屈婉玲离散数学第四章

合集下载

离散数学答案-屈婉玲版-第二版-高等教育出版社课后答案

离散数学答案-屈婉玲版-第二版-高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⌝p∨(q∧r))p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)1∧(p∨q)∧⌝(p∧q)∧1(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⌝(p ∨q)∨(⌝q ∨p)(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)(⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⌝(p ∨q)∨(⌝q ∨p)(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⌝(p ∨(q ∧r))→(p ∨q ∨r)(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)∀,在(a)中为假命题,在(b)中为真命题。

离散数学第4章_高等教育出版社_屈婉玲_

离散数学第4章_高等教育出版社_屈婉玲_

注:A,B是元语言符号,表示任意的合式公式。同时,不同的一阶语言使用不同的非逻辑集合L,但他们 构造合式公式的规则是一样的。一阶逻辑研究一阶语言的一般性质,而不是针对某个特定的一阶语 言。 21
4.2 一阶逻辑公式及其解释
定义4.5 在公式∀ xA和∃x A中,称x为 指导变元,A为量词的辖 域。在∀ x和∃x 的辖域中,x的所有出现都称为 约束出现, A中不是约束出现的其他变项均称为 自由出现。
第四章 一阶逻辑基本概念
命题逻辑具有一定的局限性,例如: 凡偶数都能被2整除. 6是偶数. 所以,6能被2整除. 问:如何符号化?
解决方法:引入量词
1
第四章 一阶逻辑基本概念
引入量词,以期达到表达出个体与总体之间的内在联系和数 量关系,这是 一阶逻辑 所研究的内容。
2
4.1 一阶逻辑命题符号化
一阶逻辑命题符号化的3个要素: 1. 个体词:指研究对象中可以独立存在的具体的或抽象的 客体,一般用小写字母表示。例如:小王,小李,中国, 3 等。特别地,将表示具体或特定的客体的个体词称作 个体常项,抽象或泛指的个体词称为个体变项。 并称个体变项的取值范围为 个体域。如N,R等。 特别 地,宇宙间一切事物组成的个体域称为 全总个体域。
15
4.1 一阶逻辑命题符号化
对于含n元谓词的命题,在符号化时应注意以下几点: (4)命题的符号化形式不惟一。 例4.5(3)
16
第四章 一阶逻辑基本概念
凡偶数都能被2整除. 6是偶数. 所以,6能被2整除. 问:如何符号化?
(∀x (M(x) → F(x))) M(6) → F(6)
17
4.2 一阶逻辑公式及其解释
13
类似的,请看课本 例4.3 P57,及 例4.4-4.5

离散数学-关系-4.1-2

离散数学-关系-4.1-2

E=ranR∪domS={1, 2, 3, 4}
① 把R看作A到E的关系,即相当于关系矩阵上在多出来 的列上加 0
② 把S 看作E到 D的关系,即相当于关系矩阵上加几行 0
③ 矩阵相乘
21
4.2.1 关系的基本运算
求关系的合成(续)
R: A→E, S: E→D A={1, 2}; E={1, 2, 3, 4}; D=ranS={1, 2, 3}; ������ ������ ������ ������ MR = ������ ������ ������ ������ ������ MS= ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������
5
4.1.1 有序对与笛卡尔集
笛卡儿积的性质
(1) 若A= 或 B=,则 AB=. 即 A=B= (2) 若|A|=m, |B|=n, 则 |AB|=mn (3) 不适合交换律 AB BA (AB, A, B) (4) 不适合结合律 (AB)C A(BC) (A, B, C) (5) 对于并或交运算满足分配律 A(BC)=(AB)(AC) (BC)A=(BA)(CA) A(BC)=(AB)(AC) (BC)A=(BA)(CA)
������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ M R MS = = ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ 故:R∘S ={<1,3>, <2,2>, <2,3>} 求: S∘R?

屈婉玲版离散数学课后习题答案

屈婉玲版离散数学课后习题答案

屈婉玲版离散数学课后习题答案第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,xF在(b)中为真命题。

(2)在两个个体域中都解释为)(x∃,在(a)(b)中均为xG真命题。

4. 在一阶逻辑中将下列命题符号化:(1) 没有不能表示成分数的有理数.(2) 在北京卖菜的人不全是外地人.解:(1)F(x): x能表示成分数H(x): x是有理数命题符号化为: ))Fx∧x⌝∃⌝)(H((x(2)F(x): x是北京卖菜的人H(x): x是外地人命题符号化为: ))F⌝∀xx→(x(H)(5. 在一阶逻辑将下列命题符号化:(1) 火车都比轮船快.(3) 不存在比所有火车都快的汽车.解:(1)F(x): x是火车; G(x): x是轮船; H(x,y): x比y快命题符号化为: ))FyxG∀y∀∧x→((y())(H)x,((2) (1)F(x): x是火车; G(x): x是汽车; H(x,y): x比y 快命题符号化为: )))xFxyy→⌝∃∧∀HG)(,x((((y)9.给定解释I如下:(a) 个体域D为实数集合R.(b) D中特定元素=0.(c) 特定函数(x,y)=x y,x,y D∈.(d) 特定谓词(x,y):x=y,(x,y):x<y,x,y D∈.说明下列公式在I下的含义,并指出各公式的真值: (1)))yyx∀∀→x⌝G)(,,(x(yF(2)))axyfF∀x→y∀()(,G),,(yx(答:(1) 对于任意两个实数x,y,如果x<y, 那么x≠y. 真值1.(2) 对于任意两个实数x,y,如果x-y=0, 那么x<y. 真值0.10. 给定解释I如下:解:(1) ))4,()3,((),(x F x F x y x yF x ∨∀⇔∃∀⇔ ))4,4()3,4(())4,3()3,3((F F F F ∨∧∨⇔1)01()10(⇔∨∧∨(2) )))(),((),((y f x f F y x F y x →∀∀))))4(),(()4,(()))3(),(()3,(((f x f F x F f x f F x F x →∧→∀⇔)))3),(()4,(())4),(()3,(((x f F x F x f F x F x →∧→∀⇔)))3),3(()4,3(())4),3(()3,3(((f F F f F F →∧→⇔)))3),4(()4,4(())4),4(()3,4(((f F F f F F →∧→∧)))3,4()4,3(())4,4(0((F F F →∧→⇔)))3,3(0())4,3(1((F F →∧→∧)11()00(→∧→⇔)00()11(→∧→∧1⇔12.求下列各式的前束范式。

离散数学-屈婉玲-耿素云-张立昂-主编-高等教育出版社-课后最全答案

离散数学-屈婉玲-耿素云-张立昂-主编-高等教育出版社-课后最全答案

第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。

离散数学屈婉玲耿素云张立昂主编课后复习资料高等教育出版社

离散数学屈婉玲耿素云张立昂主编课后复习资料高等教育出版社

第一章部分课后习题参考答案16设p 、q 的真值为0; r. s 的真值为1,求下列各命题公式的真值。

(1) pV (qAr) <=> 0V (0A1) o0(2) (p<-r) A (—'qVs) O (OTL) A (IV1) o0/\lo0.(3) ( A -•qAr) ^(p Aq A —^r) <=> ( 1 Al Al) — (0A0A0) <=>0 (4) ( ->r As) — (P /X F ) O (0A1) -* (1 AO) oO —Ool17. 判断下面一段论述是否为真:“兀是无理数。

并且,如果3是无理数,则、伍也 是无理数。

另外6能被2整除,6才能被4整除。

”答:P :兀是无理数1 q : 3是无理数0 r:、迈是无理数1 s : 6能被2整除1 t: 6能被4整除0命题符号化为:pA(q-r)A(t-*s)的真值为1,所以这一段的论述为真。

19. 用真值表判断下列公式的类型: (4) (p — q) f (「qf 「p) (5) (pAr)㈠"(「p/\「q)(6) 公式类型为永真式(方法如上例)第二章部分课后习题参考答案(6) ((pf q)A (qf r)) f (pf r)答:(4)Pqpf q ~>q「p 「qf 「p 「P )0 0 1 1 1 10 1 1 0 1 11 0 0 1 0 01 1 1 0 01(pf q) — (「qf1 1 1 1所以公式类型为永真式(5) 公式类型为可满足式(方法如上例)3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)「(pAq~*q)(2)(pf (pVq)) V (p-*r)(3)(pVq) f (pAr)答:(2) (p~* (p Vq) ) V (p-*r)<=>(~i pV (pVq))V (-1pVr)0_,pVpVqV r<=>l 所以公式类型为永真式(3) P Q r pVq p Ar (pVq) f (p Ar)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(pf q) A (p-*r) <=> (p~* (qAr))(4)(pA-'q) V (-^pAq) <=> (pVq) A(pAq)证明(2) (p-*q) A (p~*r)<=> (-'pVq) A (-'pVr)<=> -'pV (qAr))Opf (qAr)(4) (pA_,q)V ("'pAq) O(pV (_,pAq)) /\ (「qV (~>p/\q)<=> (pV -^p) A (pVq) A (-'qV -^P) /XGqVq)Ol/\ (pVq) A -1 (pAq) Al<=> (pVq) A (pAq)5.求下列公式的主析取范式及主合取范式,并求成真赋值(1)(「pf q) —(「qVp)(2)「(pf q) AqAr(3)(pV (qAr)) -* (pVqVr)解:(1)主析取范式(「pf q) C-1 v)O-!(v)v(-w)'V)O (—>A_1)V (-1A)V (~'A_1)V(A)V(A-1)O (-1A-1) V(A->)V(A)O w;() v rn2 v0刀(0, 2, 3)主合取范式:(_,p-*Q)-*(_, v)°-(v) v (-v)<^=*> ( ~i A -1 ) V ( -' V )O(-ipv (-> v ) ) A (~'q v (~1 v ))01 A (v ~n)O (\/ -i) O Mion⑴(2)主合取范式为:-1(P-* q) AA<=>_'(_1V)AAO (人一i) /\ 人<=>0所以该式为矛盾式.主合取范式为口(0,1, 2, 3, 4, 5, 6, 7)矛盾式的主析取范式为0(3)主合取范式为:(pv ( A )) -* (v v) O-i (pv ( A )) -* (v v)<=>(_'PA (_1V _1))V ( V V )O(-ipv ( V V ) ) A ( (~' V -') ) 7 ( V V ))<=>1A 101所以该式为永真式. 永真式的主合取范式为1 主析取范式为E (0,1, 2, 3, 4, 5, 6, 7)第三章部分课后习题参考答案14. 在自然推理系统P 中构造下面推理的证明: (2)前提:,—I (A ) 结论:->p (4) 前提:TROA 结论:A前提引入 ① 置换② 蕴含等值式 前提引入 ③④拒取式 前提引入 ⑤⑥拒取式证明:(2) ①7八) (2) —1 7 -1 ③-> -1 ④r ⑤ -iq ⑥ T ⑦ —'p (3) 证明(4):®A前提引入①化简律③O 前提引入 ④O 前提引入⑤O③④等价三段论⑥(T ) 人(T ) ⑤置换 ⑦(T ) ⑥化简⑧q ②⑥假言推理 ⑨T 前提引入 ⑩P⑧⑨假言推理(ID A⑧⑩合取15在自然推理系统P 中用附加前提法证明下面各推理: (1)前提:PT (T )T 结论:T证明®s附加前提引入 ②T 前提引入 ®P①②假言推理④PT 1 (T )前提引入 ⑤T ③④假言推理 ⑥q前提引入 ⑦r⑤⑥假言推理16在自然推理系统P 中用归谬法证明下面各推理:(1)前提: T —)—1 V —I 结论:-<P 证明:结论的否定引入前提引入 ©P②p-> —q ③ 一iq①②假言推理④「V 前提引入⑤「r ④化简律@r A ~'s 前提引入⑦r ⑥化简律®TA -ir ⑤⑦合取由于最后一步rA -r是矛盾式,所以推理正确.第四章部分课后习题参考答案3.在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a), (b)条件时命题的真值:(1)对于任意x,均有以-2二(0(x-2).(2)存在x,使得5二9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x):以-2二(护)6-卩).G(x): 5=9.(1)在两个个体域中都解释为V A F(A),在(a)中为假命题,在⑹中为真命题。

离散数学第4章高等教育出版社屈婉玲

离散数学第4章高等教育出版社屈婉玲

第九页,编辑于星期二:十七点 四十九分。
第十页,编辑于星期二:十七点 四十九分。
第十一页,编辑于星期二:十七点 四十九分。
第十二页,编辑于星期二:十七点 四十九分。
第十三页,编辑于星期二:十七点 四十九分。
第十四页,编辑于星期二:十七点 四十九分。
第十五页,编辑于星期二:十七点 四十九分。
第十六页,编辑于星期二:十七点 四十九分。
第十七页,编辑于星期二:十七点 四十九分。
第十八页,编辑于星期二:十七点 四十九分。
Байду номын сангаас
第十九页,编辑于星期二:十七点 四十九分。
第二十页,编辑于星期二:十七点 四十九分。
第二十一页,编辑于星期二:十七点 四十九分。
第二十二页,编辑于星期二:十七点 四十九分。
第二十三页,编辑于星期二:十七点 四十九分。
第二十四页,编辑于星期二:十七点 四十九分。
第二十五页,编辑于星期二:十七点 四十九分。
第二十六页,编辑于星期二:十七点 四十九分。
第二十七页,编辑于星期二:十七点 四十九分。
第二十八页,编辑于星期二:十七点 四十九分。
第一页,编辑于星期二:十七点 四十九分。
第二页,编辑于星期二:十七点 四十九分。
第三页,编辑于星期二:十七点 四十九分。
第四页,编辑于星期二:十七点 四十九分。
第五页,编辑于星期二:十七点 四十九分。
第六页,编辑于星期二:十七点 四十九分。
第七页,编辑于星期二:十七点 四十九分。
第八页,编辑于星期二:十七点 四十九分。

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p?r)∧(﹁q∨s) ⇔(0?1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)?(p∧q∧﹁r) ⇔(1∧1∧1)? (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q)? ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x ).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解: F(x): 2=(x+)(x ).G(x): x+5=9.(1)在两个个体域中都解释为)(x xF ∀,在(a )中为假命题,在(b)中为真命题。

离散数学第五版第四章(耿素云、屈婉玲、张立昂编著)

离散数学第五版第四章(耿素云、屈婉玲、张立昂编著)

4.1迪卡尔乘积与二元关系
5) 迪卡尔乘积运算对并和交运算满足分配律,即: (3)A×(BC)= (A×B)(A×C) 证明: 对于任意的<x,y> <x,y>A×(BC) xA yBC xA (yB y C) (xAyB) (xAyC) <x,y>A×B <x,y>A×C <x,y>(A×B)(A×C)
A1×A2×……×An ={<x1,x2,……,xn>|x1A1 x2A2 …… xnAn}
4.1迪卡尔乘积与二元关系
例2:设A={1,2},求P(A)×A 解:P(A)={,{1},{2},{1,2}} P(A)×A={<,1>,<,2>, <{1},1>,<{1},2>, <{2},1>,<{2},2>, <{1,2},1>,<{1,2},2>}
4.1迪卡尔乘积与二元关系
(2)(AB)×(CD)=(A×C)(B×D) 证明:设A=、B={1}、C={2}、D={3} (AB)×(CD)={<1,2>、<1,3>} (A×C)(B×D)={<2,1>、<2,3>} 所以:等式不成立
(3)(A-B)×(C-D)=(A×C)-(B×D) 证明:设A={1}、B={1}、C={2}、D={3} (A-B)×(C-D)= (A×C)-(B×D)={<1,2>}
4.1迪卡尔乘积与二元关系
三、二元关系 2. 集合上元素的关系(定义4.6)
设A,B为集合,A×B的任何子集所定义的二元关系叫做 从A到B的二元关系,特别当A=B是则叫做A上的二元关系。 例:A={0,1}、B={1,2,3},

离散数学最全答案 屈婉玲

离散数学最全答案  屈婉玲

第一章 命题逻辑基本概念课后练习题答案4.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e 是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.5.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p :刘晓月选学英语,q :刘晓月选学日语;.7.因为p 与q 不能同时为真.13.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)pq ,真值为1;(4)p→r,若p 为真,则p→r 真值为0,否则,p→r 真值为1.16 设p 、q 的真值为0;r 、s 的真值为1,求下列各命题公式的真值。

(1)p ∨(q ∧r)⇔ 0∨(0∧1) ⇔0(2)(p?r )∧(﹁q ∨s) ⇔(0?1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p ∧⌝q ∧r )?(p ∧q ∧﹁r) ⇔(1∧1∧1) ? (0∧0∧0)⇔0(4)(⌝r ∧s )→(p ∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

离散数学第2版课后答案

离散数学第2版课后答案

5)?x?1(mod 5)????x?1(mod 3)
?x?3(mod8)??x?1(mod 3) : 求解同余方程组 ?x?1(mod 5)?
m1=8 , m2=3 ,m3=5 ,m=120 ,m1=15 , m2=40 , m3=24
15x≡1(mod 8),40x ≡1(mod 3),24x ≡1(mod 5的) 特解:
所以, p=3
11 计算 2400 mod 319 。
解:
14(2) 解同余方程: 56x≡88(mod 96) 。
解:
(1) (a,m)=(56,96)=8 , 8|96 ,方程有解
(2) a?=56/8=7 , b?=88/8=11 ,m?=96/8=12
(3)由辗转相除法可求得 p 和 q 满足 pa?+qm?=1 , p=-5 , q=3
?5x?7(mod 12)16(2) 解同余方程组 ? 7x?1(mod 10)?
解:
5x≡7(mod 12) ? 12?(5x -7) ? 4?(5x-7) 且 3?(5x- 7) ? 5x ≡7(mod 4)
且 5x≡7(mod 3) ∴同余方程 5x≡7(mod 12) 与同余方程
组??5x?7(mod 4) 同解
c1=7,c2=1,c3=4
19 . *设 m1 和 m2 是正整数, b1 和 b2 是整数。证明一次同余方程
5 .设 a、b、 c、 d 是正整数,满足 ab=cd 。证明: a4+b4+c4+d4 不是素数。 证明:设 11)(n-1)! ∴ n 整除 (1++?+2n-1adp?? ,其中 p 和 q 是互素的正整数 cbq aq=cp ? p?aq ? p?a (∵ p 和 q 互素) 于是, ?u?n ,使 a=pu ? c=qu

离散数学(屈婉玲)答案_1-5章教学内容

离散数学(屈婉玲)答案_1-5章教学内容

离散数学(屈婉玲)答案_1-5章第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔ 0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式 //最后一列全为1(5)公式类型为可满足式(方法如上例)//最后一列至少有一个1(6)公式类型为永真式(方法如上例)//第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1 所以公式类型为永真式(3) P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p ∨(q ∧r))→(p ∨q ∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔(⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q) ⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r ∧﹁r ⑤⑦ 合取由于最后一步r ∧﹁r 是矛盾式,所以推理正确. 第四章部分课后习题参考答案 3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x ).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x ).G(x): x+5=9.(1)在两个个体域中都解释为)(x xF ∀,在(a )中为假命题,在(b)中为真命题。

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案之欧阳家百创编

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案之欧阳家百创编

离散数学答案屈婉玲版欧阳家百(2021.03.07)第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔ 0∨(0∧1)⇔0(2)(p↔r)∧(﹁q∨s)⇔(0↔1)∧(1∨1)⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r)⇔(1∧1∧1)↔(0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q)⇔(0∧1)→(1∧0)⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r)↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔ (⌝p∧⌝q)∨(⌝q∧p)∨(⌝q∧⌝p)∨(p∧q)∨(p∧⌝q)⇔(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)⇔∑(0,2,3)主合取范式:(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p∨(⌝q∨p))∧(⌝q∨(⌝q∨p))⇔1∧(p∨⌝q)⇔(p∨⌝q)⇔ M1⇔∏(1)(2) 主合取范式为:⌝(p→q)∧q∧r⇔⌝(⌝p∨q)∧q∧r⇔(p∧⌝q)∧q∧r⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p∨(q∧r))→(p∨q∨r)⇔⌝(p∨(q∧r))→(p∨q∨r)⇔(⌝p∧(⌝q∨⌝r))∨(p∨q∨r)⇔(⌝p∨(p∨q∨r))∧((⌝q∨⌝r))∨(p∨q∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明: (2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x):2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,xF在(b)中为真命题。

离散数学(屈婉玲版)第四章部分答案

离散数学(屈婉玲版)第四章部分答案

4.1 (1)设S={1,2},R 是S 上的二元关系,且xRy 。

如果R=Is ,则(A );如果R 是数的小于等于关系,则(B ),如果R=Es ,则(C )。

(2)设有序对<x+2,4>与有序对<5,2x+y>相等,则 x=(D),y=(E).供选择的答案A 、B 、C :① x,y 可任意选择1或2;② x=1,y=1;③ x=1,y=1 或 2;x=y=2;④ x=2,y=2;⑤ x=y=1或 x=y=2;⑥ x=1,y=2;⑦x=2,y=1。

D 、E :⑧ 3;⑨ 2;⑩-2。

答案: A: ⑤B: ③C: ①D: ⑧E: ⑩4.2设S=<1,2,3,4>,R 为S 上的关系,其关系矩阵是⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001100000011001 则(1)R 的关系表达式是(A )。

(2)domR=(B),ranR=(C).(3)R ︒R 中有(D )个有序对。

(4)Rˉ1的关系图中有(E )个环。

供选择的答案A :①{<1,1>,<1,2>,<1,4>,<4,1>,<4,3>}; ②{<1,1>,<1,4>,<2,1>,<4,1>,<3,4>};B 、C :③{1,2,3,4};④{1,2,4};⑤{1,4}⑥{1,3,4}。

D 、E⑦1;⑧3;⑨6;⑩7。

答案: A:②B:③C:⑤D:⑩E:⑦4.3设R 是由方程x+3y=12定义的正整数集Z+上的关系,即 {<x,y >︳x,y∈Z+∧x+3y=12},则 (1)R 中有A 个有序对。

(2)dom=B 。

(3)R↑{2,3,4,6}=D。

(4){3}在R 下的像是D 。

(5)R 。

R 的集合表达式是E 。

供选择的答案A:①2;②3;③4.B、C、D、E:④{<3,3>};⑤{<3,3>,<6,2>};⑥{0,3,6,9,12};⑦{3,6,9};⑧{3};⑨Ф;⑩3。

离散数学屈婉玲版课后习题

离散数学屈婉玲版课后习题

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3) P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p →q)∧(p →r)⇔(p →(q ∧r))(4)(p ∧⌝q)∨(⌝p ∧q)⇔(p ∨q) ∧⌝(p ∧q)证明(2)(p →q)∧(p →r)⇔ (⌝p ∨q)∧(⌝p ∨r)⇔⌝p ∨(q ∧r))⇔p →(q ∧r)(4)(p ∧⌝q)∨(⌝p ∧q)⇔(p ∨(⌝p ∧q)) ∧(⌝q ∨(⌝p ∧q)⇔(p ∨⌝p)∧(p ∨q)∧(⌝q ∨⌝p) ∧(⌝q ∨q)⇔1∧(p ∨q)∧⌝(p ∧q)∧1⇔(p ∨q)∧⌝(p ∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p →q)→(⌝q ∨p)(2)⌝(p →q)∧q ∧r(3)(p ∨(q ∧r))→(p ∨q ∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p∨(⌝q∨p))∧(⌝q∨(⌝q∨p))⇔1∧(p∨⌝q)⇔(p∨⌝q) ⇔ M1⇔∏(1)(2) 主合取范式为:⌝(p→q)∧q∧r⇔⌝(⌝p∨q)∧q∧r⇔(p∧⌝q)∧q∧r⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p∨(q∧r))→(p∨q∨r)⇔⌝(p∨(q∧r))→(p∨q∨r)⇔(⌝p∧(⌝q∨⌝r))∨(p∨q∨r)⇔(⌝p∨(p∨q∨r))∧((⌝q∨⌝r))∨(p∨q∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r ∨q 前提引入⑤¬r ④化简律⑥r ∧¬s 前提引入⑦r ⑥化简律⑧r ∧﹁r ⑤⑦ 合取由于最后一步r ∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
谓词
谓词——表示个体词性质或相互之间关系的词 谓词常项 如, F(a):a是人 谓词变项 如, F(x):x具有性质F n(n1)元谓词 一元谓词(n=1)——表示性质 多元谓词(n2)——表示事物之间的关系 如, L(x,y):x与 y 有关系 L,L(x,y):xy,… 0元谓词——不含个体变项的谓词, 即命题常项 或命题变项
9
实例5
例5 设个体域为实数域, 将下面命题符号化 (1) 对每一个数x都存在一个数y使得x<y (2) 存在一个数x使得对每一个数y都有x<y 解 L(x,y):x<y (1) xyL(x,y) (2) xyL(x,y)
注意: 与不能随意交换 显然(1)是真命题, (2)是假命题
10
4.2 一阶逻辑公式及解释
14
封闭的公式
定义4.6 若公式A中不含自由出现的个体变项,则称A为封闭 的公式,简称闭式. 例如,xy(F(x)G(y)H(x,y)) 为闭式, 而 x(F(x)G(x,y)) 不是闭式
15
公式的解释
定义4.7 设L 是L生成的一阶语言, L 的解释I由4部分组成: (a) 非空个体域 DI . (b) 对每一个个体常项符号aL, 有一个 aDI, 称 a 为a在I 中的解释. (c) 对每一个n元函数符号fL, 有一个DI上的n元函数 f : DIn DI , 称 f 为f在I中的解释. (d) 对每一个n元谓词符号FL, 有一个DI上的n元谓词常项F , 称 F 为F在I中的解释. 设公式A, 取个体域DI , 把A中的个体常项符号a、函数符 号f、谓词符号F分别替换成它们在I中的解释 a、 f 、F , 称 所得到的公式A为A在I下的解释, 或A在I下被解释成A.
20
第四章 习题课
主要内容 个体词、谓词、量词 一阶逻辑命题符号化 一阶语言L
项、原子公式、合式公式 公式的解释
量词的辖域、指导变元、个体变项的自由出现与约束出现、 闭式、解释 公式的类型 永真式(逻辑有效式)、矛盾式(永假式)、可满足式
21
基本要求
准确地将给定命题符号化 理解一阶语言的概念 深刻理解一阶语言的解释 熟练地给出公式的解释 记住闭式的性质并能应用它 深刻理解永真式、矛盾式、可满足式的概念, 会判断简
单公式的类型
22
练习1
1. 在分别取个体域为 (a) D1=N (b) D2=R (c) D3为全总个体域
的条件下, 将下面命题符号化,并讨论真值
(1) 对于任意的数x,均有 x2 2 ( x 2 )( x 2 )
解 设G(x): x2 2 ( x 2 )( x 2 )
(a) xG(x) 假
3
量词
量词——表示数量的词 全称量词: 表示所有的. x : 对个体域中所有的x 如, xF(x)表示个体域中所有的x具有性质F xyG(x,y)表示个体域中所有的x和y有关系G 存在量词: 表示存在, 有一个. x : 个体域中有一个x 如, xF(x)表示个体域中有一个x具有性质F xyG(x,y)表示个体域中存在x和y有关系G xyG(x,y)表示对个体域中每一个x都存在一个y使得 x和y有关系G xyG(x,y)表示个体域中存在一个x使得对每一个y, x和y有关系G
11
一阶语言L 的项与原子公式
定义4.2 L 的项的定义如下: (1) 个体常项和个体变项是项.
(2) 若(x1, x2, …, xn)是任意的n元函数,t1, t2, …, tn是任意的 n个项,则(t1, t2, …, tn) 是项.
(3) 所有的项都是有限次使用(1),(2)得到的 如, a, x, x+y, f(x), g(x,y)等都是项
8
实例4
例4 在一阶逻辑中将下面命题符号化 (1) 没有不呼吸的人 (2) 不是所有的人都喜欢吃糖 解 (1) F(x): x是人, G(x): x呼吸
x(F(x)G(x)) x(F(x)G(x)) (2) F(x): x是人, G(x): x喜欢吃糖 x(F(x)G(x)) x(F(x)G(x))
19
实例
例7 判断下列公式中,哪些是永真式,哪些是矛盾式? (1) xF(x)(xyG(x,y)xF(x))
重言式 p(qp) 的代换实例,故为永真式. (2) (xF(x)yG(y))yG(y)
矛盾式 (pq)q 的代换实例,故为永假式. (3) x(F(x)G(x))
解释I1: 个体域N, F(x):x>5, G(x): x>4, 公式为真 解释I2: 个体域N, F(x):x<5, G(x):x<4, 公式为假 结论: 非永真式的可满足式
xy(x+y=xyx=y) 假
(3) xF(g(x,y),a)
x(xy=0)
真值不定, 不是命题
17
公式的类型
定理4.1 闭式在任何解释下都是命题 注意: 不是闭式的公式在解释下可能是命题, 也可能不是命题.
定义4.8 若公式A在任何解释下均为真, 则称A为永真式(逻辑 有效式). 若A在任何解释下均为假, 则称A为矛盾式(永假式). 若至少有一个解释使A为真, 则称A为可满足式.
例如,x(F(x,y)G(x,z)), x为指导变元,(F(x,y)G(x,z))为 x 的辖域,x的两次出现均为约束出现,y与 z 均为自由出现
又如, x(F(x,y,z)y(G(x,y)H(x,y,z))), x中的x是指导变元, 辖域为(F(x,y,z)y(G(x,y)H(x,y,z))). y中的y是指导变元, 辖 域为(G(x,y)H(x,y,z)). x的3次出现都是约束出现, y的第一次出 现是自由出现, 后2次是约束出现, z的2次出现都是自由出现
4
实例1
例1 用0元谓词将命题符号化 (1) 墨西哥位于南美洲
(2) 2 是无理数仅当 3 是有理数
(3) 如果2>3,则3<4
解:在命题逻辑中: (1) p, p为墨西哥位于南美洲(真命题)
(2) p→q, 其中, p: 2是无理数,q: 3 是有理数. 是假命题
(3) pq, 其中,p:2>3,q:3<4. 是真命题
解 (a) (1) xG(x), G(x):x爱美
(2) xG(x), G(x):x用左手写字 (b) F(x):x为人,G(x):x爱美
(1) x(F(x)G(x)) (2) x(F(x)G(x))
1. 引入特性谓词F(x) 2. (1),(2)是一阶逻辑中两个“基本”公

7
实例3
例3 在一阶逻辑中将下面命题符号化 (1) 正数都大于负数 (2) 有的无理数大于有的有理数
25
练习2
(4) 没有不爱吃糖的人
设F(x): x是人,G(x): x爱吃糖 x(F(x)G(x)) 或 x(F(x)G(x)) (5) 任何两个不同的人都不一样高 设F(x):x是人, H(x,y), x与y相同, L(x,y): x与y一样高
x(F(x)y(F(y)H(x,y)L(x,y))) 或 xy(F(x)F(y)H(x,y)L(x,y)) (6) 不是所有的汽车都比所有的火车快 设F(x):x是汽车, G(y):y是火车, H(x,y):x比y快
几点说明: 永真式为可满足式,但反之不真 判断公式是否是可满足的(永真式, 矛盾式)是不可判定的
18
代换实例
定义4.9 设A0是含命题变项 p1, p2, …, pn的命题公式,A1, A2, …, An是n个谓词公式,用Ai (1in) 处处代替A0中的pi, 所得公式A称为A0的代换实例. 例如, F(x)G(x), xF(x)yG(y)等都是pq的代换实例. 定理4.2 重言式的代换实例都是永真式,矛盾式的代换实例 都是矛盾式.
5
实例1解答
在一阶逻辑中: (1) F(a),其中,a:墨西哥,F(x):x位于南美洲.
(2) F( 2 )G( 3 ),
其中,F(x):x是无理数,G(x):x是有理数 (3) F(2, 3)G(3, 4),其中,F(x, y):x>y,G(x, y):x<y
6
实例2
例 2 在一阶逻辑中将下面命题符号化 (1) 人都爱美 (2) 有人用左手写字 个体域分别为 (a) D为人类集合 (b) D为全总个体域
解 注意:题目中没给个体域,一律用全总个体域 (1) 令F(x):x为正数,G(y):y为负数, L(x,y):x>y
x(F(x)y(G(y)L(x,y))) 或者 xy(F(x)G(y)L(x,y)) (2) 令F(x):x是无理数,G(y):y是有理数,L(x,y):x>y
x(F(x)y(G(y)L(x,y))) 或者 xy(F(x)G(y)L(x,y))
定义4.1 设L是一个非逻辑符集合, 由L生成的一阶语言L 的 字母表包括下述符号: 非逻辑符号
(1) 个体常项符号:a, b, c, …, ai, bi, ci, …, i 1 (2) 函数符号:f, g, h, …, fi, gi, hi, …, i 1 (3) 谓词符号:F, G, H, …, Fi, Gi, Hi, …, i 1 逻辑符号 (4) 个体变项符号:x, y, z, …, xi, yi, zi, …, i 1 (5) 量词符号:, (6) 联结词符号:, , , , (7) 括号与逗号:(, ), ,
(b) xG(x) 真
(c) 又设F(x):x是实数
x(F(x)G(x))

23
练习1(续)
(2) 存在数x,使得 x+7=5 解 设H(x):x+7=5
(a) xH(x) 假
(b) xH(x) 真
(c) 又设F(x):x为实数
x(F(x)H(x))

本例说明:不同个体域内,命题符号化形式可能不同(也可 能相同),真值可能不同(也可能相同).
相关文档
最新文档