生化简答题
生化简答题(十选三)
一、何谓蛋白质的变性作用?引起蛋白质变性的因素有哪些?蛋白质变性的本质是什么?变性后有何特性?(P51)1.是由于稳定蛋白质构象的化学键被破坏,造成二三四级结构被破坏,导致其天然部分或完全破坏,理化性质改变,活性丧失2.因素:物理(加热,紫外线,X射线,高压,超声波),化学:极端Ph即强酸或强碱,重金属离子,丙酮等有机溶剂。
3.本质:天然蛋白质特定的空间构象被破坏(从有序的空间结构变为无序的空间结构)4.特性:理化性质改变:溶解度降低,不对称性增加,溶液黏度增加,易被蛋白酶降解,结晶能力丧失生物活性丧失:酶蛋白丧失催化活性,蛋白类激素丧失调节能力,细菌,病毒等蛋白丧失免疫原性二、比较DNA和RNA分子组成的异同。
(P58)相同:DNA和RNA分子组成上都含有磷酸戊糖和碱基不同:戊糖种类不同,DNA中为脱氧核糖,RNA中为核糖。
个别碱基不同,二者除都含有AGC外,DNA还有的胸腺嘧啶T,RNA还含有鸟嘌呤U三、.酶的竞争性抑制作用有何特点?(P88)1.抑制剂和底物结构相似,都能与酶的活性用心结合2.抑制剂与底物存在竞争,即两者不能同时结合活性中心3.抑制剂结合抑制底物,从而抑制酶促反应4.增加底物浓度理论上可以消除竞争性抑制的抑制作用5.动力学参数Km增大,Vmax不变。
四、.氰化物为什么能引起细胞窒息死亡?其解救机理是什么?(1)氰化钾的毒性是因为它进入人体内时,CNT的N原子含有孤对电子能够与细胞色素aas的氧化形式——高价铁Fe3"以配位键结合成氰化高铁细胞色素aa,使其失去传递电子的能力,阻断了电子传递给02,结果呼吸链中断,细胞因室息而死亡。
(2)亚硝酸在体内可以将血红蛋白的血红素辅基上的Fe2十氧化为Fe3"。
部分血红蛋白的血红素辅基上的Fe^被氧化成Fe?*——高铁血红蛋白,且含量达到20%~30%时,高铁血红蛋白(Fe3*)也可以和氰化钾结合,这就竞争性抑制了氰化钾与细胞色素aax 的结合,从而使细胞色素aas的活力恢复;但生成的氰化高铁血红蛋白在数分钟后又能逐渐解离而放出CN~。
生化简答题
名词解释:1 、蛋白质:蛋白质是由许多氨基酸通过肽键联系起来的含氮高分子化合物,是机体表现生理功能的基础。
2 、蛋白质的变性:在某些物理和化学因素的作用下,蛋白质的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失称为蛋白质变性。
3 、蛋白质的一级结构:蛋白质分子中氨基酸的排列顺序。
4 、蛋白质的二级结构:蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
5 、蛋白质的三级结构:整条肽链中全部氨基酸残基的相对空间位置,即整条肽链所有原子在三维空间的排布位置。
6 、蛋白质的四级结构:蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用。
7 、蛋白质的等电点:当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。
8 、DNA的变性:在某些理化因素的作用下,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,变成单链,称DNA变性。
9 、DNA的复性:变性DNA在适当条件下,两条互补链可以重新恢复天然的双螺旋构象,称为DNA的复性。
10 、核酸酶:所有可以水解核酸的酶。
可分为DNA酶和RNA酶。
11 、酶:由活细胞合成的,对其特异底物起高效催化作用的蛋白质,是机体内催化各种代谢反应最主要的催化剂。
12 、核酶:是具有高效,特异催化作用的核酸,是近年发现的一类新的生物催化剂。
13 、酶原:无活性的酶的前体称为酶原。
14 、酶的必需基团:酶分子结构中与酶的活性密切相关的基团称为酶的必需基团。
15、同工酶:指催化相同的化学反应,而酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。
16、糖酵解:缺氧情况下,葡萄糖生成乳糖的过程。
17 、酵解途径:由葡萄糖分解成丙酮酸的过程。
18 必需脂酸:某些不饱和脂肪酸,动物机体自身不能合成,需要从植物油摄取,是动物不可缺少的营养素,称为必需脂酸。
生化名词解释及简答题
生化简答题一、蛋白质1、蛋白的结构的层次性怎么理解?(1)蛋白质的一级结构是氨基酸序列;(2)二级结构是肽链结构,包括α-螺旋,β-折叠等;(3)超二级结构是二级结构单元相互聚集形成更高一级有规律的结构;(4)结构域是相对独立的紧密球状实体;(5)三级结构是二级结构组合成的多肽链;(6)四级结构是两条或两条以上有独立三级结构的多肽链的四聚体.2、常用的蛋白质分离纯化方法有哪几种?各自的作用原理是什么?(1)盐析与有机溶剂沉淀:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。
凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀。
(2)电泳法:蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动。
电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小。
(3)透析法:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开。
(4)层析法:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行分离。
(5)凝胶过滤法:蛋白质溶液加于柱之顶部,任其往下渗漏,小分子蛋白质进入孔内,因而在柱中滞留时间较长,大分子蛋白质不能进入孔内而径直流出,因此不同大小的蛋白质得以分离。
(6)超速离心:利用物质密度的不同,经超速离心后,分布于不同的液层而分离。
3、蛋白质的两性解离与等电点(1)两性解离:蛋白质分子中带有可解离的氨基和羧基,这些基团在不同的pH溶液中可解离成正离子或负离子,因此蛋白质分子即可带有正电荷又可带有负电荷,这种性质称为蛋白质的两性解离。
根据蛋白质的两性解离性质,可采取电泳法和离子交换层析法分离纯化蛋白质。
(2)等电点:氨基酸分子所带净电荷为零时,溶液的PH值即为氨基酸的等电点.4、为何蛋白质的含氮量能表示蛋白质相对量?实验中又是如何依此原理计算蛋白质含量的?因为蛋白质中氮的含量一般比较恒定,平均为16%,这是蛋白质元素组成的一个特点,也是凯氏定氮测定蛋白质含量的计算基础.蛋白质含量的计算为:每克样品中含氮克数 *6.25*100即为100克样品中蛋白质含量.5、氨基酸的分类非极性氨基酸(疏水氨基酸)8种丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)脯氨酸(Pro)苯丙氨酸(Phe)色氨酸(Trp)蛋氨酸(Met)极性氨基酸(亲水氨基酸):1)极性不带电荷:7种甘氨酸(Gly)丝氨酸(Ser)苏氨酸(Thr)半胱氨酸(Cys)酪氨酸(Tyr)天冬酰胺(Asn)谷氨酰胺(Gln)2)极性带正电荷的氨基酸(碱性氨基酸)3种赖氨酸(Lys)精氨酸(Arg)组氨酸(His) 3)极性带负电荷的氨基酸(酸性氨基酸)2种天冬氨酸(Asp)谷氨酸(Glu)二、酶1、酶的必需基团有哪几种,各有什么作用?酶的必需基团有活性中心的必需基团和非活性中心的必需基团,活性中心的必需基团有催化基团和结合基团,催化基团改变底物中某些化学键的稳定性,使底物发生反应生成产物,结合基团与底物相结合,使底物和一定构象的酶形成中间产物.非活性中心的必需基团为维持酶活性中心的空间构象所必需.2、酶蛋白与辅助因子的相互关系如何?(1)酶蛋白与辅助因子组成全酶,单独哪一种都没有催化活性;(2)一种酶蛋白只能结合一种辅助因子形成全酶,催化一定的化学反应;(3)一种辅助因子可与不同酶蛋白结合成不同的全酶,催化不同的化学反应;(4)酶蛋白决定反应的特异性,而辅助因子具体参加化学反应,决定酶促反应的性质。
生化简答题
在pH4.2的环境中,清蛋白带正电荷,具有与阴离子染料溴甲酚绿 (BCG)结合的特性,而此时球蛋白基本不结合BCG,故可直接测定血 清中的清蛋白。BCG 法灵敏度高、操作简便、重复性好,能自动化。 虽然α和β球蛋白与BCG也能起慢反应,但缩短反应时间即能去除此非特 异性反应,自动分析法使显色反应10-30秒后即可进行比色,因而使该 血清中的蛋白质因为都是由氨基酸组成,性质相似,故除少数蛋白质有 某种特性可利用,如清蛋白能用BCG法测定外,其他蛋白测定都需制备 特异的抗血清,采用免疫化学方法测定。ALB、PA、AAT、AAG、Hp 、AMG、Cp、TRF、CRP,以及免疫球蛋白IgG、IgM、IgA和补体C3 、C4,这14种蛋白质目前已有国际公认的标准参考物质,能用免疫比浊 法测定血清和其他体液中的这些蛋白质。此外,免疫球蛋白轻链κ和λ、 甲胎蛋白(AFP)、β2微球蛋白等在体液中的浓度也可用上述方法测定 血浆脂蛋白包括CM、VLDL、LDL、HDL等,运输胆固醇、甘油三酯、 磷脂及脂肪酸,前清蛋白与清蛋白运输游离脂肪酸、某些激素、胆红素 、多种药物等,甲状腺素结合球蛋白运输甲状腺激素,皮质素结合球蛋 白运输皮质醇,类固醇激素结合球蛋白运输类固醇激素,视黄醛结合蛋 白运输视黄醛,转铁蛋白运输铁,结合珠蛋白运输血红蛋白,血色素结 合蛋白运输血红素,铜蓝蛋白运输铜。 1)用于贫血的鉴别诊断:在缺铁性贫血中TRF增加,同时有血清铁下 降及铁饱和度下降;再生障碍性贫血时TRF正常或低下,因红细胞对铁 的利用障碍,因而血清铁正常或增高,铁饱和度升高,可超过50%,甚 至达90%。(2)TRF在急性时相反应中含量往往降低。(3)作为营养 状态的一项指标,其生物半寿期较短,故能及时地反映脏器蛋白的急剧 当出现遗传性苯丙氨酸羟化酶缺乏或不足时,苯丙氨酸不能正常转变成 酪氨酸,体内的苯丙氨酸蓄积,并可经转氨基作用生成苯丙酮酸等代谢 产物。血中苯丙氨酸极度升高,苯丙酮酸也异常升高并出现苯丙酮酸尿 。PKU患者有智力缺陷,其严重程度与血苯丙氨酸升高的水平和持续时 间有关,因而患儿出生后3月内即需用低苯丙氨酸膳食治疗,控制血中 苯丙氨酸浓度,可以改善症状,防止痴呆发生。这种治疗最少至10岁, (1)尿酸排泄障碍:当肾小球滤过率下降,或近端肾小管对尿酸的重 吸收增加或(和)分泌功能减退时,便导致高尿酸血症。其中一部分是 机制不明的多基因性遗传缺陷引起,另一部分由继发性慢性肾疾患等引 起。(2)尿酸生成过多1)由嘌呤合成代谢紊乱引起,其中大多数属多 基因遗传缺陷,机制不明。其中酶缺陷引起者仅占少数:①次黄嘌呤鸟嘌呤磷酸核糖转移酶(HGPRT)缺乏;②PRPP合成酶亢进;③葡萄糖6-磷酸酶(G6pase)缺乏,引起葡萄糖-6-磷酸增多,并沿磷酸戊糖代谢 途径转化成较多的PRPP,使嘌呤合成增多。④腺嘌呤磷酸核糖转移酶 (APRT)缺乏。2)嘌呤分解增加:在骨髓增殖性疾病等,有旺盛的细 血液pH为7.4时,尿酸钠的溶解度约为0.42mmol/L(7mg/dl),尿酸浓 度>0.42mmol/L 时血浆尿酸已成过饱和状态,当浓度>0.48mmol/L持久 不降,并出现血浆清蛋白及α1α2球蛋白减少、局部pH降低或局部温度 降低时即可使尿酸钠呈微小结晶析出。尿酸盐结晶较易沉淀在血管较 少,基质中粘多糖含量较丰富的结缔组织、软骨和关节腔内。运动、饮 酒、应激、局部损伤等都可诱发这些部位急性炎症发作,如运动使这些 组织容易发生缺氧,于是出现糖酵解加速,乳酸产生增多,pH降低, 导致局部尿酸钠结晶析出。微小的尿酸钠结晶表面可吸附IgG,在补体 参与、多型核白细胞吞噬作用及各种炎症介质作用下,导致组织发生炎 胰岛素原被分解为胰岛素与31个氨基酸的C肽,二者以等摩尔数分泌入 血,C肽虽然没有生物学活性但对于保证胰岛素的正常结构是必需的。 C肽的半寿期约35min,比胰岛素更长,且其降解不在肝脏而在肾脏, 肝脏的代谢可以忽略,所以与外周血胰岛素浓度相比,可更好地反映胰 岛β细胞功能。而且C肽不受外源性胰岛素干扰,也不与胰岛素抗体反应 影响的激素有胰岛素、胰高血糖素、肾上腺素、生长激素、皮质醇、甲 状腺激素、长抑素。 影响因素有:包括HbA1和HbA0 、 糖化血红蛋白的形成是不可逆的 、 反映过去6~8周的平均血糖水平、 用胰岛素治疗的糖尿病人,应将糖 化血红蛋白作为常规检测指标
生化简答题
答案仅供参考10生工1班英译汉:糖酵解(EMP)磷酸果糖激酶(PFK)磷酸烯醇式丙酮酸(PEP)乳酸脱氢酶(LDH)三羧酸循环(TCA) 焦磷酸硫胺素(TPP)尿苷二磷酸葡萄糖(UDPG)磷酸戊糖途径(HMS)尿苷三磷酸(UTP)羟甲基戊二酸(HMG)脂酰基载体蛋白(ACP)甲羟戊酸(MV A)开放阅读框架(ORF)起始因子(原核IF/真核eIF)延长因子(EF)终止因子(RF)核糖体释放因子(RRF)三磷酸脱氧核苷(dNTP)核糖核苷二磷酸(NDP)单链结合蛋白(SSB)DNA聚合酶(DNA-pol)谷丙转氨酶(GPT)谷草转氨酶(GOT)苯丙酮尿症(PKU症)γ-氨基丁酸(GABA) 5-羟色胺(5-HT)多巴胺(DA)5-氟尿嘧啶(5-FU)5-磷酸核糖焦磷酸(PRPP)黄嘌呤核苷酸(XMP)次黄嘌呤核苷酸(IMP)黄素单核苷酸(FMN)黄素腺嘌呤二核苷酸(FAD)CoI(NAD) CoⅡ(NADP)简答题1、简述在物质代谢中TCA循环的枢纽作用。
三羧酸循环是糖,脂肪和蛋白质三种主要有机物在体内彻底氧化的共同代谢途径,三羧酸循环的起始物乙酰-CoA,不但是糖氧化分解产物,它也可来自脂肪的甘油、脂肪酸和来自蛋白质的某些氨基酸代谢,因此三羧酸循环实际上是三种主要有机物在体内氧化供能的共同通路。
三羧酸循环也是体内三种主要有机物互变的联结机构,因糖和甘油在体内代谢可生成α-酮戊二酸及草酰乙酸等三羧酸循环的中间产物,这些中间产物可以转变成为某些氨基酸;而有些氨基酸又可通过不同途径变成α-酮戊二酸和草酰乙酸,再经糖异生的途径生成糖或转变成甘油,因此三羧酸循环起着枢纽作用。
2、简述氨中毒的机理。
高浓度氨与α-酮戊二酸形成谷氨酸,是大脑中的α-酮戊二酸大量减少,导致TCA循环无法正常进行,从而引起脑功能受损。
3、从生化的角度简述溶血性贫血的机理。
NADPH水平的降低,是蛋白质发生变化,使脂类发生过氧化作用,使红细胞产生高血红素,这些变化都使红细胞膜变弱,导致红细胞对损伤敏感,易破坏,常常发生溶血,引发溶血性贫血症。
生化简答题答案
一:1)有两条脱氧核苷酸链组成,两条链平行、反向。
2)两链之间以碱基互补配对,由氢键相连,C和G A和T3)两链以同一中心轴螺旋,形成右手双螺旋结构,每10个碱基上升一圈螺距3.4nm4)双螺旋结构横向以氢键稳固,纵向靠疏水基的水平堆积力二:mRNA:含有三联体密码,蛋白质合成的模板。
tRNA:转运氨基酸的作用rRNA:与蛋白质结合生成核蛋白体,是蛋白质合成的产所。
三:在5’端以7-甲基鸟嘌呤基三磷酸鸟苷为分子的起始结构,称为帽子结构(7-甲基鸟嘌呤,3磷酸鸟苷)在3’端有一段长短不一的多聚腺苷结构,称为多聚A尾从5’端到3’端每三个碱基为一组,为一个三联体密码。
四:相同点:1)反应前后,没有质和量的变化2)能催化热效应允许的反应3)不能改变平衡点不同点:1)酶对底物的有高度特异性2)酶蛋白质,对热敏感,对反应条件的要求高3)酶的高效性4)酶的反应受多种因素的影响五:绝对特异性:只能作用于特定的结构底物,催化一种反应,得到特定的产物相对特异性:可以作用于一类的化合物或是一类的化学键,得到一定的产物,这种酶对底物要求不严格。
立体异构特异性:有些酶仅作用于底物立体异构中的一种。
六:酶活性中心以内的必须基团和酶活性中心以外的必须基团。
酶活性中心以内的必须基团又分为酶结合部位和酶催化部位酶结合部位:将底物固定于酶的活性中心。
酶的催化部位:使底物不稳定,最终生成相应的产物。
酶活性中心以外的必需基团:为维持酶的活性中心的空间构象所必须。
七:酶的浓度、底物浓度、温度、PH、激活剂、抑制剂、反应时间等八:竞争性抑制:抑制剂与底物结构相似,与底物竞争酶的活性中心结合,增加底物浓度可以减轻抑制。
增加Km。
非竞争性抑制:抑制剂与底物没有相似之处,抑制剂与酶活性中心以外的必需基团结合,增加底物浓度不能减轻抑制,反应速度下降,反应的平衡点不变。
九:有些酶在细胞内合成或初分泌时没有活性,只是酶前体,但水解掉一个或多个肽键的时候,酶的活性中心暴露或形成,有重要的生理意义。
生化简答题
简答题:1、球形蛋白的结构类型?①全α-结构蛋白质,此类结构中α-螺旋占有极大比例,按反平行方式排列,相邻螺旋以环连接成简状螺旋束,因而也成为上下型螺旋束。
②α/β-结构,此类结构以平行或混合型β-折叠片为基础,分为两个亚类:单绕平行β-桶和双绕平行β-片或马鞍形扭曲片。
③全β-结构,主要由反平行β-折叠片排列形成,β-股之间以β-回折或跳过相邻β-股的条带相连。
④富含金属或二硫键,许多不足100个氨基酸残基组成的小蛋白质或结构域往往不规则,只有很少量的二级结构元件,但富含金属或二硫键,通过金属形成的配位键或二硫键稳定其构象。
2、三维结构与功能的关系(球形蛋白为例)球形蛋白质分子含有多种二级结构元件。
球状蛋白质的结构具有明显而丰富的折叠层次。
多肽链中相邻的残基首先形成二级结构元件;随着肽链的进一步卷曲,若干相邻的结构元件形成超二级结构;超二级结构进一步组装成结构域;两个或多个结构再装配成紧密的球状或椭球状的三级结构。
球状蛋白质分子是紧密的球状或椭球状实体,即使紧密装配,蛋白质总体积约有25%并未被蛋白质原子占据。
这个空间几乎全为很小的空腔,偶尔有水分子大小或更大的空腔存在。
值得注意的是邻近活性部位的区域密度比平均值低得多,这可能意味着活性部位有较大的空间可塑性,允许其中的结合基团和催化基团有较大的活动范围。
这大概就是功能蛋白与其配体相互作用的结构基础。
球状蛋白质具有疏水的内核和亲水的表面,首先,肽链必须满足自身结构固有的限制,包括手性效应和α-碳二面角在折叠上的限制;其次,肽链在熵因素驱动下必须尽可能地埋藏疏水侧链,使之与溶剂水的接触降到最小程度,同时让亲水侧链暴露在分子表面,与环境中水分子形成广泛的氢键连系。
球状蛋白质分子表面有一个分布着许多疏水残基的空穴或裂隙,常是结合底物、效应物等配体并行使生物学功能的活性部位,这样的空穴为发生化学反应营造了一个低介电区域。
3、蛋白质结构与功能关系(举例说明)肌红蛋白(Mb)的分子包括一条153个氨基酸残基组成的多肽链和一个血红素,肌红蛋白多肽链中的残基75~80%处于α-螺旋中,其余为无规卷曲,整个肽链有8个长短不一的螺旋段,在侧链基团相互作用下盘曲形成4.3 nm×3﹒5 nm×2.3nm扁园的球体。
生化题库简答题含答案
1. 解释单糖溶液的变旋现象。
2. 阐述生物膜模型及结构特点。
3. 阐述生物膜的两侧不对称性。
4. 阐述膜转运的不同方式。
5. 试述脂质的分类与结构特点。
6. 举例说明蛋白质在生命运动中,起着哪些重要生理功能?7. 蛋白质由哪些元素组成?测定蛋白质含量以什么元素为标准?怎样计算?8. 哪些氨基酸是极性的?哪些氨基酸是非极性的?9. 什么是氨基酸的 pK 值?什么是氨基酸的 pI 值?二者有何区别?10. 为什么几乎所有蛋白质在 280nm 处,均有强吸收?11. 有哪些因素参于维持蛋白质的空间结构?12. 简述α-Helix 与β-Sheet 的特点?13. 什么是蛋白变性?变性蛋白有何特性?降解与变性有何区别?14. 蛋白质的分离、纯化有哪些常用方法?简述各种方法的原理15. 以血红蛋白为例,简述蛋白质空间结构与功能的关系。
16. 如何分析蛋白质的一般结构?用于一级结构分析的常见试剂有哪些?17. 简述两类核酸的基本结构单位,主要组成,在细胞中分布的部位,基本单元以什么键相连?18. 简述 DNA 双螺旋结构的特点双螺旋结构是 DNA 二级结构最基本的形式,是在 1953 年由 J.Watson 和 F.Crick 提出的。
DNA 二级结构的主要形式有 B-DNA 、A-DNA 、Z-DNA,其中, B-DNA 是普遍形式。
19. 简述 RNA 有哪些主要类型,比较其结构与功能的特点。
RNA 是以 DNA 为模板合成的单链线形分子,其 mRNA 具有聚腺苷酸的尾结构和甲基化鸟苷酸的帽子结构。
tRNA 二级结构呈三叶草结构。
而 rRNA 是细胞中核糖体的骨架。
RNA 又分 mRNA 、tRNA 、rRNA 三种。
20. 对一双链 DNA 而言,如一条链(A+G)/(T+C)=0.7 则互补链中(A+G)/(T+C)=?在整个 DNA 分子中(A+G)/(T+C)=?如一条链中(A+T)/(G+C)=0.7 互补链中(A+T)/(G+C)=?在整个 DNA 分子中(A+T)/(G+C)=?21. 写出 DNA 变性、复性和杂交的定义。
生化简答题
答:遗传密码通常指核苷酸三联体决定氨基酸的对应关系。特点:1)连续性:编码蛋白质氨基酸序列的每个三联体密码连续阅读,密码间既无间断也无交叉。2)简并性:遗传密码中,除色氨酸和甲硫氨酸仅有一个密码子外,其余氨基酸有2、3、4个或多至6个三联体为其编码。3)通用性和变异性:蛋白质生物合成的整套密码,从原核生物到人类都通用。但是,已发现少数例外,如动物细胞的线粒体、植物细胞的叶绿体。密码的通用性进一
②DNA无2′~OH,所以不被碱水解;(3分)
③这一特性在分离RNA与DNA时得到了应用。(2分)
2.什么叫遗传中心法则?
答:
①以DNA为模板合成mRNA,再以mRNA为模板合成蛋白质的遗传信息传递过程称为中心法则。(2分)
②后来在某些病毒和某些正常细胞中发现一种能催化由RNA为模板合成DNA的酶,称逆转录酶,由RNA为模板合成DNA称逆向转录。(2分)
10.什么叫生物氧化,有何特点。
答:物质在生物体内进行氧化反应称生物氧化,主要指糖、脂肪、蛋白质等在体内分解时逐步释放能量,最终生成CO2和H2O的过程。
特点:1)是在细胞内温和的环境中(体温,pH接近中性),经一系列酶促反应逐步进行;2)氧化进行过程中必然伴随生物还原反应的发生;3)水是许多生物氧化反应的供氧体,通过加水脱氢作用直接参与氧化反应;4)在生物氧化中,C的氧化和H的氧化是非同步进行的。氧化过程中脱下来的氢质子和电子通常由各种载体,如DADH等传递到氧并生成水;5)生物氧化是一个分步进行的过程,每步都有特殊的酶催化,每步反应产物都可分离。
6.简述16碳软脂酸彻底氧化分解的全过程并计算生成ATP的个数。
答:活化:消耗两个高能磷酸键;beita氧化:每轮重复循环四步:氢化、水化、再脱氢、硫解。产物:1分子乙酰CoA、1分子少两个碳原子的脂酰CoA、1分子NADH+H*和1分子FADH2。7轮循环产物:8分子乙酰CoA、7分子NADH+H*、7分子FADH2。能量计算:生成ATP8*10+7*2.5+7*1.5=108;净生成ATP108-2=106。
生物化学简答题
1、酮体生成和利用的生理意义。
(1)酮体是脂酸在肝内正常的中间代谢产物,是甘输出能源的一种形式;(2)酮体是肌肉尤其是脑的重要能源。
酮体分子小,易溶于水,容易透过血脑屏障。
体内糖供应不足(血糖降低)时,大脑不能氧化脂肪酸,这时酮体是脑的主要能源物质。
2、试述人体胆固醇的来源与去路?来源:⑴从食物中摄取⑵机体细胞自身合成去路:⑴在肝脏可转换成胆汁酸⑵在性腺,肾上腺皮质可以转化为类固醇激素⑶在欺负可以转化为维生素D3⑷用于构成细胞膜⑸酯化成胆固醇酯,储存在细胞液中⑹经胆汁直接排除肠腔,随粪便排除体外。
3、酶的催化作用有何特点?①具有极高的催化效率,如酶的催化效率可比一般的催化剂高108~1020 倍;②具有高度特异性:即酶对其所催化的底物具有严格的选择性,包括:绝对特异性、相对特异性、立体异构特异性;③酶促反应的可调节性:酶促反应受多种因素的调控,以适应机体不断变化的内外环境和生命活动的需要。
4、何谓酶的不可逆抑制作用?试举例说明某些抑制剂通常以共价键与酶蛋白中的必需基团结合,而使酶失活,抑制剂不能用透析、超滤等物理方法除去,有这种作用的不可逆抑制剂引起的抑制作用称不可逆抑制作用举例:①有机磷抑制胆碱酯酶:与酶活性中心的丝氨酸残基结合,可用解磷定解毒②重金属离子和路易士气抑制巯基酶:与酶分子的巯基结合,可用二巯丙醇解毒。
5、试述竞争性抑制作用的特点,并举例其临床应用特点:①抑制剂与底物化学结构相似②抑制剂以非抑制剂可逆地结合酶的活性中心,但不被催化为产物③由于抑制剂与酶的结合是可逆的,抑制作用大小取决于抑制剂浓度与底物浓度的相对比例④当抑制剂浓度不变时,逐渐增加底物浓度,抑制作用减弱,甚至解除,因而酶的V不变⑤抑制剂的存在使酶的km的值明显增加。
说明底物和酶的亲和力明显下降。
举例:①磺胺类药物与对氨基苯甲酸竞争抑制二氢叶酸合成酶②丙二酸与琥珀酸竞争抑制琥珀酸脱氢酶③核苷酸的抗代谢物与抗肿瘤药物6、何谓酶原及酶原激活?简述其生理意义有些酶在细胞内合成时,或初分泌时,没有催化活性,这种无活性状态的酶的前身物称为酶原,酶原向活性的酶转化的过程称为酶原的激活。
生化简答题
1.简述血氨的来源和去路?来源:氨基酸脱氨基作用,是体内血氨的主要来源;肠道产氨,主要是蛋白质腐败作用和尿素肠肝循环;肾脏产氨,主要来自谷氨酰胺的水解。
去路:合成尿素;生成谷氨酰胺;以铵盐的形式随尿排出。
合成一些含氮化合物,如氨基酸、嘌呤、嘧啶。
2.简述血糖的来源和去路以及激素的调节作用?来源:食物经消化吸收的葡萄糖;肝糖原分解;糖异生。
去路:进行糖酵解或有氧氧化产生能量;合成糖原;合成脂肪及某些非必需氨基酸;通过磷酸戊糖途径转变为其他非糖物质。
浓度的调节作用:升高血糖的激素有:胰高血糖素、肾上腺素、糖皮质激素、生长激素。
降低血糖的有:胰岛素。
2-1.为什么说肝脏是维持血糖浓度相对恒定的重要器官?肝有较强的糖原合成与分解的能力。
在血糖升高时,肝可以合成糖原储存,而在血糖降低时,肝糖原可以分解为葡萄糖补充血糖;肝是糖异生的主要器官,可将乳酸、甘油等物质异生成糖;肝可将果糖,半乳糖等转变为葡萄糖;肝中磷酸戊糖代谢旺盛,可以满足核苷酸合成的需要。
因此,肝脏是维持血糖相对恒定的重要器官。
(肝脏是糖原合成与分解以及糖异生的重要器官。
)3.简述生物氧化和体外氧化的异同点?相同点:产物相同,最终总能量相同。
不同点:生物氧化反应条件温和,由酶催化;氢和碳的氧化并非同时进行,二氧化碳由有机酸脱羧产生,而氢的氧化经传递体多级传递到最后与氧结合生成水;能量逐步释放,有利于机体的捕获。
4.简述糖异生的生理意义?在饥饿情况下维持血糖恒定;维持酸碱平衡;利用乳酸,防止酸中毒;补充或恢复肝糖原储备。
5.简述糖原合成和分解的生理意义?储存能量:葡萄糖可以以糖原的形式储存;调节血糖浓度:血糖浓度高时可以合成糖原,血糖浓度低时可以分解糖原补充血糖;利用乳酸:肝中可经糖异生途径利用糖无氧酵解产生的乳酸来合成糖原。
6.试述蛋白质等电点与溶液的PH和电泳行为的相互关系?PI>PH,蛋白质净带正电荷,电泳时,蛋白质向负极移动;PI<PH,蛋白质净带负电荷,电泳时,蛋白质向正极移动;PI=PH,蛋白质净电荷为零,电泳时,蛋白质不移动。
生化简答题大全及答案
1. 脂类的消化与吸收:脂类的消化部位主要在小肠,小肠内的胰脂酶、磷脂酶、胆固醇酯酶及辅脂酶等可以催化脂类水解;肠内PH值有利于这些酶的催化反应,又有胆汁酸盐的作用,最后将脂类水解后主要经肠粘膜细胞转化生成乳糜微粒被吸收。
2. 何谓酮体?酮体是如何生成及氧化利用的:酮体包括乙酰乙酸、B -羟丁酸和丙酮。
酮体是在肝细胞内由乙酰CoA经HMG-CoA转化而来,但肝脏不利用酮体。
在肝外组织酮体经乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化后,转变成乙酰 CoA并进入三羧酯循环而被氧化利用。
3. 为什么吃糖多了人体会发胖(写出主要反应过程)?脂肪能转变成葡萄糖吗?为什么?人吃过多的糖造成体内能量物质过剩,进而合成脂肪储存故可以发胖,基本过程如下:葡萄糖—丙酮酸—乙酰CoA 一合成脂肪酸一酯酰CoA葡萄糖—磷酸二羧丙酮—3-磷酸甘油脂酰CoA+3-磷酸甘油—脂肪(储存)脂肪分解产生脂肪酸和甘油,脂肪酸不能转变成葡萄糖,因为脂肪酸氧化产生的乙酰CoA不能逆转为丙酮酸,但脂肪分解产生的甘油可以通过糖异生而生成葡萄糖。
4. 简述脂肪肝的成因。
肝脏是合成脂肪的主要器官,由于磷脂合成的原料不足等原因,造成肝脏脂蛋白合成障碍,使肝内脂肪不能及时转移出肝脏而造成堆积,形成脂肪肝。
5. 写出胆固醇合成的基本原料及关键酶?胆固醇在体内可的转变成哪些物质?胆固醇合成的基本原料是乙酰CoA.NADPH和ATP等,限速酶是HMG-CoA还原酶,胆固醇在体内可以转变为胆计酸、类固醇激素和维生素D3。
7. 写出甘油的代谢途径?甘油—3-磷酸甘油—(氧化供能,异生为糖,合成脂肪再利用)8. 简述饥饿或糖尿病患者,出现酮症的原因?在正常生理条件下,肝外组织氧化利用酮体的能力大大超过肝内生成酮体的能力,血中仅含少量的酮体,在饥饿、糖尿病等糖代谢障碍时,脂肪动员加强,脂肪酸的氧化也加强,肝脏生成酮体大大增加,当酮体的生成超过肝外组织的氧化利用能力时,血酮体升高,可导致酮血症、酮尿症及酮症酸中毒9 .试比较生物氧化与体外物质氧化的异同。
生化简答题
1.什么是β折叠?β折叠的结构特点是?多肽链充分伸展,每个肽单元以Cα为旋转点,依次折叠成锯齿状结构,氨基酸残基侧链交替地位于锯齿状结构的上下方,这样形成的结构称β-折叠。
β折叠的结构特点是(1) 多肽链充分伸展,肽链平面之间折叠呈锯齿状排列,相邻肽键平面的夹角为110º角,(2) 两段肽链之间可顺向平行(均从N-C),也可反向平行。
(3)由氢键维持稳定。
其方向与折叠的长轴接近垂直。
2. 变性蛋白质的主要特征是?(1)蛋白质分子中的次级键断裂,构象破坏,但不涉及肽键的破坏,一级结构不变。
(2)生物活性丧失。
(3)变性蛋白质的溶解度常降低、粘度增加而扩散系数减小。
(4)变性蛋白质容易消化和降解。
3. 酶与一般催化剂相比有什么异同点?答:相同点:(1)反应前后没有质和量的改变;(2)只催化热力学允许的反应;(3)不改变反映的平衡点;(4)作用原理都是降低化学反映的活化能。
不同点:(1)酶具有较高的催化效率;(2)催化底物具有高度特异性(3)酶具有热不稳定性(4)酶的催化作用受多种因素影响。
4. 试举例说明酶的三种特异性。
答:(1)绝对特异性:有的酶只能作用于特定结构的底物,进行一种专一的反应,生成一种特定的产物,如尿霉只能水解尿素(2)相对特异性:有一些酶作用于一类化合物或一种化学键,如蛋白酶水解各种蛋白质的肽键(3)立体异构特异性:一种酶只作用于立体异构中的一种,如乳酸脱氢酶只催化L—型乳酸等。
5.比较三种酶的可逆性抑制的的特点。
答:(1)竞争性抑制:抑制剂的结构与底物结构类似,共同竞争酶的活性中心。
抑制程度与底物与抑制剂的相对浓度有关,Km值增高,Vmas值不变。
(2)抑制剂只与酶活性中心外的必须基团结合,但不影响底物与酶的结合,Km 值不变,Vmax不变。
(3)反竞争抑制:抑制剂只与酶—底物复合物结合,生成三元复合物,Km、Vmas值均下降。
6. 氧化呼吸链的组成成分主要有那些?那些是递氢体,那些是递电子体?或两者皆是?(1)主要组成部分:NAD+或辅酶I(CoI)、黄素蛋白(Fp)、铁硫蛋白(Fe-s)、泛醌(UQ)、细胞色素类(Cyt)(2)所有组成成分都为递电子体。
生化简答题
1.什么事蛋白质的二级结构?它主要有哪几种?各有何特征?蛋白质的二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构想。
其维持结构稳定的作用力是氢键。
蛋白质二极结构的常见形式有:a-螺旋,b-折叠,b-转角和无规卷曲。
2.简述DNA 和RNA 的主要区别(1)DNA 是由脱氧核苷酸单元通过3’,5’磷酸二酯键相连形成的大分子,碱基为A 、T 、C 、G ,戊糖是B-D-2-脱氧核糖;而RNA 是由核糖核苷酸单元通过3’,5’磷酸二酯键相连形成的大分子,碱基为A 、G 、C 、U ,戊糖为B-D-核糖;(2)DNA 的结构是由两条反向平行的多聚核苷酸链形成的双螺旋结构,分子量较大;而RNA 的结构以单链为主,只是在单链中局部可形成双链结构,分子量较小;(3)DNA 位于细胞的细胞核和线粒体,RNA 存在部位包括细胞液、细胞核和线粒体;(4)DNA 的主要功能是携带遗传信息,决定细胞和个体基因型,而RNA 的主要功能是参与细胞内DNA 遗传信息的表达。
3.酶的特征性常数是什么?简述Km 和Vm 的意义。
酶的特征性常数是:米氏常数,即Km 。
Km 是单底物反应中酶与底物可逆的生成中间产物和中间产物转化为产物这三个反应的速度常数的综合。
即:P E ES S E k K +−→←−→←+31,Km=(K2+K3)/K1,米氏常数Km 值数值上等于酶促反应速度达到最大反应速度一半时的底物浓度;(1)Km 的意义为①Km 值等于酶促反应速度达到最大反应速度一半时的底物浓度。
②当K2≥K3时(即ES 解离成E 和S 的速度大大超过分解为E 和P 的速度时),Km 值表示酶对底物的亲活力。
Km 值越小,酶与底物的亲活力越大,反之亦然。
③Km 值是酶的特征性常数之一,每一种酶都有它的Km 值。
Km 值只与酶的结构、酶所催化的底物和反应环境(温度、PH 、离子强度)有关,与酶的浓度无关。
生化名词解释简答题
第一章:核酸9.核酸的变性、复性:当呈双螺旋结构的DNA溶液缓慢加热时,其中的氢键便断开,双链DNA便脱解为单链,这叫做核酸的“溶解”或变性。
在适宜的温度下,分散开的两条DNA链可以完全重新结合成和原来一样的双股螺旋。
这个DNA螺旋的重组过程称为“复性”。
10.增色效应:当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫“增色效应”。
11. 减色效应:DNA在260nm处的光密度比在DNA分子中的各个碱基在260nm处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”。
12. 噬菌体:一种病毒,它可破坏细菌,并在其中繁殖。
也叫细菌的病毒。
14. DNA的熔解温度(Tm值):引起DNA发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称为熔解温度(Tm)。
15. 分子杂交:不同的DNA片段之间,DNA片段与RNA片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。
这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程称为分子杂交。
3. 答:tRNA一级结构具有以下特点:1)分子量较小,大约由73~95个核苷酸组成。
2)分子中含有较多的修饰成分3)3′末端都具有CpCpA-OH的结构。
5′端多为pG,也有pC4)恒定核苷酸,有十几个位臵上的核苷酸在几乎所有的tRNA中都不变。
5)tRNA约占细胞总RNA的15%tRNA的二级结构呈“三叶草形”。
在结构上具有某些共同之处,即四臂四环:氨基酸接受臂;反密码(环)臂;二氢尿嘧啶(环)臂;T C(环)臂;可变环。
tRNA的三级结构:倒挂的L字母tRNA主要功能:在蛋白质生物合成过程中转运氨基酸。
4. 答:在20世纪50年代初,E.Chargaff等应用纸层析技术及紫外分光光度法,对各种生物的DNA分子的碱基组成进行了定量分析,总结出一些共同的规律,这些规律被人们称之为Chargaff出定则。
生化简答题大全及答案
1•脂类的消化与吸收:脂类的消化部位主要在小肠,小肠内的胰脂酶、磷脂酶、胆固醇酯酶及辅脂酶等可以催化脂类水解;肠内PH值有利于这些酶的催化反应,又有胆汁酸盐的作用,最后将脂类水解后主要经肠粘膜细胞转化生成乳糜微粒被吸收。
2. 何谓酮体?酮体是如何生成及氧化利用的:酮体包括乙酰乙酸、3 -羟丁酸和丙酮。
酮体是在肝细胞内由乙酰CoA经HMG-Co转化而来,但肝脏不利用酮体。
在肝外组织酮体经乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化后,转变成乙酰 CoA并进入三羧酯循环而被氧化利用。
3. 为什么吃糖多了人体会发胖(写出主要反应过程)?脂肪能转变成葡萄糖吗?为什么?人吃过多的糖造成体内能量物质过剩,进而合成脂肪储存故可以发胖,基本过程如下:葡萄糖—丙酮酸—乙酰 CoL合成脂肪酸一酯酰CoA葡萄糖—磷酸二羧丙酮—3-磷酸甘油脂酰CoA+3磷酸甘油—脂肪(储存)脂肪分解产生脂肪酸和甘油,脂肪酸不能转变成葡萄糖,因为脂肪酸氧化产生的乙酰CoA不能逆转为丙酮酸,但脂肪分解产生的甘油可以通过糖异生而生成葡萄糖。
4. 简述脂肪肝的成因。
肝脏是合成脂肪的主要器官,由于磷脂合成的原料不足等原因,造成肝脏脂蛋白合成障碍,使肝内脂肪不能及时转移出肝脏而造成堆积,形成脂肪肝。
5. 写出胆固醇合成的基本原料及关键酶?胆固醇在体内可的转变成哪些物质?胆固醇合成的基本原料是乙酰CoA.NADP和ATP等,限速酶是HMG-Co还原酶,胆固醇在体内可以转变为胆计酸、类固醇激素和维生素D3,7. 写出甘油的代谢途径?甘油—3-磷酸甘油—(氧化供能,异生为糖,合成脂肪再利用)8. 简述饥饿或糖尿病患者,出现酮症的原因?在正常生理条件下, 肝外组织氧化利用酮体的能力大大超过肝内生成酮体的能力,血中仅含少量的酮体,在饥饿、糖尿病等糖代谢障碍时,脂肪动员加强,脂肪酸的氧化也加强,肝脏生成酮体大大增加,当酮体的生成超过肝外组织的氧化利用能力时,血酮体升高,可导致酮血症、酮尿症及酮症酸中毒9. 试比较生物氧化与体外物质氧化的异同。
生化简答题
生化问答题1.简述糖酵解的途径。
答案:1.迅速供能,这对肌肉收缩更为重要,当机体缺氧或剧烈运动肌肉局部血流不足时,能量主要通过糖酵解途径获得。
2.是某些组织获能的必要途径。
如:神经白细胞骨髓组织等。
即使再有氧时也进行强烈的酵解而获能3 成熟的红细胞无线粒体仅靠无氧酵解供能。
2.简述三羧酸循环的特点及生理意义。
答案:TAC 反应的特点:从草酰乙酸和乙酰辅酶A结合成柠檬酸开始,每次循环消耗一分子乙酰基。
反应过程中有4次脱氢,2.。
TAC 在线粒体中进行,有三个催化不可逆反应的关键酶,分别是柠檬酸合酶异柠檬酸脱氢酶,a-酮戊2酸脱氢酶复合体 3 的中间产物包括草酰乙酸再循环中起催化作用不会因参与循环而被消耗掉。
生理意义:1是三大营养物质代谢的最终通路2是三大营养物质互相转变的枢纽。
3为其他物质合成提供小分子前提物质为氧化磷酸化提供还原当量。
3.试述磷酸戊糖途径的生理意义答案 1 提供5-磷酸核糖作为体内合成各种核苷酸及核酸的原料。
2 提供代谢所需要的还原型辅酶2 NADPH>4 试述酮体的生理意义酮体是脂肪酸在肝脏氧化分解的特有产物,包括乙酰乙酸Β-羟丁酸和丙酮。
1酮体分子小极性大易溶于水能通过血脑屏障及肌肉的毛细血管壁是脑心肌和骨骼肌等组织的重要能源2 长期饥饿或糖供给不足时酮体利用的增加可减少糖的利用利于维持血糖节省蛋白质的消耗 3 严重饥饿或糖尿病时可作为脑组织的主要能源。
5 试述脂肪酸β氧化的过程1 脂肪酸在胞液中活化为脂酰辅酶A2 脂酰辅酶A 进入线粒体3 脂酰辅酶A进行Β氧化包括4步连续反应:脱氢加水脱氢和硫解 4 产生的乙酰辅酶A彻底氧化分解为co2 h2o 和能量。
影响酶促反应速率的因素有哪些答:1)温度:温度对酶促反应速率的影响曲线一般呈钟罩型,每种酶都有最适温度,在最适温度下反应速率最大。
2)PH:PH对酶促反应速率的影响一般呈钟罩型,每种酶都有最适PH,在最适PH下反应速率最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要的化学键:肽键,有些蛋白质还包括二硫键。
一级结构是蛋白质空间构象和特异生物学功能的基础,但不是决定蛋白质空间构象的唯一因素。
4.蛋白质二级结构
定义: 蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
(三)蛋白质构象改变可引起疾病。蛋白质构象疾病:若蛋白质的折叠发生错误,尽管其一级结构不变,但蛋白质的构象发生改变,仍可影响其功能,严重时可导致疾病发生。(蛋白质构象改变导致疾病的机理:有些蛋白质错误折叠后相互聚集,常形成抗蛋白水解酶的淀粉样纤维沉淀,产生毒性而致病,表现为蛋白质淀粉样纤维沉淀的病理改变。)
1.蛋白质具有重要的生物学功能
作为生物催化剂(酶)
代谢调节作用
免疫保护作用
物质的转运和存储
运动与支持作用
参与细胞间信息传递
2.20种氨基酸具有共同或特异的理化性质
(一)氨基酸具有两性解离的性质
(二)含共轭双键的氨基酸具有紫外吸收性质
(三)氨基酸与茚三酮反应生成蓝紫色化合物
3.蛋白质的一级结构
四、蛋白质在紫外光谱区有特征性吸收峰
-由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm波长处有特征性吸收峰。蛋白质的OD280与其浓度呈正比关系,因此可作蛋白质定量测定。
五、应用蛋白质呈色反应可测定蛋白质溶液含量
1.茚三酮反应。蛋白质经水解后产生的氨基酸也可发生茚三酮反应。
2.双缩脲反应。蛋白质和多肽分子中肽键在稀碱溶液中与硫酸铜共热,呈现紫色或红色,此反应称为双缩脲反应。
亚基之间的结合主要是氢键和离子键。
分子伴侣参与蛋白质折叠
分子伴侣:通过提供一个保护环境从而加速蛋白质折叠成天然构象或形成四级结构。
-1分子伴侣可逆地与未折叠肽段的疏水部分结合随后松开,如此重复进行可防止错误的聚集发生,使肽链正确折叠。
-2分子伴侣也可与错误聚集的肽段结合,使之解聚后,再诱导其正确折叠。
主要的化学键:氢键
(一)参与肽键形成的6个原子在同一平面上:参与肽键的6个原子C?1、C、O、N、H、C?2位于同一平面,C?1和C?2在平面上所处的位置为反式(trans)构型,此同一平面上的6个原子构成了所谓的肽单元 (peptide unit) 。
(二)α-螺旋结构是常见的蛋白质二级结构
AUG被称为起始密码子;决定肽链终止的密码子则称为终止密码子。
位于起始密码子和终止密码子之间的核苷酸序列称为开放阅读框(open reading frame, ORF),决定了多肽链的氨基酸序列 。
11.tRNA是蛋白质合成中的氨基酸载体
转运RNA(transfer RNA, tRNA)在蛋白质合成过程中作为各种氨基酸的载体, 将氨基酸转呈给mRNA。
-2.DNA双链之间形成了互补碱基对
碱基配对关系称为互补碱基对
DNA的两条链则互为互补链
碱基对平面与螺旋轴垂直。
-3.疏水作用力和氢键共同维系着DNA双螺旋结构的稳定。
相邻两个碱基对会有重叠,产生了疏水性的碱基堆积力
碱基堆积力和互补碱基对的氢键共同维系着DNA结构的稳定。
5.
DNA染色质呈现出的串珠样结构。
14.snmRNA参与了基因表达的调控
细胞的不同部位存在的许多其他种类的小分子RNA,统称为非mRNA小RNA。
RNA组学是研究细胞内snmRNA的种类、结构和功能。同一生物体内不同种类的细胞、同一细胞在不同时空状态下snmRNAs表达谱的变化,以及与功能之间的关系。
15.snmRNAs的种类
染色质的基本单位是核小体
6.DNA是遗传信息的物质基础
-DNA的基本功能是以基因的形式荷载遗传信息,并作为基因复制和转录的模板。它是生命遗传的物质基础,也是个体生命活动的信息基础。
-基因从结构上定义,是指DNA分子中的特定区段,其中的核苷酸排列顺序决定了基因的功能。
7.RNA的特点
RNA与蛋白质共同负责基因的表达和表达过程的调控。
(三)模体是具有特殊功能的超二级结构:在许多蛋白质分子中,可发现二个或三个具有二级结构的肽段,在空间上相互接近,形成一个有规则的二级结构组合,被称为超二级结构。
(四)氨基酸残基的侧链对二级结构形成的影响:蛋白质二级结构是以一级结构为基础的。一段肽链其氨基酸残基的侧链适合形成?-螺旋或β-折叠,它就会出现相应的二级结构。
11.蛋白质的分离纯化与结构分析
一、透析及超滤法可去除蛋白质溶液中的小分子化合物
-透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。
-超滤法:应用正压或离心力使蛋白质溶液透过有一定截留分子量的超滤膜,达到浓缩蛋白质溶液的目的。
二、丙酮沉淀、盐析及免疫沉淀是常用的蛋白质沉淀方法
-使用丙酮沉淀时,必须在0~4℃低温下进行,丙酮用量一般10倍于蛋白质溶液体积。蛋白质被丙酮沉淀后,应立即分离。除了丙酮以外,也可用乙醇沉淀。
-盐析:是将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质沉淀。
三、利用荷电性质可用电泳法将蛋白质分离
-蛋白质在高于或低于其pI的溶液中为带电的颗粒,在电场中能向正极或负极移动。这种通过蛋白质在电场中泳动而达到分离各种蛋白质的技术, 称为电泳(elctrophoresis) 。
3.DNA的空间结构
-构成DNA的所有原子在三维空间具有确定的相对位置关系。
-DNA的空间结构又分为二级结构和高级结构。
4.DNA双螺旋结构模型要点
-1.DNA是反向平行、右手螺旋的双链结构.
两条多聚核苷酸链在空间的走向呈反向平行,脱氧核糖和磷酸基团组成的亲水性骨架位于双螺旋结构的外侧,疏水的碱基位于内侧。双螺旋结构的表面形成了一个大沟和一个小沟。
2.全酶分子中各部分在催化反应中的作用:
酶蛋白决定反应的特异性
辅助因子决定反应的种类与性质
3.金属离子是最多见的辅助因子
金属酶:金属离子与酶结合紧密,提取过程中不易丢失。
金属激活酶:金属离子为酶的活性所必需,但与酶的结合不甚紧密。
5.蛋白质三级结构
定义:整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。
主要的化学键:疏水键、离子键、氢键和 Van der Waals力等。
6.蛋白质四级结构
定义:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。
RNA通常以单链的形式存在,但有复杂的局部二级结构或三级结构。
RNA比DNA小的多。
RNA的种类、大小和结构远比DNA表现出多样性。
8.mRNA是蛋白质合成中的模板
-信使RNA是合成蛋白质的模板。
-不均一核RNA(hnRNA)含有内含子和外显子。
-外显子是氨基酸的编码序列,而内含子是非编码序列。
-造成变性的因素:如加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂等 。
蛋白质沉淀 ቤተ መጻሕፍቲ ባይዱ
-在一定条件下,蛋白疏水侧链暴露在外,肽链融会相互缠绕继而聚集,因而从溶液中析出。
-变性的蛋白质易于沉淀,有时蛋白质发生沉淀,但并不变性。
蛋白质的凝固作用
-蛋白质变性后的絮状物加热可变成比较坚固的凝块,此凝块不易再溶于强酸和强碱中。
-3分子伴侣在蛋白质分子折叠过程中二硫键的正确形成起了重要的作用。
7. 蛋白质的组成
根据蛋白质组成成分:单纯蛋白质 结合蛋白质 = 蛋白质部分 + 非蛋白质部分
根据蛋白质形状:纤维状蛋白质 球状蛋白质
8.蛋白质一级结构是高级结构与功能的基础
(一)一级结构是空间构象的基础
(二)一级结构相似的蛋白质具有相似的高级结构与功能
1.核酸的分类及分布
脱氧核糖核酸:存在于细胞核和线粒体,携带遗传信息,并通过复制传递给下一代。
核糖核酸:分布于细胞核、细胞质、线粒体,是DNA转录的产物,参与遗传信息的复制与表达。某些病毒RNA也可作为遗传信息的载体.
2.核酸的一级结构
定义:核酸中核苷酸的排列顺序。由于核苷酸间的差异主要是碱基不同,所以也称为碱基序列。
-根据支撑物的不同,可分为薄膜电泳、凝胶电泳等。
-几种重要的蛋白质电泳:1.SDS-聚丙烯酰胺凝胶电泳,常用于蛋白质分子量的测定。2.等电聚焦电泳,通过蛋白质等电点的差异而分离蛋白质的电泳方法。3.双向凝胶电泳是蛋白质组学研究的重要技术。
四、应用相分配或亲和原理可将蛋白质进行层析分离
-层析分离蛋白质的原理:待分离蛋白质溶液(流动相)经过一个固态物质(固定相)时,根据溶液中待分离的蛋白质颗粒大小、电荷多少及亲和力等,使待分离的蛋白质组分在两相中反复分配,并以不同速度流经固定相而达到分离蛋白质的目的。
-蛋白质分离常用的层析方法:1.离子交换层析:利用各蛋白质的电荷量及性质不同进行分离。2.凝胶过滤:又称分子筛层析,利用各蛋白质分子大小不同分离。
五、利用蛋白质颗粒沉降行为不同可进行超速离心分离
-超速离心法:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。
-蛋白质在离心场中的行为用沉降系数表示,沉降系数与蛋白质的密度和形状相关 。
(三)氨基酸序列提供重要的生物化学信息
(四)重要蛋白质的氨基酸序列改变可引起疾病
9.蛋白质的功能依赖特定空间结构
(一)血红蛋白亚基与肌红蛋白结构相似
(二)血红蛋白亚基构象变化可影响亚基与氧结合。Hb与Mb一样能可逆地与O2结合, Hb与O2结合后称为氧合Hb。氧合Hb占总Hb的百分数(称百分饱和度)随O2浓度变化而改变。