微分方程(习题及解答)0001

合集下载

微分方程单元测试题(含答案)

微分方程单元测试题(含答案)

微分方程单元测试题(含答案)题目一已知微分方程 $\frac{dy}{dx} = 2x$,求出这个微分方程的通解。

答案:根据微分方程的定义,我们可以利用变量分离法来求解这个微分方程。

首先我们将 $\frac{dy}{dx} = 2x$ 两边同时乘以 $dx$ 和$\frac{1}{2x}$,得到 $\frac{dy}{2x} = dx$。

然后我们进行积分,得到 $\int \frac{dy}{2x} = \int dx$。

将积分限写入,得到 $\int\frac{dy}{2x} = \int_{y_0}^y dx$(这里 $y$ 是变量 $x$ 的函数)。

对于左边的积分,我们可以用换元法来进行计算,令 $u = 2x$,则$du = 2dx$。

将其代入积分式中,得到 $\frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln|u| + C_1 = \ln|u|^{1/2} + C_1$ (其中 $C_1$ 是常数)。

对于右边的积分,我们可以直接计算得到 $x + C_2$(其中$C_2$ 是常数)。

将左右两边的积分结果合并,得到 $\ln|u|^{1/2} + C_1 = x + C_2$,进一步化简得到 $\ln|2x|^{1/2} = x + C_3$,其中$C_3 = C_2 - C_1$ 是常数。

对等式两边同时取指数函数,得到$|2x|^{1/2} = e^{x + C_3}$,再进一步化简得到 $|2x|^{1/2} = e^{x}e^{C_3}$。

最后取绝对值,得到 $2x = \pm e^{x} e^{C_3}$,进一步化简得到 $x = \pm \frac{e^{x} e^{C_3}}{2}$。

因此,微分方程的通解为 $x = \pm \frac{e^{x} e^{C_3}}{2}$,其中 $C_3$ 是常数。

题目二已知微分方程 $\frac{dy}{dx} + y = 3x$,求出这个微分方程的特解。

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析题目1. 解微分方程 $\frac{dy}{dx} = 3x^2 + 2x$,其中 $y(0)=1$。

2. 解微分方程 $\frac{dy}{dx} + y = x$,其中 $y(0)=1$。

3. 解微分方程 $\frac{dy}{dx} - 2y = -4$。

4. 解微分方程 $\frac{dy}{dx} + 9y = \sin x$。

答案解析1. 对微分方程两边同时积分,得到 $y = x^3+x+c$,其中$c$ 为任意常数。

由 $y(0)=1$ 可求出 $c=1$,所以 $y=x^3+x+1$。

2. 首先解齐次方程 $\frac{dy}{dx} + y = 0$,得到 $y=Ce^{-x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + y = x$,设其特解为 $y=ax+b$,代入方程得到 $a=\frac{1}{2}$,$b=\frac{1}{2}$。

因此通解为 $y=Ce^{-x}+\frac{1}{2}x+\frac{1}{2}$。

由 $y(0)=1$ 可得到 $C=\frac{1}{2}$,所以 $y=\frac{1}{2}(2e^{-x}+x+1)$。

3. 对微分方程两边同时积分,得到 $y = Ce^{2x}+2$,其中$C$ 为任意常数。

4. 首先解齐次方程 $\frac{dy}{dx} + 9y = 0$,得到 $y=Ce^{-9x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + 9y= \sin x$,由于 $\sin x$ 不是指数函数 $e^{kx}$ 的线性组合,所以采用常数变易法,设其特解为 $y=A\sin x + B\cos x$,代入方程得到 $A=-\frac{1}{82}$,$B=\frac{9}{82}$。

因此通解为 $y=Ce^{-9x}-\frac{1}{82}\sin x+\frac{9}{82}\cos x$。

数学课程微分方程求解练习题及答案

数学课程微分方程求解练习题及答案

数学课程微分方程求解练习题及答案微分方程是数学中非常重要的一门课程,它在许多科学领域中有着广泛的应用。

为了更好地掌握微分方程的解题技巧,下面将给出一些微分方程求解的练习题及其答案。

练习一:一阶线性微分方程1. 求解微分方程:dy/dx + y = 2x解答:首先将该微分方程转化为标准形式:dy/dx = 2x - y然后可以使用分离变量的方法进行求解,将变量分离得到:dy/(2x - y) = dx对等式两边同时积分,得到:∫(1/(2x - y))dy = ∫dx通过对右边的积分,得到:ln|2x - y| = x + C1 (其中C1是常数)将等式两边取e的指数,得到:2x - y = Ce^x其中C = e^C1是一个任意常数,所以方程的通解为:y = 2x - Ce^x (其中C为常数)2. 求解微分方程:dy/dx + 2y = e^x解答:将该微分方程转化为标准形式:dy/dx = e^x - 2y然后使用分离变量的方法进行求解,得到:dy/(e^x - 2y) = dx对等式两边同时积分,得到:∫(1/(e^x - 2y))dy = ∫dx通过对右边的积分,得到:(1/2)ln|e^x - 2y| = x + C2 (其中C2是常数)再次将等式两边取e的指数,得到:e^x - 2y = Ce^2x其中C = e^C2是一个任意常数,所以方程的通解为:y = (1/2)e^x - (C/2)e^2x (其中C为常数)练习二:二阶微分方程1. 求解微分方程:d^2y/dx^2 + 4dy/dx + 4y = 0解答:首先将该微分方程的特征方程写出来:r^2 + 4r + 4 = 0解特征方程,得到特征根为:r = -2由于特征根为重根,所以方程的通解形式为:y = (C1 + C2x)e^(-2x) (其中C1和C2为常数)2. 求解微分方程:d^2y/dx^2 + dy/dx - 2y = 0解答:首先将该微分方程的特征方程写出来:r^2 + r - 2 = 0解特征方程,得到特征根为:r1 = 1,r2 = -2所以方程的通解形式为:y = C1e^x + C2e^(-2x) (其中C1和C2为常数)这里给出了一些微分方程求解的练习题及其答案,通过练习这些题目,相信可以增强对微分方程的理解和掌握。

微分方程初值问题练习题求解微分方程的初值问题

微分方程初值问题练习题求解微分方程的初值问题

微分方程初值问题练习题求解微分方程的初值问题微分方程是数学中的一个重要分支,它描述了变量之间的关系及其变化率。

初值问题是指在给定一个微分方程及初始条件的情况下,求解出一个特定的解。

本文将通过练习题的形式,来介绍如何求解微分方程的初值问题。

1. 练习一:一阶线性常微分方程考虑以下一阶线性常微分方程:\[ \frac{dy}{dx} + P(x)y = Q(x) \]其中,\(P(x)\) 和 \(Q(x)\) 是给定的函数。

已知初值条件 \(y(x_0) = y_0\),求解出该微分方程的解。

解答:首先将原方程变形为标准形式:\[ \frac{dy}{dx} = -P(x)y + Q(x) \]接下来使用积分因子法来求解该微分方程,积分因子定义为:\[ \mu(x) = e^{\int -P(x) dx} \]对原方程两边同时乘以积分因子,得到:\[ \mu(x) \frac{dy}{dx} + \mu(x)P(x)y = \mu(x)Q(x) \]由于左边是积分的导数,可以写成:\[ \frac{d}{dx}(\mu(x)y) = \mu(x)Q(x) \]对上式两边同时积分,得到:\[ \int \frac{d}{dx}(\mu(x)y) dx = \int \mu(x)Q(x) dx \]应用积分的基本性质,化简上式得到:\[ \mu(x)y = \int \mu(x)Q(x) dx + C \]其中,\(C\) 是常数。

最后将 \(y\) 解出来,得到:\[ y(x) = e^{-\int P(x) dx}(\int e^{\int P(x) dx}Q(x) dx + C) \]将初值条件\(y(x_0) = y_0\) 代入上式,可以求解出常数\(C\) 的值,从而得到特定的解。

2. 练习二:二阶线性常微分方程考虑以下二阶线性常微分方程:\[ \frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = R(x) \]其中,\(P(x)\),\(Q(x)\),\(R(x)\) 是给定的函数。

高中数学微分方程练习题及参考答案2023

高中数学微分方程练习题及参考答案2023

高中数学微分方程练习题及参考答案2023一、填空题1.微分方程 $y'=x^2$ 的通解为 $y=$_____________。

2.微分方程 $y'-2y=\cos x$ 的通解为 $y=$_____________。

3.微分方程 $y''-3y'+2y=0$ 的通解为 $y=$_____________。

4.微分方程 $y''+y=e^x$ 的通解为 $y=$_____________。

5.微分方程 $(x-1)y'-y=3$ 的通解为 $y=$_____________。

二、选择题1.微分方程 $y''-y'-12y=0$ 的解正确的选项是A. $y=c_1e^{4x}+c_2e^{-3x}$B. $y=c_1e^{3x}+c_2e^{-4x}$C. $y=c_1\sinh3x+c_2\cosh4x$D. $y=c_1\sinh4x+c_2\cosh3x$2.对于微分方程 $y''-2y'+y=x^3\mathrm{e}^{2x}$,以下选项正确的是A. 特解应为多项式 $Ax^3+Bx^2+Cx+D$B. 对于其特解应有 $A=0$C. 对于其特解应有 $B=0$D. 对于其特解应有 $B\neq0$3.微分方程 $y''-y'-2y=0$,其中 $y_1(x)=e^{2x}$,$y_2(x)=?$,正确的选项是A. $y_2(x)=e^{-x}$B. $y_2(x)=e^{x}$C. $y_2(x)=e^{-2x}$D. $y_2(x)=\mathrm{e}^{-2x}-4x\mathrm{e}^{-2x}$三、解答题1.求微分方程 $y'+\frac{1}{x}y=2\sin\ln x$ 的通解。

2.求微分方程 $y'-y=x\mathrm{e}^x$ 的通解。

微分方程课后习题答案

微分方程课后习题答案

微分方程课后习题答案微分方程是数学中的重要分支,它研究的是描述自然现象中变化规律的方程。

在学习微分方程的过程中,课后习题是巩固知识、提高技能的重要途径。

本文将为大家提供一些微分方程课后习题的答案,希望能够帮助大家更好地理解和掌握微分方程的知识。

1. 一阶线性微分方程题目:求解微分方程 dy/dx + y = 2x解答:这是一个一阶线性微分方程,我们可以使用常数变易法来求解。

首先,将方程改写为 dy/dx = 2x - y设 y = u(x) * v(x),其中 u(x) 是未知函数,v(x) 是待定函数。

将 y = u(x) * v(x) 带入方程,得到 u(x) * v'(x) + u'(x) * v(x) = 2x - u(x) * v(x)整理得 u(x) * v'(x) + u'(x) * v(x) - u(x) * v(x) = 2x根据乘积法则,有 (u(x) * v(x))' = 2x对上式两边同时积分,得到 u(x) * v(x) = x^2 + C,其中 C 是常数。

然后,我们需要求解 u(x) 和 v(x)。

由于 v(x) 是待定函数,我们可以选择 v(x) = e^(-x),这样 v'(x) = -e^(-x)。

将 v(x) = e^(-x) 带入 u(x) * v'(x) + u'(x) * v(x) - u(x) * v(x) = 2x,得到 u'(x) * e^(-x) = 2x对上式两边同时积分,得到 u(x) * e^(-x) = x^2 + C将 u(x) * e^(-x) = x^2 + C 代入 y = u(x) * v(x),得到 y = (x^2 + C) * e^x所以,原微分方程的通解为 y = (x^2 + C) * e^x,其中 C 是常数。

2. 二阶线性常系数齐次微分方程题目:求解微分方程 d^2y/dx^2 + 2dy/dx + 2y = 0解答:这是一个二阶线性常系数齐次微分方程,我们可以使用特征方程法来求解。

微分方程相关习题和答案

微分方程相关习题和答案

微分方程相关习题和答案微分方程是数学中的一个重要分支,它研究的是函数与其导数之间的关系。

微分方程广泛应用于物理、工程、经济等领域,是解决实际问题的有力工具。

在学习微分方程的过程中,习题是不可或缺的一部分,通过解习题可以加深对微分方程理论的理解和掌握。

下面我将给大家介绍几个微分方程相关的习题和答案。

1. 题目:求解一阶线性微分方程y' + 2xy = 3x。

解答:这是一个一阶线性常微分方程,可以使用常数变易法求解。

首先,将方程改写成标准形式y' + p(x)y = q(x),其中p(x) = 2x,q(x) = 3x。

然后,求出齐次线性微分方程y' + 2xy = 0的通解y_h(x)。

通过分离变量法可得y_h(x) =Ce^{-x^2},其中C为常数。

接下来,我们猜测特解y_p(x)为形如y_p(x) = Ax + B的一次多项式。

将y_p(x)代入原方程,整理得到2Ax + 2(Ax + B)x = 3x,比较系数可得A = 3/2,B = -1/4。

因此,特解为y_p(x) = (3/2)x - 1/4。

最后,将通解和特解相加,得到原方程的通解为y(x) = Ce^{-x^2} + (3/2)x - 1/4,其中C为常数。

2. 题目:求解二阶常系数齐次线性微分方程y'' - 4y' + 4y = 0。

解答:这是一个二阶常系数齐次线性微分方程,可以使用特征方程法求解。

首先,写出特征方程r^2 - 4r + 4 = 0,并求出其特征根r_1 = r_2 = 2。

由于特征根相等,所以通解形式为y(x) = (C_1 + C_2x)e^{2x},其中C_1和C_2为常数。

如果题目给出了初始条件,可以利用初始条件求解出具体的解。

例如,若已知y(0) = 1和y'(0) = 2,代入通解中的x = 0和x = 0的导数,得到C_1 = 1和C_2 = 1。

第一章微分方程函数单元测试题及答案

第一章微分方程函数单元测试题及答案

第一章微分方程函数单元测试题及答案问题:1. 请简要解释什么是微分方程函数。

2. 请解决以下微分方程:- (a) $$ \frac{dy}{dx} = 2x $$- (b) $$ \frac{d^2y}{dx^2} = -2y $$3. 将以下微分方程转化成标准形式:- (a) $$ 2yy' = x $$- (b) $$ y'' + xy' = 0 $$4. 将以下微分方程分类,并判断其类型:- (a) $$ \frac{dy}{dx} + y = e^x $$- (b) $$ \frac{d^3y}{dx^3} + 5\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 2y = 0 $$5. 求解以下线性常微分方程:- (a) $$ \frac{dy}{dx} + 2xy = 0 $$- (b) $$ \frac{d^2y}{dx^2} + 4y = 0 $$答案:1. 微分方程函数是一种包含函数及其导数的方程,其中函数的导数描述了函数的变化率。

2.- (a) 对方程两边同时积分可得:$$ y = x^2 + C $$,其中C为常数。

- (b) 这是一个二阶齐次线性微分方程,它的特征方程为:$$ r^2 = -2 $$。

特征根为:$$ r = \pm \sqrt{2}i $$。

因此,通解为:$$ y = C_1e^{\sqrt{2}ix} + C_2e^{-\sqrt{2}ix} $$,其中C1和C2为常数。

3.- (a) 将方程重写为:$$ y' = \frac{x}{2y} $$。

- (b) 将方程重写为:$$ y'' + xy' = 0 $$。

4.- (a) 这是一个一阶线性非齐次微分方程,因为右侧是一个非常数的函数。

- (b) 这是一个三阶齐次线性微分方程。

5.- (a) 这是一个一阶线性非齐次微分方程,其齐次部分为:$$ \frac{dy}{dx} + 2xy = 0 $$。

计算物理学(刘金远)第5章:微分方程(课后习题及答案)

计算物理学(刘金远)第5章:微分方程(课后习题及答案)

5.1 计算物理学第5章:微分方程课后习题答案初值问题【5.1.1】采用euler 方法求初值问题'2/, 01(0)1y y x y x y =-££ìí=î【解】取0.1h =,1(,)(2/)n n n n n n n n y y hf x y y h y x y +=+=+-x0.00.10.20.3y 1.000 1.1000 1.1918 1.2774【5.1.2】用euler 预测-校正公式求初值问题22', (0)1y x y y ì=-í=î【解】取0.1h =,1(,)n n n n y y hf x y +=+111(,)n n n n y y hf x y +++=+1000(,)0.9y y hf x y =+=221011(,)10.1(0.10.9)0.92y y hf x y =+=+´-=【5.1.3】用euler 公式和梯形公式建立的预测-校正公式求初值问题'23, 0(0)1y x y x y =+£ìí=î取0.1h =,(1)求(0.1)y ;(2)编程计算0:0.01:2x =【解】1111(,)1[(,)(,)]2n n n n n n n n n n y y hf x y y y h f x y f x y ++++=+=++10001000110.1(23) 1.30.05[(23)(23)]1.355y y x y y y x y x y =++==++++=【5.1.4】用显式Euler 方法,梯形方法和预估-校正Euler 方法给出求初值问题1,01(0)1d y y x x dx y ì=-++<<ïíï=î的迭代公式(取步长0.1h =)【解】取0.1h =,,0,1,k x kh k ==L ,(1)显式Euler 方法12(,)(1)(1)k k k k k k k y y hf x y y h y kh y h kh h+=+=+-++=-++1911010010k k k y y +=++(2)梯形方法为1121()2(2)(21)2219112110510k k k k k k k h y y f f h y k h h y hy k +++=++-+++=+=++(3)预估-校正Euler 方法为1111(,)[(,)(,)],20,1,,1x k k k k k k k k k k k y y h f x y h y y f x y f x y k n ++++=+ìïï=++íï=-ïîL 221(1/2)(/2)0.9050.00950.1k k k y y h h kh h h hy k +=-++-+=++【5.1.5】考虑下面初值问题2'''(0)1;'(0)2y y y t y y ì=-++í==î使用中点RK2,取步长0.1h =,求出()y h 的近似值【解】00,0.1t h =='y u y æö=ç÷èø,012u æö=ç÷èø,2''(,)'y u f t u y y t æö==ç÷-++èø,1002(,)1k f t u æö==ç÷èø,2001212 1.111(,)(0.05,0.05)(0.05,)21 2.0522 2.05 2.050.891.1 2.050.05k f t h u hk f f æöæöæö=++=+=ç÷ç÷ç÷èøèøèøæöæö==ç÷ç÷-++èøèø102 1.2052.089u u hk æö=+=ç÷èø,1(0.1) 1.205y y ==【5.1.6】考虑下面初值问题2'''2''(0)1;'(0)0,''(0)2y y y t y y y ì=++í===-î使用中点RK2,取步长0.2h =,求出()y h 的近似值【解】00,0.2t h ==取表示符号'''y u y y æöç÷=ç÷ç÷èø,2''(,)''2''y u f t u y y y t æöç÷==ç÷ç÷++èø,0102u æöç÷=ç÷ç÷-èø,010002000'()0(,)''()262()''()y t k f t u y t y t y t t æöæöç÷ç÷===-ç÷ç÷ç÷ç÷++èøèø200121011(,)(0.1,00.12)2226 10.20.2(0.1,0.2) 1.4 1.41.4 3.9721( 1.4)0.1k f t h u hk f f æöæöç÷ç÷=++=+-ç÷ç÷ç÷ç÷-èøèøæö--æöæöç÷ç÷ç÷=-=-=-ç÷ç÷ç÷ç÷ç÷ç÷-´+-èøèøèø1020.960.281.206u u hk æöç÷=+=-ç÷ç÷-èø,(0.2)0.96y =【5.1.7】采用Rk4编程求下列微分方程的初值问题:(1)23'1, (0)0y y x y =++=(2)2'2(1), (1)2y y x y =+--=(3)'', ()0,'()3y y y y p p =-==【5.1.8】求下面微分方程组的数值解2323'2'4(0)1,(0)0x x y t t t y x y t tx y ì=-+--ï=+-+íï==î补充题【5.1.1】对微分方程'(,)y f x y =用Sinpson 求积公式推出数值微分公式【解】{}111111111'(,)4(,)(,)3n n x n n n n n n n n x y dx y y h f x y f x y f x y +-+---++=-=++ò【5.1.2】用标准的4阶龙格库塔方法求初值问题',(0)1y x y y =+ìí=î,取0.1h =,计算出(0.2)y 【解】()1123422/6i i y y h k k k k +=++++1213243(,)(/2,/2)(/2,/2)(,)i i i i i i i i k f x y k f x h y hk k f x h y hk k f x h y hk ==++=++=++'(,)y f x y x y ==+,00(,)(0,1)x y =100200130024003(,)1(/2,/2) 1.1(/2,/2) 1.105(,) 1.2105k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()10123422/6 1.1103y y h k k k k =++++=,11(,)(0.1,1.1103)x y =111211*********(,) 1.2103(/2,/2) 1.3208(/2,/2) 1.3263(,) 1.4429k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()2112342(0.2)22/6 1.2428y y y h k k k k y ==++++==然后由22(,)(0.2,1.2428)x y =计算3(0.3)y y =,。

微分方程的概念与基本解法练习题

微分方程的概念与基本解法练习题

微分方程的概念与基本解法练习题对于数学领域而言,微分方程是一类非常重要的数学工具,它用于描述物理、工程学和其他科学领域中的各种变化和变化率。

在本文中,将介绍微分方程的概念,并提供一些基本解法的练习题。

一、微分方程的概念微分方程可以被定义为包含未知函数及其导数的方程。

具体而言,给定一个未知函数y(x),微分方程将通过y(x)及其导数的函数关系来描述一个过程或现象。

微分方程可以分为几种类型,其中最常见的是常微分方程和偏微分方程。

常微分方程只涉及一个自变量,而偏微分方程涉及多个自变量。

二、基本解法练习题下面将提供一些微分方程的基本解法练习题。

请根据题目给出的微分方程,找到其解析解,并进行验证。

1. 题目一:一阶线性微分方程求解以下一阶线性微分方程:(dy/dx) + y/x = x2. 题目二:二阶线性齐次微分方程求解以下二阶线性齐次微分方程:d^2y/dx^2 - 4y = 03. 题目三:二阶线性非齐次微分方程求解以下二阶线性非齐次微分方程:d^2y/dx^2 + 2dy/dx + y = e^(-x)4. 题目四:一阶变量可分离微分方程求解以下一阶变量可分离微分方程:(dy/dx) = y/x5. 题目五:一阶齐次微分方程求解以下一阶齐次微分方程:(dy/dx) = (2x + y) / (x - y)6. 题目六:一阶恰当微分方程求解以下一阶恰当微分方程:x^3y dx - (x^4 + 5xy^2) dy = 0三、解答与验证1. 题目一解答:将微分方程改写为标准形式:(dy/dx) = -y/x + x乘以x并重排,得到:x(dy/dx) + y = x^2该方程为一阶线性微分方程,可以使用积分因子法求解。

2. 题目二解答:特征方程为:r^2 - 4 = 0解得r1 = 2,r2 = -2因此,通解为:y(x) = c1e^(2x) + c2e^(-2x)3. 题目三解答:齐次方程特征方程为:r^2 + 2r + 1 = 0解得r1 = -1,r2 = -1所以,齐次方程的通解为:y_h(x) = c1e^(-x) + c2xe^(-x)对于非齐次方程,可以通过常数变易法求解。

大学数学微分方程练习题及答案

大学数学微分方程练习题及答案

大学数学微分方程练习题及答案微分方程是大学数学中重要的一门学科,它在科学和工程领域中有着广泛的应用。

掌握微分方程的求解技巧对于学生来说至关重要。

以下是一些常见的微分方程练习题及详细解答,希望对你的学习有所帮助。

题目一:求解一阶线性常微分方程给定微分方程:$\frac{dy}{dx}+P(x)y=Q(x)$,其中$P(x)$和$Q(x)$分别是已知的函数。

求解该微分方程。

解答一:为了求解上述微分方程,我们可以利用一阶线性常微分方程的常数变易法。

首先将方程写成标准形式:$\frac{dy}{dx}+P(x)y=Q(x)$,其中$P(x)$和$Q(x)$分别是已知的函数。

设通解为$y=e^{\int P(x)dx}u(x)$,其中$u(x)$是一个待定的函数。

将该通解代入原微分方程中,经过简化后得到:$u(x)=\int e^{-\int P(x)dx}Q(x)dx+C$,其中$C$是常数。

因此,该微分方程的通解为$y=e^{\int P(x)dx}(\int e^{-\intP(x)dx}Q(x)dx+C)$。

题目二:求解分离变量的微分方程给定微分方程:$\frac{dy}{dx}=f(x)g(y)$,其中$f(x)$和$g(y)$是已知的函数。

求解该微分方程。

解答二:为了求解上述微分方程,我们可以利用分离变量的方法。

首先将方程重写为$\frac{dy}{g(y)}=f(x)dx$。

对两边同时积分,得到$\int \frac{dy}{g(y)}=\int f(x)dx$。

经过积分运算后可得到$\int \frac{1}{g(y)}dy=\int f(x)dx+C$,其中$C$是常数。

因此,该微分方程的通解为$\int \frac{1}{g(y)}dy=\int f(x)dx+C$。

题目三:求解二阶常系数齐次线性微分方程给定微分方程:$\frac{d^2y}{dx^2}+a\frac{dy}{dx}+by=0$,其中$a$和$b$是已知的常数。

微分方程习题(附答案)

微分方程习题(附答案)

微分方程习题§1 基本概念1. 验证下列各题所给出的隐函数是微分方程的解.(1)y x y y x C y xy x -='-=+-2)2(,22(2)⎰'=''=+y 0 222t -)(,1e y y y x dt2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数)(一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.)(1)1)(22=++y C x ;(2)x C x C y 2cos 2sin 21+=.3.写出下列条件确定的曲线所满足的微分方程。

(1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。

(2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。

(3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。

§2可分离变量与齐次方程1.求下列微分方程的通解(1)2211y y x -='-;(2)0tan sec tan sec 22=⋅+⋅xdy y ydx x ;(3)23xy xy dxdy =-; (4)0)22()22(=++-++dy dx y y x x y x .2.求下列微分方程的特解(1)0 ,02=='=-x y x y e y ;(2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解(1))1(ln +='xy y y x ; (2)03)(233=-+dy xy dx y x .4. 求下列微分方程的特解(1)1 ,022=-==x y yx xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y .5. 用适当的变换替换化简方程,并求解下列方程(1)2)(y x y +=';(2))ln (ln y x y y y x +=+'(3)11+-='yx y (4)0)1()1(22=++++dy y x xy x dx xy y6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等27. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系.8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常?9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?§3 一阶线性方程与贝努利方程1.求下列微分方程的通解(1)2x xy y =-'; (2)0cos 2)1(2=-+'-x xy y x ;(3)0)ln (ln =-+dy y x ydx y ;(4))(ln 2x y y y -='; (5)1sin 4-=-x e dxdy y 2.求下列微分方程的特解 (1)0 ,sec tan 0==-'=x yx x y y ; (2)1|,sin 0==+'=x y xx x y y 3.一 曲线过原点,在) ,(y x 处切线斜率为y x +2,求该曲线方程.4.设可导函数)(x ϕ满足方程⎰+=+ x0 1sin )(2cos )(x tdt t x x ϕϕ,求)(x ϕ. 5.设有一个由电阻Ω=10R ,电感H L 2=,电流电压tV E 5sin 20=串联组成之电路,合上开关,求电路中电流i 和时间t 之关系.6.求下列贝努利方程的通解(1) 62y x xy y =+' (2)x y x y y tan cos 4+='(3)0ln 2=-+y x x dydx y(4)2121xy x xy y +-='§4 可降阶的高阶方程1.求下列方程通解。

微分方程习题及答案

微分方程习题及答案
(1);
(2);
(3);
(4).
2、求连续函数,使得时有。
3、求以为通解得二阶微分方程、
4。某个三阶常系数微分方程有两个解与,求。
5、设有一个解为,对应齐次方程有一特解,试求:
(1)得表达式;
(2)该微分方程得通解.
6、已知可导函数满足关系式:
求。
7.已知曲线上原点处得切线垂直于直线,且满足微分方程,求此曲线方程.
5、长为6m得链条自桌上无摩察地向下滑动,设运动开始时,链条自桌上垂下部分长为1m,问需多少时间链条全部滑过桌面。
§7二阶常系数非齐次线性微分方程
1。求下列微分方程得通解
(1);
(2);
(3);
(4);
(5).
2。求下列微分方程得特解
(1);
(2)
3.设连续函数满足求。
4、一质量为得质点由静止开始沉入水中,下沉时水得反作用力与速度成正比(比例系数为),求此物体之运动规律、
(1);
(2).
5、 用适当得变换替换化简方程,并求解下列方程
(1);
(2)
(3)
(4)
6.求一曲线,使其任意一点得切线与过切点平行于轴得直线与轴所围城三角形面积等于常数、
7、设质量为得物体自由下落,所受空气阻力与速度成正比,并设开始下落时速度为0,求物体速度与时间得函数关系、
8。有一种医疗手段,就是把示踪染色注射到胰脏里去,以检查其功能。正常胰脏每分钟吸收掉染色,现内科医生给某人注射了0、3g染色,30分钟后剩下0。1g,试求注射染色后分钟时正常胰脏中染色量随时间变化得规律,此人胰脏就是否正常?
5。一链条悬挂在一钉子上,起动时一端离开钉子8m,另一端离开钉子12m,若不计摩擦力,求链条全部滑下所需时间。

微分方程练习题

微分方程练习题

微分方程练习题微分方程练习题微分方程是数学中的重要概念,它描述了变量之间的关系和变化规律。

在实际问题中,微分方程常常用于描述物理、生物、经济等领域的现象和过程。

通过解微分方程,我们可以获得对这些现象和过程的深入理解。

下面,我将给大家介绍一些微分方程的练习题,希望能够帮助大家更好地掌握微分方程的解法。

第一题:一阶线性微分方程考虑一阶线性微分方程dy/dx + p(x)y = q(x),其中p(x)和q(x)是已知函数。

求解该微分方程。

解答:首先,我们可以通过乘以一个积分因子的方法将该微分方程化为一个恰当微分方程。

具体来说,我们可以选择积分因子μ(x) = exp(∫p(x)dx)。

然后,我们将方程两边都乘以μ(x),得到μ(x)dy/dx + p(x)μ(x)y = q(x)μ(x)。

由于(μ(x)y)' = μ(x)dy/dx + p(x)μ(x)y,所以我们可以将方程改写为(μ(x)y)' = q(x)μ(x)。

对该方程进行积分,即可得到y的解。

第二题:二阶常系数齐次线性微分方程考虑二阶常系数齐次线性微分方程d^2y/dx^2 + a(dy/dx) + by = 0,其中a和b是已知常数。

求解该微分方程。

解答:对于这类微分方程,我们可以假设y的解为y = e^(rx),其中r是待定常数。

将该解代入微分方程,我们可以得到一个关于r的特征方程r^2 + ar + b = 0。

解特征方程,我们可以得到r的两个解r1和r2。

如果r1和r2是不相等的实数,那么该微分方程的通解为y = c1e^(r1x) + c2e^(r2x),其中c1和c2是待定常数。

如果r1和r2是相等的实数,那么该微分方程的通解为y = (c1 +c2x)e^(r1x),其中c1和c2是待定常数。

如果r1和r2是共轭复数,那么该微分方程的通解为y = e^(ax)(c1cos(bx) + c2sin(bx)),其中c1和c2是待定常数。

微分方程练习题及解析

微分方程练习题及解析

微分方程练习题及解析微分方程作为数学中的一个重要分支,广泛应用于各个领域,涉及到物理、经济学、生物学等众多科学领域。

掌握微分方程的解析方法和技巧,对于理解和解决实际问题具有重要意义。

本文将为大家提供一些微分方程的练习题,并对其中的解析过程进行详细讲解。

1. 难题1已知微分方程 dy/dx = x * y,求其通解,并求通过点 (1,2) 的特解。

解析:首先对微分方程进行变量分离,将 dy/y 移到方程的右边,将 dx/x 移到方程的左边,得到:dy/y = x * dx对上式两边同时积分,得到:ln|y| = x^2/2 + C1其中,C1 为常数。

接下来,对上式两边同时取指数,得到:|y| = e^(x^2/2 + C1) = e^(C1) * e^(x^2/2)由指数函数的性质可知,e^(C1) 为常数,因此可以将其用 C2 来表示。

于是通解为:y = ± C2 * e^(x^2/2)下面求通过点 (1,2) 的特解,将 x=1 和 y=2 代入通解中,得到:2 = ± C2 * e^(1/2)解得 C2 = ± (2 / e^(1/2))所以通过点 (1,2) 的特解为:y = ± (2 / e^(1/2)) * e^(x^2/2)2. 难题2已知微分方程 d^2y/dx^2 + 4 * dy/dx + 4y = 0,求其通解,并求过点(0,1) 且 y'(0) = -2 的特解。

解析:该微分方程为二阶常系数齐次线性微分方程,首先求其特征方程。

特征方程为:r^2 + 4r + 4 = 0解特征方程可得到两个特征根相等的情况,即 r = -2。

由于存在重根,通解形式为:y = (C1 + C2x) * e^(-2x)下面求过点 (0,1) 且 y'(0) = -2 的特解。

将 x=0 和 y=1 代入通解中,得到:1 = C1 * e^0 = C1将 x=0 和 y'=-2 代入通解的导数中,得到:-2 = C2 * e^0 - 2C1 = C2 - 2解得 C2 = -2 + 2 = 0所以过点 (0,1) 且 y'(0) = -2 的特解为:y = (1 + 0x) * e^(-2x) = e^(-2x)通过以上两个例子,我们可以看到,对于微分方程的求解,我们需要先进行变量分离、恢复变量或代换等操作,然后再通过积分或特征方程求解,最后根据已知条件求得特定的解。

微分方程练习题及解答

微分方程练习题及解答

微分方程练习题一、一阶微分方程1.求 dy dx =2xy 的通解。

2.求微分方程x dy =y +�x 2+y 2 (x >0)满足y (1)=0的特解。

3.求微分方程 y ′−3x y =x 的通解。

4.求微分方程 y ′+y tanx =cosx 的通解。

5.求 x 2y ′+xy =y 2满足初始条件y (1)=1的特解。

6.求微分方程sec 2x coty dx −csc 2y tanx dy =0的通解。

7.求微分方程dy dx −2y x +1=(x +1)52的一个特解。

8.求微分方程xdy =yln y x dx 的通解。

9.求微分方程 dy dx =y x +y 3e y 的通解。

10求微分方程 y ′+y =e −x 的通解。

11.求微分方程xy 2dy =(x 3+y 3)dx 的通解。

12.求微分方程y =�1+(y ′)2 满足条件y (0)=1的特解。

13.求微分方程 xy ′+2y =x lnx 满足初始条件y (1)=−19的特解。

14.求微分方程 xy ′+y =x 2 y 2 lnx 的通解。

15.设f (x )=�f �t 2�dt +ln2,求f (x )的表达式。

2x 0二、高阶微分方程 1.求y ′′=1+(y ′)2的通解。

2.求 y ′′−2y ′−y =0的通解。

3.求 y ′′+2xy ′2=0,y (0)=1,y ′(0)=−12的特解。

4.求 y ′′−2y ′−5y =1的通解。

5.求 y ′′+y ′+y =8的通解。

6.求微分方程d 2y dx 2+w 2y =0的通解。

7.求微分方程 y ′′−3y ′+2y =xe x 的通解。

8.求微分方程 x 2y ′′+4xy ′+2y =x 的通解。

9.求微分方程 yy ′′+y ′2=y ′ 的通解。

10.求微分方程 x 2y ′′+3xy ′−3y =x 3的通解。

数学课程微分方程入门练习题及答案

数学课程微分方程入门练习题及答案

数学课程微分方程入门练习题及答案微分方程是数学中重要的一门学科,广泛应用在物理、工程、经济等领域。

掌握微分方程的基本概念和解题方法对于学习和应用数学都至关重要。

本文将为您提供一些微分方程入门练习题及其答案,帮助您巩固基础知识和提高解题能力。

1. 练习题:一阶线性微分方程已知微分方程dy/dx + xy = 2x,求其通解,并满足初始条件y(0) = 1,求特解。

解答:首先,根据线性微分方程的一般形式dy/dx + P(x)y = Q(x),我们可以将给定的微分方程转化为dy/dx + xy = 2x的形式,其中P(x) = x,Q(x) = 2x。

该方程是一阶线性齐次微分方程,我们可以使用常数变易法求其通解。

假设通解为y = e^(-1/2 * x^2) * u(x),其中u(x)为待定函数。

将通解代入原方程,可得:e^(-1/2 * x^2) * d(u(x))/dx + xe^(-1/2 * x^2) * u(x) = 2x对上式两边同时乘以e^(1/2 * x^2),并化简得:d(u(x))/dx + x * u(x) = 2x * e^(1/2 * x^2)利用一阶线性非齐次微分方程的常数变易法解法,我们可以通过求解齐次方程和利用常数变异法得到非齐次方程的一个特解。

首先求解齐次方程d(u(x))/dx + x * u(x) = 0,可以使用分离变量法得到:du(x)/u(x) = -xdx经过积分求解后可得齐次方程的通解为u(x) = Ce^(-1/2 * x^2),其中C为任意常数。

接下来,我们可以利用常数变异法来求解非齐次方程。

设特解为v(x) = A(x)e^(-1/2 * x^2),将其代入非齐次方程中,可得:dv(x)/dx + x * v(x) = 2x * e^(1/2 * x^2)对上式进行求导,并代入v(x) = A(x)e^(-1/2 * x^2),可得:A'(x)e^(-1/2 * x^2) = 2x * e^(1/2 * x^2)将上式中的e^(-1/2 * x^2)约去,并进行变量分离,可得:A'(x) = 2x对上式两边进行积分,并得到A(x) = x^2 + C1,其中C1为常数。

微分方程的初值问题练习题及解析

微分方程的初值问题练习题及解析

微分方程的初值问题练习题及解析微分方程是数学中的重要分支,通过研究微分方程可以揭示自然界和社会现象的规律。

微分方程的初值问题是求解微分方程的一种常见方法,它通过给定初值条件来确定特定的解。

下面将介绍一些微分方程的初值问题练习题,并提供解析过程,帮助读者加深对微分方程初值问题的理解。

练习题1:考虑一阶常微分方程dy/dx = 2x,初值条件为y(0) = 3。

求解该初值问题并画出解的图像。

解析:将方程dy/dx = 2x进行分离变量,得到dy = 2xdx。

对两边同时积分,得到∫dy = ∫2xdx,即y = x^2 + C。

根据初值条件y(0) = 3,代入方程可求得C = 3,因此解为y = x^2 + 3。

根据解析结果,我们可以画出解的图像,如下所示:(插入图像,图像是y = x^2 + 3)练习题2:考虑一阶常微分方程dy/dx + y = x,初值条件为y(0) = 1。

求解该初值问题并画出解的图像。

解析:对于方程dy/dx + y = x,可以通过乘以一个积分因子来进行求解。

积分因子的选择是e^(∫dx),其中∫dx是对方程中y的系数进行积分得到的结果。

在本题中,系数为1,因此积分因子选择为e^x。

将方程进行乘积因子法的变形,得到e^xdy/dx + e^xy = x*e^x。

根据乘积因子法的特点,左侧的表达式可以化简为(d/dx)(e^xy) = x*e^x。

对两边同时积分,得到∫(d/dx)(e^xy)dx = ∫x*e^xdx。

对右侧的积分进行计算,得到∫x*e^xdx = e^x(x-1) + C1,其中C1是积分常数。

对左侧的积分进行计算,得到∫(d/dx)(e^xy)dx = e^xy + C2,其中C2是积分常数。

将求得的结果代入,得到e^xy + C2 = e^x(x-1) + C1。

根据初始条件y(0) = 1,代入x = 0和y = 1,并整理方程,可求得C2 = 0和C1 = 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2第十二章 微分方程 § 微分方程基本概念、可分离变量的微分方程、 、单项选择题 1.下列所给方程中,不是微分方程的是 (A) xy 2y ; (C) y y 0 ; 4 2•微分方程5y y xy (A) 1 ; (B) 2 ;3. 下列所给的函数,是微分方程 (A) y C i cosx ;(C) y cosx Csinx ;齐次微分方程2y (3)( x 2(7x(B) (D) 0的阶数是( (C) 3 ; y (B) (D) 4. 下列微分方程中,可分离变量的方程是 (A) y e x y ; (B) xy (C) y xy 1 0 ; (D) (x ). 2 2 y C ;6y)dx (x y)d y ).(D) 4 ; 0的通解的是( ). C 2 sin x ;G cosx ( ). y x ; y)dx (x 5. 下列微分方程中,是齐次方程是微分方程的是 (A) y (C) y 、填空题 c x y e ;xy x 0 ;(B) xy (D) (x 答(B). 答(C).C 2 si nx 答(D).y)dy 0.答(A).(2y x y)dx答(D).1. 函数y 5x 2是否是微分方程 xy 2y 的解? 答: 是.2 . 微分方程 dx dy0, y x 3 4的解是 .答:2x 2y25 .y x3x2冬C .3 . 微分方程 3x 2 5x 5y 0的通解是 . 答: y5 24 . 微分方程 xy y lny 0的通解是 答: yCxe .5 . 微分方程 1 2 x y -1 y 2的通解是 . 答: arcsin y arcsin x6. 微分方程 xy y y(ln y ln x)的通解是 . 答: _yxCxe三、解答题y);C .xy a(y 2(x y)d y1•求下列微分方程的通解. ⑵ (1) sec xtanydx s ec ytanxdy 0 ; 解:解:dy 心y⑶ —10 ; ⑷dx解:解:2 . 求下列微分方程满足所给初始条件的特解:(1) 2x yy e ,y x 0 0 ;(2) 解:解:⑶ xdy 2ydx 0, yx 21;⑷解:解:y (y 2 x 3 o.y si nx yl ny2xtf - dt ln 2,求f (x)的非积分表达式. 答:f(x) e x ln2 .0 2§ 一阶线性微分方程、全微分方程23xy xy 的通解.可降阶的高阶微分方程、二阶线性微分方程、单项选择题 1.方程ysinx 的通解是().1.下列所给方程中,是一阶微分方程的是((A)字址dx (C)乎dx 2•微分方程(X (A) 齐次微分方程; (C) 可分离变量的微分方程;23(lnx)y ;(B)(x y)2 ;(D) y 2)dx 2xydy ).dy dx2y x 1(x(x y)dx (x y)dy 答(B).0的方程类型是 (B) 一阶线性微分方程; (D)全微分方程.( ).答(D).二、填空题1 .微分方程xy e 的通解为.答: y Cedx32 .微分方程 (x 2 y)dx xdy 0的通解为.答:x3xy 3 •方程(x y)(dx dy) dx dy 的通解为.答: x y 三、简答题C .ln(x y)1 .求下列微分方程的通解:3.方程xy . x (A)齐次方程;(C)伯努利方程;(B) 一阶线性方程;(D)可分离变量方程.答(A).xxxe(1)ycosx sin xex 竺dx解:⑶ 解:xy3x 解:⑷解:ytanx sin2x ;(5) (y 2 6x)塑 dx 2ye y(xe y 2y)dy 0 ;解:解:(a 22xy y 2)dx (x y)2dy 0 . 解: 2 .求下列微分方程满足所给初始条件的特解. (1)乎 3y 8, y x 0 2 ;dx解:dy dx解:sin x ,y xx3* •设连续函数f (X )、单项选择题 y 2 y 是()• 3* .求伯努利方程— dx解:(A) y cosx (C) y sin x2.微分方程1C 1x 2 C 2x C 3 ; 2 Gx? C 2X C 3 ;2y xy 满足条件y (A) y (x 1)2;(B) y cosx G ; (D) y(B)2sin 2x .答(A) y x2的解是(2).1(C) y -(x3. 对方程y1)21 2 ;y 2,以下做法正确的是 y p 代入求解;(D)答(C).(A)令 y p(x), (C)按可分离变量的方程求解;4. 下列函数组线性相关的 是(2 x2 x(A) e , 3e ;(C) sinx, cosx ;5. 下列方程中,二阶线性微分方程是(A) y (C) y 6. y 1, (A) y (C) y (D) yp(y), yp p 代入求解;答(B).).32y(y)0 ;2 o 2y 3x ; py qy y 2 ; C 2『2,其中C 2『2,其中2x y y 2是yC i y i C i y iG% (B) 2xe 3x ,e ;(D)2xe 2x,xe).(B) y 2yy xy (D) y 2xy2x y则其通解是().(B) yC 1y1C 2 y2 ;(0的两个解, xe ;2e x .((B)令 y(D)按伯努利方程求解. 答(A).答(D).y 1与y 线性相关; y 与y 2线性无关.7.下列函数组线性相关的 是( ).(A) e 2x , 3e 2x ; (C) si nx,、填空题 答(D).1 .微分方程 cosx; (B) (D) 3x2xy x sinx 的通解为 2x : e , e2xe , xe答(A).答:sin x C 1e xC 1x C 2. x C 2.三、简答题 1 •求下列微分方程的通解.2(1) y 1 (y); (2) y 如)2解: 解:2 .求方程y x(y )2 0满足条件y x12,y x 1 1的特解.2 .微分方程 答:y y x 的通解为 解: § 二阶常系数线性齐次微分方程、单项选择题 1.下列函数中,不是微分方程 y y 0的解的是( ).(A) y sin x ; (B) y cosx ; (C) y e x ;(D) y sin x cosx .答(C).x 3 x2.下列微分方程中,通解是 y GeC ?e 的方程是( ).(A) y 2y 3y 0 ;(B) y 2y 5y 0 ; (C) yy 2y 0 ;(D) y 2y y 0 .答(A)3.下列微分方程中, 通解是y C 1e xC 2 x xe 的方程是().(A) y 2y y 0 ;(B) y 2yy 0 ;(C) y2y y 0 ;(D) y 2y4y 0 .答(B)4.下列微分方程中, 通解是y xe (C 1 cos2x C 2sin2x)的方程是().(A) y 2y 4y 0 ;(B) y2y 4y 0(C) y2y5y 0 ;(D)y 2y5y 0 .答(D) 5.若方程 ypyqy 0的系数满足1 p q 0 ,则方程的一个解是( ).(A) x ;(B) x e ;(C) xe(D) sin x . 答(B)6*.设 y f(x)是方程 y 2y 2y 0 的一个解,若 f(X o ) 0, f (xj 0,则 f(x)在 x x 0 处( ).(A) x 0的某邻域内单调减少;(B) X 0的某邻域内单调增加;(C)取极大值;(D)取极小值.答(C).、填空题1 •微分方程的通解为 y 4y 0的通解为. 答: y C 1 C 2e 4x .2 .微分方程y y 2y 0的通解为 答: y C 1e x C 2e 2x .3 .微分方程y4y 4y 0的通解为 答: y Ge 2x C 2xe 2x .4 .微分方程y 4y 0的通解为答: y C 1 cos2x C 2si n2x 5 .方程 y 6y 13y 0 的通解为 __________________________ . 答:y e 3x (C 1 cos2x C 2sin 2x). 三、简答题1 •求下列微分方程的通解:(1) y y 2y 0 ; (2) 4d ^ 20空 25x 0 .dt 2 dt解:解:、单项选择题 1.微分方程 y y2x 的一个特解应具有形式 ( ).(A) Ax 2;(B) Ax 2Bx ;(C) Ax 2Bx C ;(D) x(Ax 2Bx C).答(C).2.微分方程 y y2x 的一个特解应具有形式 ().(A) Ax 2 ;(B) Ax 2Bx -(C) Ax 2Bx C ;(D) x(Ax 2Bx C).答(C)3.微分方程y 5y6y xe 2x 的一个特解应具有形式( ).(A) Axe 2x;(B) (Ax 2x B)e(C) (Ax 2Bx C)e 2x ;(D) x(Ax B)e 2x答(B) 4.微分方程y y2 y x 2e x 的一个特解应具有形式().(A) Ax 2e x(B) (Ax 2x Bx)e解:2 •求下列方程满足初始条件的特解.(1) y 4y 3y 0,y x 0 10, y x 06⑵ y 25y 0, y x 05,y x 02.解:§ 二阶常系数线性非齐次微分方程(C) x(Ax2Bx C)e x;(D) (Ax2 Bx C)e x.答(C).5. 微分方程y 2y 3y e x sin x的一个特解应具有形式().(A) e x(AcosxBsinx);(B) Ae x sinx ;(C) xe x (Asin x Bcosx) ;(D) Axe x sinx 答(A). 、填空题1 .微分方程y 4y 3 x x的一个特解形式为答:y*3x x4 82.微分方程y 2y x的一个特解形式为. 答:y* x(Ax B).3 .微分方程y 5y 6y xe x的一个特解形式为.答:y* (Ax B)e x.4.微分方程y 5y 6y xe3x的一个特解形式为.答:y* x(Ax B)e3x.5 .微分方程y y sin x的一个特解形式为. 答:y* Asin x .6 .微分方程y y si n x的一个特解形式为. 答:y* x(Acosx Bsin x)三、简答题1.求下列微分方程的通解•:(1) 2y y y 2e x;(2) y 5y 4y 3 2x ;解:解:⑶y 6y 9y (x 1)e2x.解:。

相关文档
最新文档