统计与数据分析数据分析作业
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《统计与数据分析》
数据分析实验作业
数据来源于大肠杆菌Escherichia coli K-12 MG1655注释的4289个编码蛋白基因的长度l(单位:核苷酸,NT)及其GC含量r(%)。其中,第1列为基因序号,第2列为基因的长度l(单位:核苷酸,NT),第3列为基因的GC含量r(%)。试针对这一组数据完成下列数据分析工作:
一. 将全部4289个基因视为总体Y,请完成如下工作:
1. 严格按照要求(注意:软件自动生成的结果视为无效作业),分别画出基因长度l和基因GC含量r的频率直方图和箱线图,并对这两类数据的异常值进行分析;
2. 分别求出基因长度l和基因GC含量r的均值、标准差、极差、中位数、众数、变异系数,并在k≤10范围内依次、完整地检验Chebyshev定理;
3. 基于总体Y,考察l与GC含量r比值l/r,请设计抽样对l/r进行比值估计与单随机变量估计的抽样效率的比较分析,并以合适的图示表示比较结果;
4. 基于总体Y,根据中心极限定理构造一个基于GC含量r值的模拟总体数据X,并以合适的图示表示,要求总体X为经过显著性水平α=0.01下的K-S检验的标准正态分布,且X的个体数目也为4289,取值可表示为R。(提示:简单随机抽样的样本均值R近似服从正态分布,样本容量n自定。)
二. 基于服从标准正态分布的总体X,请完成如下工作:
1. 从中进行1次简单随机抽样(容量n=277),求出样本均值和样本标准差,并画出这一样本的频率直方图和箱线图;由此估计总体X的正态分布参数(方法不限,需写出具体求解过程),并分别采用自举法(Bootstrap)重复抽样1000次,分别确定该样本均值和该样本标准差是否处于90%的置信区间(以上下5%分位数来定义90%的置信区间),并以合适的图示表示自举法重复抽样1000次以及该置信区间的结果;
2. 进一步地,进行100次容量为n=61的简单随机抽样,分别画出样本均值、样本标准差的频率直方图,考察同样参数估计方法所估计参数的90%置信区间的情况,并以合适的图示表示(提示:(1)相关分布的分位数表可参考本课程讲义;(2)请参考本课程讲义的表示方式。)。
三. 对于总体Y,将全部4289个基因视为从某一总体中进行1次简单随机抽样的样本(容量n=4289),给定显著性水平为10%,试考察基因长度l与GC含量r是否相互独立。要求写出具体的分析过程。(提示:相关分布的分位数表可参考本课程讲义。)
要求:
(1)本次数据分析以实验报告形式打印、装订提交,请在第一页注明学号、姓名;
(2)请保证独立完成本作业,鼓励自行编程完成上述数据分析,也可使用相关软件(不限);(3)本作业占课程总成绩15%。