离散数学 屈婉玲版 第十一章
07879离散数学-屈婉玲(形式语言与自动机)11.1

Chomsky谱系 谱系
0型语言 0 型文法生成的语言 型语言: 型文法生成的语言 型语言 1型语言 上下文有关语言 如果 型语言(上下文有关语言 可由1型文法 型语言 上下文有关语言): 如果L-{ε}可由 型文法 可由 生成, 生成 则称 L 是1型语言 型语言 2型语言 上下文无关语言 : 2 型文法生成的语言 型语言(上下文无关语言 型语言 上下文无关语言) 3型语言 正则语言 3 型文法生成的语言 型语言(正则语言 型语言 正则语言): 如 {1x00 | x∈{0, 1}*} 是正则语言 (例1) ∈ 例 {anbn | n>0} 是上下文无关语言 (例2,3) 例 2i | i ≥1} 是 0 型语言 (例4) { a 例 型语言 型语言 型语言 定理 0型语言1型语言2型语言3型语言 型语言 型语言 型语言 型语言
2i 2i
2i
(4) 2i 次(7) (8)
*
可以证明: 可以证明 L(G) = { a
2i
| i ≥1}
17
形式文法的分类 —Chomsky谱系 谱系
0型文法 短语结构文法 无限制文法 型文法(短语结构文法 无限制文法) 型文法 短语结构文法,无限制文法 1型文法 上下文有关文法 型文法(上下文有关文法 型文法 上下文有关文法): 所有产生式α→β, 满足 |α|≤|β| 所有产生式 ≤ 另一个等价的定义: 另一个等价的定义 所有的产生式形如 ξAη→ξαη 其中A∈ 且 ≠ 其中 ∈V, ξ,η,α∈(V∪T)*,且α≠ε ∈ ∪ 2型文法 上下文无关文法): 型文法(上下文无关文法 型文法 上下文无关文法 所有的产生式形如 A→α 其中A∈ ∈ ∪ 其中 ∈V,α∈(V∪T)*,
5
子字符串(子串 子字符串 子串): 子串 字符串中若干连续符号组成的字符串 前缀: 前缀 最左端的子串 后缀: 后缀 最右端的子串 例如 ω =abbaab a,ab,abb是ω的前缀 是 的前缀 aab,ab,b是ω的后缀 是 的后缀 ba是ω的子串 但既不是前缀 也不是后缀 的子串, 是 的子串 但既不是前缀, ω本身也是 的子串 且既是前缀 也是后缀 本身也是ω的子串 本身也是 的子串, 且既是前缀, ε也是 的子串 且既是前缀 也是后缀 也是ω的子串 也是 的子串, 且既是前缀,
离散数学习题答案耿素云屈婉玲_百度文库

离散数学习题答案习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)(⌝p→q)∧(q∧r)解:原式⇔(p∨q)∧q∧r⇔q∧r⇔(⌝p∨p)∧q∧r ⇔(⌝p∧q∧r)∨(p∧q∧r)⇔m3∨m7,此即公式的主析取范式,所以成真赋值为011,111。
6、求下列公式的主合取范式,并求成假赋值:(2)(p∧q)∨(⌝p∨r)解:原式⇔(p∨⌝p∨r)∧(⌝p∨q∨r)所以成假赋值为100。
7、求下列公式的主析取范式,再用主析取范式求主合取范式:(1)(p∧q)∨r解:原式⇔⇔(⌝p∨q∨r)⇔M4,此即公式的主合取范式,p∧q∧(⌝r∨r)∨((⌝p∨p)∧(⌝q∨q)∧r)⇔(p∧q∧⌝r)∨(p∧q∧r)∨(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨(p∧⌝q∧r)∨(p∧q∧r)⇔(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨(p∧⌝q∧r)∨(p∧q∧⌝r)∨(p∧q∧r)⇔m1∨m3∨m5∨m6∨m7,此即主析取范式。
主析取范式中没出现的极小项为m0,m2,m4,所以主合取范式中含有三个极大项M0,M2,M4,故原式的主合取范式⇔M09、用真值表法求下面公式的主析取范式:(1)(p∨q)∨(⌝p∧r)解:公式的真值表如下:∧M2∧M4。
由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式⇔m1∨m2∨m3∨m4∨m5∨m6∨m7习题三及答案:(P52-54)11、填充下面推理证明中没有写出的推理规则。
前提:⌝p∨q,⌝q∨r,r结论:s 证明:① p 前提引入②④→s,p⌝p∨q 前提引入⌝q∨r 前提引入③ q ①②析取三段论⑤ r ③④析取三段论⑥15、在自然推理系统P中用附加前提法证明下面推理:(2)前提:(p∨q)→(r∧s),(s∨t)→u 结论:r→s 前提引入⑦ s ⑤⑥假言推理p→u证明:用附加前提证明法。
① p 附加前提引入②③④⑥⑦p∨q ①附加(p∨q)→(r∧s) 前提引入r∧s ②③假言推理⑤ s ④化简s∨t ⑤附加(s∨t)→u 前提引入⑧ u ⑥⑦假言推理故推理正确。
高教离散数学修订版耿素云屈婉玲Part3代数系统部分

图11
第十三章 习题课
解 图12
图13
图12
解
解:
单击添加副标题
感谢您的 欣赏
202X CIICK HERE TO ADD A TITLE
第二节 整环与域
第十二章 习题课
第十三章 格与布尔代数
第一节 格的定义与性质
图1
图2
第二节 子格与格同态
图4
第三节 分配格与有补格
图5
图7
图8
图9
第四节 布尔代数
图10
第五节 正规子群与商群
第六节 群的同态与同构
第七节 循环群与置换群
பைடு நூலகம்
图2
第十一章 习题课
解:
解
第十二章 环与域
第一节 环的定义与性质
第三部分 代数结构
第十章 代数系统
第一节 二元运算及其性质
第二节 代数系统
第十章 习题课
解
第十一章 半群与群
第一节 半群与独异点
第二节 群的定义与性质
第三节 子群
图1
第四节 陪集与拉格朗日定理
屈婉玲高教版离散数学部分答案详解2[1]
![屈婉玲高教版离散数学部分答案详解2[1]](https://img.taocdn.com/s3/m/4aa4c3d99e31433238689300.png)
第七章部分课后习题参考答案7.列出集合A={2,3,4}上的恒等关系I A ,全域关系E A ,小于或等于关系L A ,整除关系D A .解:I A ={<2,2>,<3,3>,<4,4>}E A ={<2,2>,<2,3>,<2,4>,<3,4>,<4,4>,<3,2>,<3,3>,<4,2>,<4,3>}L A ={<2,2>,<2,3>,<2,4>,<3,3>,<3,4>,<4,4>} D A ={<2,4>}13.设A={<1,2>,<2,4>,<3,3>} B={<1,3>,<2,4>,<4,2>}求A ⋃B,A ⋂B, domA, domB, dom(A ⋃B), ranA, ranB, ran(A ⋂B ), fld(A-B). 解:A ⋃B={<1,2>,<2,4>,<3,3>,<1,3>,<4,2>} A ⋂B={<2,4>}domA={1,2,3} domB={1,2,4} dom(A ∨B)={1,2,3,4}ranA={2,3,4} ranB={2,3,4} ran(A ⋂B)={4}A-B={<1,2>,<3,3>},fld(A-B)={1,2,3} 14.设R={<0,1><0,2>,<0,3>,<1,2>,<1,3>,<2,3>}求R R, R -1, R ↑{0,1,}, R[{1,2}] 解:R R={<0,2>,<0,3>,<1,3>}R -1,={<1,0>,<2,0>,<3,0>,<2,1>,<3,1>,<3,2>}R ↑{0,1}={<0,1>,<0,2>,<0,3>,<1,2>,<1,3>} R[{1,2}]=ran(R|{1,2})={2,3}16.设A={a,b,c,d},1R ,2R 为A 上的关系,其中1R ={},,,,,a a a b b d{}2,,,,,,,R a d b c b d c b=求23122112,,,R R R R R R 。
离散数学第三版-屈婉玲-课后习题答案

离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语p q解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是(9)只有天下大雨,他才乘班车上班q p解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是(11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是(p q)r15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(p q r)((p q)r)(4)解:p=1,q=1,r=0,(p q r)(110)1,((p q)r)((11)0)(00)1 (p q r)((p q)r)111 19、用真值表判断下列公式的类型:(p p)q(2)解:列出公式的真值表,如下所示:p p qq(p p)(p p)q0 0 1 1 1 10 1 1 0 1 01 0 0 1 0 11 1 0 0 0 1由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值:(4)(p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:p0(p q) 1q0q0成真赋值有:01,10,11。
所以公式的习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)(p q)(q r)解:原式(p q)q r(p p)q rq r,此即公式的主析取范式,m m(p q r)(p q r)37所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值:(2)(p q)(p r)解:原式,此即公式的主合取范式,M(p p r)(p q r)(p q r)4所以成假赋值为100。
7、求下列公式的主析取范式,再用主析取范式求主合取范式:(1)(p q)r解:原式p q(r r)((p p)(q q)r)(p q r)(p q)r(p q)r(p q)r(p q)r(pq r(p q r)(p q)r(p q)r(p q)r(pq r,此即主析取范式。
离散数学习题答案(耿素云屈婉玲)

离散数学习题答案习题二及答案:(P38)5、求下列公式的主析取式,并求成真赋值: (2)()()p q q r ⌝→∧∧ 解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取式,所以成真赋值为011,111。
6、求下列公式的主合取式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取式,所以成假赋值为100。
7、求下列公式的主析取式,再用主析取式求主合取式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ⇔∧∧⌝∨∨⌝∨∧⌝∨∧()()()()()()p q r p q r p q r p q r p q r p q r ⇔∧∧⌝∨∧∧∨⌝∧⌝∧∨⌝∧∧∨∧⌝∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ⇔⌝∧⌝∧∨⌝∧∧∨∧⌝∧∨∧∧⌝∨∧∧13567m m m m m ⇔∨∨∨∨,此即主析取式。
主析取式中没出现的极小项为0m ,2m ,4m ,所以主合取式中含有三个极大项0M ,2M ,4M ,故原式的主合取式024M M M ⇔∧∧。
9、用真值表法求下面公式的主析取式: (1)()()p q p r ∨∨⌝∧ 解:公式的真值表如下:由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取式,故主析取式1234567m m m m m m m ⇔∨∨∨∨∨∨习题三及答案:(P52-54)11、填充下面推理证明中没有写出的推理规则。
前提:,,,p q q r r s p ⌝∨⌝∨→结论:s 证明:① p 前提引入 ② p q ⌝∨ 前提引入 ③ q ①②析取三段论 ④q r ⌝∨ 前提引入⑤ r ③④析取三段论 ⑥ r s → 前提引入⑦ s ⑤⑥假言推理15、在自然推理系统P 中用附加前提法证明下面推理: (2)前提:()(),()p q r s s t u ∨→∧∨→ 结论:p u →证明:用附加前提证明法。
离散数学屈婉玲版课后习题

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3) P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p →q)∧(p →r)⇔(p →(q ∧r))(4)(p ∧⌝q)∨(⌝p ∧q)⇔(p ∨q) ∧⌝(p ∧q)证明(2)(p →q)∧(p →r)⇔ (⌝p ∨q)∧(⌝p ∨r)⇔⌝p ∨(q ∧r))⇔p →(q ∧r)(4)(p ∧⌝q)∨(⌝p ∧q)⇔(p ∨(⌝p ∧q)) ∧(⌝q ∨(⌝p ∧q)⇔(p ∨⌝p)∧(p ∨q)∧(⌝q ∨⌝p) ∧(⌝q ∨q)⇔1∧(p ∨q)∧⌝(p ∧q)∧1⇔(p ∨q)∧⌝(p ∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p →q)→(⌝q ∨p)(2)⌝(p →q)∧q ∧r(3)(p ∨(q ∧r))→(p ∨q ∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p∨(⌝q∨p))∧(⌝q∨(⌝q∨p))⇔1∧(p∨⌝q)⇔(p∨⌝q) ⇔ M1⇔∏(1)(2) 主合取范式为:⌝(p→q)∧q∧r⇔⌝(⌝p∨q)∧q∧r⇔(p∧⌝q)∧q∧r⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p∨(q∧r))→(p∨q∨r)⇔⌝(p∨(q∧r))→(p∨q∨r)⇔(⌝p∧(⌝q∨⌝r))∨(p∨q∨r)⇔(⌝p∨(p∨q∨r))∧((⌝q∨⌝r))∨(p∨q∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r ∨q 前提引入⑤¬r ④化简律⑥r ∧¬s 前提引入⑦r ⑥化简律⑧r ∧﹁r ⑤⑦ 合取由于最后一步r ∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有错误!未找到引用源。
离散数学屈婉玲版课后习题

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔ 0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1 所以公式类型为永真式(3) P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p →q)∧(p →r)⇔(p →(q ∧r))(4)(p ∧⌝q)∨(⌝p ∧q)⇔(p ∨q) ∧⌝(p ∧q) 证明(2)(p →q)∧(p →r)⇔ (⌝p ∨q)∧(⌝p ∨r) ⇔⌝p ∨(q ∧r))⇔p →(q ∧r)(4)(p ∧⌝q)∨(⌝p ∧q)⇔(p ∨(⌝p ∧q)) ∧(⌝q ∨(⌝p ∧q)⇔(p ∨⌝p)∧(p ∨q)∧(⌝q ∨⌝p) ∧(⌝q ∨q) ⇔1∧(p ∨q)∧⌝(p ∧q)∧1 ⇔(p ∨q)∧⌝(p ∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p →q)→(⌝q ∨p)(2)⌝(p →q)∧q ∧r (3)(p ∨(q ∧r))→(p ∨q ∨r) 解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q) ⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p) ⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p∨(⌝q∨p))∧(⌝q∨(⌝q∨p))⇔1∧(p∨⌝q)⇔(p∨⌝q) ⇔ M1⇔∏(1)(2) 主合取范式为:⌝(p→q)∧q∧r⇔⌝(⌝p∨q)∧q∧r⇔(p∧⌝q)∧q∧r⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p∨(q∧r))→(p∨q∨r)⇔⌝(p∨(q∧r))→(p∨q∨r)⇔(⌝p∧(⌝q∨⌝r))∨(p∨q∨r)⇔(⌝p∨(p∨q∨r))∧((⌝q∨⌝r))∨(p∨q∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p →(q →r) 前提引入 ⑤q →r ③④假言推理 ⑥q 前提引入 ⑦r ⑤⑥假言推理16在自然推理系统P 中用归谬法证明下面各推理:(1)前提:p →⌝q,⌝r ∨q,r ∧⌝s 结论:⌝p 证明:①p 结论的否定引入 ②p →﹁q 前提引入 ③﹁q ①②假言推理 ④¬r ∨q 前提引入 ⑤¬r ④化简律 ⑥r ∧¬s 前提引入 ⑦r ⑥化简律 ⑧r ∧﹁r ⑤⑦ 合取由于最后一步r ∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值: (1) 对于任意x,均有错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
格的性质:序与运算的关系
定理11.3 设L是格, 则a,b∈L有 a ≼ b a∧b = a a∨b = b
可以用集合的例子来验证 幂集格
<P(B), >,其中P(B)是集合B的幂集. 幂集格. x,y∈P(B),x∨y就是x∪y,x∧y就是x∩y.
4
格的性质:保序
定理11.4 设L是格, a,b,c,d∈L,若a ≼ b 且 c ≼ d, 则 a∧c ≼ b∧d, a∨c ≼ b∨d 证 a∧c ≼ a ≼ b, a∧c ≼ c ≼ d 因此 a∧c ≼ b∧d. 同理可证 a∨c ≼ b∨d 例4 设L是格, 证明a,b,c∈L有 a∨(b∧c) ≼ (a∨b)∧(a∨c). 证 由 a ≼ a, b∧c ≼ b 得 a∨(b∧c) ≼ a∨b 由 a ≼a, b∧c ≼ c 得 a∨(b∧c) ≼ a∨c a∨(b∧c) ≼ (a∨b)∧(a∨c) (注意最大下界)
9
有界格中的补元及实例
定义11.8 设<L,∧,∨,0,1>是有界格, a∈L, 若存在b∈L 使得 a∧b = 0 和 a∨b = 1 成立, 则称b是a的补元. 注意:若b是a的补元, 那么a也是b的补元. a和b互为补元.
例7 考虑下图中的格. 针对不同的元素,求出所有的补元.
10
解答
1
实例
例2 判断下列偏序集是否构成格,并说明理由. (1) <P(B), >,其中P(B)是集合B的幂集. (2) <Z, ≤>,其中Z是整数集,≤为小于或等于关系. (3) 偏序集的哈斯图分别在下图给出.
(1) 幂集格. x,y∈P(B),x∨y就是x∪y,x∧y就是x∩y. (2) 是格. x,y∈Z,x∨y = max(x,y),x∧y = min(x,y), 图2 (3) 都不是格. 可以找到两个结点缺少最大下界或最小上界
(1) L1中 a 与 c 互为补元, 其中 a 为全下界, c为全上界, b 没有 补元. (2) L2中 a 与 d 互为补元, 其中 a 为全下界, d 为全上界, b与 c 也互为补元. (3) L3中a 与 e 互为补元, 其中 a 为全下界, e 为全上界, b 的补 元是 c 和 d ; c 的补元是 b 和 d ; d 的补元是 b 和 c ; b, c, d 每个元素都有两个补元. (4) L4中 a 与 e 互为补元, 其中 a 为全下界, e 为全上界, b 的补 元是 c 和 d ; c 的补元是 b ; d 的补元是 b .
11
有界分配格的补元惟一性
定理11.7 设<L,∧,∨,0,1>是有界分配格. 若L中元素 a 存在 补元, 则存在惟一的补元. 证 假设 c 是 a 的补元, a∨c = 1, a∧c = 0, 又知 b 是 a 的补元, 故 a∨b = 1, a∧b = 0 从而得到 a∨c = a∨b, a∧c = a∧b, 由于L是分配格. b=b ∧ (b∨a) = b ∧ (c∨a )= (b ∧ c)∨ (b ∧ a )= (a∨c ) ∧c=c 注意: 在任何有界格中, 全下界0与全上界1互补. 对于一般元素, 可能存在补元, 也可能不存在补元. 如果 存在补元, 可能是惟一的, 也可能是多个补元. 对于有界 分配格, 如果元素存在补元, 一定是惟一的. 12
8
有界格的性质
定理11.6 设<L,∧,∨,0,1>是有界格, 则a∈L有 a∧0 = 0, a∨0 = a, a∧1 = a, a∨1 = 1
注意: 有限格L={a1,a2,…,an}是有界格, a1∧a2∧…∧an是L的全下 界, a1∨a2∨…∨an是L的全上界. 0是关于∧运算的零元,∨运算的单位元;1是关于∨运算1 设<L, ≼>是格, 则运算∨和∧适合交换律、结合律、 幂等律和吸收律, 即 (1) a,b∈L 有 a∨b = b∨a, a∧b = b∧a (2) a,b,c∈L 有 (a∨b)∨c = a∨(b∨c), (a∧b)∧c = a∧(b∧c) (3) a∈L 有 a∨a = a, a∧a = a (4) a,b∈L 有 a∨(a∧b) = a, a∧(a∨b) = a
11.1 格的定义与性质
定义11.1 设<S, ≼>是偏序集,如果x,yS,{x,y}都有最小上 界和最大下界,则称S关于偏序≼作成一个格. (偏序关系 P126) 求{x,y} 最小上界和最大下界看成 x 与 y 的二元运算∨和∧, 例1 设n是正整数,Sn是n的正因子的集合. D为整除关系,则 偏序集<Sn,D>构成格. x,y∈Sn,x∨y是lcm(x,y),即x与y的 最小公倍数. x∧y是gcd(x,y),即x与y的最大公约数.
注意:一般说来, 格中的∨和∧运算不满足分配律.
5
格作为代数系统的定义
定理11.4 设<S,∗,◦>是具有两个二元运算的代数系统, 若对于 ∗和◦运算适合交换律、结合律、吸收律, 则可以适当定义S中 的偏序 ≼,使得 <S,≼> 构成格, 且a,b∈S 有 a∧b = a∗b, a∨b = a◦b. 证明省略. 根据定理11.4, 可以给出格的另一个等价定义. 定义11.3 设<S, ∗, ◦ >是代数系统, ∗和◦是二元运算, 如果 ∗和◦满足交换律、结合律和吸收律, 则<S, ∗,◦>构成格.
7
有界格的定义
定义11.6 设L是格, (1) 若存在a∈L使得x∈L有 a ≼ x, 则称a为L的全下界 (2) 若存在b∈L使得x∈L有 x ≼ b, 则称b为L的全上界 说明: 格L若存在全下界或全上界, 一定是惟一的. 一般将格L的全下界记为0, 全上界记为1. 定义11.7 设L是格,若L存在全下界和全上界, 则称L 为有界 格, 一般将有界格L记为<L,∧,∨,0,1>.
6
11.2 分配格、有补格与布尔代数
定义11.5 设<L,∧,∨>是格, 若a,b,c∈L,有 a∧(b∨c) = (a∧b)∨(a∧c) a∨(b∧c) = (a∨b)∧(a∨c) 则称L为分配格. 注意:可以证明以上两个条件互为充分必要条件 实例
L1 和 L2 是分配格, L3 和 L4不是分配格. 称 L3为钻石格, L4为五角格.