模。
如图3-13所示为单模堂锻模,它用燕尾槽和斜楔配合使锻模固定,防止脱出和左右移动;用键和键槽的配合使锻模定位准确,并防止前后移动。
单模膛一般为终锻模膛,锻造时常需空气锤制坯,再经终锻模膛的多次锤击一次成形,最后取出锻件切除飞边。
锻造与铸造的区别和优缺点
锻造与铸造的区别和优缺点一、锻造、铸造的区别:锻造与铸造的不同点,例如:它们的词语意义不同,以及它们制作工艺不同。
下面主要给大家详细介绍锻造与铸造的相关特点。
词语意义不同:锻造:用锤击等方法,使在可塑状态下的金属材料成为具有一定形状和尺寸的工件,并改变它的物理性质。
铸造:将金属熔化成液体后浇入模子里,经冷却凝固、清理后获得所需形状的铸件的加工方法。
能制成形状复杂的各类物件。
2.制作工艺不同:锻造:是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。
铸造:是将液体金属浇铸到与零件形状相适应的铸造空腔中,待其冷却凝固后,以获得零件或毛坯的方法。
二、锻造、铸造优劣势:锻造优点:通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。
相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。
铸造优点:可以生产形状复杂的零件,尤其是复杂内腔的毛坯。
2.适应性广,工业常用的金属材料均可铸造,几克到几百吨。
3.原材料来源广,价格低廉,如废钢、废件、切屑等。
4.铸件的形状尺寸与零件非常接近,减少了切削量,属于无切削加工。
5.应用广泛,农业机械中40%~70%、机床中70%~80%的重量都是铸件。
锻造缺点:在锻造生产中,易发生的外伤事故。
铸造缺点:1.机械性能不如锻件,如组织粗大,缺陷多等。
2.砂型铸造中,单件、小批量生产,工人劳动强度大。
3.铸件质量不稳定,工序多,影响因素复杂,易产生许多缺陷。
铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。
②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。
锻件和铸件的区别【深度解析】
锻件和铸件的区别
内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!
更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.
铸件是直接浇注成型的,组织基本都为铸造组织,材料的力性比较差;而锻件是坯料锻造而成的,组织基本都为变形组织,材料的性能比较好,但是工艺流程比铸造长,生产成本比较高。
铸件:
优点:生产灵活,可用于生产的合金范围广泛,能生产复杂程度极高的零部件,比如发动机缸体。
另外铸造技术也是锻件以及轧制的前道工序。
缺点:产品质量不高,由于铸造过程中的吸气,夹渣,补缩不足等,会给铸件造成气孔、缩孔、缩松、夹渣等缺陷,使得铸件的机械性能大打折扣。
锻件:
锻件属于压力加工,零部件在制造过程中由于受到压力的作用,能锻合零部件中的缩孔,缩松,打碎大的枝晶,改善零件内部的偏析和夹杂的分布不均匀性,同时可以在零部件内形成有利于使用的特定织构。
以上这些都能及大地提高零件的机械性能,因此,锻件大多用于机器的关键承力部位。
锻件由于生产过程的特点,只能用来生产形状比较简单的零部件,对压力加工设备的吨位有要求,设备投资比较大。
内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!
更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.。
铸件、锻件、焊接件残余应力的产生和时效方法
铸件、锻件、焊接件残余应力的产生和时效方法铸件、锻件、焊接件残余应力的产生和时效方法金属构件(铸件、锻件、焊接件)在冷热加工过程中产生残余应力,高者在屈服极限附近构件中的残余应力大多数表现出很大的有害作用;如降低构件的实际强度、降低疲劳极限,造成应力腐蚀和脆性断裂,由于残余应力的松弛,使零件产生变形,大大的影响了构件的尺寸精度。
因此降低和消除构件的残余应力就十分必要了。
一、残余应力的产生1.铸造应力的产生(1)热应力铸件各部分的薄厚是不一样的,如机床床身导轨部分很厚,侧壁.筋板部分较薄,其横向端面如图一所示。
铸后,薄壁部分冷却速度快收缩大,而厚壁部分,冷却速度慢,收缩的小。
薄壁部分的收缩受到厚壁部分的阻碍,所以薄壁部分受拉力,厚壁部分受压力。
因纵向收缩差大,因而产生的拉压也大。
这时铸件的温度高,薄厚壁都处于塑性状态,其压应力使厚壁部分变粗,拉应力使薄壁部分变薄,拉压应力,随塑性变形而消失。
铸件逐渐冷却,当薄壁部分进入弹性状态而厚壁部分仍处于塑性时,压应力使厚壁部分产生塑性变形,继续变粗,而薄壁部分只是弹性拉长,这时拉压应力随厚壁部分变粗而消失。
铸件仍继续冷却,当薄厚壁部分进入弹性区时,由于厚壁部分温度高,收缩量大。
但薄壁部分阻止厚壁部分收缩,故薄壁受压应力,厚壁受拉应力。
应力方向发生了变化。
这种作用一直持续到室温,结果在常温下厚壁部分受拉应力,薄壁部分受压应力。
这个应力是由于各部分薄厚不同。
冷却速度不同,塑性变形不均匀而产生的,叫热应力。
在导轨或侧壁的同一个截面内,表层与内心部,由于冷却快慢不同,也产生相互平衡拉压的应力,用类似与上述方法分析,可知在室温下表层受压应力,心部受拉应力,并且截面越大,应力越大,此应力也叫热应力。
(2)相变应力常用的铸铁含碳量在2.8-3.5%,属于亚共晶铸铁,由结晶过程可知①:厚壁部分在1153℃共晶结晶时,析出共晶石墨,产生体积膨胀,薄壁部分阻碍其膨张,厚壁部分受压应力,薄壁部分受拉应力,薄辟部分受拉应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢制品中锻件和铸件的区别应用
金属经过锻造加工后能改善其组织结构和力学性能。
铸造组织经过锻造方法热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、疏松、气孔、夹渣等压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。
一般说来,铸件的力学性能低于同材质的锻件力学性能。
此外,锻造加工能保证金属纤维组织的连续性,使锻件的纤维组织与锻件外形保持一致,金属流线完整,可保证零件具有良好的力学性能与长的使用寿命采用精密模锻、冷挤压、温挤压等工艺生产的锻件,都是铸件所无法比拟的。
飞机锻件
按重量计算,飞机上有85%左右的的构件是锻件。
飞机发动机的涡轮盘、后轴颈(空心轴)、叶片、机翼的翼梁,机身的肋筋板、轮支架、起落架的内外筒体等都是涉及飞机安全的重要锻件。
飞机锻件多用高强度耐磨、耐蚀的铝合金、钛合金、镍基合金等贵重材料制造。
为了节约材料和节约能源,飞机用锻件大都采用模锻或多向模锻压力机来生产。
汽
车锻按重量计算,汽车上有1719%的锻件。
一般的汽车由车身、车箱、发动机、前桥、后桥、车架、变速箱、传动轴、转向系统等15个部件构成汽车锻件的特点是外形复杂、重量轻、工况条件差、安全度要求高。
如汽车发动机所使用的曲轴、连杆、凸轮轴、前桥所需的前梁、转向节、后桥使用的半轴、半轴套管、桥箱内的传动齿轮等等,无一不是有关汽车安全运行的保安关键锻件。
柴油机锻件
柴油机是动力机械的一种,它常用来作发动机。
以大型柴油机为例,所用的锻件有汽缸盖、主轴颈、曲轴端法兰输出端轴、连杆、活塞杆、活塞头、十字头销轴、曲轴传动齿轮、齿圈、中间齿轮和染油泵体等十余种。
船用锻件
船用锻件分为三大类,主机锻件、轴系锻件和舵系锻件。
主机锻件与柴油机锻件一样。
轴系锻件有推力轴、中间轴艉轴等。
舵系锻件有舵杆、舵柱、舵销等。
兵器锻件
锻件在兵器工业中占有极其重要的地位。
按重量计算,在坦克中有60%是锻件。
火炮中的炮管、炮口制退器和炮尾,
步兵武器中的具有膛线的枪管及三棱刺刀、火箭和潜艇深水炸弹发射装置和固定座、核潜艇高压冷却器用不锈钢阀体、炮弹、枪弹等,都是锻压产品。
除钢锻件以外,还用其它材料制造武器。
石油化工锻件
锻件在石油化工设备中有着广泛的应用。
如球形储罐的人孔、法兰,换热器所需的各种管板、对焊法兰催化裂化反应器的整锻筒体(压力容器),加氢反应器所用的筒节,化肥设备所需的顶盖、底盖、封头等均是锻件。