新课标人教版八年级数学上册几何期末综合复习题1
2021年人教版八年级数学(上册)期末几何基础必刷题 含答案
2021年人教版八年级数学(上册)期末几何基础必刷题一.选择题1.不是利用三角形稳定性的是()A.自行车的三角形车架B.三角形房架C.照相机的三脚架D.学校的栅栏门2.下列各组线段中能围成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.14cm,12cm,20cm D.5cm,5cm,11cm3.下列图形中,轴对称图形的个数是()A.1个B.2个C.3个D.4个4.一个多边形每一个外角都等于18°,则这个多边形的边数为()A.10B.12C.16D.205.下列图形中AD是△ABC的高的是()A.B.C.D.6.在△ABC中,若∠A=75°,∠B=40°,则∠C的度数为()A.65°B.70°C.75°D.80°7.已知△ABC≌△DEF,∠A=30°,∠F=85°,则∠B的度数是()A.30°B.85°C.65°D.55°8.如图,在△ABC中,AB=2020,AC=2018,AD为中线,则△ABD与△ACD的周长之差为()A.1B.2C.3D.49.如图,点O是△ABC内一点,∠A=80°,∠ABO=15°,∠ACO=20°,则∠BOC等A.115°B.100°C.95°D.80°10.满足下列条件的△ABC中,不是直角三角形的是()A.∠A=2∠B=3∠C B.∠B+∠A=∠CC.两个内角互余D.∠A:∠B:∠C=2:3:511.如图,五边形ABCDE中,AE∥CD.若∠A=∠C=110°,则∠B的度数为()A.70°B.110°C.140°D.150°12.点(﹣4,3)关于x轴对称的点的坐标为()A.(4,3)B.(4,﹣3)C.(﹣4,﹣3)D.无法确定13.根据下列条件,能画出唯一△ABC的是()A.AB=3,BC=4,CA=7B.AC=4,BC=6,∠A=60°C.∠A=45°,∠B=60°,∠C=75°D.AB=5,BC=4,∠C=90°14.下列推理中,不能判断△ABC是等边三角形的是()A.∠A=∠B=∠C B.AB=AC,∠B=60°C.∠A=60°,∠B=60°D.AB=AC,且∠B=∠C15.如图,在△ABC和△DEC中,已知CB=CE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.AB=DE,∠B=∠E B.AB=DE,AC=DCC.AB=DE,∠A=∠D D.∠A=∠D,∠B=∠E16.如图所示,∠1=∠2,∠3=∠4,则下列结论正确的有()①AD平分∠BAF;②AF平分∠BAC;③AE平分∠DAF;④AF平分∠DAC;⑤AE平A.4个B.3个C.2个D.1个17.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.5B.6C.3D.418.△ABC中,AC=5,BC=14,则AB边的取值范围是()A.1<AB<29B.4<AB<24C.5<AB<19D.9<AB<19 19.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线B.高线C.中线D.无法确定20.等腰三角形两边的长分别为3cm和5cm,则这个三角形的周长是()A.11cm B.13cm C.11cm或13cm D.不确定21.如图,点O是△ABC的两个外角平分线的交点,下列结论:①点O在∠A的平分线上;②点O到△ABC的三边的距离相等;③OB=OC.以上结论正确的有()A.②③B.①②C.①③D.①②③22.如图,CD、BD分别平分∠ACE、∠ABC,∠A=70°,则∠BDC=()A.35°B.25°C.70°D.60°二.填空题23.如图,建高层建筑需要用塔吊来吊建筑材料,塔吊的上部是三角形结构,其中的数学原理是.24.小涛在家打扫卫生,一不小心把一块三角形的玻璃台板打碎了,如图所示,如果要配一块完全一样的玻璃,至少要带的玻璃碎片序号是.25.在△ABC中,∠A的平分线交BC于点D,∠B=60°,∠C=50°,则∠ADB=.26.如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=65°,∠C=45°,则∠DAE=度.27.已知△ABC≌△A'B'C',∠A=60°,∠B=50°,则∠C'=.28.如图,将一副三角板如图摆放,则图中∠1的度数是度.29.如图,在△ABC中,AB=9,AC=3,D为BC中点,则线段AD的范围是.30.已知等腰三角形一腰上的高与另一腰的夹角为50°,则等腰三角形的顶角度数为.31.在平面直角坐标系中,若点P关于x轴的对称点Q的坐标是(﹣3,2),则点P关于y 轴的对称点R的坐标是.32.如图,在△ABC中,AB的垂直平分线MN交AC于点D,连接BD,若AC=9,BC=5,则△BDC的周长是.三.解答题33.在下列各图中分别补一个小正方形,使其成为不同的轴对称图形.34.已知△ABC的三边长分别为3、5、a,化简|a+1|﹣|a﹣8|﹣2|a﹣2|.35.已知点A(a+2b,﹣1),B(﹣2,a﹣b),若点A、B关于y轴对称,求a+b的值.36.如图,在△ABC和△DCB中,AB⊥AC,CD⊥BD,AB=DC,AC与BD交于点O.求证:AC=BD.37.如图,已知OC平分∠MON,点A、B分别在射线OM,ON上,且OA=OB.求证:△AOC≌△BOC.38.如图,△ABC中,∠C=90°,DE垂直平分AB,若∠B=25°,求∠CAE的度数.39.如图,在△ABC中,AD⊥BC于D,AE平分∠BAC交BC于点E,∠B=28°,∠C=52°,求∠DAE的度数.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠BAC+∠B+∠C=180°(),∴∠BAC=180°﹣52°﹣28°=(等式的性质).∵AE平分∠BAC(已知),∴∠CAE==().∵AD⊥BC(已知),∴=90°.∵∠CAD=180°﹣∠ADC﹣∠C=180°﹣90°﹣52°=38°,∴∠DAE=∠CAE﹣=.40.如图,在△ABC中,∠B=30°,∠C=70°,AD是△ABC的高,AE平分∠BAC交BC于E,求∠DAE的度数.41.如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D.(1)求∠ADC的度数;(2)求证:DC=2DB.42.如图,∠1=∠2,∠A=∠B,AE=BE,点D在边AC上,AE与BD相交于点O;(1)求证:△AEC≌△BED;(2)若∠2=40°,求∠C的度数.参考答案一.选择题1.解:A、自行车的三角形车架是利用三角形的稳定性,故此选项不合题意;B、三角形房架是利用三角形的稳定性,故此选项不合题意;C、照相机的三脚架是利用三角形的稳定性,故此选项不符合题意;D、学校的栅栏门不是利用三角形的稳定性,故此选项符合题意;故选:D.2.解:A、3+4<8,不能组成三角形,故此选项错误;B、8+7=15,不能组成三角形,故此选项错误;C、14+12>20,能组成三角形,故此选项正确;D、5+5<11,不能组成三角形,故此选项错误;故选:C.3.解:第1个图形,是轴对称图形;第2个图形,不是轴对称图形;第3个图形,不是轴对称图形;第4个图形,是轴对称图形.故选:B.4.解:∵一个多边形的每一个外角都等于18°,且多边形的外角和等于360°,∴这个多边形的边数是:360°÷18°=20,故选:D.5.解:A、AD不是△ABC的高,故此选项不合题意;B、AD不是△ABC的高,故此选项不合题意;C、AD不是△ABC的高,故此选项不合题意;D、AD是△ABC的高,故此选项符合题意;故选:D.6.解:∵∠A+∠B+∠C=180°,∠A=75°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣75°﹣40°=65°,故选:A.7.解:∵△ABC≌△DEF,∴∠C=∠F=85°,∴∠B=180°﹣∠A﹣∠C=65°,故选:C.8.解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2020﹣2018=2,故选:B.9.解:连接AO并延长交BC于点E,如图所示.∵∠BOE=∠BAO+∠ABO,∠COE=∠CAO+∠ACO,∴∠BOC=∠BOE+∠COE=∠BAO+∠ABO+∠CAO+∠ACO.又∵∠BAC=∠BAO+∠CAO=80°,∠ABO=15°,∠ACO=20°,∴∠BOC=∠BAC+∠ABO+∠ACO=80°+15°+20°=115°.故选:A.10.解:A、设∠C=2x,则∠B=3x,∠A=6x,∴2x+3x+6x=180°,∴x=°,∴最大的角∠A=6x=°≈98.18°,∴该三角形不是直角三角形,选项A符合题意;B、∵∠B+∠A=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴最大的角∠C=90°,∴该三角形是直角三角形,选项B不符合题意;C、∵两个内角互余,且三个内角的和为180°,∴最大角=180°﹣90°=90°,∴该三角形是直角三角形,选项C不符合题意;D、设∠A=2y,则∠B=3y,∠C=5y,∴2y+3y+5y=180°,∴y=18°,∴最大角∠C=5y=5×18°=90°,∴该三角形是直角三角形,选项D不符合题意.故选:A.11.解:∵AE∥CD,∴∠D+∠E=180°,∵∠A+∠B+∠C+∠D+∠E=(5﹣2)×180°=540°,∠A=∠C=110°,∴∠B=540°﹣180°﹣110°﹣110°=140°.故选:C.12.解:点(﹣4,3)关于x轴对称的点的坐标为(﹣4,﹣3).故选:C.13.解:A、不满足三边关系,本选项不符合题意.B、边边角三角形不能唯一确定.本选项不符合题意.C、没有边的条件,三角形不能唯一确定.本选项不符合题意.D、斜边直角边三角形唯一确定.本选项符合题意.故选:D.14.解:A、由“三个角都相等的三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意.B、由“有一个角是60°的等腰三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意.C、由“∠A=60°,∠B=60°”可以得到“∠A=∠B=∠C=60°”,则由“三个角都相等的三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意.D、由“AB=AC,且∠B=∠C”只能判定△ABC是等腰三角形,故本选项符合题意.故选:D.15.解:A、已知CB=CE,再加上条件AB=DE,∠B=∠E,可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知CB=CE,再加上条件BC=DE,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知CB=CE,再加上条件AB=DE,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知CB=CE,再加上条∠A=∠D,∠B=∠E可利用AAS证明△ABC≌△DEC,故此选项不合题意;故选:C.16.解:∵∠1=∠2,∴AE平分∠DAF,故③正确;又∠3=∠4,∴∠1+∠3=∠2+∠4,即∠BAE=∠EAC,∴AE平分∠BAC,故⑤正确.故选:C.17.解:如图,过点P作PE⊥OB于E,∵OC是∠AOB的平分线,PD⊥OA,∴PE=PD=6,∴点P到边OB的距离为6.故选:B.18.解:AB边的取值范围是14﹣5<AB<5+14,即9<AB<19.故选:D.19.解:由于BD=CD,则点D是边BC的中点,所以AD一定是△ABC的一条中线.故选:C.20.解:①3cm是腰长时,三角形的三边分别为3cm、3cm、5cm,能组成三角形,周长=3+3+5=11cm,②3cm是底边长时,三角形的三边分别为3cm、5cm、5cm,能组成三角形,周长=3+5+5=13cm,综上所述,这个等腰三角形的周长是11cm或13cm.故选:C.21.解:过O点作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,如图,∵BO平分∠DBC,OD⊥BD,OE⊥BC,∴OD=OE,同理可得OE=OF,∴OD=OF,∴点O在∠A的平分线上,所以①正确;OD=OE=OF,所以②正确;∵不能确定∠ABC=∠ACB,∴不能确定∠OBE=∠OCE,∴不能确定OB=OC,所以③错误.故选:B.22.解:∵CD、BD分别平分∠ACE、∠ABC,∴∠CBD=∠ABC,∠DCE=∠ACE,由三角形的外角性质得,∠DCE=∠D+∠CBD,∠ACE=∠A+∠ABC,∴∠D+∠CBD=(∠A+∠ABC)∴∠D=∠A,∵∠A=70°,∴∠D=×70°=35°.故选:A.二.填空题23.解:根据三角形具有稳定性,主要是应用了三角形的稳定性.故答案为:三角形具有稳定性.24.解:因为3和4有一条完整的边和两个角,从而可以推算三角形的另外一个角的度数及其它两边的长度,所以至少要带2块,序号分别是③,④;带②③或者②④也都能唯一确定三角形,故答案为:③,④(答案不唯一).25.解:∵∠B=60°,∠C=50°,∴∠BAC=180°﹣60°﹣50°=70°,∵AD平分∠BAC,∴∠CAD=∠BAC=35°,∵∠ADB是△ADC的一个外角,∴∠ADB=∠CAD+∠C=85°,故答案为:85°.26.解:在△ABC中,∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣65°﹣45°=70°,∵AE平分∠BAC,∴∠BAE=∠BAC=×70°=35°,在△ABD中,∠B=65°,AD⊥BD,∴∠ADB=90°,∴∠BAD=90°﹣∠B=90°﹣65°=25°,∴∠DAE=∠BAE﹣∠BAD=35°﹣25°=10°.故答案为:10.27.解:∵△ABC≌△A'B'C',∴∠A=∠A′=60°,∠B=∠B′=50°,∴∠C′=180°﹣60°﹣50°=70°.故答案为:70°.28.解:由三角形的外角性质控可知,∠2=30°+45°=75°,∴∠1=180°﹣∠2=105°,故答案为:105.29.解:如图,延长AD至E,使DE=AD,∵AD是△ABC中BC边上的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB=9,∵AC=3,∴9+3=12,9﹣3=6,∴6<AE<12,∴3<AD<6.故答案为:3<AD<6.30.解:①当为锐角三角形时,如图1,∵∠ABD=50°,BD⊥AC,∴∠A=90°﹣50°=40°,∴三角形的顶角为40°;②当为钝角三角形时,如图2,∵∠ABD=50°,BD⊥AC,∴∠BAD=90°﹣50°=40°,∵∠BAD+∠BAC=180°,∴∠BAC=140°∴三角形的顶角为140°,故答案为40°或140°.31.解:∵点P关于x轴的对称点Q的坐标是(﹣3,2),∴点P的坐标为(﹣3,﹣2),∴点P关于y轴的对称点R的坐标是(3,﹣2),故答案为:(3,﹣2).32.解:∵MN是线段AB的垂直平分线,∴DA=DB,∴△BDC的周长=BC+CD+DB=BC+CD+DA=BC+AC=14,故答案为:14.三.解答题33.解:如图所示:34.解:∵△ABC的三边长分别为3、5、a,∴5﹣3<a<3+5,解得:2<a<8,故|a+1|﹣|a﹣8|﹣2|a﹣2|=a+1﹣(8﹣a)﹣2(a﹣2)=a+1﹣8+a﹣2a+4=﹣3.35.解:∵点A(a+2b,﹣1),B(﹣2,a﹣b)关于y轴对称,∴,解得.故a+b=0+1=1.36.证明:∵AB⊥AC,CD⊥BD,∴∠A=∠D=90°,在Rt△ABC和Rt△DCB中,,∴Rt△ABC≌Rt△DCB(HL).∴AC=BD.37.证明:∵OC平分∠MON,∴∠AOC=∠BOC,在△AOC和△BOC中,,∴△AOC≌△BOC(SAS).38.解:∵DE垂直平分AB,∴EA=EB,∵∠B=25°,∴∠EAB=∠B=25°,∵∠C=90°,∴∠CAB=65°,∴∠CAE=65°﹣25°=40°.39.解:∵∠BAC+∠B+∠C=180°(三角形内角和定理),∴∠BAC=180°﹣52°﹣28°=100°(等式的性质),∵AE平分∠BAC(已知),∴∠CAE=∠BAC=∠BAE=50°(角平分线的定义),∵AD⊥BC(已知),∴∠ADC=90°,∵∠CAD=180°﹣∠ADC﹣∠C=180°﹣90°﹣52°=38°,∴∠DAE=∠CAE﹣∠CAD=12°,故答案为:三角形内角和定理,100°,∠BAC,∠BAE,角平分线的定义,∠ADC,∠CAD,12°.40.解:∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣30°﹣70°=80°,∵AE平分∠BAC,∴∠BAE=∠BAC=40°,∵AD是△ABC的高,∴∠ADB=90°,∴∠BAD=90°﹣∠B=90°﹣30°=60°,∴∠DAE=60°﹣40°=20°.41.解:(1)∵AB=AC,∠BAC=120°,∴∠B=(180°﹣∠BAC)=(180°﹣120°)=30°,∵DE垂直平分AB,∴AD=BD,∴∠BAD=∠B=30°,∴∠ADC=∠B+∠BAD=30°+30°=60°;(2)∵∠ADC=60°,∠C=30°,∴∠DAC=90°,∴AD=CD,∠BAD=30°,∴∠B=∠BAD,∴BD=AD,∴DC=2DB.42.证明:(1)∵∠1=∠2∴∠BED=∠AEC,且AE=BE,∠A=∠B∴△AEC≌△BED(ASA)(2)∵△AEC≌△BED∴DE=EC,∠1=∠2=40°∴∠C=70°。
【期末试卷】八年级数学上册几何期末综合复习题1新人教版
八年级期末几何综合复习(一)1.如图,设△ABC和△CDE都是等边三角形,且∠EBD=65°,则∠AEB的度数是()A.115°B.120°C.125°D.130°2.如图,在四边形ABCD中,AB=AC,∠ABD=60°,∠ADB=78°,∠BDC=24°,则∠DBC=()A.18°B.20°C.25°D.15°3.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,AM的延长线交BC于点N,连接DM,下列结论:①DF=DN;②△DMN为等腰三角形;③DM平分∠BMN;④AE=EC;⑤AE=NC,其中正确结论的个数是()A.2个B.3个C.4个D.5个4.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC.点A、B分别在坐标轴上,且x轴恰好平分∠BAC,BC交x轴于点M,过C点作CD⊥x轴于点D,则的值为.5.已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于E,交斜边于F,则△CDE的周长为.6.如图,∠AOB=30°,点P为∠AOB内一点,OP=8.点M、N分别在OA、OB上,则△PMN周长的最小值为.7.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为度.8如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上,点M在x轴负半轴上,S△ABM=6.当线段OM最长时,点M的坐标为.9.如图,△ABC中,AC=BC,∠ACB=90°,点D为BC的中点,点E与点C关于直线AD对称,CE与AD、AB分别交于点F、G,连接BE、BF、GD,求证:(1)△BEF为等腰直角三角形;(2)∠ADC=∠BDG.10.如图,等腰△ABC中,AB=CB,M为ABC内一点,∠MAC+∠MCB=∠MCA=30°(1)求证:△ABM为等腰三角形;(2)求∠BMC的度数.11.如图,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足|a+b|+(a ﹣5)2=0(1)点A的坐标为,点B的坐标为;(2)如图,若点C的坐标为(﹣3,﹣2),且BE⊥AC于点E,OD⊥OC交BE延长线于D,试求点D的坐标;(3)如图,M、N分别为OA、OB边上的点,OM=ON,OP⊥AN交AB于点P,过点P作PG⊥BM交AN的延长线于点G,请写出线段AG、OP与PG之间的数列关系并证明你的结论.12.如图,在等边三角形△ABC中,AE=CD,AD、BE交于P点,BQ⊥AD于Q,(1)求证:BP=2PQ;(2)连PC,若BP⊥PC,求的值.13.在△ABC中,AD平分∠BAC交BC于D.(1)如图1,∠MDN的两边分别与AB、AC相交于M、N两点,过D作DF⊥AC于F,DM=DN,证明:AM+AN=2AF;(2)如图2,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB,求四边形AMDN 的周长.14.如图1,在平面直角坐标系中,点A、B分别在x轴、y轴上.(1)如图1,点A与点C关于y轴对称,点E、F分别是线段AC、AB上的点(点E不与点A、C重合),且∠BEF=∠BAO.若∠BAO=2∠OBE,求证:AF=CE;(2)如图2,若OA=OB,在点A处有一等腰△AMN绕点A旋转,且AM=MN,∠AMN=90°.连接BN,点P为BN的中点,试猜想OP和MP的数量关系和位置关系,说明理由.15.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.(1)如图1,若∠ACD=60°,则∠AFD=;(2)如图2,若∠ACD=α,连接CF,则∠AFC=(用含α的式子表示);(3)将图1中的△ACD绕点C顺时针旋转如图3,连接AE、AB、BD,∠ABD=80°,求∠EAB的度数.16.等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上.(1)如图1,求证:∠BCO=∠CAO(2)如图2,若OA=5,OC=2,求B点的坐标(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=18.分别以AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.17.如图,在平面直角坐标系中,已知A(0,a)、B(﹣b,0)且a、b满足+|a﹣2b+2|=0.(1)求证:∠OAB=∠OBA;(2)如图1,若BE⊥AE,求∠AEO的度数;(3)如图2,若D是AO的中点,DE∥BO,F在AB的延长线上,∠EOF=45°,连接EF,试探究OE和EF的数量和位置关系.19.如图①,平面直角坐标系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB为直角边作等腰Rt△ABC,∠CAB=90°,AB=AC.(1)求C点坐标;(2)如图②过C点作CD⊥X轴于D,连接AD,求∠ADC的度数;(3)如图③在(1)中,点A在Y轴上运动,以OA为直角边作等腰Rt△OAE,连接EC,交Y轴于F,试问A点在运动过程中S△AOB:S△AEF的值是否会发生变化?如果没有变化,请直接写出它们的比值(不需要解答过程或说明理由).20.如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n﹣2|=0.(1)求点D的坐标;(2)求∠AKO的度数;(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON⊥BP交AB于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.21.如图,△AOB和△ACD是等边三角形,其中AB⊥x轴于E点(1) 如图,若OC=5,求BD的长度(2) 设BD交x轴于点F,求证:∠OF A=∠DF A(3) 如图,若正△AOB的边长为4,点C为x轴上一动点,以AC为边在直线AC下方作正△ACD,连接ED,求ED的最小值。
(完整版)最新人教版八年级上几何知识点及类型题复习,推荐文档
知识点二:三角形的高、中线、角平分线
1、三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,_____和___之间的线段叫做三角形的
高
①锐角三角形的三条高在三角形_______部,三条高的交点也在三角形_______部;
②钝角三角形有两条高在三角形的___部,另一条高在三角形的____部,三条高的交点在三角形的__ 部;
4.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系
是( )A. 相等 B. 不相等 C. 互余或相等 D. 互补或相等
5.如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE,BC=DB。
D
3
E
C 4
2
A
1
B
8、外角和公式的应用正 n 边形的边数=______÷________正 n 边形每个外角的度数=_______÷________
图⑶中,点 P 是△ABC 内角平分线 BP 与外角平分线 CP 的交点,试探究∠BPC 与∠A 的关系.
两个三角形全等 3.如图 , 在∠AOB 的两边上,AO=BO , 在 AO 和 BO 上截取 CO=DO , 连结 AD 和 BC 交于点 P , 则△
AOD≌△BOC 理由是( ) A.ASA B.SAS C.AAS D.SSS
1.下列命题中正确的是( )A.全等三角形的高相等 B.全等三角形的中线相等
C.全等三角形的角平分线相等 D.全等三角形对应角的平分线相等
2.下列说法正确的是 ( )A.周长相等的两个三角形全等 B.有两边和其中一边的
对角对应相等的两个三角形全等 C.面积相等的两个三角形全等 D.有两角和其中一角的对边对应相等的
(完整word版)人教版数学八年级上册几何总复习
一、选择题 :1、.以以下图形是轴对称图形的有〔〕A:1个B:2个C:3个D:4个2、等腰三角形的周长是18cm,其中一边长为4cm,其他两边长分别为〔〕A4cm 10cmB. 7cm,7cmC4cm10cm 或 7cm,7cm D.无法确定3、等腰三角形的一个内角是50。
,那么别的两个角的度数分别是()〔A 〕65°,65°.〔B〕 50°,80°〔C〕 65°,65°或50°,80°. 〔D〕50°,50°. 4、如图,MB ND,MBA NDC ,以下条件中不能够判断△ ABM≌△ CDN 的是〔〕〔A〕M N 〔B〕 AB CD 〔C〕 AM CN 〔D〕 AM ∥ CN M NA CB D5、如图 , 在三角形 ABC中, ∠ C=90,AC=4cm,AB=7cm,AD均分∠ BAC交 BC于点 D,DE⊥AB于点 E,那么 EB的长是〔〕A. 3cm, D.不能够确定6、如图,一块三角形的玻璃打碎成了三块,某同学要到玻璃店配一块与此玻璃同样形状、大小完满同样的玻璃,最省事的方法是带哪一块去( )A. ①B.②C.③D.不能够确定7、以下说法错误的选项是()A. 关于某直线对称的两个图形必然能够重合 ;B. 两个全等的三角形必然关于某直线对称;C.轴对称图形的对称轴最少有一条 ;D.长方形是轴对称图形8、以下两点是关于 x 轴对称的点是 ()A(-1,3)和 (1,-3)B. (3,-5)和 (-3,-5)C(-2,4)和(2,-4)D.(5,-3)和 (5,3 )9、等腰三角形的一边长 7cm,另一边长 5cm,那么这个三角形的周长是〔〕A.12cm;B.17cm;C.19 cm;或 19cm10、假设∠ AOP=∠ BOP=15°,PC∥OA,PD⊥OA,PC=4,那么PD=〔〕A 4B 3C 2D 111、如图,⊿ ABC中边 AB的垂直均分线分别交BC、AB于点 D、E,AE=3, ⊿ ADC1的周长为 9 ㎝,那么⊿ ABC 的周长〔 〕A10㎝ B12 ㎝ C15 ㎝ D17㎝12、如图:数轴上表示 1,2的对应点分别为A,B ,点 B 关于点 A 的对称点为 C ,那么点 C 表示的数是〔 〕A2-1 B1-2C2-2D2-2BCC PDOAC A BBADE13、等腰三角形的一边长为 4cm ,另一边为 8cm ,那么它的周长是〔 〕 A16㎝ B20㎝ C12 ㎝ D 16 ㎝或 20㎝ 14、以下说法: ①一条直角边和斜边上的高对应相等的两个直角三角形全等②有两条边相等的两个直角三角形全等③假设两个直角三角形面积相等, 那么它们全等④两边和其中一边的对角对应相等的两个三角形全等。
人教版八年级数学上册期末专题复习:几何压轴题强化训练试题(含答案)
人教版八年级数学上册期末专题复习:几何压轴题强化训练试题1、如图,AB>AC,∠BAC的平分线与BC边的中垂线GD相交于点D,过点D作DE⊥AB于点E,DF⊥AC于点F,求证:BE=CF.2、如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.3、如图,在△ABC中,∠BAC=120°,AD,BE分别为△ABC的角平分线,连结DE.(1)求证:点E到DA,DC的距离相等;(2)求∠DEB的度数.4、在△ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明.5、概念学习:规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.6、如图,∠ABC=∠BAD=90°,点E,F分别是AC,BC的中点。
人教版八年级上册数学几何专题学习总汇
练12 (6分题) :如图,等腰三角形ABC的周长为21,底边BC=5,DE垂直平分AB, 求△BEC的周长。
例13 (6分题) :如图,已知△ABC,请你用尺规作图画出△ABC关于直线l的对称图形。
练14(6分题) :如图,已知△ABC,请你用尺规作图画出△ABC关于直线l 的对称图形。
例15(7分题):已知,△ABC和△ECD均为等边三角形,且B、C、D三点在同一条直线 上,求证:(1)BE=AD(2)FG∥BD
八年级数学(上)几何证明练习题
1、已知:在⊿ABC中,∠A=90度,AB=AC,在BC上任取一点P,作PQ∥AB交AC于 Q,作PR∥CA交BA于R,D是BC的中点,求证:⊿RDQ是等腰直角三角形。
A Q
R C B P D
2、已知:在⊿ABC中,∠A=900,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC 于F,求证:∠ADB=∠FDC。
学法指津
• 全等三角形的复杂图形解题思路与基本图 形的解题思路一致。解答复杂图形,要把 复杂图形分解成基本图形进行解答,就会 觉得非常简单了。 • 图形越复杂,条件越多,做起来越简单, 因为不用做辅助线;图形越简单,条件越 少,做起来越难,往往要通过画辅助线来 创造条件解决。 • 解决复杂图形题目时,一般把已知条件在 图中描出来或标出来,这样有利于整理条 件。
①
②
③
例7(6分题) :如图,要在燃气管道l上修建一个泵站,分别向A、B两镇供气。(1)泵站C 修建在什么地方,可使所用的燃气管线最短?(不写做法,保留作图痕迹)( 2)请你在(1) 的基础上,过A点作AD⊥l,并连接DB,求证:AD+DB>AC+CB。
练8 (6分题) :如图,已知牧马营地M处,每天牧马人要赶马群先到河边饮水,再到草地上 吃草,最后回到营地,试着设计出最短的牧马路线(不写做法,保留作图痕迹)
人教版初二数学上册期末复习几何综合
13名校期末试题点拨——几何部分题型一:全等三角形与轴对称思路导航全等三角形是初中几何学习中的重要内容之一,是今后学习其他知识的基础。
判断三角形全等的公理有SAS、ASA、AAS、SSS和HL(直角三角形),如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件,引出相应的辅助线然后再证明。
一、常见辅助线的作法有以下几种:1. 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对称”;2. 若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”;3. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对称”,所考知识点常常是角平分线的性质定理或逆定理;4. 过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;5. 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
二、常见模型1.最值问题:“将军饮马”模型;2. 全等三角形经典模型:三垂直模型、手拉手模型、半角模型以及双垂模型等。
三、尺规作图部分地区会考察尺规作图,难点在于构造轴对称图形解决几何问题。
12【例1】 ⑴如下左图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=95°,则∠2的度数为( )(2013海淀期末)A .24°B .25°C .30°D .35°⑵长为20,宽为a 的矩形纸片(10<a <20),如上右图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n 次操作后,剩下的矩形为正方形,则操作停止.当n =3时,a 的值为 .【解析】⑴∵∠A =60°,∴∠AEF +∠AFE =180°-60°=120°, ∴∠FEB +∠EFC =360°-120°=240°,∵由折叠可得:∠B ′EF +∠EFC ′=∠FEB +∠EFC =240°, ∴∠1+∠2=240°-120°=120°, ∵∠1=95°,∴∠2=120°-95°=25°,故选:B .⑵由题意,可知当10<a <20时,第一次操作后剩下的矩形的长为a ,宽为20-a ,所以第二次操作时剪下正方形的边长为20-a ,第二次操作以后剩下的矩形的两边分别为20-a ,2a -20. 此时,分两种情况:①如果20-a >2a -20,即a <403,那么第三次操作时正方形的边长为2a -20. 则2a -20=(20-a )-(2a -20),解得a =12;②如果20-a <2a -20,即a >403,那么第三次操作时正方形的边长为20-a . 则20-a =(2a -20)-(20-a ),解得a =15.典题精练21C'B'FE CBA 第二次操作第一次操作3∴当n =3时,a 的值为12或15. 故答案为:12或15.【例2】 ⑴如图所示,在长方形ABCD 称轴l 上找点P ,使得△P AB 、△PBC 均为等腰三角形,则满足条件的点P 有( ).A .1个B .3个C .5个D .6个【解析】C⑵已知,横线和竖线相交的点叫做格点,P 、A 、B 为格点上的点,A 、B 的位置如图所示,若此三点能够构成等腰三角形,P 点有 种不同的位置? 【解析】12种,如下图所示:【例3】 ⑴ 如图1,在等边三角形ABC 中,AB =2,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使BP +PE 的值最小;⑵ 如图2,正方形ABCD 的边长为2,E 为AB 的中点,在AC 上找一点P ,使PB +PE 的值最小;⑶ 如图3,⊙O 的半径为2,点A 、B 、C 在⊙O 上,OA ⊥OB ,∠AOC =60°,P 是OB 上一动点,求P A +PC 的最小值;⑷ 如图4,在四边形ABCD 的对角线AC 上找一点P ,使∠APB =∠APD .保留作图痕迹,不必写出作法.图4图3图2图1P DCAOP C BAP E D CB AP E D CBA【解析】 ⑴作点B 关于AD 的对称点,恰好与点C 重合,连接CE 交AD 于一点,则这点就是所求的点P ,故BP +PE 的最小值为223BC BE -=;⑵连接BD ,由正方形对称性可知,B 与D 关于直线AC 对称.连接ED 交AC 于P ,则lD CBA BA4PB +PE 的最小值是225AD AE +=;⑶作A 关于OB 的对称点A ′,连接A ′C ,交OB 于P ,P A +PC 的最小值即为A ′C 的长,∵∠AOC =60°,∴∠A ′OC =120°,作OD ⊥A ′C 于D ,则∠A ′OD =60°,∵OA ′=OA =2,A ′D =3,∴A ′C =23⑶如图4,首先过点B 作BB ′⊥AC 于O ,且OB =OB ′,连接DB ′并延长交AC 于P ,由AC 是BB ′的垂直平分线,可得∠APB =∠APD .B'DA'图4图3图2图1P DCB AO P C B AP E D CB AP E D CBA【例4】 如图1,在ABC △中,2ACB B ∠=∠,BAC ∠的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线l AO ⊥于H ,分别交直线AB AC BC 、、于点N E M 、、. ⑴当直线l 经过点C 时(如图2),证明:BN CD =; ⑵当M 是BC 的中点时,写出CE 和CD 之间的等量关 系,并加以证明;⑶请直接写出BN CE CD 、、之间的等量关系.(海淀期末考试)【解析】 ⑴证明:连接ND .∵AO 平分BAC ∠, ∴12∠=∠.∵直线l AO ⊥于H , ∴4590∠=∠=︒. ∴67∠=∠. ∴AN AC =. ∴NH CH =.∴AH 是线段NC 的中垂线. ∴DN DC =. ∴89∠=∠.∴AND ACB ∠=∠.5∵3AND B ∠=∠+∠,2ACB B ∠=∠, ∴3B ∠=∠. ∴BN DN =. ∴BN DC =.⑵如图,当M 是BC 中点时,CE 和CD 之间的等量关系为2CD CE =. 证明:过点C 作'CN AO ⊥交AB 于'N .由(1)可得'BN CD =,'AN AC =,AN AE =. ∴43,'NN CE ∠=∠=.过点C 作CG AB ∥交直线l 于G . ∴42∠=∠,1B ∠=∠. ∴23∠=∠. ∴CG CE =.∵M 是BC 中点, ∴BM CM =.在BNM △和CGM △中, 1,,,B BM CM NMB GMC ∠=⎧⎪=⎨⎪∠=∠⎩∴BNM CGM △≌△. ∴BN CG =. ∴BN CE =.∴''2CD BN NN BN CE ==+=.⑶BN CE CD 、、之间的等量关系:当点M 在线段BC 上时,CD BN CE =+; 当点M 在BC 的延长线上时,CD BN CE =-; 当点M 在CB 的延长线上时,CD CE BN =-.一、直角三角形的性质 1. 直角三角形的两个锐角互余;2. 直角三角形斜边上的中线等于斜边的一半;3. 直角三角形的两直角边的乘积等于斜边与斜边上高的乘积,即ab =c h ;4. 勾股定理:直角三角形两直角边的平方和等于斜边的平方,即222c b a =+;5. 在直角三角形中,30°角所对的直角边等于斜边的一半(或含30°的直角三角形三边之比思路导航题型二:直角三角形与勾股定理6为1:3:2);6. 含45°角的直角三角形三边之比为1:1:2. 二、直角三角形的判定 1. 有一个角为90°的三角形是直角三角形; 2. 两个锐角互余的三角形是直角三角形;3. 勾股定理的逆定理:在以a 、b 、c 为边的三角形中,若222c b a =+,则这个三角形是以c 为斜边的直角三角形;4. 一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.【例5】 在给定的图形内作一条折线AB 1C 1D 1E ,使AB 1⊥AB ,B 1C 1⊥BC ,C 1D 1⊥CD ,D 1E ⊥DE ,且A ,B ,C ,D ,E ,B 1,C 1,D 1都是格点.EDCBA【解析】D 1C 1B 1EDCBA【例6】 如图,AC =AB ,DC =DB ,∠CAB =60°,∠CDB =120°,E 是AC 上一点,F 是AB 延长线上一点,且CE =BF .典题精练7CE BF C DBF CD BD =⎧⎪∠=∠⎨⎪=⎩∴△DEC ≌△DFB , ∴DE =DF . ⑵CE +BG =EG ,证明:连接DA , 在△ACD 和△ABD 中AC AB AD AD CD DB =⎧⎪=⎨⎪=⎩∴△ACD ≌△ABD , ∴∠CDA =∠BDA =60°,∵∠EDG =∠EDA +∠ADG =∠ADG +∠GDB =60°,∴∠CDE =∠ADG ,∠EDA =∠GDB , ∵∠BDF =∠CDE , ∴∠GDB +∠BDF =60°,即∠GDF =60°图1C AEG BFD8在△DGF 和△DGE 中 DE DF EDG GDF DG DG =⎧⎪∠=∠⎨⎪=⎩∴△DGF ≌△DEG , ∴FG =EG , ∵CE =BF ,∴CE +BG =EG .⑶过C 作CM ⊥AD 交AD 的延长线于M , 在△AMC 和△ABC 中 AMC ABC DAC BAC AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AMC ≌△ABC , ∴AM =AB .CM =CB ,由⑴⑵可知:DM +BE =DE , ∵AE =3,∠AED =90°,∠DAB =60°, ∴AD =6,∴DM =AB -6=BE +3-6=BE -3,【例7M 图2DABCE9AC BC ACB BCE DC CE =⎧⎪∠=∠⎨⎪=⎩AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE (SAS ), ∴AD =BE ,ABCDN F E图2M AC F BMEDN图31011NMDC BA训练1. ⑴如图所示,EFGH 是一个台球桌面,有黑白两球分别置于A B 、两点的位置上,试问怎样撞击黑球A ,经桌面HE EF 、连续反弹后,准确击中白球B ?(写出作法并画图)HGFEAB⑵如图,在锐角△ABC 中,4245AB BAC =∠=,°,BAC ∠的平分线交BC于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是___________.【解析】 ⑴ 如图所示:分别作点A B ,关于HE EF ,的对称点''A B ,,连结''A B 与HE EF ,交于M N ,两点.折线AM MN NB --就是白球的运动路径.(可由对称证明角度相等,类似于物理中的镜面反射问题) ⑵ 过B 作BE AC ⊥,与AD 交点即为M ,过M 作MN AB ⊥,垂足即为N ,BM MN BE +=,又∵垂线段最短,∴BE 为最短距离,长为4.训练2. 如图,在△ABC 中,AC =BC ,∠ACB =90°. 将△ABC 绕点C 逆时针旋转α角,得到△A 1B 1C ,连结BB 1,设B 1C 交AB 于D ,A 1B 1分别交AB 、AC 于E 、F .⑴ 当090︒<α<︒时,如图1,请在不添加任何线段的情况下,找出一对全等三角形,并加以证明(△ABC ≌△A 1B 1C 除外);⑵ 在⑴的条件下,当△BB 1D 是等腰三角形时,求α;⑶ 当90180︒<α<︒时,如图2,求证:△A 1CF ≌△BCD . (三帆期中)图2图1ABCA 1B 1E F DDFEB 1A 1CBA【解析】 ⑴ 答案不唯一,例如:1ACF BCD △≌△,1B CF ACD △≌△ ⑵ 由题意得111902CB B CBB ∠=∠=︒-α思维拓展训练(选讲)BAEFGHNM B'A'12∴11452DBB ∠=︒-α,又145BDB ∠=︒+α在1BDB △中,只能有11BDB BB D ∠=∠,即190452︒-α=︒+α解得30α=︒⑶ 111CB CA BCD ACF B A =∠=∠∠=∠,,, ∴△A 1CF ≌△BCD .训练3. 已知如图,AB=AC ,PB=PC ,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E .PEDC B AAB C DEP⑴ 求证:PD=PE ;⑵ 若BP AB =,o 45=∠DBP ,2=AP ,求四边形ADPE 的面积. 【解析】 ⑴ 证明:连接AP ,在ABP △和ACP △中,∵AB =AC ,PB =PC ,AP =AP , ∴ABP △≌ACP △(SSS )∴CAP BAP ∠=∠,AP 是A ∠的平分线; 又∵PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ∴PD =PE (角平分线上点到角的两边距离相等)⑵ 解:∵PD ⊥AB ,o 45=∠DBP , ∴BDP △是等腰直角三角形.设x DP =,则x BP ⋅=2,在直角ADP △中,由勾股定理()[]42122=++x x ,整理得:()42242=+x ,2222+=x .∴四边形ADPE 的面积=2⨯ADP △的面积 =()()22222121=+⋅+=+x x训练4. ⑴如图,等腰直角三角形ABC 分别沿着某条直线对称得到图形b 、c 、d .若上述对称关系保持不变.平移ABC ∆,使得四个图形能够拼成一个重叠且无缝隙的正方形,此时点C 的坐标和正方形的边长为( )13(海淀期末)A .11222⎛⎫- ⎪⎝⎭,, B .(11)2-,,C.(11)-, D.1122⎛⎫- ⎪⎝⎭,⑵如图,△ABC 中,AB =BC ,∠B =120°,AB 的垂直平分线交DC 间的数量关系,并证明. 【解析】 ⑴ D ⑵ 连结BD ,证90DBC ∠=︒,可得12AD DC =14【练习1】 ⑴如图,正方形纸片ABCD 的边长为1,M ,N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使点A 落在MN 上,落点记为A ',折痕交AD 于点E .若M 、N 分别是AD 、BC 边的中点, 则A N '=_________;若M 、N 分别是AD 、BC 边上距DC 最近的n 等 分点(2n ≥,且n 为整数),则A N '=_________(用含有n 的式子表示)(北京中考)⑵如图,D 为ABC △内一点,CD 平分ACB ∠, BD CD ⊥,A ABD ∠=∠, 若5AC =,3BC =,则BD 的长为( ) A .1 B .1.5 C .2 D .2.5【解析】 ⑴32,21n n-(2n ≥,且n 为整数)⑵ A (提示:延长BD )【练习2】 如图,ABC △是等腰三角形,AB AC =,AD 是角平分线,以AC 为边向外作等边三角形ACE ,BE 分别与AD 、AC 交于点F 、点G ,连接CF .⑴ 求证:FBD FCD ∠=∠;⑵ 若1FD =,求线段BF 的长. (实验期末) 【解析】 ⑴ ∵AB AC =,AD 是角平分线∴AD BC ⊥,D 是BC 中点 ∴BF CF =∴FBC FCB ∠=∠⑵ ∵AB AC =,∴ABC ACB ∠=∠∵FBC FCB ∠=∠,∴ABE ACF ∠=∠ 由题意AB AE AC CE === ∴ABE AEB ACF ∠=∠=∠ ∴60EFC CAE ∠=∠=° ∴60BFD CFD ∠=∠=° ∴22BF FD ==复习巩固DCB AG FEDCB A。
人教版八年级数学上册期末专题复习:几何压轴题强化训练试题(含答案)
人教版八年级数学上册期末专题复习:几何压轴题强化训练试题1、如图,AB>AC,∠BAC的平分线与BC边的中垂线GD相交于点D,过点D作DE⊥AB于点E,DF⊥AC于点F,求证:BE=CF.2、如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.3、如图,在△ABC中,∠BAC=120°,AD,BE分别为△ABC的角平分线,连结DE.(1)求证:点E到DA,DC的距离相等;(2)求∠DEB的度数.4、在△ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明.5、概念学习:规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.6、如图,∠ABC=∠BAD=90°,点E,F分别是AC,BC的中点。
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题一(含答案) (38)
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题一(含答案)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,其中AB AC =,AE AD =,90BAC EAD ∠=∠=︒,45ABC ACB AED ADE ∠=∠=∠=∠=︒,B 、C 、E 在同一条直线上,连结DC .(1)请在图2中找出与ABE ∆全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC BE ⊥.【答案】(1)与ABE ∆全等的三角形为△ACD ,理由见解析;(2)见解析【解析】【分析】(1)根据等式的基本性质可得∠BAE=∠CAD ,然后利用SAS 即可证出ABE ∆≌△ACD ;(2)根据全等三角形的性质和已知条件可得∠ABE=∠ACD=45°,从而求出∠DCB=90°,然后根据垂直的定义即可证出结论.【详解】解:(1)与ABE ∆全等的三角形为△ACD ,理由如下∵90BAC EAD ∠=∠=︒∴∠BAC +∠CAE=∠EAD +∠CAE∴∠BAE=∠CAD在ABE ∆和△ACD 中AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴ABE ∆≌△ACD(2)∵ABE ∆≌△ACD ,45ABC ACB AED ADE ∠=∠=∠=∠=︒∴∠ABE=∠ACD=45°∴∠DCB=∠ACD +∠ACB=90°∴DC BE ⊥【点睛】此题考查的是全等三角形的判定及性质和垂直的判定,掌握利用SAS 判定两个三角形全等、全等三角形的对应角相等和垂直的定义是解决此题的关键.72.如图,AB 、ED 分别垂直于BD ,点B 、D 是垂足,且AB CD =,AC CE =,求证:ACE ∆是直角三角形.【答案】见解析【解析】【分析】利用HL 证出Rt △ABC ≌Rt △CDE ,从而得出∠ACB=∠CED ,然后根据直角三角形的性质和等量代换可得∠ACB +∠ECD=90°,从而求出∠ACE ,最后根据直角三角形的定义即可证明.【详解】证明:∵AB 、ED 分别垂直于BD∴∠ABC=∠CDE=90°在Rt △ABC 和Rt △CDE 中AB CD AC CE =⎧⎨=⎩∴Rt △ABC ≌Rt △CDE∴∠ACB=∠CED∵∠CED +∠ECD=90°∴∠ACB +∠ECD=90°∴∠ACE=180°-(∠ACB +∠ECD )=90°∴△ACE 为直角三角形【点睛】此题考查的是全等三角形的判定及性质和直角三角形的判定,掌握利用HL 判定两个三角形全等、全等三角形的对应角相等和直角三角形的定义是解决此题的关键.73.如图,在ABC ∆中,AB AC =,点D 在ABC ∆内,BD BC =,60DBC ∠=,点E 在ABC ∆外,150CBE ∠=,60ACE ∠=.(1)求ADC ∠的度数.(2)判断ACE ∆的形状并加以证明.(3)连接DE ,若DE CD ⊥,3AD =,求DE 的长.【答案】(1)∠ADC=150°;(2)△ACE 是等边三角形,证明见解析;(3)DE=6.【解析】【分析】(1)先证明△DBC 是等边三角形,根据SSS 证得△ADC ≌△ADB ,得到∠ADC=∠ADB 即可得到答案;(2)证明△ACD ≌△ECB 得到AC=EC ,利用60ACE ∠=即可证得ACE ∆的形状;(3)根据DE CD ⊥及等边三角形的性质求出∠EDB=30°,利用150CBE ∠=求出∠DBE=90°,根据△ACD ≌△ECB ,AD=3,即可求出DE 的长.【详解】(1)∵BD=BC ,∠DBC=60°,∴△DBC 是等边三角形.∴DB=DC ,∠BDC=∠DBC=∠DCB=60°.在△ADB 和△ADC 中,AC AB AD AD DC DB =⎧⎪=⎨⎪=⎩, ∴△ADC ≌△ADB .∴∠ADC=∠ADB.∴∠ADC=12(360°﹣60°)=150°.(2)△ACE是等边三角形.理由如下:∵∠ACE=∠DCB =60°,∴∠ACD=∠ECB.∵∠CBE=150°,∠ADC=150°∴∠ADC=∠EBC.在△ACD和△ECB中,ACD ECB CD CBADC EBC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACD≌△ECB.∴AC=CE.∵∠ACE=60°,∴△ACE是等边三角形.(3)连接DE.∵DE⊥CD,∴∠EDC=90°.∵∠BDC=60°,∴∠EDB=30°.∵∠CBE=150°,∠DBC=60°,∴∠DBE=90°.∴EB=12 DE.∵△ACD≌△ECB,AD=3,∴EB = AD =3.∴DE=2EB=6.【点睛】此题考查等边三角形的判定及性质,直角三角形的性质,三角形全等的判定及性质,(3)是此题的难点,证得∠EDB=30°,∠DBE=90°是解题的关键.74.如图,BE⊥AC、CF⊥AB于点E、F,BE与CF交于点D,DE=DF,AF=AE,连结AD .求证:(1)∠FAD=∠EAD;(2)BD=CD.【答案】(1)见详解;(2)见详解.【解析】【分析】(1)根据BE⊥AC、CF⊥AB,DE=DF可直接得出AD是∠BAC的平分线,由角平分线的性质定理的逆定理,可知∠FAD=∠EAD;(2)由DE=DF,AD=AD可知Rt∠ADF∠Rt∠ADE,可得出∠ADF=∠ADE,由对顶角相等可知∠BDF=∠CDE,进而可得出∠ADB=∠ADC,进而得∠ABD ≌∠ACD ,进而即可得到结论.【详解】(1)∵BE ⊥AC 、CF ⊥AB ,DE=DF ,∴AD 是∠BAC 的平分线,∴∠FAD=∠EAD ;(2)∵∠ADF 与∠ADE 是直角三角形,DE=DF ,AD=AD ,∴Rt ∠ADF ∠Rt ∠ADE (HL ),∴∠ADF=∠ADE ,∵∠BDF=∠CDE ,∴∠ADF+∠BDF=∠ADE+∠CDE ,即∠ADB=∠ADC ,在∠ABD 与∠ACD 中,∵FAD EAD AD AD ADB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴∠ABD ∠∠ACD (ASA ),∴BD=CD .【点睛】本题主要考查三角形全等的判定和性质定理以及角平分线性质定理的逆定理,掌握HL ,ASA 判定三角形全等,是解题的关键.75.已知:如图,点E C ,在线段BF 上,//AC DF AC DF BE CF ==,,.求证://AB DE .【答案】见解析.【解析】【分析】根据题意先证明△ABC≌△DEF,据此求得∠ABC=∠DEF,再利用平行线的判定进一步证明即可.【详解】AC DF,∵//∴∠ACB=∠DFE,∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC与△DEF中,∵AC=DF,∠ACB=∠DFE,BC=EF,∴△ABC≌△DEF(SAS),∴∠ABC=∠DEF,∴AB∥DE.【点睛】本题主要考查了平行线的性质与判定及全等三角形的性质与判定,熟练掌握相关概念是解题关键.76.如图1,直线AB 分别与x 轴、y 轴交于A 、B 两点,OC 平分AOB ∠交AB 于点C ,点D 为线段AB 上一点,过点D 作//DE OC 交y 轴于点E ,已知AO m =,BO n =,且m n 、满足2(6)|2|0n n m -+-=.(1)求AB 、两点的坐标; (2)若点D 为AB 中点,延长DE 交x 轴于点F ,在ED 的延长线上取点G ,使DG DF =,连接BG .①BG 与y 轴的位置关系怎样?说明理由;②求OF 的长;(3)如图2,若点F 的坐标为1010(,),E 是y 轴的正半轴上一动点,P 是直线AB 上一点,且P 的坐标为66-(,),是否存在点E 使EFP △为等腰直角三角形?若存在,求出点E 的坐标;若不存在,说明理由.【答案】(1)点A 的坐标为(3,0),点B 的坐标为(0,6);(2)①BG ⊥y 轴,理由见解析;②32;(3)存在,点E 的坐标为(0,4) 【解析】【分析】(1)根据平方和绝对值的非负性即可求出m 和n 的值,从而求出点A 、B 的坐标;(2)①利用SAS 即可证出△BDG ≌△ADF ,从而得出∠G=∠AFD ,根据平行线的判定可得BG ∥AF ,从而得出∠GBO=90°,即可得出结论;②过点D 作DM ⊥x 轴于M ,根据平面直角坐标系中线段的中点公式即可求出点D 的坐标,从而求出OM=32,DM=3,根据角平分线的定义可得∠COA=45°,再根据平行线的性质和等腰三角形的判定可得△FMD 为等腰三角形,FM=DM=3,从而求出点F 的坐标;(3)过点F 作FG ⊥y 轴于G ,过点P 作PH ⊥y 轴于H ,利用AAS 证出△GFE ≌△HEP ,从而得出FG=EH ,GE=PH ,然后根据点F 和点P 的坐标即可求出OE 的长,从而求出点E 的坐标.【详解】解:(1)∵2(6)|2|0n n m -+-=,2(6)0,|2|0n n m -≥-≥∴60,20n n m -=-=解得:6,3n m ==∴AO=3,BO=6∴点A 的坐标为(3,0),点B 的坐标为(0,6);(2)①BG ⊥y 轴,理由如下∵点D 为AB 中点∴BD=AD在△BDG 和△ADF 中DG DF BDG ADF BD AD =⎧⎪∠=∠⎨⎪=⎩∴△BDG ≌△ADF∴∠G=∠AFD∴BG∥AF∴∠GBO=180°-∠AOB=90°∴BG⊥y轴;②过点D作DM⊥x轴于M∵点D为AB中点∴点D的坐标为(0360,22)=(3,32)∴OM=32,DM=3∵OC平分AOB∠∴∠COA=145 2AOB∠=︒∵//DE OC∴∠MFD=∠COA=45°∴△FMD为等腰三角形,FM=DM=3∴OF=FM-OM=32;(3)存在,过点F作FG⊥y轴于G,过点P作PH⊥y轴于H若EFP △为等腰直角三角形,必有EF=PE ,∠FEP=90°∴∠GFE +∠GEF=90°,∠HEP +∠GEF=90°∴∠GFE=∠HEP在△GFE 和△HEP 中90GFE HEP FGE EHP EF PE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△GFE ≌△HEP∴FG=EH ,GE=PH∵点F 的坐标为1010(,),点P 的坐标为66-(,)∴OG=10,PH=6∴GE=6∴OE=OG -GE=4∴点E 的坐标为(0,4).【点睛】此题考查的是非负性的应用、全等三角形的判定及性质、平行线的判定及性质和平面直角坐标系中线段中点坐标的求法,掌握平方和绝对值的非负性、构造全等三角形的方法、全等三角形的判定及性质、平行线的判定及性质和平面直角坐标系中线段中点坐标公式是解决此题的关键.77.过正方形ABCD (四边都相等,四个角都是直角)的顶点A 作一条直线MN .图(1) 图(2) 图(3)(1)当MN 不与正方形任何一边相交时,过点B 作BE MN ⊥于点E ,过点D 作DF MN ⊥于点F 如图(1),请写出EF ,BE ,DF 之间的数量关系,并证明你的结论.(2)若改变直线MN 的位置,使MN 与CD 边相交如图(2),其它条件不变,EF ,BE ,DF 的关系会发生变化,请直接写出EF ,BE ,DF 的数量关系,不必证明;(3)若继续改变直线MN 的位置,使MN 与BC 边相交如图(3),其它条件不变,EF ,BE ,DF 的关系又会发生变化,请直接写出EF ,BE ,DF 的数量关系,不必证明.【答案】(1)EF BE DF =+,证明见解析;(2)EF BE DF =-;(3)EF DF BE =-【解析】【分析】(1)根据同角的余角相等可证BAE ADF ∠=∠,再证ABE DAF ∆≅∆,根据全等三角形的对应边相等进行代换即可;(2)根据同角的余角相等可证BAE ADF ∠=∠,再证ABE DAF ∆≅∆,根据全等三角形的对应边相等进行代换即可;(3)根据同角的余角相等可证BAE ADF ∠=∠,再证ABE DAF ∆≅∆,根据全等三角形的对应边相等进行代换即可.【详解】(1)EF BE DF =+,证明:四边形ABCD 是正方形AB DA ∴=,90BAD ∠=︒90BAE DAF ∴∠+∠=︒又BE MN ⊥,DF MN ⊥90BEA DFA ∴∠=∠=︒90DAF ADF ∠∠=+︒∴BAE ADF ∠=∠在ABE ∆和DAF ∆中BEA DFA BAE ADF AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩ABE DAF ∆≅∆()AASAF BE ∴=,AE DF =EF AF AE BE DF ∴=+=+(2)EF BE DF =-,理由是:四边形ABCD 是正方形AB DA ∴=,90BAD ∠=︒90BAE DAF ∴∠+∠=︒又BE MN ⊥,DF MN ⊥90BEA DFA ∴∠=∠=︒90DAF ADF ∠∠=+︒∴BAE ADF ∠=∠在ABE ∆和DAF ∆中BEA DFA BAE ADF AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩ABE DAF ∆≅∆()AASAF BE ∴=,AE DF =∴EF=AF-AE=BE-DF(3)EF DF BE =-,理由是:四边形ABCD 是正方形AB DA ∴=,90BAD ∠=︒90BAE DAF ∴∠+∠=︒又BE MN ⊥,DF MN ⊥90BEA DFA ∴∠=∠=︒90DAF ADF ∠∠=+︒∴BAE ADF ∠=∠在ABE ∆和DAF ∆中BEA DFA BAE ADF AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩ABE DAF ∆≅∆()AASAF BE ∴=,AE DF =EF=AE-AF=DF-BE【点睛】本题考查的是三角形全等的判定和性质,掌握三角形的判定方法及能利用同角的余角相等证明BAE ADF ∠=∠是关键.78.如图,已知B ,D 在线段AC 上,且AD CB =,BF DE =,90AED CFB ∠=∠=︒求证:(1)AED CFB ∆≅∆;(2)//BE DF .【答案】(1)详见解析;(2)详见解析;【解析】【分析】(1)根据已知条件直接用直角三角形的“HL ”判定即可;(2)由(1)中全等的三角形可得∠BDE=∠DBF ,再判定DBE BDF ∆≅∆,得出DBE BDF ∠=∠,根据“内错角相等,两直线平行”即可证明.【详解】(1)90AED CFB ∠︒∠==在RT AED ∆和RT CFB ∆中AD CB DE BF =⎧⎨=⎩AED CFB ∴∆≅∆()HL(2)AED CFB ∆≅∆BDE DBF ∴∠=∠在DBE ∆和BDF ∆中DE BF BDE DBF BD DB =⎧⎪∠=∠⎨⎪=⎩DBE BDF ∴∆≅∆(SAS)DBE BDF ∴∠=∠//BE DF ∴【点睛】本题考查的是三角形的全等,掌握三角形全等的判定方法是关键.79.如图,已知点A 、F 、E 、C 在同一条直线上,//AB CD ,ABE CDF ∠=∠,AF CE =,连结BC 、AD .(1)请直接写出图中所有的全等三角形(不添加其它的线);(2)从(1)中的全等三角形中任选一组进行证明.【答案】(1)△ABE≌△CDF,△ABC≌△CDA,△BEC≌△DFA;(2)证明见解析.【解析】【分析】(1)利用平行和已知条件可得出△ABE≌△CDF,△ABC≌△CDA,△BEC≌△DFA;(2)可证明△ABE≌△CDF,利用平行可得到∠BAF=∠DCF,且可得出AE=FC,可利用AAS证明.【详解】(1)∠ABE∠∠CDF,∠ABC∠∠CDA,∠BEC∠∠DFA,(2)选∠ABE∠∠CDF进行证明,证明:∠AB∠CD,∠∠BAE=∠DCF∠AF=CE,∠AF+EF=CE+EF,即AE=CF.在∠ABE 和∠CDF 中A =C F BAE DCF BE D AF CE ∠=∠⎧⎪∠∠⎨⎪=⎩, ∠∠ABE ∠∠CDF (AAS ).【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法SSS 、SAS 、ASA 、AAS 和HL 是解题的关键.80.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:()1当a 为多少时,能使得图()2中//AB CD ?说出理由,()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.【解析】【分析】(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.【详解】()1当a 为15时,//AB CD ,理由:由图()2,若//AB CD ,则30BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒, 所以,当a 为15时,//AB CD .注意:学生可能会出现两种解法:第一种:把//AB CD 当做条件求出a 为15,第二种:把a 为15当做条件证出//AB CD ,这两种解法都是正确的.()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒ 证明: ,30FEM CAM C C ∠=∠+∠∠=︒,30FEM CAM ∴∠=∠+︒,EFM BDC DBM ∠=∠+∠,DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠, 180,45EFM FEM M M ∠+∠+∠=∠=︒,3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,∴∠+∠+∠=︒--=︒,DBM CAM BDC1803045105∠+∠+∠的大小不变,是105.所以,DBM CAM BDC【点睛】此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.。
(word完整版)人教版八年级上册数学几何练习题
人教版八年级上册数学几何练习题1、已知:在⊿ABC中,∠A=90,AB=AC,在BC上任取一点P,作PQ∥AB交AC于Q,作PR∥CA交BA于R,D是BC的中点,求证:⊿RDQ是等腰直角三角形。
2、已知:在⊿ABC中,∠A=90,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。
B3、已知:在⊿ABC中BD、CE是高,在BD、CE或其延长线上分别截取BM=AC、CN=AB,求证:MA⊥NA。
C4、已知:如图,在△ABC中,BP、CP分别平分∠ABC 和∠ACB,DE过点P交AB于D,交AC于E,且DE∥BC.求证:DE-DB=EC. APE DBC图⑴5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
写出点O到△ABC的三个顶点A、B、C的距离的大小关系;如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
A M B6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD,连结EC、ED,求证:CE=DE7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。
几何证明习题答案1. 连接AD,由△ABC为等腰直角三角形可得AD垂直AC,且AD=BD,∠DAQ=∠DBR=45度, 又由平行关系得,四边形RPQA为矩形,所以AQ=RP, △BRP也是等腰直角三角行,即BR=PR,所以AQ=BR由边角边,△BRD全等于△AQD,所以∠BDR=∠ADQ,DR=DQ, ∠RDQ=∠RDA+∠ADQ=∠RDA+∠BDR=90度, 所以△RDQ是等腰RT△。
2. 作AG平分∠BAC交BD于G ∵∠BAC=90° ∴∠CAG= ∠BAG=45° ∵∠BAC=90° AC=AB ∴∠C=∠ABC=45°∴∠C=∠BAG ∵AE⊥BD ∴∠ABE+∠BAE=90°∵∠CAF+∠BAE=90° ∴∠CAF=∠ABE ∵ AC=AB ∴△ACF ≌△BAG ∴CF=AG ∵∠C=∠DAG =45°CD=AD ∴△CDF ≌△ADG ∴∠CDF=∠ADB3. 易证△ABM≌△NAC.∠NAM=∠NAE+∠BAM=∠NAE+ANE=90°4. 略5.因为直角三角形的斜边中点是三角形的外心,所以O到△ABC的三个顶点A、B、C距离相等;△OMN是等腰直角三角形。
人教版八年级数学第一学期几何压轴题期末复习提高训练试题
人教版八年级数学第一学期几何压轴题期末复习提高训练试题1、如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△ACD≌△CBE;(2)若AD=12,DE=7,求BE的长.2、已知,如图,△ABC和△BDE都是等边三角形,且点D在AC上.(1)求证:AE∥BC;(2)直接写出AE,AD和AB之间的关系;3、如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.4、根据下列命题画出图形,写出已知、求证,并完成证明过程.命题:等腰三角形两底角的角平分线相等.已知:如图,_____________________________.求证:________________________.5、已知:如图,点A,B在∠MON的边OM,ON上,OA的垂直平分线CP与OB的垂直平分线DP相交于点P,连接P A,PO,PB,AB.(1)求证:①P A=PB;②∠APB=2∠CPD;(2)探究:∠MON满足什么条件时,△P AB是等边三角形,并说明理由;(3)若OA=OB,请在备用图中画出符合条件的图形,并探究∠CPO与∠APB之间的数量关系,并说明理由.6、如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?7、已知:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数;(3)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.①∠AEB的度数为°;②探索线段CM、AE、BE之间的数量关系为.(直接写出答案,不需要说明理由)8、如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC=°,∠DEC=°;点D从B向C的运动过程中,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数,若不可以,请说明理由.9、如图,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,BE=3cm,AD=9cm.求:(1)DE的长;(2)若CE在△ABC的外部(如图),其它条件不变,DE的长是多少?10、已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=°,△CBD是三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH 为等边三角形,则满足上述条件的△PGH的个数一共有.(只填序号)①2个②3个③4个④4个以上11、如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.12、【问题原型】如图1,在等腰直角三角形ABC中,∠ACB=90°,BC=8.将边AB绕点B顺时针旋转90°得到线段BD,连结CD,过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为.【初步探究】如图2,在Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.用含a的代数式表示△BCD的面积并说明理由.【简单应用】如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,求△BCD的面积(用含a的代数式表示).13、如图,△ABC是等边三角形,D、E为AC上两点,且AE=CD,延长BC至点F,使CF=CD,连接BD.(1)如图1,当D、E两点重合时,求证:BD=DF;(2)延长BD与EF交于点G.①如图2,求证:∠BGE=60°;②如图3,连接BE,CG.若∠EBD=30°,BG=4,则△BCG的面积为.14、在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度;(2)如图2,如果∠BAC=60°,则∠BCE=度;(3)设∠BAC=α,∠BCE=β.①如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,请直接写出α,β之样的数量关系,不用证明.参考答案1、如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△ACD≌△CBE;(2)若AD=12,DE=7,求BE的长.【解答】解:(1)∵∠ACB=90°,BE⊥CE,∴∠ECB+∠ACD=90°∠ECB+∠CBE=90°,∴∠ACD=∠CBE,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∵AC=BC,∴△ACD≌△CBE;(2)∵△ACD≌△CBE,∴AD=CE,CD=BE,∵AD=12,DE=7,∴BE=CD=CE﹣DE=12﹣7=5.2、已知,如图,△ABC和△BDE都是等边三角形,且点D在AC上.(1)求证:AE∥BC;(2)直接写出AE,AD和AB之间的关系;【解答】证明:(1)∵△ABC和△BDE都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠DBE=∠C=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,∴∠DBC=∠EBA,∴△DBC≌△EBA(SAS),∴∠C=∠EAB=∠ABC,∴EA∥BC(2)∵△DBC≌△EBA,∴AE=CD,∵AD+CD=AC=AB,∴AE+AD=AB.3、如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.4、根据下列命题画出图形,写出已知、求证,并完成证明过程.命题:等腰三角形两底角的角平分线相等.已知:如图,△ABC中,AB=AC,BD,CE是△ABC的角平分线.求证:BD=CE.【解答】解:已知:如图,△ABC中,AB=AC,BD,CE是△ABC的角平分线.求证:BD=CE,证明:∵AB=AC,∴∠ABC=∠ACB,∵BD,CE是△ABC的角平分线,∴∠ABD=∠ABC,∠ACE=∠ACB,∴∠ABD=∠ACE,∵AB=AC,∠A=∠A,∴△ABD≌△ACE(ASA),∴BD=CE.故答案为:△ABC中,AB=AC,BD,CE是△ABC的角平分线,BD=CE.5、已知:如图,点A,B在∠MON的边OM,ON上,OA的垂直平分线CP与OB的垂直平分线DP相交于点P,连接P A,PO,PB,AB.(1)求证:①P A=PB;②∠APB=2∠CPD;(2)探究:∠MON满足什么条件时,△P AB是等边三角形,并说明理由;(3)若OA=OB,请在备用图中画出符合条件的图形,并探究∠CPO与∠APB之间的数量关系,并说明理由.【解答】(1)证明:①∵CP为OA的垂直平分线,∴P A=PO,同理:PB=PO,∴P A=PB;②∵P A=PO,PC⊥OA,∴∠APC=∠OPC=∠APO,同理,∠BPD=∠OPD=∠BPO,∠APB=∠APO+∠BPO=2∠CPO+2∠DPO=2(∠CPO+∠DPO)=2∠CPD;(2)∠MON=150°.理由:∵∠CPO+∠COP=90°,∠DPO+∠DOP=90°,∴∠MON+∠CPD=180°,∵∠MON=150°,∴∠CPD=180°﹣150°=30°,由(1)得∠APB=2∠CPD=60°,P A=PB,∴△P AB是等边三角形;(3)在备用图中画出符合条件的图形如备用图,∠CPO=∠APB.理由:∵OC=OA,OD=OB,OA=OB,∴OC=OD,在Rt△PCO和Rt△PDO中,,∴Rt△PCO≌Rt△PDO(HL),∴∠CPO=∠DPO,由(1)得∠APC=∠OPC,∠BPD=∠OPD,∴∠APC=∠CPO=∠OPD=∠BPD,∴∠CPO=∠APB.6、如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【解答】解:(1)①△BPD与△CQP全等,理由如下:∵AB=AC=18cm,AD=2BD,∴AD=12cm,BD=6cm,∠B=∠C,∵经过2s后,BP=4cm,CQ=4cm,∴BP=CQ,CP=6cm=BD,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS),②∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵△BPD与△CQP全等,∠B=∠C,∴BP=PC=BC=5cm,BD=CQ=6cm,∴t=,∴点Q的运动速度==cm/s,∴当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等;(2)设经过x秒,点P与点Q第一次相遇,由题意可得:x﹣2x=36,解得:x=90,∴90﹣()×3=21(s),∴经过90s点P与点Q第一次相遇在线段AB上相遇.7、已知:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数;(3)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.①∠AEB的度数为90°;②探索线段CM、AE、BE之间的数量关系为AE=BE+2CM.(直接写出答案,不需要说明理由)【解答】解:(1)如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;(2)如图1,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC﹣∠CED=60°;(3)①如图2,∵△ACB和△DCE均为等腰直角三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD,∠BEC=∠ADC,∵点A,D,E在同一直线上,∴∠ADC=180﹣45=135°,∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°,故答案为:90;②如图2,∵∠DCE=90°,CD=CE,CM⊥DE,∴CM=DM=EM,∴DE=DM+EM=2CM,∵△ACD≌△BCE(已证),∴BE=AD,∴AE=AD+DE=BE+2CM,故答案为:AE=BE+2CM.8、如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC=30°,∠DEC=110°;点D从B向C的运动过程中,∠BDA逐渐变小(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数,若不可以,请说明理由.【解答】解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°,∴∠EDC=30°,∵∠AED=∠EDC+∠ACB=30°+40°=70°∴∠EDC=180°﹣∠AED=110°,故答案为:30,110,∵∠BDA+∠B+∠BAD=180°,∴∠BDA=140°﹣∠BAD∵点D从B向C的运动过程中,∠BAD逐渐变大∴∠BDA逐渐变小,故答案为:小(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°,∴∠BAD=∠CDE,且AB=CD=2,∠B=∠C=40°,∴△ABD≌△DCE(ASA)(3)若AD=DE时,∵AD=DE,∠ADE=40°∴∠DEA=∠DAE=70°∵∠DEA=∠C+∠EDC∴∠EDC=30°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°若AE=DE时,∵AE=DE,∠ADE=40°∴∠ADE=∠DAE=40°,∴∠AED=100°∵∠DEA=∠C+∠EDC∴∠EDC=60°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°综上所述:当∠BDA=80°或110°时,△ADE的形状可以是等腰三角形9、如图,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,BE=3cm,AD=9cm.求:(1)DE的长;(2)若CE在△ABC的外部(如图),其它条件不变,DE的长是多少?【解答】解:(1)∵∠ACB=90°,BE⊥CE,∴∠BCE+∠CBE=90°,∠BCE+∠ECA=90°,∴∠CBE=∠ECA,∠BEC=∠CDA,∵在△BEC和△CDA中,,∴△BEC≌△CDA(AAS),∴BE=CD,CE=AD,∵BE=3cm,AD=9cm,∴CD=3cm,CE=9cm,∴DE=CE﹣CD=6cm.(2)∵∠ACB=90°,BE⊥CE于E,AD⊥CE于D,∴∠BCE+∠CBE=90°,∠BCE+∠DCA=90°,∠BEC=∠CDA=90°,∴∠CBE=∠ACD,∵在△CBE和△ACD中,,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD,∵BE=3cm,AD=9cm,∴DE=CD+CE=BE+AD=12cm.10、已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=60°,△CBD是等边三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH 为等边三角形,则满足上述条件的△PGH的个数一共有④.(只填序号)①2个②3个③4个④4个以上【解答】解:(1)如图1,连接BD,∵∠ABC=∠ADC=90°,∠MAN=120°,根据四边形的内角和得,∠BCD=360°﹣(∠ABC+∠ADC+∠MAN)=60°,∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,∴CD=CB,(角平分线的性质定理),∴△BCD是等边三角形;故答案为:60,等边;(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),过点C作CE⊥AM于E,CF⊥AN于F,∵AC是∠MAN的平分线,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,在△CDE和△CFB中,,∴△CDE≌△CFB(AAS),∴CD=CB,∵∠BCD=60°,∴△CBD是等边三角形;(3)如图3,∵OP平分∠EOF,∠EOF=120°,∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,连接PG',∴△G'OP是等边三角形,此时点H'和点O重合,同理:△OPH是等边三角形,此时点G和点O重合,将等边△PHG绕点P逆时针旋转到等边△PG'H',在旋转的过程中,边PG,PH分别和OE,OF相交(如图中G'',H'')和点P围成的三角形全部是等边三角形,(旋转角的范围为(0°到60°包括0°和60°),所以有无数个;理由:同(2)的方法.故答案为④.11、如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°,∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE,∵△ACB,△DCE都是等腰三角形,∴AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC,∵点A、D、E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°,∵∠BEC=∠CED+∠AEB,∠CED=50°,∴∠AEB=∠BEC﹣∠CED=80°.(2)结论:AE=2CF+BE.理由:∵△ACB,△DCE都是等腰直角三角形,∴∠CDE=∠CED=45°,∵CF⊥DE,∴∠CFD=90°,DF=EF=CF,∵AD=BE,∴AE=AD+DE=BE+2CF.12、【问题原型】如图1,在等腰直角三角形ABC中,∠ACB=90°,BC=8.将边AB绕点B顺时针旋转90°得到线段BD,连结CD,过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为32.【初步探究】如图2,在Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.用含a的代数式表示△BCD的面积并说明理由.【简单应用】如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,求△BCD的面积(用含a的代数式表示).【解答】解:问题原型:如图1中,如图2中,过点D作BC的垂线,与BC的延长线交于点E.∴∠BED=∠ACB=90°,∵线段AB绕点B顺时针旋转90°得到线段BD,∴AB=BD,∠ABD=90°.∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE.在△ABC和△BDE中,,∴△ABC≌△BDE(AAS)∴BC=DE=8.∵S△BCD=BC•DE∴S△BCD=32,故答案为32.初步探究:△BCD的面积为a2.理由:如图2中,过点D作BC的垂线,与BC的延长线交于点E.∴∠BED=∠ACB=90°∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°.∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE.在△ABC和△BDE中,,∴△ABC≌△BDE(AAS)∴BC=DE=a.∵S△BCD=BC•DE∴S△BCD=a2;简单应用:如图3中,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,∴∠AFB=∠E=90°,BF=BC=a.∴∠F AB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠F AB=∠EBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△AFB≌△BED(AAS),∴BF=DE=a.∵S△BCD=BC•DE,∴S△BCD=•a•a=a2.∴△BCD的面积为a2.13、如图,△ABC是等边三角形,D、E为AC上两点,且AE=CD,延长BC至点F,使CF=CD,连接BD.(1)如图1,当D、E两点重合时,求证:BD=DF;(2)延长BD与EF交于点G.①如图2,求证:∠BGE=60°;②如图3,连接BE,CG.若∠EBD=30°,BG=4,则△BCG的面积为2.【解答】(1)证明:如图1中,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BA=BC,∵AD=DC=CF,∴∠DBC=∠ABC=30°,∠F=∠CDF,∵∠ACB=∠F+∠CDF=60°,∴∠F=30°,∴∠DBC=∠F,∴BD=DF.(2)①证明:如图2中,作EH∥BC交AB于H,连接BE.∵EH∥BC,∴∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,∵∠A=60°,∴△AEH是等边三角形,∴AE=EH=AH,∵AB=AC,∴BH=CE,∵AE=CF,∴EH=CF,∵∠BHE=∠ECF=120°,∴△BEH≌△EFC(SAS),∴∠EBH=∠CEF,∵AB=BC,∠A=∠BCD,AE=CD,∴△ABE≌△CBD(SAS),∴∠ABE=∠CBD,∴∠CBD=∠DEG,∵∠CDB=∠GDE,∴∠EGD=∠DCB=60°,即∠BGE=60°.②解:如图3中,在BC上取一点T,使得BT=TG,连接TG,设CG=x.由题意:∠ABE=∠CBD=15°,∵∠BCE=∠BGE=60°,∴B,C,G,E四点共圆,∴∠ECG=∠EBG=30°,∴∠BCG=90°,∵TB=TG,∴∠TBG=∠TGB=15°,∴∠GTC=∠TBG+∠BGT=30°,∴BT=GT=2GC=2c,TC=x,∵BG2=CG2+BC2,∴42=x2+(2x+x)2,∴x2=4(2﹣)∴S△BCG=•BC•CG=×(2+)x2=2,故答案为2.14、在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=90度;(2)如图2,如果∠BAC=60°,则∠BCE=120度;(3)设∠BAC=α,∠BCE=β.①如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,请直接写出α,β之样的数量关系,不用证明.【解答】解:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DAE=∠BAC,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△BAD≌△CAE(SAS)∴∠ABC=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)∵∠BAC=60°,AB=AC,∴△ABC为等边三角形,∴∠ABD=∠ACB=60°,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,∵∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE=60°,∴∠BCE=∠ACE+∠ACB=60°+60°=120°,故答案为:120.(3)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∵∠ACE+∠ACB=β,∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°.②如图1:当点D在射线BC上时,α+β=180°,连接CE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,在△ABC中,∠BAC+∠B+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°,即:∠BCE+∠BAC=180°,∴α+β=180°,如图2:当点D在射线BC的反向延长线上时,α=β.连接BE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∴∠ABD=∠ACE=∠ACB+∠BCE,∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,∵∠BAC=180°﹣∠ABC﹣∠ACB,∴∠BAC=∠BCE.∴α=β;综上所述:点D在直线BC上移动,α+β=180°或α=β.。
人教版八年级上期末数学备考之几何综合
人教版八年级上期末数学备考之几何综合一.解答题(共35小题)1.如图,在△ABC中,AB=AC,∠BAC=90°,点D是边BC上的动点,连接AD,点C 关于直线AD的对称点为点E,射线BE与射线AD交于点F.(1)在图中,依题意补全图形;(2)记∠DAC=α(α<45°),求∠ABF的大小;(用含α的式子表示)(3)若△ACE是等边三角形,猜想EF和BC的数量关系,并证明.2.如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.(1)依题意补全图形;(2)若∠ACN=α,求∠BDC的大小(用含α的式子表示);(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.3.数学老师布置了这样一道作业题:在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB的度数.小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30°时(如图1),利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题.(1)请结合小聪研究问题的过程和思路,求出这种特殊情况下∠ADB的度数;(2)结合小聪研究特殊问题的启发,请解决数学老师布置的这道作业题;(3)解决完老师布置的这道作业题后,小聪进一步思考,当点D和点A在直线BC的异侧时,且∠ADB的度数与(1)中相同,则α,β满足的条件为(直接写出结果).4.如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO 上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC于点N、E、M.(1)当直线l经过点C时(如图2),证明:BN=CD;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.5.如图1,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,点D在BC边上,连接AD,AE⊥AD,AE=AD,连接CE,DE.(1)求证:∠B=∠ACE;(2)点A关于直线CE的对称点为M,连接CM,EM.①补全图形并证明∠EMC=∠BAD;②利用备用图进行画图、试验、探究,找出当D,E,M三点恰好共线时点D的位置.请直接写出此时∠BAD的度数,并画出相应的图形.6.在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若∠BAC=100°,求∠BDF的度数;(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN.①补全图2;②若BN=DN,求证:MB=MN.7.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F.(1)如图1,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;小东通过观察、实验,提出猜想:BE+CD=BC.他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.①下面是小东证明该猜想的部分思路,请补充完整:ⅰ)在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与全等,判定它们全等的依据是;ⅱ)由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=°;…②请直接利用ⅰ),ⅱ)已得到的结论,完成证明猜想BE+CD=BC的过程.(2)如图2,若∠ABC=40°,求证:BF=CA.8.在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1)(1)求证:∠BAD=∠EDC;(2)点E关于直线BC的对称点为M,连接DM,AM.①依题意将图2补全;②小姚通过观察,实验提出猜想:在点D运动的过程中,始终有DA=AM,小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明DA=AM,只需证△ADM是等边三角形;想法2:连接CM,只需证明△ABD≌△ACM即可.请你参考上面的想法,帮助小姚证明DA=AM(一种方法即可)9.已知:△ABC是等边三角形.(1)如图1,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F.试判断BF与CF的数量关系,并加以证明;(2)点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD 交于点F.若△BFD是等腰三角形,求∠FBD的度数.10.已知:在△ABC中,∠ABC<60°,CD平分∠ACB交AB于点D,点E在线段CD上(点E不与点C、D重合),且∠EAC=2∠EBC.(1)如图1,若∠EBC=27°,且EB=EC,则∠DEB=°,∠AEC=°.(2)如图2,①求证:AE+AC=BC;②若∠ECB=30°,且AC=BE,求∠EBC的度数.11.在△ABC中,AD是△ABC的角平分线.(1)如图1,过C作CE∥AD交BA延长线于点E,若F为CE的中点,连接AF,求证:AF⊥AD;(2)如图2,M为BC的中点,过M作MN∥AD交AC于点N,若AB=4,AC=7,求NC的长.12.如图,在△ABC中,AC=BC,∠ACB=90°,D为△ABC内一点,∠BAD=15°,AD =AC,CE⊥AD于E,且CE=5.(1)求BC的长;(2)求证:BD=CD.13.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E.(1)如图1,连接EC,求证:△EBC是等边三角形;(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系;(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.14.已知:如图,在△ABC中,如果∠A是锐角,点D,E分别在AB,AC上,且∠DCB=∠EBC=∠A.求证:BD=CE.15.在△ABC中,AB>BC,直线l垂直平分AC.(1)如图1,作∠ABC的平分线交直线l于点D,连接AD,CD.①补全图形;②判断∠BAD和∠BCD的数量关系,并证明.(2)如图2,直线l与△ABC的外角∠ABE的平分线交于点D,连接AD,CD.求证:∠BAD=∠BCD.16.在平面直角坐标系xOy中,△ABO为等边三角形,O为坐标原点,点A关于y轴的对称点为D,连接AD,BD,OD,其中AD,BD分别交y轴于点E,P.(1)如图1,若点B在x轴的负半轴上时,直接写出∠BDO的度数;(2)如图2,将△ABO绕点O旋转,且点A始终在第二象限,此时AO与y轴正半轴夹角为α,60°<α<90°,依题意补全图形,并求出∠BDO的度数;(用含α的式子表示)(3)在第(2)问的条件下,用等式表示线段BP,PE,PO之间的数量关系.(直接写出结果)17.(1)老师在课上给出了这样一道题目:如图1,等边△ABC边长为2,过AB边上一点P作PE⊥AC于E,Q为BC延长线上一点,且AP=CQ,连接PQ交AC于D,求DE 的长.小明同学经过认真思考后认为,可以通过过点P作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE的长.(2)【类比探究】老师引导同学继续研究:1.等边△ABC边长为2,当P为BA的延长线上一点时,作PE⊥CA的延长线于点E,Q为边BC上一点,且AP=CQ,连接PQ交AC于D.请你在图2中补全图形并求DE 的长.2.已知等边△ABC,当P为AB的延长线上一点时,作PE⊥射线AC于点E,Q为(①BC边上;②BC的延长线上;③CB的延长线上)一点,且AP=CQ,连接PQ交直线AC于点D,能使得DE的长度保持不变.(将答案的编号填在横线上)18.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;(3)连结CE,写出AE,BE,CE之间的数量关系,并证明你的结论.19.如图1,在△ABC中,∠A的外角平分线交BC的延长线于点D.(1)线段BC的垂直平分线交DA的延长线于点P,连接PB,PC.①利用尺规作图补全图形1,不写作法,保留痕迹;②求证:∠BPC=∠BAC;(2)如图2,若Q是线段AD上异于A,D的任意一点,判断QB+QC与AB+AC的大小,并予以证明.20.如图,在△ABC中,BA=BC,点D为△ABC外一点,连接DA,∠DAC恰好为25°,线段AD沿直线AC翻折得到线段AD′,过点C作AD的平行线交AD′于点E,连接BE.(1)求证:AE=CE;(2)求∠AEB的度数.21.如图①,在△ABC中,D、E分别是AB、AC上的点,AB=AC,AD=AE,然后将△ADE绕点A顺时针旋转一定角度,连接BD,CE,得到图②,将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)在图②中,BD与CE的数量关系是;(2)在图③中,猜想AM与AN的数量关系,∠MAN与∠BAC的数量关系,并证明你的猜想.22.在等边△ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)若点E是AB的中点,如图1,求证:AE=DB.(2)若点E不是AB的中点时,如图2,试确定线段AE与DB的大小关系,并写出证明过程.23.在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,如:在图1中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,参考上面的方法,解答下列问题:如图2,在非等边△ABC中,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,且AD,CE交于点F,求证:AC=AE+CD.24.如图:在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN 的形状,并证明你的结论.25.如图,△ABC是等边三角形,△ADC与△ABC关于直线AC对称,AE与CD垂直交BC 的延长线于点E,∠EAF=45°,且AF与AB在AE的两侧,EF⊥AF.(1)依题意补全图形.(2)①在AE上找一点P,使点P到点B,点C的距离和最短;②求证:点D到AF,EF的距离相等.26.如图,△ABC中,AB=AC,AD⊥BC于点D,延长AB至点E,使∠AEC=∠DAB.判断CE与AD的数量关系,并证明你的结论.27.已知C是线段AB垂直平分线m上一动点,连接AC,以AC为边作等边三角形ACD,点D在直线AB的上方,连接DB与直线m交于点E,连接BC,AE.(1)如图1,点C在线段AB上.①根据题意补全图1②求证:∠EAC=∠EDC;(2)如图2,点C在直线AB的上方,0°<∠CAB<30°,用等式表示线段BE,CE,DE之间的数量关系,并证明.28.在等边△ABC外作射线AD,使得AD和AC在直线AB的两侧,∠BAD=α(0°<α<180°),点B关于直线AD的对称点为P,连接PB,PC.(1)依题意补全图1;(2)在图1中,求∠BPC的度数;(3)直接写出使得△PBC是等腰三角形的α的值.29.在△DEF中,DE=DF,点B在EF边上,且∠EBD=60°,C是射线BD上的一个动点(不与点B重合,且BC≠BE),在射线BE上截取BA=BC,连接AC.(1)当点C在线段BD上时,①若点C与点D重合,请根据题意补全图1,并直接写出线段AE与BF的数量关系为;②如图2,若点C不与点D重合,请证明AE=BF+CD;(2)当点C在线段BD的延长线上时,用等式表示线段AE,BF,CD之间的数量关系(直接写出结果,不需要证明).30.解决下面问题:如图,在△ABC中,∠A是锐角,点D,E分别在AB,AC上,且∠DCB=∠EBC=∠A,BE与CD相交于点O,探究BD与CE之间的数量关系,并证明你的结论.小新同学是这样思考的:在平时的学习中,有这样的经验:假如△ABC是等腰三角形,那么在给定一组对应条件,如图a,BE,CD分别是两底角的平分线(或者如图b,BE,CD分别是两条腰的高线,或者如图c,BE,CD分别是两条腰的中线)时,依据图形的轴对称性,利用全等三角形和等腰三角形的有关知识就可证得更多相等的线段或相等的角.这个问题也许可以通过添加辅助线构造轴对称图形来解决.请参考小新同学的思路,解决上面这个问题.31.如图,在△ABC中,AB=AC,P为△ABC内一点,且∠BAP=70°,∠ABP=40°,(1)求证:△ABP是等腰三角形;(2)连接PC,当∠PCB=30°时,求∠PBC的度数.32.如图,在等边三角形ABC右侧作射线CP,∠ACP=α(0<α<60°),点A关于射线CP的对称点为点D,BD交CP于点E,连接AD,AE.(1)求∠DBC的大小(用含α的代数式表示);(2)在α(0°<α≤60°)的变化过程中,∠AEB的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB的大小;(3)用等式表示线段AE,BD,CE之间的数量关系,并证明.33.如图,在等边△ABC中,点D是线段BC上一点作射线AD,点B关于射线AD的对称点为E,连接EC并延长,交射线AD于点F.(1)补全图形;(2)求∠AFE的度数;(3)用等式表示线段AF、CF、EF之间的数量关系,并证明.34.△ABC是等边三角形,AC=2,点C关于AB对称的点为C',点P是直线C'B上的一个动点,连接AP,作∠APD=60°交射线BC于点D.(1)若点P在线段C'B上(不与点C',点B重合).①如图1,若点P是线段C'B的中点,则AP的长为;②如图2,点P是线段C'B上任意一点,求证:PD=PA;(2)若点P在线段C'B的延长线上.①依题意补全图3;②直接写出线段BD,AB,BP之间的数量关系为:.35.等边△ABC的边长为4,D是射线BC上任一点,线段AD绕点D顺时针旋转60°得到线段DE,连接CE.(1)当点D是BC的中点时,如图1,判断线段BD与CE的数量关系,请直接写出结论:(不必证明);(2)当点D是BC边上任一点时,如图2,请用等式表示线段AB,CE,CD之间的数量关系,并证明;(3)当点D是BC延长线上一点且CD=1时,如图3,求线段CE的长.。
2022-2023学年人教版八年级数学上册期末阶段复习综合训练题(附答案)
2022-2023学年人教版八年级数学上册期末阶段复习综合训练题(附答案)一、选择题:(本大题12个小题,共36分)1.要使代数式有意义,x的取值范围是()A.x=2B.x≠2C.x≥2D.x>2 2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.下列计算正确的是()A.a3•(﹣a)2=a5B.(3a3b)2=3a6b2C.a﹣5÷a2=a﹣3D.a÷b×=a4.下列各式的化简中,正确的是()A.B.C.D.5.下列多项式能用完全平方公式进行分解因式的是()A.x2+1B.x2+2x+4C.x2﹣2x+1D.x2+x+1 6.下列变形正确的是()A.=x3B.=C.=x+y D.=﹣17.若分式的值为0,则x的值为()A.x=±1B.x=1C.x=﹣1D.x=08.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.2B.3C.4D.59.下列命题,正确的是()A.三角形三条中线的交点到三角形三个顶点的距离相等B.三角形三条高线的交点到三角形三个顶点的距离相等C.三角形三条角平分线的交点到三角形三个顶点的距离相等D.三角形三边中垂线的交点到三角形三个顶点的距离相等10.在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装x个鸡蛋,根据题意下列方程正确的是()A.B.C.D.11.若点A(m﹣n,m﹣2n)与点B(m﹣3n,1﹣m)关于y轴对称,则点P(m,n)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限12.若关于x的不等式组无解,且关于y的分式方程=﹣1有非负整数解,那么所有满足条件的整数m的个数是()A.1B.2C.3D.4二、填空题(本大题共6个小题,共24分)13.初二某班物理课堂上,老师测得一根头发的直径约为0.000075米,请将0.000075米用科学记数法表示为米.14.因式分解:x3﹣x=.15.如图,实数a、b在数轴上对应的点分别为A、B,则=.16.若+=﹣3,则的值为.17.如图,在△ABC中,∠ACB=4∠A,点D在边AC上,将△BDA沿BD折叠,点A落在点A'处,恰好BA'⊥AC于点E且BC∥DA',则∠BDC的度数为度.18.某景区内有一条风光极好的河道和一个人工湖,当地政府因地制宜,计划在景区内打造游船项目,设计者为了让游客达到最好的游船体验,在设计路线时做了两次试验,第一次试验:游船从河道上游A处顺流而下到B处,再经过平静的人工湖到达C处,用时2.5小时;第二次试验:这艘游船由C处出发经过平静的人工湖到B,再到A共用5小时.某天,该人工湖进行开闸放水,人工湖的湖水放水速度恰好与河道中的水流速度一样,从B 流向C,这艘游船从A到B再穿过人工湖到C只需要2小时,在这样的条件下,这艘游船由C按原路返回A,共需要小时.三、解答题(本大题共8个小题,共60分)19.计算:(1)(a+b)2﹣a(2b﹣a);(2)(π﹣3.14)0+(﹣)﹣3+(1﹣2).20.(1)计算:(+)÷;(2)解方程:﹣=1.21.先化简,再求值:÷(a+2b﹣),其中a,b满足+(b+2)2=0.22.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,且B,D,E在同一直线上,连接EC.(1)求证:BD=EC.(2)若∠ACB=55°,求∠BEC的度数.23.小白同学为了能在全国大学英语六级考试中获得好的成绩,于是打算利用若干个星期的时间做完144篇阅读练习.当计划开始的时候,她发现实际每个星期完成阅读练习的量是原计划的1.5倍,这样可以提前4个星期完成她的计划.(1)问实际每个星期完成阅读练习量是多少篇?(2)如果小白同学按实际完成阅读练习的速度持续了3个星期之后,打算再次提高速度,那么她在之后的每个星期至少要完成多少阅读练习,才能使她在6个星期内至少完成144篇阅读练习.24.代数式求值是在已知字母的值或限制条件下,求出给定代数式的值.为了方便求值,我们常常将所求代数式化简或把限制条件进行变形,再将变形后的条件代入化简后的代数式求值.例如:当a=﹣1时,求2a3+7a2﹣2a﹣12的值.为解决本道题,若直接把a=﹣1代入所求式子进行计算,计算量较大,我们可以通过对条件和所求式子变形,对本题进行解答:解:∵a=﹣1,∴a+1=.∴(a+1)2=()2.∴a2+2a﹣4=0.方法一:∵a2+2a﹣4=0,∴a2=4﹣2a.∴原式=2a•a2+7a2﹣2a﹣12=2a(4﹣2a)+7a2﹣2a﹣12=8a﹣4a2+7a2﹣2a﹣12=3a2+6a﹣12=3(a2+2a)﹣12=0.方法二:∵a2+2a﹣4=0,∴a2+2a=4.∴原式=2a(a2+2a)+3a2﹣2a﹣12=8a+3a2﹣2a﹣12=3a2+6a﹣12=3(a2+2a)﹣12=3×4﹣12=0.…本题还有其它类似方法.请参照以上解决问题的思路和方法,解决以下问题:(1)当x2+x﹣1=0时,x3+2x2+5=.(2)当x2﹣2020x+1=0时,求x2﹣2019x+的值.(3)当a=时,求a3﹣2a+3的值.25.如图,在等腰△ABC中,CA=CB,点D是AB边上一点,连接DC,且DA=DC.(1)如图1,CH⊥AB,若∠ACB=78°,求∠HCD的度数.(2)如图2,若点E在BC边上且DE=DB,连接AE.点M为线段CE的中点,过M 点作MN∥DE交AB于点N,求证:CD=BN+DN.26.如图,在平面直角坐标系中,点A和点C在x轴上,点B和点D在y轴上,且点B的坐标为(0,8),∠ABO=30°,已知点D为线段OB的中点,OD=OC,点M为线段AB上一动点,连接MD.(1)当线段MD最小时,求点M的纵坐标;(2)在(1)的条件下,将线段MD所在的直线沿直线CD平移得到直线M′D′,直线M'D'与直线AB交于点P,与直线CD交于点Q,连接PQ、PC,若△PCQ为等腰三角形,请直接写出∠PCQ的度数.参考答案一、选择题:(本大题12个小题,共36分)1.解:由题意得,x﹣2>0,解得x>2.故选:D.2.解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.解:A.a3•(﹣a)2=a3•a2=a5,符合题意;B.(3a3b)2=9a6b2,不符合题意;C.a﹣5÷a2=a﹣7=,不符合题意;D.a÷b×=a••=,不符合题意;故选:A.4.解:A.+=2+,不符合题意;B.×==2,符合题意;C.==,不符合题意;D.==13,不符合题意.故选:B.5.解:x2﹣2x+1=(x﹣1)2,故选:C.6.解:A、结果为x4,故本选项错误;B、不能约分,故本选项错误;C、不能约分,故本选项错误;D、结果是﹣1,故本选项正确;故选:D.7.解:由题意可知:|x|﹣1=0且x2+1≠0,解得x=±1.观察选项,只有选项A符合题意.故选:A.8.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得:DE=3,∴CD=3.故选:B.9.解:A、三角形三条中线的交点到三角形三个顶点的距离相等,错误,本选项不符合题意.B、三角形三条高线的交点到三角形三个顶点的距离相等,错误,本选项不符合题意.C、三角形三条角平分线的交点到三角形三个顶点的距离相等,错误,本选项不符合题意.D、三角形三边中垂线的交点到三角形三个顶点的距离相等,正确,本选项符合题意.故选:D.10.解:设每个甲型包装箱可装x个鸡蛋,﹣=10.故选:B.11.解:∵点A(m﹣n,m﹣2n)与点B(m﹣3n,1﹣m)关于y轴对称,∴,解得:则点P(m,n)所在象限为第一象限.故选:A.12.解:解不等式组得:,因为关于x的不等式组无解,所以m+2≥﹣2m﹣1,解得m≥﹣1;解分式方程得:y=,因为关于y的分式方程=﹣1有非负整数解,所以,即m≤4且m≠0,所以使分式方程有非负整数解的m的值为:2,4.所以所有满足条件的整数m的值为:2,4,共2个.故选:B.二、填空题(本大题共6个小题,共24分)13.解:0.000075=7.5×10﹣5,故答案为:7.5×10﹣5.14.解:原式=x(x2﹣1)=x(x+1)(x﹣1),故答案为:x(x+1)(x﹣1)15.解:由数轴可得:a﹣b<0,b﹣1<0,∴=﹣(a﹣b)﹣(b﹣1)=﹣a+b﹣b+1=1﹣a.故答案为:1﹣a.16.解:∵+=﹣3,∴n+3m=﹣3mn,∴====﹣.故答案为:﹣.17.解:由折叠可知:∠A=∠A',∠ABD=∠A'BD,∵∠ACB=4∠A,∴∠ACB=4∠A',∵BC∥A'D,∴∠CBE=∠A'=∠A,∴∠ACB=4∠CBE,∵BA'⊥CD,∴∠ACB+∠CBE=90°,∴∠CBE=18°,∠C+∠A=90°,∵∠A+∠C+∠ABC=180°,∴∠ABC=90°,∴∠ABE=90°﹣18°=72°,∴∠ABD=36°,∴∠BDC=∠A+∠ABD=18°+36°=54°.故答案为54.18.解:设水速为x,船速为y,返回时间为z,则放水速度为x,第一次试验:顺流没放水时船行驶的路程为:2.5(x+y),顺流放水时船行驶的速度为:2(2x+y),∵船行驶的路程相等,则2.5(x+y)=2(2x+y),解得:y=3x①,第二次试验:逆流没放水时船行驶的路程为:5(y﹣x),逆流放水时船行驶的路程为:z(y﹣2x),∵船行驶的路程相等,则5(y﹣x)=z(y﹣2x)②,由①和②式得:z=10,这艘游船由C按原路返回A,共需10小时.故答案为:10.三、解答题(本大题共8个小题,共60分)19.解:(1)原式=a2+2ab+b2﹣2ab+a2=2a2+b2;(2)原式=1﹣8﹣4=﹣11.20.解:(1)原式=÷=×=;(2)方程两边同时乘以(x﹣1)(x+2)得:x(x+2)﹣3=(x﹣1)(x+2),x2+2x﹣3=x2+x﹣2,x=1.检验:把x=1代入(x﹣1)(x+2)=0,所以原分式方程无解.21.解:原式==×=,∵+(b+2)2=0,∴a+3=0,b+2=0,解得:a=﹣3,b=﹣2,则原式==﹣.22.证明:(1)∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴BD=EC.解:(2)由(1)知:△ABD≌△ACE,∴∠ADB=∠AEC.∵AB=AC,∴∠ABC=∠ACB=55°.∴∠BAC=180°﹣2∠ABC=70°.∴∠DAE=∠BAC=70°.∵AD=AE,∴∠ADE=∠AED=55°.∴∠ADB=180°﹣∠ADE=125°.∴∠AEC=125°.∴∠BEC=∠AEC﹣AED=125°﹣55°=70°.23.解:(1)设白同学原计划每个星期完成阅读练习量是x篇,则实际每个星期完成阅读练习量是1.5x篇,由题意得:﹣=4,解得:x=12,经检验,x=12是原方程的解,则1.5x=18,答:白同学实际每个星期完成阅读练习量是18篇;(2)设小白同学在之后的每个星期要完成x篇阅读练习,才能使她在6个星期内至少完成144篇阅读练习,由题意得:3×18+(6﹣3)m≥144,解得:m≥30,答:小白同学在之后的每个星期至少要完成30篇阅读练习,才能使她在6个星期内至少完成144篇阅读练习.24.解:(1)∵x2+x+1=0,∴x2+x=1,∴x3+2x2+5=x(x2+x)+x2+5=x+x2+5=1+5=6,故答案为6;(2)∵x2﹣2020x+1=0,∴x2+1=2020x,x+=2020,∴x2﹣2019x+=x2﹣2019x+=2020x﹣1﹣2019x+=x+﹣1=2020﹣1=2019;(3)∵a=,∴2a﹣1=∴(2a﹣1)2=5,∴a2﹣a=1,a2﹣1=a,∴a3﹣2a+3=a(a2﹣1)﹣a+3=a2﹣a+3=4.25.解:(1)∵CA=CB,∠ACB=78°,∴∠A=∠B=51°.∵DA=DC,∴∠ACD=∠A=51°,∴∠ADC=180°﹣2∠A=78°.∵CH⊥AB,∴∠CHD=90°.∴∠HCD=180°﹣∠CHD﹣∠ADC=12°;(2)连接AM,如图,∵DE=DB,∴∠DEB=∠B,∴∠BDE=180°﹣2∠B.∵DA=DC,∴∠ACD=∠CAD.∴∠ADC=180°﹣2∠CAD.∵CA=CB,∴∠CAD=∠B,∴∠CDA=∠BDE.∴∠CDA+∠CDE=∠BDE+∠CDE.即∠ADE=∠CDB.在△ADE和△CDB中,,∴△ADE≌△CDB(SAS).∴AE=CB.∵CB=CA,∴AC=AE.∵点M为线段CE的中点,∴AM⊥CE.∵DE∥MN,∴∠NMB=∠DEB.∴∠NMB=∠B.∴BN=MN.∵∠NMB+∠NMA=90°,∠B+∠∠MAN=90°,∴∠NMA=∠NAM.∴AN=MN.∴AN=BN.∴CD=AD=AN+ND=BN+DN.26.解:(1)如图1中,过点D作DH⊥AB于H,过点H作HJ⊥BD于J.∵B(0,8),∴OB=8,∵D是OB的中点,∴BD=OD=4,在Rt△DBH中,BD=4,∠DHB=90°,∠DBH=30°,∴DH=BD=2,BH===2,∵HJ⊥BD,∴HJ=BH=,∴BJ===3,∴OJ=OB﹣BJ=8﹣3=5,∴H(﹣,5),根据垂线段最短可知,当点M与H重合时,DM的值最小,此时M(﹣,5).(2)如图2中,当QP=QC时,设直线CD交AB于T,∵∠PTQ=∠TBD+∠TDB=30°+45°,∴∠PQT=90°﹣75°=15°,∵QP=PC,∴∠QPC=∠QCP,∵∠PQT=∠QPC+∠QCP,∴∠PCQ=7.5°.如图3中,当CP=CQ时,∠PCQ=180°﹣15°﹣15°=150°.综上所述,满足条件的∠PCQ的值为7.5°或150°.。
2024八年级数学上册第二部分期末专题复习专题2图形与几何习题课件新版新人教版
(1)图中与 MF 相等的线段是
;
CE
(2)当 BF + CE 取最小值时,∠ AFB
= 95
1
2
3
4
°.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
19. [2023北京海淀区期中] 如图,在△ ABC 中, AC = BC ,
∠ ACB =90°, AD 平分∠ CAB ,交 BC 于点 D . 点 A
与点 E 关于直线 BC 对称,连接 BE , CE ,延长 AD 交
BE 于点 F .
(2)求证:△ BDF 是等腰三角形;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
(2)证明:∵ AC = BC ,∠ ACB =90°,
∴∠ CAB =∠ CBA =45°.
∵ AD 是∠ CAB 的平分线,
∴△ BDF 是等腰三角形.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
19. [2023北京海淀区期中] 如图,在△ ABC 中, AC = BC ,
∠ ACB =90°, AD 平分∠ CAB ,交 BC 于点 D . 点 A
人教版八年级数学上册期末专题复习:以等腰三角形为桥梁的几何题例析(含解析、点评、跟踪训练)
新人教版八年数学上册期末专题复习资料以等腰三角形为桥梁的几何题例析新人教版八年级数学上册前面三个单元都是几何内容,其中以等腰三角形为桥梁的题所占比例较大,在期末统考试题中高频出现,也是中考的热点题型;等腰三角形含特殊等腰三角形等边三角形和等腰直角三角形的“等对等关系” 和“三线合一”是桥梁作用的支撑. 题目一. 平分角添加“垂直”,“平行”元素构成等腰三角形的举例.例1. 如图,⊿ABC 中,过点C 作出∠BAC 的平分线的垂线于点D ,交AB 于点E .=BC 7 ⑴.若∠=346,∠=B 39;求∠BCE 的度数; ⑵.若==AB 12,AC 10;求BE 的长. 分析:对于⑴问利用12∠=∠和∠+∠=1490,∠+∠=2390可以得到:∠=∠43 ;因为∠=∠+∠4B BCE ,结合∠=346,∠=B 39 可以求出∠=-=BCE 46397.⑵问结合⑴问∠=∠43可以得出=AE AC ,所以=-=-=-=BE AB AE AB AE 12102.例2.已知⊿ABC 中,∠=ACB 90,⊥CD AB 于点D ,AE 平分∠BAC ,交CD 于点F ,⊥EG AB 于点G .求证:=EG CF .分析:由AE 平分∠BAC ,∠=ACB 90,⊥EG AB 可以得出: =CE GE ;根据直角三角形的锐角互余和对顶角相等可以得到∠+∠=CEA CAE 90, ∠+∠=CFE DAF 90,而AE 平分∠BAC 可以得到:∠=∠CAE DAE ,所以∠=∠CFE CEF ,所以=CE CF ;综上可证:=EG CF . 点评:例1、例2都是在平分线的基础上添加“垂直”条件,利用互余关系和平分角来得到同一个三角形的两角相等,从而得到等腰三角形为桥梁解决问题.例3.如图,在⊿ABC 中,∠=∠ABC 2C ,BD 平分∠ABC 交AC 于点D ,⊥AE BC 于点E ;求证:=AC 2BE .解析: 过点A 作AF ∥BC 交BD 的延长线于点F .∴∠=∠1F ,∠=∠2C∵BD 平分∠ABC 交AC 于点D本题有3个等腰三角形,其中通过作平行线构建出的等腰⊿ABF 是关键的一环;当然本题方法不止一种.特别注意当有平行线和角平分线结合,往往要通过其中构建出的等腰三角形为桥梁解决问题.追踪练习: 1. 如图,在△ABC ,B C ∠∠、的平分线交于点P ,过点P 作DE ∥BC ,别交AB AC 、于点D E 、两点,已知,,AB a AC b BC 10===,则△ADE 的周长为 ( )A. 10B. 2a 2b +C.a b +D.a b 10++ 2. 如图,⊿ABC 中,过点C 作出∠BAC 的平分线的垂线于点D . 求证:∠>∠1C3.在四边形ABCD 中,AB ∥CD BD AD ⊥,BD 平分ABC ∠,,=∠=BC AD C 120,CD 2cm =;求AB 的长?M .138,则MAB ∠A5.如图,已知△ABC 是等腰直角三角形,∠=BAC 90 ,BE 平分∠ABC ,⊥DE BC ,垂足为点D .⑴.求证:⊥AD BE ; ⑵.如果=BC 10 ,求+AB AE 的长.题目二.遇“垂直+中点”型以及“T 字”型结构连起的等腰三角形举例.例1.如图,在四边形ABCD 中,点E 是边BC 的中点,点F 是边CD 的中点,且有AE BC,AF CD ⊥⊥ . ⑴.求证:AB AD =;⑵.若BCD 114∠= ,求BAD ∠的度数.解析:⑴.连结AC .∵点E 是边BC 的中点,AE BC ⊥ ∴AB AC = (垂直平分线的性质) 同理AD AC = ∴=AB AD⑵.∵AB AC,AD AC == ,且有AE BC,AF CD ⊥⊥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级期末几何综合复习(一)
1如图,设△ ABC 和厶CDE 都是等边三角形,且/ EBD=65 °则/ AEB 的度数是(
A . 115°
B . 120°
C . 125°
D . 130°
2. 如图,在四边形 ABCD 中,AB=AC , / ABD=60 ° / ADB=78 ° / BDC=24 ° 则/ DBC= ( )
A . 18°
B . 20°
C . 25 °
D . 15°新课 标 第一网
3. 如图,等腰 Rt △ ABC 中,/ BAC=90 ° AD 丄BC 于点D ,/ ABC 的平分线分别交 AC 、 AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:①
9
DF=DN ; ②厶DMN 为等腰三角形;③ DM 平分/ BMN :④AE==EC ;
3
⑤AE=NC ,其中正确结论的个数是( ) V
A . 2个
B . 3个
C . 4个
D . 5个
4. 如图,等腰 Rt △ ABC 中,/ ABC=90 ° AB=BC .点A 、B 分别在坐标轴上,且 x 轴恰 好平分/ BAC , BC 交x 轴于点M ,过C 点作CD 丄x 轴于点D ,则.的值为 M ---------------------
5. 已知Rt △ ABC 中,/ C=90° AC=6 , BC=8,将它的一个锐角翻折,使该锐角顶点落在
其对边的中点D 处,折痕交另一直角边于 E,交斜边于F ,则厶CDE 的周长为 __________________
6. 如图,/ AOB=30 °点P 为/ AOB 内一点,0P=8 .点M 、N 分别在 OA 、OB 上,则△ PMN 周长的最小值为 ______________ .
ABCD 中,对角线 BD 平分/ ABC, / BAC=64° / BCD+Z DCA=180°
, 那么/ BDC 为 ______ 度.
7 .如图,已知四边形
8如图,在直角坐标系中,点 A (0, a 2 - a )和点B (0,- 3a -5)在y 轴上,点M 在x 轴 负半轴上,&ABM =6.当线段OM 最长时,点 M 的坐标为 ______________ .
11. 如图,直线 AB 交x 轴于点A (a , 0),交y 轴于点B (0, b ),且a 、b 满足|a+b|+ ( a -5) 2=0 (1 )点A 的坐标为 _______________ ,点B 的坐标为 ______________ ;
(2) 如图,若点C 的坐标为(-3, - 2),且BE 丄AC 于点E , OD 丄OC 交BE 延长线于 D , 试求点D 的坐标;
(3) 如图,M 、N 分别为OA 、OB 边上的点,OM=ON , OP 丄AN 交AB 于点P ,过点P 作PG 丄BM 交AN 的延长线于点 G ,请写出线段 AG 、OP 与PG 之间的数列关系并证明你
9. 如图,△ ABC 中,AC=BC ,/ ACB=90 °点D 为BC 的中点,点 E 与点C
关于直线 AD 对称,CE 与AD 、AB 分别交于点F 、G ,连接BE 、 BF 、GD ,求
证:
(1 )△ BEF 为等腰直角三角形;
(2)/ ADC= / BDG .
10. 如图,等腰△ ABC 中,AB=CB , M 为 ABC 内一点,/ MAC+ / MCB= / MCA=30
(1) 求证:△ ABM 为等腰三角形;
(2) 求/ BMC 的度数
.
12. 如图,在等边三角形厶ABC中,AE=CD , AD、BE交于P点,BQ丄AD于Q,
(1) 求证:BP=2PQ;
(2 )连PC,若BP _L PC,求--- 的值.http://w ww.xkbl. com
PQ
13 .在△ ABC中,AD平分/ BAC交BC于D.
(1)如图1,Z MDN的两边分别与AB、AC相交于M、N两点,过D作DF丄AC于F, DM=DN,证明:AM +AN=2AF ;
(2)如图2,若/ C=90° / BAC=60 ° AC=9,/ MDN=120 ° ND // AB,求四边形AMDN 的周长.
14. 如图1,在平面直角坐标系中,点A、B分别在x轴、y轴上.
(1)如图1,点A与点C关于y轴对称,点E、F分别是线段AC、AB上的点(点E不与点A、C 重合),且/ BEF= / BAO .若/ BAO=2 / OBE,求证:AF=CE ;
(2)如图2,若OA=OB,在点A处有一等腰△ AMN绕点A旋转,且AM=MN,/ AMN=90。
.连接BN,点P为BN的中点,试猜想OP和MP的数量关系和位置关系,说明理由.
圏1
15. 已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ ACD和厶BCE且
CA=CD CB=CE / ACD=Z BCE 直线AE 与BD 交于点F.
(1)如图1,若/ ACD=60,则/ AFD= ________ ;
(2)如图2,若/ ACD a,连接CF,则/ AFC= __________ (用含a的式子表示);
(3)将图1中的△ ACD绕点C顺时针旋转如图3,连接AE、AB BD,Z ABD=80,求/ EAB 的度数.
16.等腰Rt A ACB / ACB=90°, AC=BC点A、C分别在x轴、y轴的正半轴上.
(1)如图1,求证:/ BCO=Z CAO
(2) 如图2,若0A=5, OC=2,求B点的坐标
(3) 如图3,点C ( 0, 3) , Q、A两点均在x轴上,且 &CQA=18•分别以AC、CQ为腰在第
「、第二象限作等腰Rt A CAN、等腰Rt A QCM,连接MN交y轴于P点,OP的长度是否发
生改变?若不变,求出OP的值;若变化,求OP的取值范围.
接写出它们的比值 (不需要解答过程或说明理由)
17.如图,在平面直角坐标系中,已知
A (0, a )、
B (- b , 0)且a 、b 满足寸寸_ 4+1 a
-2b+2| =0 .
(1 )求证:/ OAB= / OBA ; (2) 如图1,若BE 丄AE ,求/ AEO 的度数;
(3) 如图2,若D 是AO 的中点,DE // BO , F 在AB 的延长线上,/ EOF=45 °连接EF , 试探究OE 和EF 的数量和位置关系.
(1 )求C 点坐标;
(2) 如图②过 C 点作CD 丄X 轴于D ,连接AD ,求/ ADC 的度数;
(3) 如图③在(1)中,点A 在Y 轴上运动,以OA 为直角边作等腰 Rt A OAE,连接EC,交 Y 轴于F ,试问A 点在运动过程中 S AOB : S A AEF 的值是否会发生变化?如果没有变化,请直
19. 如图①,平面直角坐标系 XOY 中,若A ( 0,
为直角边作等腰 RbABC,/ CAB=90 , AB=AC.
a )、B (
b , 0 )且(a - 4) 2+Qb=l =0,以
AB
20. 如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D分别在第四象限和第一象限,且OC丄OD, OC=OD,点D的坐标为(m, n),且满足(m - 2n) 2+|n
-2| =0.
(1)求点D的坐标;
(2)求/ AKO 的度数;w W w .x K b 1.c o M
(3)如图2,点P, Q分别在y轴正半轴和x轴负半轴上,且OP=OQ 直线ON丄BP交AB
21.如图,△ AOB和厶ACD是等边三角形,其中AB丄x轴于E点
(1) 如图,若OC = 5,求BD的长度
(2) 设BD交x轴于点F,求证:/ OFA =Z DFA
⑶如图,若正△ AOB的边长为4,点C为x轴上一动点,以AC为边在直线AC下方作正△ ACD ,
图3
w W w .X k b 1.c。