金属塑性成形力学_绪论
金属塑性成形
02
金属塑性成形的原理
金属塑性变形的物理基础
01
金属塑性变形的基本概念
金属塑性成形是通过外力作用使金属材料发生塑性变形,从而获得所需
形状和性能的过程。
02
金属的晶体结构与塑性变形
金属的晶体结构是影响其塑性变形行为的重要因素。金属的晶体结构决
定了其塑性变形的机制和特点。
03
温度对金属塑性变形的影响
塑性成形过程中的缺陷与控制
在塑性成形过程中,由于各种因素的影响,可能会出现裂纹、折叠、夹杂等缺陷。为了获得高质量的产 品,需要了解这些缺陷的形成原因,并采取相应的措施进行控制和预防。
03
金属塑性成形的方法
自由锻成形
总结词
自由锻成形是一种金属塑性加工方法,通过锤击或压力机等 工具对金属坯料施加外力,使其发生塑性变形,从而获得所 需形状和尺寸的金属制品。
随着科技的发展,精密金属塑性成形技术逐渐兴起,如精密锻造、精密轧制、精密冲压等 ,这些技术能够制造出更高精度、更复杂形状的金属零件。
数值模拟与智能化技术
近年来,数值模拟与智能化技术在金属塑性成形领域得到了广泛应用,通过计算机模拟技 术可以对金属塑性成形过程进行模拟分析,优化工艺参数,提高产品质量和生产效率。同 时,智能化技术的应用使得金属塑性成形过程更加自动化和智能化。
详细描述
挤压成形适用于生产各种复杂形状的管材、棒材和异型材等。由于其能够实现连续生产,因此具有较 高的生产效率。但挤压成形对设备和操作技术要求较高,且对原材料的表面质量、尺寸精度和化学成 分等要求严格。
拉拔成形
总结词
拉拔成形是一种金属塑性加工方法,通 过拉拔机对金属坯料施加拉力,使其发 生塑性变形,从而获得所需形状和尺寸 的金属制品。
华科 材料成型原理 第1章绪论及第2章金属塑性变形的物理本质
11~16
150
294~315
LY11
11~16
150
340~350
LY11
31
65
308
3.变形程度 4.应力状态
σ1-σ2
大
σ1-σ2
大
气
气
压
压
图5-20 脆性材料的各向压缩曲线 (a)大理石;(b)红砂石; —轴向压力; —侧向压力
5.变形状态
图5-24 主变形图对金属中缺陷形状的影响
(a)未变形的情况;(b)经两向压缩—向延伸变形后的情况; (c)经—向压缩两向延伸后的情况
Nabarro
蠕变
弹性区
(N扩ab散ar流ro蠕变变)
变形机制图
(a)纯银和(b)锗给出不同变形机制起控制作用的应力-温度区间, 两种材料的晶粒尺寸皆为32μm
以10-8/s的应变速率来确定弹性边界
§2. 2 塑性加工中金属的 组织与性能
2. 2. 1 冷变形 2. 2. 2 热变形 2. 2. 3 塑性变形对固态相变的影响
➢ 塑性映材料抵抗变形的能力。
塑性与柔软性的对立统一
➢铅---------------塑性好,变形抗力小
➢不锈钢--------塑性好,但变形抗力高 ➢白口铸铁----塑性差,变形抗力高
➢ 结论:塑性与柔软性不是同一概念
为什么要研究金属的塑性?
塑性变形—影响大(加工硬化、晶粒 细化、位错密度增加、形成织构等) ➢ 变形机理:弹性变形—原子间距的变化;
塑性变形—位错运动为主 ➢ 弹塑性共存:整体变形中包含弹性变形和塑性变形;塑性变
形的发生必先经历弹性变形;在材料加工过程中,工件的塑
性变形与工模具的弹性变形共存。
金属塑性成形原理
表1-1 塑性成形方法分类表1-2 五大基本加工方法的分类第 一 章 绪 论一、金属塑性成形的特点与地位金属塑性成形是金属加工的重要方法之一。
它是指金属工件在工具外力(主要是压力)的作用下,产生塑性变形,从而达到要求的形状、尺寸和性能的加工过程。
因此,也把塑性成形称为塑性加工或压力加工。
金属塑性成形与其它加工方法相比,主要具有如下优点:1. 能改善组织性能。
如减轻偏析、致密结构、细化晶粒等,从而提高材料的综合力学性能。
2. 金属废屑少。
因塑性成形主要靠金属塑性状态下的体积转移,故不需切除大量的多余金属,所以金属收得率较高。
3. 生产率高。
这体现在塑性成形可采用高的加工速度,以及可采用连续式(非周期式)的生产方式。
因此特别适用于大批量生产。
由于上述优点,占产钢总量90%以上的钢制品都要经过塑性成形加工过程,其产品广泛应用于各种行业、部门,并随着塑性成形技术的发展,能生产的产品品种及规格也越来越多,因此金属塑性成形在国民经济中占有重要地位。
二、 金属塑性成形方法分类按金属塑性成形的加工方式,即综合考虑工具的特征及工件的变形方式,可将塑性成形方法分为五大类(见表1-1)。
类 别 工具特征 工件变形方式 锻 造直线运动的锻锤或锻模在锻模间体积变形挤 压 直线运动的挤压板及带挤压模的挤压缸 在挤压模孔中挤出拉 拔 直线运动的夹头及拉拔模架 在拉拔模孔中拉出冲 压 直线运动的冲模 在冲模间板料成形轧 制旋转运动的轧辊在轧辊间压缩成形上述五大基本加工方法又可分别进一步细分为若干种如表1-2所例举的加工方法。
基本方法 类 别 锻 造 自 由 锻 模 锻 挤 压 正 挤 反 挤 拉 拔 实心材拉拔 空心材拉拔 冲 压冲 裁 弯 曲表1-3 塑性理论发展概览拉 深轧 制纵 轧横 轧斜 轧三、金属塑性成形理论的发展概况金属塑性成形理论是一门基于金属塑性变形的物理学、物理-化学、金属学与力学基础上的应用技术理论。
发现金属材料的塑性并利用其加工金属制品可追溯至2000 多年前的青铜器时代,但是对金属材料的塑性变形的微观机理的认识,则是与本世纪30年代位错概念的提出分不开的。
金属塑性成形原理``俞汉清 陈金德主编``
金属塑性成形原理复习指南第一章绪论1、基本概念塑性:在外力作用下材料发生永久性变形,并保持其完整性的能力。
塑性变形:作用在物体上的外力取消后,物体的变形不能完全恢复而产生的永久变形成为塑性变形。
塑性成型:材料在一定的外力作用下,利用其塑性而使其成形并获得一定的力学性能的加工方法。
2、塑性成形的特点1)其组织、性能都能得到改善和提高。
2)材料利用率高。
3)用塑性成形方法得到的工件可以达到较高的精度。
4)塑性成形方法具有很高的生产率。
3、塑性成形的典型工艺一次成形(轧制、拉拔、挤压)体积成形塑性成型分离成形(落料、冲孔)板料成形变形成形(拉深、翻边、张形)第二章金属塑性成形的物理基础1、冷塑性成形晶内:滑移和孪晶(滑移为主)滑移性能(面心>体心>密排六方)晶间:转动和滑动滑移的方向:原子密度最大的方向。
塑性变形的特点:① 各晶粒变形的不同时性;② 各晶粒变形的相互协调性;③ 晶粒与晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。
合金使塑性下降。
2、热塑性成形软化方式可分为以下几种:动态回复,动态再结晶,静态回复,静态再结晶等。
金属热塑性变形机理主要有:晶内滑移,晶内孪生,晶界滑移和扩散蠕变等。
3、金属的塑性金属塑性表示方法:延伸率、断面收缩率、最大压缩率、扭转角(或扭转数)塑性指标实验:拉伸试验、镦粗试验、扭转试验、杯突试验。
非金属的影响:P冷脆性 S、O 热脆性 N 蓝脆性 H 氢脆应力状态的影响:三相应力状态塑性好。
超塑性工艺方法:细晶超塑性、相变超塑性第三章金属塑性成形的力学基础第一节应力分析1、塑性力学基本假设:连续性假设、匀质性假设、各向同性假设、初应力为零、体积力为零、体积不变假设。
2、张量的性质1、存在不变量,张量的分量一定可以组成某些函数f(Tij),这些函数的值不随坐标而变。
2、2阶对称张量存在三个主轴和三个主值;张量角标不同的分量都为零时的坐标轴方向为主轴,三个角标相同的分量为值。
塑性力学知识点
《塑性力学及成形原理》知识点汇总第一章绪论1.塑性的基本概念2.了解塑性成形的特点第二章金属塑性变形的物理基础1.塑性和柔软性的区别和联系2.塑性指标的表示方法和测量方法3.磷、硫、氮、氢、氧等杂质元素对金属塑性的影响4.变形温度对塑性的影响;超低温脆区、蓝脆区、热脆区、高温脆区的温度范围补充扩展:1.随着变形程度的增加,金属的强度硬度增加,而塑性韧性降低的现象称为:加工硬化2.塑性指标是以材料开始破坏时的塑性变形量来表示,通过拉伸试验可以的两个塑性指标为:伸长率和断面收缩率3.影响金属塑性的因素主要有:化学成分和组织、变形温度、应变速率、应力状态(变形力学条件)4.晶粒度对于塑性的影响为:晶粒越细小,金属的塑性越好5.应力状态对于塑性的影响可描述为(静水压力越大):主应力状态下压应力个数越多,数值越大时,金属的塑性越好6.通过试验方法绘制的塑性一一温度曲线,成为塑性图第三章金属塑性变形的力学基础第一节应力分析1.塑性力学的基本假设2.应力的概念和点的应力状态表示方法3.张量的基本性质4.应力张量的分解;应力球张量和应力偏张量的物理意义;应力偏张量与应变的关系5.主应力的概念和计算;主应力简图的画法J =O +O +O公式(3-14)应力张量不变量的计算J =-9 O +o o +O O )+T 2 +T 2 +T 2 ...................................................... 2兀y y z z兀冲yz小J =OOO + 2T T T - (OT 2 +o T 2 +O T 2 ) 3 兀 y z xy yz zx x yz y zx z xy公式(3-15)应力状态特征方程o 3 - J o 2 - J a -J = 01 2 3(当已知一个面上的应力为主应力时,另外两个主应力可以采用简便计算公式(3-35)・・・・・・・・ 的形式计算)6 .主切应力和最大切应力的概念计算公式(3-25)最大切应力T = 1(o -o ) max 2 max min7 .等效应力的概念、特点和计算主轴坐标系中公式(3-31) o =上T 1 =上 J(o -o )2 + (o -o )2 + (o -o )2 = J3J' :2 8弋 2 1 2 ............................. 2 3 3 1 , 2任意坐标系中公式(3-31a) o =工《(o -o )2 + (o -o )2 + (o -o )2 + 6(T 2 +T 2 +T 2) ............................................... 2 2 * 兀 ' ' z z x xy yz. zx8 .单元体应力的标注;应力莫尔圆的基本概念、画法和微分面的标注 9 .应力平衡微分方程 第二节应变分析1 .塑性变形时的应变张量和应变偏张量的关系及其原因2 .应变张量的分解,应变球张量和应变偏张量的物理意义3 .对数应变的定义、计算和特点,对数应变与相对线应变的关系4 .主应变简图的画法5 .体积不变条件公式(3-55)用线应变0=8 +8 +8 = 0 ;用对数应变(主轴坐标系中)e +G +e = 0 xy z ..........................1 (2)36 .小应变几何方程S u1 ,S u S v.8 =—;丫 二Y =-(——+ x S x xy yx2 S y S x 公式(3-66) 8 S v =—;Y 二Y 1 ,S v S 叭 =-(—+ ——)• ••••••• yS y yz zy2 S z S yS w1 ,S w S 8 =-;Y 二Y =一(——z S z zx xz2 S x S z第三节 平面问题和轴对称问题1.平面应变状态的应力特点;纯切应力状态的应力特点、单元体及莫尔圆公式(3-86) o =o =十(o +o ) =o..................... z2213 m第四节屈服准则 1 .四种材料的真实应力应变曲线 2 .屈雷斯加屈服准则 公式(3-96) T =乙=K ・・・・・・・・ - max 2 3.米塞斯屈服准则 公式(3-101) (o —o )2 + (o —o )2 + (o —o )2 + 6(T 2 +T 2 +T 2) = 2o 2 = 6K 2.................................................. 无 y y z z 无盯 yz zxs(o —o )2 + (o —o )2 + (o —o )2 = 2o 2 = 6K 24 .两个屈服准则的相同点和差别点5 . o 1-orBo s ,表达式中的系数p 的取值范围 第五节塑性变形时应力应变关系 1 .塑性变形时应力应变关系特点 2 .应变增量的概念,增量理论 公式(3-125) d £ =o 、d 九• • •••••••IJ IJ公式(3-129) d £ =丝[o - 1(o +o )] ; d y =3竺T ........................ x o x 2y zxy2 o xy d £ = =[o - -(o +o)]; y o y 2 x z d yyz 人 d £「1 /d £ = =[o --(o z o z 2x+o y )l ;,3 d £dy = 一 =T zx 2o zx 3.比例加载的定义及比例加载须满足的条件 第六节塑性变形时应力应变关系 1.真实应力应变曲线的类型第四章金属塑性成形中的摩擦1.塑性成形时摩擦的特点和分类;摩擦机理有哪些?影响摩擦系数的主要因素2.两个摩擦条件的表达式3.塑性成形中对润滑剂的要求;塑性成形时常用的润滑方法第五章塑性成形件质量的定性分析1.塑性成形件中的产生裂纹的两个方面2.晶粒度的概念;影响晶粒大小的主要因素及细化晶粒的主要途径3.塑性成形件中折叠的特征第六章滑移线场理论简介1.滑移线与滑移线场的基本概念;滑移线的方向角和正、负号的确定2.平面应变应力莫尔圆中应力的计算;o = o —K sin 23公式(7-1) o =o + K sin23................ y mT = K cos 233.滑移线的主要特性;亨盖应力方程公式(7-5) o —o = ±2K3................ ma mb ab4.塑性区的应力边界条件;滑移线场的建立练习题一、应力-2 0 0 -1、绘制o ij= 0 4 -1的单元体和应力莫尔圆,并标注微分面。
金属塑性成形原理pdf
金属塑性成形原理pdf
金属塑性成形(MPM)是一种成型工艺,它包括冷弯折形、冷拉伸、热弯形、热拉伸、冲压和挤压等,它能够将金属材料塑性变形,从而制造成各种形状和尺寸的部件或零件。
虽然它与铸造有许多相似之处,但具有明显的不同,它更多的是在金属材料弯折或拉伸的基础上进行裁剪和成型。
金属塑性成形的主要原理是材料的塑性变形,当金属或其它金属材料受力时,它会发生塑性变形,例如在冷弯折形时,金属材料会受到压力而不会断裂。
冷拉伸的原理与冷弯折形的原理基本相同,只是它使用的是拉伸力而非压力。
热弯形和热拉伸原理与冷弯折形和冷拉伸的原理大致相同,只是需要加热材料来使其塑性变形。
冲压和挤压是两种机器成型工艺,它们通过对金属材料施加压力而产生细小的型腔,从而制造出不同形状的部件或零件。
金属塑性成形的另一个重要原理是金属温度、应力和应变。
温度变化会影响材料的变形性能,应力和应变是金属材料变形的两个重要参数,它们可以帮助确定材料的力学性能,从而选择合适的成形工艺来完成成型任务。
最后,成形过程中还需要考虑工具的
使用,例如冲床、挤压机、回转机等,这些工具可以应用到金属塑性成形中,使金属材料发挥更好的塑性变形性能。
总之,金属塑性成形技术的主要原理是材料的塑性变形,应力、应变和温度等因素的影响,以及工具的使用。
这些原理可以用来帮助确定正确的成型工艺和工具,从而产生精确度相当高的金属零件。
金属塑性变形理论.pptx
• 实现最佳的加工条件
研究创造最佳的工艺条件和使工艺内容定量化以及把能实现这种条件的新技术用于新加工机械设计和老 设备的挖潜改造上,并进行最优控制。
2024/10/8
43
第454页/共64页
课下练习
1、什么是金属的塑性?什么是塑性加工?塑性加工有何特点? 2、试述塑性加工的一般分类。
2024/10/8
• 做好课堂笔记,本课程中将有部分补充内容, 要求大家记笔记。
• 要求上课前预习,本课程内容较难,且内容 多,信息量较大,要求大家自觉预习。
• 遵守课堂纪律,本课程不允许迟到早退。
3
第54页/共64页
本课程主要内容
• 金属微观变形机理与宏观性能 • 金属变形过程的力学分析 • 变形体力学的求解方法
将计算机技术、信息技术、先进控制技术应用 于传统加工技术
➢ 提高生产效率
高速、全自动、无人化
➢ 扩大产品范围 ➢ 形状、尺寸的精确控制
2024/10/8
46
第487页/共64页
2024/10/8
铝合金镜面板
超小型精密挤压型材
47
第498页/共64页
发展先进成形加工技术
➢ 目的 ➢ 高附加值材料、难加工材料的加工 ➢ 实现组织性能的精确控制
44
第465页/共64页
补充材料
材料加工技术的主要发展方向
(1)高效化、高精度化 (2)发展先进成形加工技术 (3)材料设计、制备与成形加工一体化 (4)开发新型成形加工技术,发展新材料 (5)计算机模拟与过程仿真技术 (6)智能制备与加工技术
2024/10/8
45
第476页/共64页
传统技术的高效化与高精度化 ➢ 高新技术改造传统技术
材料成型原理
材料成型原理(金属塑性成形原理)第一章 绪论塑性成形是利用材料的塑性而获得所需形状与尺寸的工件的一种加工方法。
塑性成形又称为塑性加工与压力加工。
金属塑性加工的主要优点:○1结构致密,组织改善,性能提高。
○2材料利用率高,流线分布合理。
○3精度高,可以实现少无切削的要求。
○4生产效率高。
塑性成形原理课程的内容⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧滑移线法主应力法上限法近似方法法求解塑性问题的经典方应变关系应力屈服准则应力分析应变分析塑性力学金属学塑性成形原理、课程特点:以张量理论为基础。
张量理论基础第一节 笛卡儿张量的定义及其代数运算物理量本身是不依赖于坐标系而存在的,而同一物理在不同坐标系中会有不同的数量特征。
张量是一种数学工具,用它来描述物理量及其运动,所得到的数量表征和分析结果,在任何坐标系中都具有不变形式。
我们讨论的是笛卡儿直角坐标系中的张量。
一、 笛卡儿坐标系的基矢笛卡儿坐标系⎩⎨⎧-右手规则321x x x O设e k (k=1、2、3)沿Ox k 轴的单位矢量,称为基矢量或基矢。
定义基矢的点积或标量积:⎩⎨⎧≠==∙lk lk e e kl k .0.11δ kl δ为Kronecker 克氏符号。
定义基矢的叉积或矢量积为:k ijk j i e e e =∈⨯ ijk ∈为置换符号。
⎪⎩⎪⎨⎧-=∈,其它的奇数排列、、为、、,的偶数排列、、为、、,032113211k j i k j i ijk指标ijk 的原始排列顺序为1、2、3,如果将排列中的任意一对相邻指标互换,则称为指标的一次置换。
例如1 2 3给一次置换就成为1 3 2或2 1 3。
如果再互换一对指标,就称为二次置换。
依次类推可以定义指标排列的几次置换。
当几次为奇数时,称为奇置换。
而几为偶数时,称为偶置换。
二、 求和约定任一矢量 i i e e e e μμμμμ=++=332211 ij ij i j ij ij υμυμ=∑∑==3131在三维的欧矢空间内,如果某一指标在同一项中重复出现,就表示要对这个指标从1到3求和。
金属塑性成形原理 考点 要点
金属塑性成型绪论塑性变形:当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形塑性:在外力的作用下,使金属材料发生塑性变形而不破坏其完整性的能力注:材料的塑性不是固定不变的,与变形条件有关影响因素:晶格类型、化学成分、金相组织变形温度、变形速度、受力状况塑性成形(塑性加工):金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法。
金属塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高,适于大批量生产金属的超塑性变形:超塑性:金属和合金具有的超常的均匀变形能力的超塑性超塑性:细晶超塑性(结构超塑性、恒温超塑性)在一定的恒温下,在应变速率和晶粒度都满足要求的条件下所呈现相变超塑性(动态超塑性)具有相变或同素异构转变主要用在焊接和热处理相变超塑性的主要控制因素是温度幅度和温度循环率循环次数越多,所得伸长率越大二、细晶超塑性变形力学特征流动应力(真实应力)对变形速率极其敏感 Y--真实应力K--取决于试验条件的材料常数M是表征敏感性的一个重要指数时牛顿粘性流动公式--应变速率m--应变速率敏感性指数对普通金属对超塑性金属 m值越大,伸长率越大m值反映了材料抗局部收缩或产生均匀拉伸变形的能力。
材料的伸长率并不总是由m值唯一确定,式样的几何尺寸和晶粒度对伸长率也有影响。
三、影响细晶超塑性的主要因素(一)应变速率的影响:可大致分三个区:区间I的应变速率极低,在此区间内流动应力很低,m值亦较小属于蠕变速率范围;区间II,,在此区间内,随着的增加流动应力迅速增加,m值亦增大并出现峰值,此属超塑性应变速率范围;区间III,,属于常规应变速率范围,流动应力达到最大值,而m值下降()(二)变形温度的影响:只有当应变速率和变形温度的综合作用有利于获得最大的m值时,合金才会表现出最佳的超塑性状态(三)组织的影响金属在塑性加工过程中的塑性行为一、塑性的基本概念和塑性指标1、塑性的基本概念:塑性:金属在外力作用下,能稳定的发生永久变形而不破坏其完整性的能力2、塑性指标:(1)拉伸试验:伸长率指标越高,塑性越好断面收缩率(2)镦粗试验:--镦粗试样侧表面出现第一条裂纹的高度(3)扭转试验:试样破断前的扭转角或扭转圈数表示**塑性与变形抗力之间无相关关系二、金属的化学成分和组织对塑性的影响(一)化学成分的影响1、碳钢中碳和杂质元素的影响(1)碳(2)磷:有害元素冷脆性(3)硫:有害杂质热脆性(4)氮:时效脆性(5)氢:氢脆、白点(6)氧2、合金元素对钢的塑性的影响(塑性降低,变形抗力提高)(二)组织的影响1、相组成的影响:单相组织比多相组织塑性好2、晶粒度的影响:均匀细晶组织比粗晶组织有更好的塑性3、铸造组织的影响:铸造组织使金属塑性降低三、变形温度对金属塑性的影响总趋势:随着温度的升高,塑性增加,变形抗力减小蓝脆区热脆区高温脆区在塑性加工时,应力图避开上述各种脆区温度升高使金属塑性增加的原因:1)发生回复与再结晶2)原子动能增加,使位错流动性提高,滑移系增多,从而改善了晶粒之间变形的协调性格3)金属的组织、结构发生变化,可能由多相组织转变为单相组织,也可能由对塑性不利的晶格转变为对塑性有利的晶4)扩散蠕变机理起作用5)晶间滑移作用增强四、应变速率对金属塑性的影响:(一)热效应与温度效应热效应:塑性变形时金属所吸收的能量,绝大部分转化为热能温度效应:由于塑性变形过程中所产生的热量而使变形体温度升高的现象(二)应变速率对塑性的影响机理(三)应变速率对金属塑性的影响的一些基本结论在较低的应变速率范围内提高应变速率时,由于温度效应所引起的塑性增加,小于其他机理所引起的塑性降低,所以最终表现为塑性降低;当应变速率较大时,由于温度效应更为显著,使得塑性基本上不再随应变速率的增加而降低;当应变速率更大时,则由于温度效应更大,其对苏醒的有利影响超过其他机理对塑性的不利影响,因而最终使得塑性回升。
第1章-塑性加工金属学
1、回复和再结晶
从热力学角度来看,变形引起加工硬化,晶体缺陷增多,金属 畸变内能增加,原子处于不稳定的高自由能状态,具有向低自由 能状态转变的趋势。当加热升温时,原子具有相当的扩散能力, 变形后的金属自发地向低自由能状态转变。这一转变过程称为回 复和再结晶,这一过程伴随有晶粒长大。
多相合金(两相合金)中的第二相可以是纯金属、固溶 体或化合物,起强化作用的主要是硬而脆的化合物。
合金的塑性变形在很大程度上取决于第二相的数量、形 状、大小和分布的形态。但从变形的机理来说,仍然 是滑移和孪生
第二相以连续网状分布在基体晶粒的边界上 随着第二相数量的增加,合金的强度和塑性皆下
降。
第二相以弥散质点(颗粒)分布在基体晶粒内部 合金的强度显著提高而对塑性和韧性的影响较小。
图13-15 回复和再结晶对金属组织和性能的变化
表13-1 回复、再结晶和晶粒长大的特点及应用
回复
再结晶
晶粒长大
发生温度
较低温度
较高温度
更高温度
转变机制
原子活动能量小,空位 移动使晶格扭曲恢复。 位错短程移动,适当集 中形成规则排列
原严直无子重至晶扩畸畸格散变变类能组晶型力织粒转大中完变,形全新核消晶和失粒生,在长但,新晶粒生粒,晶吞晶粒并界中小位大晶移
四、本课程的任务
目的:
科学系统地阐明金属塑性成形的基础和规律, 为合理制订塑性成形工艺奠定理论基础。
任务:
• 掌握塑性成形时的金属学基础,以便使工件在成 形时获得最佳的塑性状态,最高的变形效率和优 质的性能;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纵轧
横轧
斜轧
③挤压:把坯料放在挤压筒中,垫片在挤压轴推动下, 迫使成形材料从一定形状和尺寸的模孔中挤出。
分为正向挤压和反向挤压。
正向挤压
反向挤压
(2)主要靠拉力作用使材料成形的方式有拉拔、冲 压和拉伸。
拉拔
冲压
拉伸
(3)主要靠弯矩和剪力作用使材料产生成形的方式有弯 曲和剪切
弯曲
剪切
基本成形方式简称 “锻、轧、挤、拉、冲、弯、剪”
件;6—导辊;7—轧辊
粉末轧制过程
1—料斗;2—粉末;3—轧辊;4—未烧结的带坯;5—预烧 结炉;6—一次冷轧;7—烧结炉;8—二次冷轧;9—退火
炉;10—三次冷轧;11—退火炉
按变形时的工件温度特征
热变形
—在进行充分再结晶温度以上所完成的变形过程
冷变形
—在不产生回复和再结晶温度以下所完成的变形过程
材料成形力学
主 讲 王平
东北大学 材料与冶金学院 材料电磁过程研究教育部重点实验室(EPM)
绪论
1 材料成形力学及其基本研究内容
所谓材料成形力学是研究各种成形过 程的力能参数的计算,内容包括:
1)研究给定材料成形过程所需的外力; 2)研究成形材料内部的应力场、应变场等; 3)研究新的、更合理的成形过程。
组合成形 为了扩大品种和提高成形精度与效率,常常把上述基本成
形方式组合起来,形成新的组合成形过程。主要有锻造-轧 制;轧制-剪切;拉拔-轧制;轧制-挤压;轧制-弯曲;等。
v1 v1 v
v
液态铸轧过程
(a) 铸铁板液态铸轧;(b) 铝带液态铸轧 1—盛钢桶;2—流钢槽;3—水冷轧辊;4—冷却钢带;5—轧
温变形
—介于冷热变形之间的温度进行的变形
3 材料成形力学的基本解法与发展方向
❖ 工程法(初等解析法)(第三章) ❖ 滑移线法(第四章) ❖ 上界法(第五、六章)
❖有限元法 ❖上界元法 ❖能量法
2 材料ห้องสมุดไป่ตู้形的基本受力特点与成形方式
基本成形方式
(1)靠压力作用使材料产生变形的方式有锻造、轧制和挤压 ①锻造:是用锻锤锤击或用压力机的压头压缩工件。分自由 锻和模锻。自由锻又有镦粗和延伸两种类型。
镦粗
延伸
模锻
②轧制:坯料通过转动的轧辊受到压缩,使横断面减小、 形状改变、长度增加。可分为纵轧、横轧、斜轧