江苏高考数学压轴题

合集下载

压轴题01 函数性质的综合运用(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题01  函数性质的综合运用(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题01函数性质的综合运用函数是高中数学的主干,也是高考考查的重点,而函数的性质是函数的灵魂,它对函数概念的理解以及利用函数性质来解决相关函数问题起到十分重要的作用.此外在高考试题的考查中函数的性质也是常见题型.考向一:利用奇偶性、单调性解函数不等式考向二:奇函数+M 模型与奇函数+函数模型考向三:周期运用的综合运用1.单调性技巧(1)证明函数单调性的步骤①取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x ;②变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;③定号:判断差的正负或商与1的大小关系;④得出结论.(2)函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.(3)记住几条常用的结论:①若()f x是增函数,则()f x-为减函数;若()f x是减函数,则()f x-为增函数;②若()f x和()g x均为增(或减)函数,则在()f x和()g x的公共定义域上()()f xg x+为增(或减)函数;③若()0f x>且()f x为增函数,1()f x为减函数;④若()0f x>且()f x为减函数,1()f x为增函数.2.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数()f x是偶函数⇔函数()f x的图象关于y轴对称;函数()f x是奇函数⇔函数()f x的图象关于原点中心对称.(3)若奇函数()y f x=在0x=处有意义,则有(0)0f=;偶函数()y f x=必满足()(||)f x f x=.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x的定义域关于原点对称,则函数()f x能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x=+-,1()()()]2h x f x f x=--,则()()()f xg xh x=+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f xg x f x g x f x g x f x g x+-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x=的奇偶性原来:内偶则偶,两奇为奇.(8)常见奇偶性函数模型奇函数:①函数1()()01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-.③函数2()log log (1)aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =或函数()log )a f x x =.注意:关于①式,可以写成函数2()(0)1xm f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+.②函数()log (1)2mx a mxf x a =+-.③函数(||)f x 类型的一切函数.④常数函数3.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数4.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.5.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-.(2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.1.(2023·河北唐山·开滦第二中学校考一模)已知函数()222e e 287x x f x x x --=++-+则不等式()()232f x f x +>+的解集为()A.1(1)3--,B.1(,1)(,)3-∞--+∞ C.1(1)3-,D.1(,(1,)3-∞-⋃+∞2.(2023·安徽宣城·统考二模)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=.若()3f x +为奇函数,322g x ⎛⎫+ ⎪⎝⎭为偶函数,且()03g =-,()12g =,则()20231i g i ==∑()A.670B.672C.674D.6763.(2023·甘肃定西·统考一模)定义在R 上的函数()f x 满足()()()f x y f x f y +=+,当0x >时,()0f x <,则不等式()()22530f x f x x -+-<的解集为()A.5,3⎛⎫-∞ ⎪⎝⎭B.51,2⎛⎫- ⎪⎝⎭C.()5,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭D.5,3⎛⎫+∞ ⎪⎝⎭4.(2023·吉林通化·梅河口市第五中学校考一模)已知函数()()lg 122x xf x x -=-++,则不等式()()12f x f x +<的解集为()A.()(),11,-∞-⋃+∞B.()2,1--C.()(),21,-∞-+∞ D.()()1,1,3-∞-⋃+∞5.(2023·内蒙古·模拟预测)已知()f x 是定义在[]4,4-上的增函数,且()f x 的图象关于点()0,1对称,则关于x 的不等式()()23350f x f x x +-+->的解集为()A.(),1-∞B.()1,+∞C.(]1,7D.(]1,26.(2023·广西梧州·统考一模)已知定义在R 上的函数()f x 在(,1]-∞上单调递增,若函数(1)f x +为偶函数,且(3)0f =,则不等式()0xf x >的解集为()A.(1,3)-B.(,1)(3,)-∞-⋃+∞C.(,1)(0,3)-∞-⋃D.(1,0)(3,)-+∞ 7.(2023·河南·开封高中校考模拟预测)已知()f x 是定义域为R 的奇函数,当0x >时,()()2ln 1f x x x =++,则不等式()211ln2f x +>+的解集为()A.{1}∣<x x B.{0}x x <∣C.{1}xx >∣D.{0}xx >∣8.(2023·福建泉州·校考模拟预测)已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为()A.](2-∞,B.[)2,+∞C.[]24-,D.[]14,9.(2023·陕西西安·高三西北工业大学附属中学校考阶段练习)已知函数()(32e log e 1xx f x x =++在[],(0)k k k ->上的最大值与最小值分别为M 和m ,则M m +=()A.2-B.0C.2D.410.(2023·江西南昌·统考一模)已知函数()()35112=-+f x x ,若对于任意的[]2,3x ∈,不等式()()21+-≤f x f a x 恒成立,则实数a 的取值范围是()A.(),2-∞B.(],2-∞C.(),4-∞D.(],4∞-11.(2023·全国·高三专题练习)已知函数()e e 2x xf x x x -=-++在区间[]22-,上的最大值与最小值分别为,M N ,则M N +的值为()A.2-B.0C.2D.412.(2023·全国·高三专题练习)若对x ∀,R y ∈.有()()()4f x y f x f y +=+-,则函数22()()1xg x f x x =++在[2018-,2018]上的最大值和最小值的和为()A.4B.8C.6D.1213.(多选题)(2023·浙江杭州·统考二模)已知函数()f x (x ∈R )是奇函数,()()2f x f x +=-且()12f =,()f x '是()f x 的导函数,则()A.()20232f =B.()f x '的一个周期是4C.()f x '是偶函数D.()11f '=14.(多选题)(2023·安徽滁州·统考二模)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若12f x ⎛⎫- ⎪⎝⎭,()1g x +均为奇函数,则()A.()00f =B.()00g =C.()()14f f -=D.()()14g g -=15.(多选题)(2023·吉林·统考三模)设定义在R 上的可导函数()f x 与()g x 导函数分别为()f x '和()g x ',若()()212f x g x x =-+,()1f x +与()g x 均为偶函数,则()A.()11g '=B.()20220323g =-'C.()24f '=-D.991198100i f i =⎛⎫= ⎪⎝'⎭∑16.(多选题)(2023·海南海口·校考模拟预测)已知定义在R 上的函数()f x 在(],2-∞上单调递增,且()2f x +为偶函数,则()A.()f x 的对称中心为()2,0B.()f x 的对称轴为直线2x =C.()()14f f -<D.不等式()()34f x f x +>的解集为()1,1,5⎛⎫-∞+∞ ⎪⎝⎭ 17.(多选题)(2023·广东佛山·佛山一中校考一模)设函数()y f x =的定义域为R ,且满足(1)(1)f x f x +=-,(2)()0f x f x -+-=,当[]1,1x ∈-时,()1f x x =-+,则下列说法正确的是()A.()1y f x =+是偶函数B.()3y f x =+为奇函数C.函数()lg =-y f x x 有8个不同的零点D.()202311k f k ==∑18.(2023·江西吉安·统考一模)已知函数()f x 的定义域为R ,其导函数为()g x ,若函数(22)f x +为偶函数,函数(1)g x -为偶函数,则下列说法正确的序号有___________.①函数()f x 关于2x =轴对称;②函数()f x 关于(1,0)-中心对称;③若(2)1,(5)1f f -==-,则(26)(16)=3g f +-;④若当12x -≤≤时,1()e 1x f x +=-,则当1417x ≤≤时,17()e 1x f x -=-.19.(2023·陕西榆林·统考一模)已知函数()f x 是定义在()2,2-上的增函数,且()f x 的图象关于点()0,2-对称,则关于x 的不等式()()240f x f x +++>的解集为__________.20.(2023·全国·校联考模拟预测)已知定义在R 上的函数()f x 满足:对任意实数a ,b 都有()()()1a a b b f f f +=+-,且当0x >时,()1f x >.若()23f =,则不等式()212f x x --<的解集为______.21.(2023·江西赣州·高三统考阶段练习)已知()f x 是定义在[]4,4-上的增函数,且()f x 的图象关于点()0,1对称,则关于x 的不等式()()23350f x f x x +-+->的解集为______.22.(2023·湖南湘潭·高三湘钢一中校考开学考试)已知()f x 是定义在()5,5-上的增函数,且()f x 的图象关于点()0,1-对称,则关于x 的不等式()()211320f x f x x ++-++>的解集为_________.23.(2023·江苏常州·高三校联考开学考试)已知函数()2e e e ex xx x f x x ---=++,则不等式()()21122f x f x x ++-<+的解集为__________.24.(2023·辽宁·鞍山一中校联考模拟预测)已知函数()f x ,()g x 的定义域均为R ,()1f x +是奇函数,且()()12f x g x -+=,()()32f x g x +-=,则下列结论正确的是______.(只填序号)①()f x 为偶函数;②()g x 为奇函数;③()20140k f k ==∑;④()20140k g k ==∑.25.(2023·陕西西安·西北工业大学附属中学校考模拟预测)已知函数()(32e log e 1xxf x x =++在[](),0k k k ->上的最大值与最小值分别为M 和m ,则函数()()()31g x M m x M m x -=+++-⎡⎤⎣⎦的图象的对称中心是___________.26.(2023·全国·高三专题练习)设函数()())221ln1x xf x x ++=+的最大值为M ,最小值为N ,则M N +的值为________。

江苏省海安市2025届高三压轴卷数学试卷含解析

江苏省海安市2025届高三压轴卷数学试卷含解析

江苏省海安市2025届高三压轴卷数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线()222210,0x y a b a b-=>>的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )A .3y x =±B .y =C .12y x =±D .2y x =±2.设双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,点()()0,0E t t >.已知动点P 在双曲线C 的右支上,且点2,,P E F 不共线.若2PEF ∆的周长的最小值为4b ,则双曲线C 的离心率e 的取值范围是( )A .⎫+∞⎪⎪⎝⎭B .⎛ ⎝⎦C .)+∞D .(3.已知(2sin,cos),(3cos,2cos)2222xxxxa b ωωωω==,函数()f x a b =·在区间4[0,]3π上恰有3个极值点,则正实数ω的取值范围为( ) A .85[,)52B .75[,)42C .57[,)34D .7(,2]44.已知,m n 表示两条不同的直线,αβ,表示两个不同的平面,且,m n αβ⊥⊂,则“αβ⊥”是“//m n ”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要5.已知直线l 20y ++=与圆O :224x y +=交于A ,B 两点,与l 平行的直线1l 与圆O 交于M ,N 两点,且OAB 与OMN 的面积相等,给出下列直线1l 0y +-=20y +-=,③20x -+=,0y ++=.其中满足条件的所有直线1l 的编号有( ) A .①②B .①④C .②③D .①②④6.将函数()cos f x x =的图象先向右平移56π个单位长度,在把所得函数图象的横坐标变为原来的1ω(0)>ω倍,纵坐标不变,得到函数()g x 的图象,若函数()g x 在3(,)22ππ上没有零点,则ω的取值范围是( )A .228(0,][,]939B .2(0,]9C .28(0,][,1]99D .(0,1]7.在5678(1)(1)(1)(1)x x x x -+-+-+-的展开式中,含3x 的项的系数是( ) A .74B .121C .74-D .121-8.等腰直角三角形ABE 的斜边AB 为正四面体ABCD 侧棱,直角边AE 绕斜边AB 旋转,则在旋转的过程中,有下列说法:(1)四面体E -BCD 的体积有最大值和最小值; (2)存在某个位置,使得AE BD ⊥;(3)设二面角D AB E --的平面角为θ,则DAE θ≥∠;(4)AE 的中点M 与AB 的中点N 连线交平面BCD 于点P ,则点P 的轨迹为椭圆. 其中,正确说法的个数是( ) A .1B .2C .3D .49.已知M 是函数()ln f x x =图象上的一点,过M 作圆2220x y y +-=的两条切线,切点分别为,A B ,则MA MB⋅的最小值为( ) A .223B .1-C .0D 523- 10.若函数32()3f x ax x b =++在1x =处取得极值2,则a b -=( ) A .-3B .3C .-2D .211.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥则“αβ⊥”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分不必要条件12.已知双曲线2222:1x y a bΓ-=(0,0)a b >>的一条渐近线为l ,圆22:()4C x c y -+=与l 相切于点A ,若12AF F ∆的面积为23,则双曲线Γ的离心率为( )A .2B .233C .73D .213二、填空题:本题共4小题,每小题5分,共20分。

2020-2021学年江苏省高考压轴卷:数学试卷及答案解析

2020-2021学年江苏省高考压轴卷:数学试卷及答案解析

江苏省高考压轴卷数学数学I(满分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合U={1,2,3,4,5},A={3,4},B={1,4,5},则A∪(∁U B)= .2.已知x>0,若(x﹣i)2是纯虚数(其中i为虚数单位),则x= .3.某单位有老人20人,中年人120人,青年人100人,现采用分层抽样的方法从所有人中抽取一个容量为n的样本,已知青年人抽取的人数为10人,则n= .4.双曲线=1的右焦点与左准线之间的距离是.5.函数f(x)=的定义域为.6.执行如图所示的程序框图,若输入a=27,则输出的值b= .7.满足等式cos2x﹣1=3cosx(x∈10,π])的x值为.8.设S n为等差数列{a n}的前n项和,若a3=4,S9﹣S6=27,则S10= .9.男队有号码1,2,3的三名乒乓球运动员,女队有号码为1,2,3,4的四名乒乓球运动员,现两队各出一名运动员比赛一场,则出场的两名运动员号码不同的概率为.10.以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为为 . 11.在△ABC 中,∠C=45°,O 是△ABC 的外心,若,则m+n 的取值范围为 .12.已知抛物线x 2=2py (p >0)的焦点F 是椭圆的一个焦点,若P ,Q 是椭圆与抛物线的公共点,且直线PQ 经过焦点F ,则该椭圆的离心率为 . 13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2=3b 2+3c 2﹣2bcsinA ,则C= .14.若函数在区间11,2]上单调递增,则实数a 的取值范围是 .二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明 或演算步骤)15.(本小题满分14分)已知向量)sin ,(),,(cos αα21=-=n m ,其中),(20πα∈,且n m ⊥.(1)求α2cos 的值; (2)若1010=-)sin(βα,且),(20πβ∈,求角β的值.16.(本小题满分14分)在长方体1111D C B A ABCD -中,121AA EC BC AB ===. (1)求证://1AC 平面BDE ; (2)求证:⊥E A 1平面BDE .17.(本小题满分14分)如图,某公园有三条观光大道AC BC AB ,,围成直角三角形,其中直角边m BC 200=,斜边m AB 400=.现有甲、乙、丙三位小朋友分别在AC BC AB ,,大道上嬉戏,所在位 置分别记为点F E D ,,.(1)若甲乙都以每分钟m 100的速度从点B 出发在各自的大道上奔走,到大道的另一端 时即停,乙比甲迟分钟出发,当乙出发分钟后,求此时甲乙两人之间的距离; (2)设θ=∠CEF ,乙丙之间的距离是甲乙之间距离的倍,且3π=∠DEF ,请将甲乙之间的距离y 表示为的函数,并求甲乙之间的最小距离.18.(本小题满分16分)已知椭圆)(:012222>>=+b a b y a x C 的离心率为23,且点),(213-在椭圆C 上.(1)求椭圆C 的标准方程;(2)若直线交椭圆C 于Q P ,两点,线段PQ 的中点为H ,O 为坐标原点,且1=OH , 求POQ ∆面积的最大值.19.(本小题满分16分)已知*∈N n ,数列{}n a 的各项均为正数,前项和为n S ,且2121==a a ,,设n n n a a b 212+=-.(1)若数列{}n b 是公比为的等比数列,求n S 2;(2)若对任意*∈N n ,22na S n n +=恒成立,求数列{}n a 的通项公式;(3)若)(1232-=nn S ,数列{}1+n n a a 也为等比数列,求数列的{}n a 通项公式.20.(本小题满分16分)已知函数x x x f ln )(=,)()(12-=x x g λ(λ为常数).(1)若函数)(x f y =与函数)(x g y =在1=x 处有相同的切线,求实数λ的值; (2)若21=λ,且1≥x ,证明:)()(x g x f ≤;(3)若对任意),[+∞∈1x ,不等式恒)()(x g x f ≤成立,求实数λ的取值范围.数学附加题部分(本部分满分40分,考试时间30分钟)21. 【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指....定区域...内作答,解答时应写出文字说明、证明过程或演算步骤. A .1选修4-1:几何证明选讲]如图,过圆O 外一点P 作圆O 的切线PA ,切点为A ,连接OP 与圆O 交于点C ,过点C 作圆O 作AP 的垂线,垂足为D ,若PA=25,PC :PO=1:3,求CD 的长.B.1选修4-2:矩阵与变换](共1小题,满分10分) 已知矩阵,列向量,若AX=B ,直接写出A ﹣1,并求出X .C.1选修4-4:坐标系与参数方程](共1小题,满分0分)在平面直角坐标系中,以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.已知圆4sin()6πρθ=+被射线θ=θ0(ρ≥0,θ0为常数,且0(0,)2πθ∈)所截得的弦长为23,求θ0的值.D.1选修4-5:不等式选讲]已知x >0,y >0,且2x+y=6,求4x 2+y 2的最小值.【必做题】第22题.第23题.每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,以正四棱锥V ﹣ABCD 的底面中心O 为坐标原点建立空间直角坐标系O ﹣xyz ,其中Ox∥BC ,Oy ∥AB ,E 为VC 中点,正四棱锥的底面边长为2a ,高为h ,且有15cos ,49BE DE <>=-u u u r u u u r .(1)求ha的值; (2)求二面角B ﹣VC ﹣D 的余弦值.23.(本小题满分10分)对一个量用两种方法分别算一次,由结果相同构造等式,这种方法称为“算两次”的思想方法.利用这种方法,结合二项式定理,可以得到很多有趣的组合恒等式.例如:考察恒等式(1+x )2n=(1+x )n(1+x )n(n ∈N *),左边x n的系数为C 2n n,而右边(1+x )n(1+x )n=(C n 0+C n 1x+…+C n n x n)(C n 0+C n 1x+…+C n n x n),x n的系数为C n 0C n n+C n 1C nn ﹣1+…+C n nC n 0=(C n 0)2+(C n 1)2+…+(C n n)2,因此可得到组合恒等式C 2n n=(C n 0)2+(C n 1)2+…+(C n n)2.(1)根据恒等式(1+x )m+n =(1+x )m (1+x )n (m ,n ∈N *)两边x k(其中k ∈N ,k ≤m ,k ≤n )的系数相同,直接写出一个恒等式;(2)利用算两次的思想方法或其他方法证明:222202n k n k k n n k n k C C C ⎡⎤⎢⎥⎣⎦-=∑⋅⋅=,其中2n ⎡⎤⎢⎥⎣⎦是指不超过2n的最大整数.江苏高考押题卷 数学答案解析1.【考点】交、并、补集的混合运算.【分析】先求出C U B={2,3},再利用并集定义能求出A ∪(∁U B ).【答案】{2,3,4}【解答】∵集合U={1,2,3,4,5},A={3,4},B={1,4,5},∴C U B={2,3}, A ∪(∁U B )={2,3,4}. 故答案为:{2,3,4}.2.【考点】复数代数形式的乘除运算.【分析】x >0,(x ﹣i )2=x 2﹣1﹣2xi 纯虚数(其中i 为虚数单位),可得x 2﹣1=0,﹣2x ≠0,x >0,解出即可得出.【答案】1【解答】x >0,(x ﹣i )2=x 2﹣1﹣2xi 纯虚数(其中i 为虚数单位), ∴x 2﹣1=0,﹣2x ≠0,x >0,解得x=1.故答案为:1.3.【考点】分层抽样方法.【分析】先求三层的比例,然后求得青年人中抽取总人数的比例,从而求出抽取样本容量.【答案】24【解答】由题意,因为20:120:100=1:6:5,所以青年人中抽取总人数的=,故n=10÷=24.故答案为:24.4.【考点】双曲线的简单性质.【分析】求出双曲线的a,b,c,可得右焦点坐标和左准线方程,由点到直线的距离公式可得所求值.【答案】5【解答】双曲线=1的a=2,b=2,c==4,可得右焦点(4,0)与左准线方程x=﹣即x=﹣1,即右焦点与左准线之间的距离是4﹣(﹣1)=5.故答案为:5.5.【考点】函数的定义域及其求法.【分析】根据二次根式的定义可知1﹣x≥0且根据对数函数定义得x+2>0,联立求出解集即可.【答案】(﹣2,1]【解答】因为f(x)=,根据二次根式定义得1﹣x≥0①,根据对数函数定义得x+2>0②联立①②解得:﹣2<x≤1故答案为(﹣2,1]6.【考点】程序框图.【分析】根据已知中的程序框图可得,该程序的功能是计算并输出变量b的值,模拟程序的运行过程,可得答案.【答案】13【解答】当a=27时,执行循环体b=9,不满足退出循环的条件,故a=9;当a=9时,执行循环体b=3,不满足退出循环的条件,故a=3;当a=3时,执行循环体b=1,不满足退出循环的条件,故a=1;当a=1时,执行循环体b=,满足退出循环的条件,故输出的b值为,故答案为:7.【考点】二倍角的余弦.【分析】利用二倍角的余弦公式解方程求得cosx的值,从而结合x∈10,π],求得x的值.【答案】【解答】∵等式cos2x﹣1=3cosx(x∈10,π]),即2cos2x﹣2=3cosx,即2cos2x﹣3cosx﹣2=0,求得cosx=2(舍去),或cosx=﹣,∴x=,故答案为:.8.【考点】等差数列的前n项和.【分析】利用等差数列的前n项和公式及通项公式列出方程组,求出首项及公差,由此能求出前10项和.【答案】65【解答】∵S n为等差数列{a n}的前n项和,a3=4,S9﹣S6=27,∴,解得a1=2,d=1,∴S10=10×2+=65.故答案为:65.9.【考点】列举法计算基本事件数及事件发生的概率.【分析】出场的两名运动员号码不同的对立事件是出场的两名运动员号码相同,由此利用对立事件概率计算公式能求出出场的两名运动员号码不同的概率.【答案】【解答】男队有号码1,2,3的三名乒乓球运动员,女队有号码为1,2,3,4的四名乒乓球运动员,现两队各出一名运动员比赛一场,基本事件总数n=3×4=12,出场的两名运动员号码不同的对立事件是出场的两名运动员号码相同,∴出场的两名运动员号码不同的概率p=1﹣=.故答案为:.10.【考点】旋转体(圆柱、圆锥、圆台).【分析】由题意设出圆锥的底面半径,求出圆锥的侧面积,求出圆柱的侧面积即可得到圆柱的侧积面与圆锥的侧面积之比.【答案】【解答】设圆锥的底面半径为r,由题意圆锥底面半径等于圆锥的高,可知圆锥的侧面积为:πr•r=πr2.圆柱的侧面积为:2πr•r=2πr2.所以圆柱的侧积面与圆锥的侧面积之比为:πr2:2πr2=.故答案为:.11.【考点】平面向量的基本定理及其意义.【分析】利用已知条件,得∠AOB=90°,两边平方,则m2+n2=1结合基本不等式,即可求得结论.【答案】1﹣,1]【解答】设圆的半径为1,则由题意m、n不能同时为正,∴m+n≤1…①∵∠C=45°,O是△ABC的外心,∴∠AOB=90°两边平方即可得出1=m2+n2+2mncos∠AOB⇒m2+n2=1…②,∵,…③,由①②③得﹣.故答案为:1﹣,1]12.【考点】抛物线的简单性质.【分析】由题意,p=2c,P(,c),即P(2c,c),代入椭圆方程,可得=1,由此即可求出椭圆的离心率.【答案】【解答】由题意,p=2c,P(,c),即P(2c,c)代入椭圆方程,可得=1,整理可得e4﹣6e2+1=0,∵0<e<1,∴e=.故答案为.13.【考点】余弦定理.【分析】利用余弦定理与不等式结合的思想求解a,b,c的关系.即可求解C的值.【答案】【解答】根据a2=3b2+3c2﹣2bcsinA…①余弦定理a2=b2+c2﹣2bccosA…②由①﹣②可得:2b2+c2=2bcsinA﹣2bccosA化简:b2+c2=bcsinA﹣bccosA⇔b 2+c 2=2bcsin (A )∵b 2+c 2≥2bc , ∴sin (A )=1 ∴A=,此时b 2+c 2=2bc , 故得b=c ,即B=C , ∴C==.故答案为:.14.【考点】函数单调性的判断与证明.【分析】去掉绝对值,根据f ′(x )≥0,得到a 的范围即可. 【答案】1﹣,]【解答】f (x )=;∵x ∈11,2]; ∴a ≤时,f (x )=,f ′(x )=;由f ′(x )≥0;解得:a ≥﹣≥﹣,即﹣≤a ≤时,f ′(x )≥0,f (x )在11,2]上单调递增;即a 的取值范围是:1﹣,].故答案为:1﹣,].15. 【考点】向量数量积, 同角三角函数平方关系, 二倍角公式【解析】法一(1)由m ⊥n 得,2cos sin 0αα-=,sin 2cos αα=, ……2分代入22cos sin 1αα+=,25cos 1α=且π(0)2α∈,,π(0)2β∈,,则cos α=sin α, ……4分则223cos22cos 1215αα=-=⨯-=-. ……6分 (2)由π(0)2α∈,,π(0)2β∈,得,ππ()22αβ-∈-,.因sin()αβ-,则cos()αβ-= ……9分 则sin sin[()]sin cos()cos sin()βααβααβααβ=--=---=……12分 因π(0)2β∈,,则π4β=. ……14分法二(1)由m ⊥ n 得,2cos sin 0αα-=,tan 2α=, ……2分 故22222222cos sin 1tan 143cos2cos sin cos sin 1tan 145ααααααααα---=-====-+++.……4分 (2)由(1)知,2cos sin 0αα-=,且22cos sin 1αα+=,π(0)2α∈,,π(0)2β∈,,则sin α=,cos α= ……6分 由π(0)2α∈,,π(0)2β∈,得,ππ()22αβ-∈-,.因sin()αβ-,则cos()αβ-= ……9分 则sin sin[()]sin cos()cos sin()βααβααβααβ=--=---==……12分 因π(0)2β∈,,则π4β=. ……14分【思路点睛】在求角的某个三角函数值时,应注意根据条件选择恰当的函数,尽量做到所选函数在确定角的范围内为一对一函数。

江苏省高考数学考前压轴冲刺(新高考)-专题11 不等式之恒成立与有解问题(填空题)(原卷版)

江苏省高考数学考前压轴冲刺(新高考)-专题11 不等式之恒成立与有解问题(填空题)(原卷版)

专题11 不等式恒成立与有解问题考点预测江苏高考近几年不等式常以压轴题的题型出现,常见的考试题型有恒成立,有解问题,此类题型丰富多变,综合性强,有一定的难度,但只要我们理解问题的本质,就能解决这类问题,常用的知识点如下:1.若)(x f 在区间D 上存在最小值,A x f >)(在区间D 上恒成立,则A x f >min )(.2.若)(x f 在区间D 上存在最大值,B x f <)(在区间D 上恒成立,则B x f <max )(.3.若)(x f 在区间D 上存在最大值,A x f >)(在区间D 上有解,则A x f >max )(.4.若)(x f 在区间D 上存在最小值,B x f <)(在区间D 上有解,则B x f <min )(.5.],,[,21b a x x ∈∀)()(21x g x f ≤,则min max )()(x g x f ≤.6.],,[1b a x ∈∀],[2n m x ∈∃,)()(21x g x f ≤,则max max )()(x g x f ≤.7.],,[1b a x ∈∃],[2n m x ∈∃,)()(21x g x f ≤,则max min )()(x g x f ≤.8.],,[b a x ∈∀)()(x g x f ≤,则0)()(≤-x g x f .典型例题1.已知函数f (x )=x ﹣2(e x ﹣e ﹣x ),则不等式f (x 2﹣2x )>0的解集为 .2.已知a ,b ∈R ,若关于x 的不等式lnx ≤a (x ﹣2)+b 对一切正实数x 恒成立,则当a +b 取最小值时,b 的值为 ﹣ .3.已知函数f(x)=,设a∈R,若关于x的不等式在R上恒成立,则a的取值范围是﹣专项突破一、填空题(共12小题)1.设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.2.对于任意的正数a,b,不等式(2ab+a2)k≤4b2+4ab+3a2恒成立,则k的最大值为.3.设a>0,若关于x的不等式x≥9在x∈(3,+∞)恒成立,则a的取值范围为.4.不等式(a﹣2)x2+(a﹣2)x+1>0对一切x∈R恒成立,则实数a的取值范围是.5.若存在实数b使得关于x的不等式|a sin2x+(4a+b)sin x+13a+2b|﹣2sin x≤4恒成立,则实数a的取值范围是﹣.6.已知等比数列{a n}的前n项和为S n,且S n=,若对任意的n∈N*,(2S n+3)λ≥27(n﹣5)恒成立,则实数λ的取值范围是.7.若关于x的不等式(x2﹣a)(2x+b)≥0在(a,b)上恒成立,则2a+b的最小值为.8.若对于任意x∈[1,4],不等式0≤ax2+bx+4a≤4x恒成立,|a|+|a+b+25|的范围为.9.若不等式(x+1)1n(x+1)<ax2+2ax在(0,+∞)上恒成立,则a的取值范围是.10.若对任意a∈[1,2],不等式ax2+(a﹣1)x﹣1>0恒成立,则实数x的取值范围是﹣∞﹣11.若不等式2kx2+kx+<0对于一切实数x都成立,则k的取值范围是﹣∞﹣.12.已知函数f(x)=x2+(1﹣a)x﹣a,若关于x的不等式f(f(x))<0的解集为空集,则实数a的取值范围是﹣.。

江苏省无锡市2024高三冲刺(高考数学)苏教版真题(押题卷)完整试卷

江苏省无锡市2024高三冲刺(高考数学)苏教版真题(押题卷)完整试卷

江苏省无锡市2024高三冲刺(高考数学)苏教版真题(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知正实数,,点在直线上,则的最小值为()A.4B.6C.9D.12第(2)题2022年2月27日,长征八号遥二运载火箭搭载22颗卫星成功发射,创造中国航天“一箭多星”的最高纪录,打破了长征六号火箭创造的“一箭20星”纪录.据测算:在不考虑空气阻力的条件下,火箭的最大速度(单位:)和燃料的质量M(单位:kg)、火箭的质量(除燃料外)m(单位:kg)的关系是.为使火箭的最大速度达到9000m/s,则燃料质量与火箭质量之比约为(参考数据)()A.18B.19C.20D.21第(3)题若,则()A.B.C.D.第(4)题函数的图像大致为()A.B.C.D.第(5)题已知集合,,则()A.B.C.D.第(6)题已知直平行六面体中,,则直线与所成角的余弦值为()A.B.C.D.0第(7)题若,则a的取值范围为()A.B.C.D.第(8)题已知定义域为的函数满足,且曲线与曲线有且只有两个交点,则函数的零点之和是()A.2B.-2C.4D.-4二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知二项式的展开式中所有项的系数的和为64,则()A.B.展开式中的系数为C.展开式中奇数项的二项式系数的和为32D.展开式中二项式系数最大的项为第(2)题如图,双曲线的左右顶点为,,为右支上一点(不包含顶点),,,,直线与的渐近线交于、,为线段的中点,则()A.双曲线的离心率为B.到两条渐近线的距离之积为C.D.若直线与的斜率分别为,,则第(3)题已知函数的定义域为,函数的图象关于点对称,且满足,则下列结论正确的是()A.函数是奇函数B.函数的图象关于轴对称C.函数是最小正周期为2的周期函数D.若函数满足,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题直线截圆得到的劣弧所对的圆心角为________.第(2)题命题“,”的否定是__________________.第(3)题某单位有500位职工,其中35岁以下的有125人,35-49岁的有280人,50岁以上的有95人.为了了解职工的健康状态,采用分层抽样的方法抽取一个容量为100的样本,需抽取35岁以下职工人数为________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在平面四边形中,,,,.(1)求的值;(2)求的值.第(2)题如图,四棱锥中,四边形为梯形,其中,.(1)证明:平面平面;(2)若,点满足,且三棱锥的体积为,求平面与平面的夹角的余弦值.第(3)题如图几何体中,四边形为矩形,,,,,为的中点,为线段上的一点,且.(1)证明:面;(2)证明:面面;(3)求三棱锥的体积.第(4)题在中,,D为中点.(1)若,求;(2)若,求的值.第(5)题俱乐部是具有某种相同兴趣的人进行社会交际、文化娱乐等活动的团体或场所.一些顶尖的俱乐部不仅对会员的要求非常严苛,加入也要经过现任会员邀请并接受资格测试和对个人素养、社会地位等的综合考察.研究人员通过模型预测某俱乐部标准资格测试的参试成绩(总计100份),绘制成下表(已知B卷难度更大).不及格及格A卷aB卷2020(1)若至少有5%的把握认为是否及格与试卷难度无关,求a的最小值;(2)在预测的40份B卷参试成绩中随机挑选3份,记不及格的份数为X,求X的分布列及数学期望.附:,其中.0.0500.0250.0100.0050.0013.8415.0246.6357.87910.828。

2023-2024学年高考数学专项复习——压轴题(附答案)

2023-2024学年高考数学专项复习——压轴题(附答案)

决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。

压轴题04 函数与导数常见经典压轴大题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题04  函数与导数常见经典压轴大题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题04函数与导数常见经典压轴大题函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.考向一:导数与数列不等式的综合问题考向二:双变量问题考向三:证明不等式考向四:零点问题考向五:不等式恒成立问题考向六:极值点偏移问题与拐点偏移问题考向七:导数中的同构问题考向八:导数与三角函数结合问题1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点0x .(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x >,则令02()()()x F x f x f x=-.(3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x x x x -+<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.1.(2023·全国·校联考二模)已知函数()()2ln R 2a f x x x x x a a =--+∈,()f x '为()f x 的导函数.(1)当12a =时,若()()g x f x ='在[[],1(0)t t t +>上的最大值为()h t ,求()h t ;(2)已知12,x x 是函数f (x )的两个极值点,且12x x <,若不等式112e mmx x +<恒成立,求正数m的取值范围.【解析】(1)当12a =时,()211ln 42f x x x x x =--+,其定义域为(0,+∞),且()1ln 112f x x x =+--'1ln 2x x =-,所以()1ln 2g x x x =-,所以()112(0)22xg x x x x'-=-=>,令()0g x '>,得02x <<;令()0g x '<,得2x >,所以()g x 在(0,2)上单调递增,在(2,)+∞上单调递减.①当12t +≤,即01t <≤时,()g x 在[t ,t +1]上单调递增,所以()()()()max 111ln 122h t g x g t t t ==+=+--;②当2,12t t ≤+>,即12t <≤时,()()()max 2ln21h t g x g ===-;③当2t >时,g (x )在[t ,t +1]上单调递减,所以()()()max 1ln 2h t g x g t t t ===-,综上所述11ln(1),01,22()ln 21,12,1ln , 2.2t t t h t t t t t ⎧+--<≤⎪⎪=-<≤⎨⎪⎪->⎩(2)因为112emmx x +<,所以121ln ln m x m x +<+,由题意知()f x 的定义域为(0,),+∞()ln f x x ax '=-,故12,x x 是关于x 的方程()ln 0f x x ax '=-=的两个根,所以()()111222ln 0,ln 0f x x ax f x x ax ='-=-'==,即1122ln ,ln x ax x ax ==,所以121ln ln m x m x +<+,等价于()12121m ax max a x mx +<+=+.因为120,0m x x ><<,所以原式等价于121ma x mx +>+,又1122ln ,ln x ax x ax ==,作差,得()1122lnx a x x x =-,即1212lnx x a x x =-,所以原式等价112122ln 1xx m x x x mx +>-+,因为120x x <<,所以()()1212121lnm x x x x x mx +-<+恒成立.令12x t x =,则(0,1)t ∈,故不等式()()11ln m t t t m+-<+在(0,1)t ∈上恒成立,令()()11()ln m t t t t mϕ+-=-+.又因为()()()()()()2222111t t m m t t t m t t m ϕ--+'=-=++,当21m ≥时,得(0,1)t ∈,所以()0t ϕ'>在(0,1)上单调递增,又()10ϕ=,所()0t ϕ<在(0,1)上恒成立,符合题意;当21m <时,可得2(0,)t m ∈时,()0t ϕ'>,()2,1t m ∈时,()0t ϕ'<,所以()t ϕ在2(0,)m 上单调递增,在2(,1)m 上单调递减,又因为()10ϕ=,所以()t ϕ在(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式112emmx x +<恒成立,只需满足21m ≥,又0m >,故m 1≥,即正数m 的取值范围为[1,)+∞.2.(2023·河南·校联考二模)已知函数()22ln f x x x x =+.(1)求()f x 的极值;(2)若不等式()2e x f x x m x≥+在1,e ∞⎡⎫+⎪⎢⎣⎭上恒成立,求实数m 的取值范围.【解析】(1)函数()22ln f x x x x =+的定义域为()0,∞+,又()()2ln 22ln 3f x x x x x x x '=++=+,令()0f x '<得320e x -<<,令()0f x ¢>得32e x ->,所以()f x 在320,e -⎛⎫ ⎪⎝⎭上单调递减,在32e ,-⎛⎫+∞ ⎪⎝⎭上单调递增,所以()f x 在32e x -=处取得极小值3321e e 2f --⎛⎫=- ⎪⎝⎭,无极大值.(2)由()2e x f x x m x≥+得2ln e x x x x x m -+≥,即对任意的1,e x ∞⎡⎫∈+⎪⎢⎣⎭,2ln exx x x xm -+≤恒成立,令()2ln e xx x x xh x -+=,1,e x ∞⎡⎫∈+⎪⎢⎣⎭,则()()()1ln 2e x x x x h x '--+=,令()ln 2x x x ϕ=-+,则()1xx xϕ'-=,所以当11ex <<时()0x ϕ'>,当1x >时()0x ϕ'<,所以()x ϕ在1,1e ⎛⎫⎪⎝⎭上单调递增,在()1,+∞上单调递减,又1110e e ϕ⎛⎫=-> ⎪⎝⎭,()110ϕ=>,()22e 4e 0ϕ=-<,所以当1,e x ∞⎡⎫∈+⎪⎢⎣⎭时()x ϕ在()21,e 内存在唯一的零点0x ,所以当1,1e x ⎛⎫∈ ⎪⎝⎭时()0x ϕ>,()0h x '>,()h x 单调递增,当()01,x x ∈时()0x ϕ>,()0h x '<,()h x 单调递减,当()0,x x ∈+∞时()0x ϕ<,()0h x '>,()h x 单调递增,所以()()0min1,e h x h x h ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭,12e 1e e h --⎛⎫=- ⎪⎝⎭,因为()000ln 20x x x ϕ=-+=,所以00ln 11x x -+=-,020e x x -=,所以()()00000220000000002ln 1ln e 1e e e e ex x x x x x x x x x x x x h x --+-+--=====-,因为e 122e e ---->-,所以()01e h h x ⎛⎫> ⎪⎝⎭,所以()()02min 1e h x h x ==-,所以实数m 的取值范围为21,e ⎛⎤-∞- ⎥⎝⎦.3.(2023·全国·模拟预测)已知函数()21ln (0)2f x x x x a a=-+>.(1)若1a =,求函数()f x 在点()()1,1f 处的切线方程;(2)若函数()21ln (0)2f x x x x a a=-+>在其定义域上有唯一零点,求实数a 的值.【解析】(1)当1a =时,()111221f =-+=,且()()11,11f x x f x=-+'∴=',∴函数()f x 在点()()1,1f 处的切线方程112y x -=-,即2210x y --=.(2)()21ln (0)2f x x x x a a=-+>在其定义域上有唯一零点,∴方程21ln 02x x x a-+=,即22ln 20x a x ax --=在()0,∞+有唯一实数解.设()22ln 2g x x a x ax =--,则()2222x ax ag x x--'=.令()0g x '=,即20.0,0,x ax a a x --=>> 20x ax a ∴--=的两个根分别为1402a a a x =(舍去),2x =当()20,x x ∈时,()()0,g x g x '<在()20,x 上单调递减,当()2,x x ∈+∞时,()()0,g x g x '>在()20,x 上单调递增,当2x x =时,()()0,g x g x '=取最小值()2g x ,要使()g x 在()0,∞+有唯一零点,则须()()220,0,g x g x ⎧=⎪⎨='⎪⎩即22222222ln 20,0,x a x ax x ax a ⎧--=⎨--=⎩()22222ln 0,0,2ln 10.*a x ax a a x x ∴+-=>∴+-= 设函数()2ln 1,h x x x =+-当0x >时()h x 是增函数,()h x ∴至多有一解.⋅()10,h =∴ 方程()*的解为21x =1=,解得12a =,∴实数a 的值为12.4.(2023·广西柳州·柳州高级中学校联考模拟预测)已知函数()ln eaf x x x =-(其中a ∈R ,e 为自然对数的底数).(1)若函数()f x 存在极大值,且极大值不小于1,求a 的取值范围;(2)当e a =时,证明()121e 2102x x f x x -⎛⎫+-++< ⎪⎝⎭.【解析】(1)由已知可得,函数()f x 定义域为()0,∞+,()1ea f x x =-'.①当0a ≤时,()10eaf x x =->'在()0,∞+上恒成立,所以()f x 在()0,∞+上单调递增,此时函数()f x 无极值;②当0a >时,()e e axf x x-=',解()e 0e axf x x-=='可得e x a =.当e 0x a <<时,()0f x ¢>,所以()f x 在e 0,a ⎛⎫⎪⎝⎭上单调递增;当e x a >时,()0f x '<,所以()f x 在e ,a ⎛⎫+∞ ⎪⎝⎭上单调递减,所以,函数()f x 在ex a=处取得极大值e f a ⎛⎫ ⎪⎝⎭.由已知,e 1f a ⎛⎫≥ ⎪⎝⎭,即e e ln 11f a a ⎛⎫=-≥ ⎪⎝⎭,解得10ea <≤,所以,a 的取值范围为10,e ⎛⎤⎥⎝⎦.(2)因为()()()112211e 212e 22x x x f x x x f x --⎛⎫⎛⎫+-++=++- ⎪ ⎪⎝⎭⎝⎭,又因为0x >,所以只需证明()12e212x f x x -<-+即可.当e a =时,()ln f x x x =-,由(1)知()f x 在()0,1上单调递增,在()1,+∞上单调递减,所以,()f x 在1x =处取得极大值,也是最大值()()max 11f x f ==-.记()12e212x g x x -=-+,0x >,则()1112222211ee e 221122x x x x x g x x x ---⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭'==⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以当102x <<时,()0g x '<,()g x 单调递减;当12x >时,()0g x '>,()g x 单调递增,所以,()g x 在12x =处取得极小值,也是最小值()min 112g x g ⎛⎫==- ⎪⎝⎭.因为()max f x 与()min g x 不能同时取到,所以结论成立.5.(2023·湖北·校联考模拟预测)已知函数2sin ()π,[0,π]ex xf x x x x =-+∈.(1)求()f x 在(0,(0))f 处的切线方程;(2)若()f x m =存在两个非负零点12,x x ,求证:212ππ1mx x -≤-+.【解析】(1)由题可知(0)0,()(cos sin )e 2πx f f x x x x -'==--+,因为(0)1πf =+',所以,()y f x =在(0,(0))f 处的切线方程为(1π)y x =+.(2)()f x m =存在两个非负零点12,x x ,设12x x <,由(1)可知()y f x =在(0,(0))f 处的切线方程为(1π)y x =+,注意到π1(π)0,(π)πe f f =-'=-,所以,()y f x =在(π,0)处的切线方程为π1π(π)e y x ⎛⎫=--- ⎪⎝⎭.下证:当[0,π]x ∈时,()(1π)f x x ≤+,且π1()π(π)e f x x ⎛⎫≤--- ⎪⎝⎭.(i )要证()(1π)f x x ≤+,即证2sin e xx x x ≤+,只需证()2sin e x x x x ≤+.①设()sin ,0,()1cos 0g x x x x g x x -=-'=≥≥,故()g x 在[0,)+∞上单调递增,故()(0)0g x g ≥=,即sin ,[0,)x x x ≤∀∈+∞恒成立.要证①,只需证()2e xx x x ≤+.当0x =时上式成立;当0x >时,即证1(1)e x x ≤+,此时,由于11,e 1x x +≥≥,故(1)e 1x x +≥,于是,当0x ≥时,()(1π)f x x ≤+.(ii )要证1()π(π)e x f x x ⎛⎫≤--- ⎪⎝⎭,只需证2πsin 1ππ(π)e e x x x x x ⎛⎫-+≤--- ⎪⎝⎭,即证2sin 1ππ(π)0,[0,π]e e x x x x x x x ⎛⎫-+++-≤∈ ⎪⎝⎭.设2πsin 1()ππ(π),[0,π]e e x x h x x x x x ⎛⎫=-+++-∈ ⎪⎝⎭,则πcos sin 1()2ππ,(π)0e e x x x h x x h -''=-+++=.设πcos sin 1()2ππ,[0,π]e e xx x m x x x -=-+++∈,则()2cos cos 221e e x x x x m x -⎛⎫=-=-+ ⎝'⎪⎭.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,cos 0,e 0,()0x x m x ≥><',当,2x π⎛⎤∈π ⎥⎝⎦时,π2cos 0,|cos |1,e e 1x x x <≤>>,故cos 10,()0e x x m x '+><.于是()0,[0,π]m x x <∀∈'恒成立,故()m x 在[0,]π上单调递减.从而()(π)0m x m ≥=,即()0,[0,π]h x x ≥∀∈'恒成立,故()h x 在[0,]π上单调递增,从而()(π)0h x h ≤=,于是π1()π(π)e f x x ⎛⎫≤--- ⎪⎝⎭.设(1π)x m +=的零点为31,π(π)e x x x m ⎛⎫---= ⎪⎝⎭的零点为4x ,则()341(1π),ππe x m x m π⎛⎫+=---= ⎪⎝⎭.因为()311(1π)(1π)x m f x x +==≤+,所以31x x ≤,因为()()()422π11ππππe e x m f x x π⎛⎫⎛⎫---==≤--- ⎪ ⎪⎝⎭⎝⎭,所以42x x ≥,又34π,π11ππex m mx ==-++,所以2143π2ππ11π1ππe mm m x x x x -≤-=--≤-+++,所以212ππ1mx x -≤-+.6.(2023·上海静安·统考二模)已知函数()()211ln 2f x x a x a x =-++.(其中a 为常数)(1)若2a =-,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)当a<0时,求函数()y f x =的最小值;(3)当01a ≤<时,试讨论函数()y f x =的零点个数,并说明理由.【解析】(1)当2a =-时,可得()212ln 2f x x x x =+-,可得()2(2)(1)1x x f x x x x+-'=+-=,所以()22f '=且()242ln 2f =-,所以切线方程为(42ln 2)2(2)y x --=-,即22ln 20x y --=,即曲线所以曲线()y f x =在点(2,(2))f 处的切线方程为22ln 0x y x --=.(2)由函数()()211ln 2f x x a x a x =-++,可得函数()f x 的定义域为(0,)+∞,又由()()(1)x a x f x x--'=,令()0f x '=,解得1x a =,11x =,当a<0时,()f x 与()f x '在区间(0,)+∞的情况如下表:x (0,1)1(1,)+∞()f x '-+()f x极小值↗所以函数的极小值为()112f a =--,也是函数()f x 的最小值,所以当a<0时,函数()f x 的最小值为12a --(3)当0a =时,()212f x x x =-,令()0f x =,解得122,0x x ==(舍去)所以函数()y f x =在(0,)+∞上有一个零点;当01a <<时,()f x 与()f x '在区间(0,)+∞的情况如下表:x (0,)a a(,1)a 1(1,)+∞()f x '+0-0+()f x ↗极大值极小值↗所以函数()f x 在(0,)a 单调递增,在(,1)a 上单调递减,此时函数()f x 的极大值为()21ln 02f a a a a a =--+<,所以函数()y f x =在(0,1)上没有零点;又由()1102f a =--<且函数()f x 在(1,)+∞上单调递增,且当x →+∞时,()f x →+∞,所以函数()f x 在(1,)+∞上只有一个零点,综上可得,当01a ≤<时,()f x 在(0,)+∞上有一个零点.7.(2023·河北沧州·统考模拟预测)已知函数()()ln 1f x x ax a =--∈R .(1)若函数()y f x =在区间[)1,+∞上单调递减,求实数a 的取值范围;(2)若方程()20f x +=有两个实根1x ,2x ,且212x x >,求证:212332e x x >.参考数据:ln 20.693≈,ln 3 1.099≈.【解析】(1)函数()f x 的定义域为()0,∞+,由题意,()11ax f x a x x-'=-=.当0a ≤时,()0f x ¢>,函数()f x 在()0,∞+上单调递增,不合题意;当0a >时,由()0f x ¢>得10x a <<,所以函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.又函数()y f x =在区间[)1,+∞上单调递减,所以,11a≤,即1a ≥.因此,实数a 的取值范围是[)1,+∞.(2)由题意()2ln 10f x x ax +=-+=,于是1122ln 1ln 1x ax x ax +=⎧⎨+=⎩,令21x t x =,则由212x x >可得,2t >.于是221111ln 1ln ln 1ln 1ln 1x x t x t x x x +++===++,即1ln ln 11t x t =--.从而21ln ln ln ln 11t tx t x t =+=--.另一方面,对212332e x x >两端分别取自然对数,则有12ln 2ln 5ln 23x x +>-,于是,即证ln 2ln 35ln 2311t t t t t +->---,即()12ln 5ln 21t t t +>-,其中2t >.设()()12ln 1t t g t t +=-,2t >.则()()()()()221212ln 112ln 3ln 2111t t t t t t t t t g t t t +⎛⎫+--+-+-- ⎪⎝⎭'==--,设()13ln 21t t t tϕ=-+--,2t >.则()()()22222113123120t t t t t t t t t ϕ----+'=++==>在()2,+∞上恒成立,于是,()t ϕ在()2,+∞上单调递增,从而()()1523ln 2413ln 2022t ϕϕ>=-+--=->.所以,()0g t '>,即函数()g t 在()2,+∞上单调递增,于是()()25ln 2g t g >=.因此,212332e x x >,即原不等式成立.8.(2023·广东湛江·统考一模)已知函数()e cos 2xf x x =+-.(1)证明:函数()f x 只有一个零点;(2)在区间()0,∞+上函数()sin f x ax x >-恒成立,求a 的取值范围.【解析】(1)证明:由()e cos 2xf x x =+-可得()00e cos020f =+-=,当0x <时,e 1x <,cos 1≤x ,所以e cos 2x x +<,故e cos 20x x +-<,故()f x 在区间(),0∞-上无零点.当0x ≥时,()e sin xf x x '=-,而e 1x ≥,sin 1x -≥-,且等号不会同时取到,所以()e sin 0xf x x =->',所以当0x ≥时,函数()f x 单调递增,所以()()00f x f ≥=,故函数()f x 在区间[)0,∞+上有唯一零点0,综上,函数()f x 在定义域上有唯一零点.(2)由()sin f x ax x >-在区间()0,∞+上恒成立,得e cos 2sin x x ax x +->-,即e sin cos 20x x x ax ++-->在区间()0,∞+上恒成立.设()e sin cos 2xg x x x ax =++--,则()0g x >在区间()0,∞+上恒成立,而()e cos sin xg x x x a =+--',()e cos sin x m x x x a =+--,则()e sin cos x m x x x =-'-.设()e 1xh x x =--,则()e 1x h x '=-,当0x >时,()0h x '>,所以函数()h x 在区间()0,∞+上单调递增,故在区间()0,∞+上,()()00h x h >=,即在区间()0,∞+上e 1x x >+,设函数()()0n ,si ,p x x x x ∞=-∈+,则()1cos 0p x '=-≥,所以函数()p x 在区间()0,∞+上单调递增,故在区间()0,∞+上()()00p x p >=,即在区间()0,∞+上,sin x x >,所以在区间()0,∞+上,e 1sin cos x x x x >+>+,即()e sin cos 0xm x x x =-->',所以在区间()0,∞+上函数()g x '单调递增.当2a ≤时,()020g a '=-≥,故在区间()0,∞+上函数()0g x '>,所以函数()g x 在区间()0,∞+上单调递增.又()00g =,故()0g x >,即函数()sin f x ax x >-在区间()0,∞+上恒成立.当2a >时,()020g a '=-<,()()()ln 22cos ln 2sin ln 2g a a a a a '+=+++-+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()π2ln 204a ⎛⎫=+-> ⎪⎝⎭,故在区间()()0,ln 2a +上函数()g x '存在零点0x ,即()00g x '=,又在区间()0,∞+上函数()g x '单调递增,故在区间()00,x 上函数()()00g x g x ''<=,所以在区间()00,x 上函数()g x 单调递减,又()00g =,所以在区间()00,x 上函数()(0)0g x g <=,与题设矛盾.综上,a 的取值范围为(],2-∞.9.(2023·重庆九龙坡·统考二模)已知函数()ln ax ax f x x=+-,函数()2ln 2e 2e 12xx x a g x a x x-=+-+.(1)当0a >时,求()f x 的单调区间;(2)已知12a ≥,1e 2xx >,求证:()0g x <;(3)已知n 为正整数,求证:11111ln 212212n n n n n+++⋅⋅⋅+>++-.【解析】(1)2221()ln ,()a a ax x af x x ax f x a x x x x-+-'=-+∴=--= ,①当12a ≥时,此时2140a ∆=-≤,则()0f x '≤恒成立,则()f x 的减区间为()0,∞+,②当102a <<时,令()0f x ¢>,解得11,22x a a ⎛+∈⎪ ⎪⎝⎭,则()f x 的增区间为⎝⎭令()0f x '<,解得1141140,,22x a a ⎛⎫⎛⎫∈⋃+∞ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,则()f x 的减区间为110,,,22a a ⎛⎛⎫+∞⎪ ⎪ ⎪⎝⎭⎝⎭,综上当12a ≥时,()f x 的减区间为()0,∞+,无增区间;当102a <<时,()f x 的增区间为⎝⎭,减区间为110,,22a a ⎛⎫⎛⎫+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.(2)欲证2ln 2e ()2e 10,2xx x a g x a x x-=+-+<需证ln 22e 02e xxax x ax x +-+<,即需证()ln 2e 2e 02ex xxax ax x -+<,令2e x t x =,即需证ln 0a t at t-+<,设()ln a h t t at t =-+12e x t x => ,由(1)知当12a ≥时,()h t 的减区间为()0,,∞+所以()(1)0,h t h <=故()0.g x <(3)由(2)知,当11,2t a >=时,11ln 2t t t ⎛⎫<- ⎪⎝⎭,令()*21N t n n=+∈,则2121122ln 11122222(21)1n n n n n n n n n n ⎛⎫⎪⎛⎫⎛⎫⎛⎫+<+-=+-=< ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎪+⎝⎭+即2ln(2)ln n n n+-<所以2ln(3)ln(1)1n n n +-+<+2ln(4)ln(2)2n n n +-+<+2ln(5)ln(3)3n n n +-+<+......ln(21)ln(21)212n n n +--<-ln(22)l )22n(2n n n+-<以上各式相加得:11111ln(22)ln(21)ln ln(1)212212n n n n n n n n n ⎛⎫+++--+<+++⋯++ ⎪++-⎝⎭()()()212211111112ln ln 4ln 212212212n n n n n n n n n n ++⎛⎫+++⋯++>=+> ⎪++-+⎝⎭10.(2023·广东梅州·统考二模)已知函数()1e ln -=-xf x a x ,其中R a ∈.(1)当1a =时,讨论()f x 的单调性;(2)当[]0,πx ∈时,()21cos 1f x x +-≥恒成立,求实数a 的取值范围.【解析】(1)当1a =时,1()e ln x f x x -=-,函数()f x 的定义域为(0,)+∞,求导得11()e x f x x-'=-,显然函数()f x '在(0,)+∞上单调递增,且()01f '=,因此当(0,1)x ∈时,()0,()'<f x f x 单调递减,当(1,)x ∈+∞时,()0,()'>f x f x 单调递增,所以()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞.(2)[0,π]x ∈,令()2(1)cos 2e 2ln(1)cos x g x f x x a x x =+-=-+-,求导得2()2e sin 1x ag x x x '=-++,当0a ≤时,()0g x '>,则()g x 在[0,π]上单调递增,0()(0)2e 2ln1cos 01g x g a ≥=--=,满足题意,当0a >时,设()()h x g x '=,则22()2e cos 0(1)xah x x x '=++>+,因此函数()h x ,即()g x '在[0,π]上单调递增,而0(0)2e 2sin 022g a a '=-+=-,(i)当01a <≤时,()(0)220,()g x g a g x ''≥=-≥在[0,π]上单调递增,于是0()(0)2e 2ln1cos 01g x g a ≥=--=,满足题意,(ii)当π2(π)2e sin π0π1ag '=-+≤+,即π(π1)e a ≥+时,对[0,π],()0x g x '∀∈≤,则()g x 在(0,π)上单调递减,此时0()(0)2e 2ln1cos 01g x g a <=--=,不合题意,(iii )当π1(1)e a π<<+时,因为()g x '在[0,π]上单调递增,且π2(0)(π)(22)(2e )0π1ag g a ''=--<+,于是0[0,π]x ∃∈,使()00g x '=,且当()00,x x ∈时,()g x '单调递减,此时0()(0)2e 2ln1cos 01g x g a <=--=,不合题意,所以实数a 的取值范围为(,1]-∞.11.(2023·上海松江·统考二模)已知0x >,记()e xf x =,()xg x x =,()ln ()h x g x =.(1)试将()y f x =、()y g x =、()y h x =中的一个函数表示为另外两个函数复合而成的复合函数;(2)借助(1)的结果,求函数()2y g x =的导函数和最小值;(3)记()()()f x h x H x x a x-=++,a 是实常数,函数()y H x =的导函数是()y H x '='.已知函数()()y H x H x =⋅'有三个不相同的零点123x x x 、、.求证:1231x x x ⋅⋅<.【解析】(1)()ln ()ln ln (())e e e e ()xh x g x x x x x y f h x x g x =======(2)利用复合函数的求导法则可求得2(2)2(2)(ln 21)x g x x x '=+,令2(2)2(2)(ln 21)0x g x x x '=+=,可求得:令(2)0g x '=,0x >,20(2)x x ∴>,所以ln 210x +=,解得12e x =,当102e x <<时,(2)0g x '<,此时()2g x 单调递减,当12e x >时,(2)0g x '>,此时()2g x 单调递增,所以函数(2)y g x =的最小值为e 11e ⎛⎫ ⎪⎝⎭.(3)()()e ()ln xf x h x H x x a x x ax x-=++=-++由()2222e (1)e (1)1e (1)()1x x x x x x x x x H x x x x x +----+'=-+==,0,e 0x x x >∴+> ,令()0H x '>,解得1x >,此时()H x 单调递增,令()0H x '<,解得1x <,此时()H x 单调递减,因为函数()()y H x H x =⋅'有三个不相同的零点123,,x x x .而()y H x '=的零点为1,不妨设31x =,则()y H x =的零点为12,x x .不妨设12x x <,则()()12121101,1,0x x H x H x x <<<>==.令1()()K x H x H x ⎛⎫=- ⎪⎝⎭,则()11222211e 1e (1)1(1)()e e 11x x x x x x x x x K x x x x x x x⎛⎫⎛⎫+- ⎪ ⎪+-⎛⎫⎝⎭-⎝⎭'=+⨯=+-- ⎪⎝⎭.令1()e e 1x xp x x x =+--,则()111211e 1e e e 1e 1xxx xx p x x x x ⎛⎫=+-+⨯=++- ⎝'⎪⎭,所以当(0,1)x ∈时,()0p x '>,所以当(0,1)x ∈时,()p x 是严格单调递增的,所以当(0,1)x ∈时,()(1)0p x p <=,所以当(0,1)x ∈时,()0K x '>,则1()()K x H x H x ⎛⎫=- ⎪⎝⎭在(0,1)上单调递增,所以在(0,1)上,1()()(1)0K x H x H K x ⎛⎫=-<= ⎪⎝⎭,所以()1110H x H x ⎛⎫-< ⎪⎝⎭.又()()120H x H x ==,所以()2110H x H x ⎛⎫-< ⎪⎝⎭,即()211H x H x ⎛⎫< ⎪⎝⎭.又函数()y H x =在(1,)+∞上单调递增,所以211x x <,即121x x <.综上,1231x x x <.12.(2023·浙江宁波·统考二模)已知函数2()ln f x x ax =-.(1)讨论函数()f x 的单调性:(2)若12,x x 是方程()0f x =的两不等实根,求证:(i )22122e x x +>;(ii )12x x >【解析】(1)由题意得,函数()f x 的定义域为(0,)+∞.由2()ln f x x ax =-得:2112()2ax f x ax x x-'=-=,当0a ≤时,()0,()'>f x f x 在(0,)+∞上单调递增;当0a >时,由()0f x '>得0x <()0f x '<得x >所以()f x 在⎛ ⎝⎭上单调递增,在⎫+∞⎪⎪⎝⎭上单调递减.(2)因为12,x x 是方程2ln 0x ax -=的两不等实根,即12,x x 是方程22ln 20x ax -=的两不等实根,令2(0)t x t =>,则221122,t x t x ==,即12,t t 是方程ln 2ta t=的两不等实根.令ln ()tg t t=,则21ln ()t g t t -'=,所以()g t 在(0,e)上递增,在(e,)+∞上递减,1(e)eg =,当0t →时,()g t →-∞;当t →+∞时,()0g t >且()0g t →.所以102a e <<,即102ea <<.令121e t t <<<.(i )要证22122e x x +>,只需证122e t t +>,解法1:令()()(2e ),(1,e)h t g t g t t =--∈,则ln ln(2e )(2e )ln ln(2e )()()(2e )2e (2e )t t t t t t h t g t g t t t t t ----=--=-=--,令()(2e )ln ln(2e )t t t t t ϕ=---,则()22e 2e ()1ln ln(2e )ln 2e 2e 2e t t tt t t t t t t t tϕ-'=----+=+--+--2e 202e t t t t->+->-,所以()t ϕ在(1,e)上递增,()(e)0t ϕϕ<=,所以()()(2e )0h t g t g t =--<,所以()(2e )g t g t <-,所以()()()2112e g t g t g t =<-,所以212e t t >-,即122e t t +>,所以22122e x x +>.解法2:先证121212ln ln 2x x x xx x -+<-,令120x x <<,只需证212121ln 2ln x x x x x x -<+-,只需证2112ln 011x x x x x x ⎛⎫--<=> ⎪+⎝⎭,令1()2ln (1)1x x x x x ϕ-=->+,22241(1)()0(1)(1)x x x x x x ϕ--'=-=<++,所以()ϕx 在(1,)+∞上单调递减,所以()(1)0x ϕϕ<=.因为1212ln ln t t t t =,所以1212121212ln ln ln ln 2t t t t t t t t t t +-+=<+-,所以12ln ln 2t t +>,即212e t t >,所以122e t t +>>.解法3:由()1212121e ln ln t t t t t t =<<<,设112111ln ln ln (0),t t t t t t λλλλ+=>=,所以11ln ln ln t t λλ+=,即1212ln ln (1)ln ln ,ln ,ln ln 111t t t t λλλλλλλλ+==+=---,构造函数2(1)()ln (1)1x g x x x x -=->+,22214(1)()0(1)(1)x g x x x x x -'=-=>++,所以()g x 在(1,)+∞上单调递增,所以()(1)0g x g >=.(ii)要证:12x x >12e 2t t a >,只需证:12ln ln 1ln 2t t a +>-,只需证:12221ln 2at at a +>-,只需证:121ln 22at t a-+>,212121ln ln 2t t t tt t -+<-令112t a =得22211222ln 22t t a aat a -+<+即222ln 212(ln 21)02a at a t a a+-++>①令212t a =得1111122ln 222t t a aa at -+<--即211ln 212(ln 21)02a at a t aa ⎛⎫----+>⎪⎝⎭②①+②得:()()2221212(ln 21)0a t t a t t -+-->,即121ln 22at t a-+>.13.(2023·河北保定·统考一模)已知函数()()sin ln 1f x x a x =-+.(1)当1a =时,证明:当[]0,1x ∈时,()0f x ≥;(2)当[]0,πx ∈时,()2e 2xf x ≤-恒成立,求a 的取值范围.【解析】(1)法一:首先证明sin x x ≤,[)0,x ∈+∞,理由如下:构造()sin j x x x =-,[)0,x ∈+∞,则()cos 10j x x '=-≤恒成立,故()sin j x x x =-在[)0,x ∈+∞上单调递减,故()()00j x j ≤=,所以sin x x ≤,[)0,x ∈+∞,()()sin ln 1f x x x =-+,[]0,1x ∈,()22111cos 12sin 1212121x x f x x x x x ⎛⎫'=-=--≥--⎪+++⎝⎭()21111012121x x x x x=--≥--≤≤++,故()()2122202222x x x x x f x x x-+---'≥=>++在[]0,1x ∈上恒成立,所以()f x 在[]0,1单调递增,故()()00f x f ≥=法二:()()sin ln 1f x x x =-+,[]0,1x ∈,()1cos 1f x x x'=-+,且()00f '=,令()()1cos 1f x x xq x '=-=+,则()()21sin 1q x x x '=-++,令()()()21sin 1w q x x x x =-+='+,则()()32cos 01w x x x '=--<+在[]0,1x ∈上恒成立,所以()()21sin 1q x x x '=-++单调递减,又()010q '=>,其中π1sin1sin62>=,故()1sin1014q =-+<',故()00,1x ∃∈,使得()00q x '=,且当()00,x x ∈时,()0q x '>,当()0,1x x ∈时,()0q x '<,所以()f x '先增后减,又()00f '=,()11cos102f '=->,∴()0f x ¢>在()0,1x ∈上恒成立,所以()f x 单调递增,()()00f x f ≥=;(2)法一:()()2e 2sin ln 1xg x x a x =--++,()()()()()2e 1sin ln 11ln 10x g x x x x x x a x =--+-+-++++≥,下证:()e 100xx x --≥≥,()0sin 0x x x -≥≥,()()0ln 10x x x -+≥≥,且在0x =处取等号,令()()0e 1x x r x x -=-≥,则()()e 100x r x x -≥'=≥,故()()0e 1xx r x x -=-≥单调递增,故()()00r x r ≥=,且在0x =处取等号,()0sin 0x x x -≥≥在(1)中已证明;令()()()0ln 1t x x x x =-≥+,则()()101011x t x x x x '=-≥++≥=,故()()()0ln 1t x x x x =-≥+单调递增,故()()00t x t ≥=,且在0x =处取等号,当0x >时,()ln 10x +>,当10a +≥时,即1a ≥-时,()0g x ≥符合题意,当1a <-时,()00g =,()2e cos 1x ag x x x '=-++,()010g a ='+<,其中当1a <-时,2e 2e a ->,()cos 1a -≤,11111111a a a a a -+-==-≤-+-+-+,故()()2e cos 01aag a a a -'-=--+>-+,令()()2e cos 1xau x g x x x '==-++,[]0,πx ∈,则()()22e sin 01xau x x x '=+->+在[]0,πx ∈上恒成立,故()g x '在[]0,πx ∈上单调递增,故()10,x a ∃∈-,使得()10g x '=,()g x 在()10,x 单调递减,故()()100g x g <=与()0g x ≥矛盾,舍去;综上:a 的取值范围为[)1,-+∞;法二:()()2e 2sin ln 1x g x x a x =--++,()2e cos 1xag x x x '=-++,()0,πx ∈,①当0a ≥时,()2e 10xg x '≥->,()0,πx ∈,()g x 在[]0,π单调递增,且()()00g x g ≥=符合题意,②当a<0时,()2e cos 1xag x x x '=-++在()0,π单调递增,()0211g a a '=+-=+,③当10a +≥时,即10a -≤<时,()()010g x g a ''≥=+≥()g x 在[]0,π单调递增,()()00g x g ≥=符合题意,②当10a +<时,即1a <-时,()00g =,()2e cos 1x ag x x x '=-++,()010g a ='+<,其中当1a <-时,2e 2e a ->,()cos 1a -≤,11111111a a a a a -+-==-≤-+-+-+,故()()2e cos 01aag a a a -'-=--+>-+,令()()2e cos 1xau x g x x x '==-++,[]0,πx ∈,则()()22e sin 01xau x x x '=+->+在[]0,πx ∈上恒成立,故()g x '在[]0,πx ∈上单调递增,故()10,x a ∃∈-,使得()10g x '=,()g x 在()10,x 单调递减,故()()100g x g <=与()0g x ≥矛盾,舍去;综上:a 的取值范围为[)1,-+∞.14.(2023·浙江金华·模拟预测)已知函数()()sin ln 1,R f x a x x a =-+∈.(1)若对(1,0]x ∀∈-时,()0f x ≥,求正实数a 的最大值;(2)证明:221sinln 2ni i =<∑;(3)若函数()()1e sin x g x f x a x +=+-的最小值为m ,证明:方程()1eln 10x mx +--+=有唯一的实数根,(其中e 2.71828= 是自然对数的底数)【解析】(1)1()cos 1f x a x x'=-+ (10-<≤x )a 为正实数,∴函数()f x '在区间(1,0]-上单调递增,且(0)1f a '=-.①当01a <≤时,()(0)0f x f ''≤≤,所以函数()f x 在(1,0]-上单调递减,此时()(0)0f x f ≥=,符合题意.②当1a >时,11(0)10,1cos 10f a f a a a a a a ⎛⎫⎛⎫''=->-=--<-= ⎪ ⎪⎝⎭⎝⎭,由零点存在定理,0(1,0)x ∃∈-时,有()00f x '=,即函数()f x 在()01,x -上递减,在()0,0x 递增,所以当()0,0x x ∈时,有()(0)0f x f <=,此时不符合.综上所述,正实数a 的最大值为1.(2)由(1)知,当1,(1,0)a x =∈-时,sin ln(1)x x >+,令21x i =-时,有2222111sin ln 1ln i i i i -⎛⎫⎛⎫->-= ⎪ ⎪⎝⎭⎝⎭,即2221sin ln 1i i i <-,累加得,2212232sinln ln ln 2ln ln 2132111ni n n n i n n n =⎛⎫<⋅⋅==+< ⎪+++⎝⎭∑ .(3)因为1()e ln(1)x g x x +=-+,所以11()e 1x g x x +'=-+,即函数()g x '在(1,)-+∞上递增,又1(0)e 10,202g g ⎛⎫''=->-=< ⎪⎝⎭,由零点存在定理,11,02x ⎛⎫∃∈- ⎪⎝⎭时,有()10g x '=,即1111e 1x x +=+,因此()11111lnln 11x x x +==-++,而函数()g x 在()11,x -上递减,在()1,x +∞上递增,所以()()()11111min 111111e ln 1ln 1111x m g x g x x x x x x +===-+=+=+++++,即52,2m ⎛⎫∈ ⎪⎝⎭.要证方程1e ln(1)0x m x +--+=有唯一的实数解,只要证方程1e e ln(1)0x m x +-+=有唯一的实数解.设15()ee ln(1)22xmH x x m +⎛⎫=-+<< ⎪⎝⎭,则()1e e 1mxH x x+'=-+,所以函数()H x '在(1,)-+∞上递增,又(0)e e 0mH '=-<,e (1)(1)0mm H m m-'-=>,由零点存在定理,2(0,1)x m ∃∈-时,2()0H x '=,即212e e1mx x +=+,因此()221ln 1m x x =+++,又1111ln 11m x x =+++,设()ln m x x x =+,则函数()m x 在(0,)+∞上递增,于是21111x x +=+且()21ln 11x x +=+,而函数()H x 在()21,x -上递减,在()2,x +∞上递增,()()()()()21min 2221121()e e ln 1e ln 1e 1101x m m m H x H x x x x x x +⎛⎫∴==-+=-+=+-+= ⎪+⎝⎭,即函数()H x 有唯一零点2x ,故方程1e ln(1)0x m x +--+=有唯一的实数解.15.(2023·青海西宁·统考二模)已知()()e ln R xf x a x a =-∈.(1)若()f x 在[)1,+∞上单调递增,求a 的取值范围,(2)证明:当21e a ≥时,()0f x >.【解析】(1)由()e ln xf x a x =-,可得()1e x f x a x'=-,因为()f x 在[)1,+∞上单调递增,则()0f x '≥在[)1,+∞上恒成立,即1e xa x ≥在[)1,+∞上恒成立,令()()1,1e x g x x x =≥,则()()()2211e e 0e e x x x x x g x x x x +'=-+=-<在[)1,+∞上恒成立,即()g x 在[)1,+∞上单调递减,所以()()max 11eg x g ==,由1e x a x ≥在[)1,+∞上恒成立,可得()max1ea g x ≥=,所以实数a 的取值范围为1,e ∞⎡⎫+⎪⎢⎣⎭.(2)因为函数()e 1x x x φ=--,()e 1xx φ'=-,令()0x φ'=,则0x =,即0x >时,()0x φ'>,则()x φ单调递增;即0x <时,()0x φ'<,则()x φ单调递减;所以()()0110x φφ≥=-=,即e 1x x ≥+(当且仅当0x =取等号),因为函数()ln 1x x x ϕ=-+,()0x >,则()11x xϕ'=-,令()0x ϕ'=,则1x =,当01x <<时,()0x ϕ'>,则函数()x ϕ单调递增;当1x >时,()0x ϕ'<,则函数()x ϕ单调递减;所以()()10110x ϕϕ≤=-+=,即ln 1≤-x x (当且仅当1x =取等号),因为21ea ≥,且e 1xx ≥+(当且仅当0x =取等号),ln 1≤-x x (当且仅当1x =取等号),所以()()221e ln e 1e 1exxx f x a x x x -=->⋅--=-+(两个等号不同时成立这里反为大于号),令()()2e1,0x h x x x -=-+>,即证()0h x ≥,因额为()2e1x h x -'=-,令()0h x '=,可得20e e 1x -==,所以2x =,当02x <<时,()0h x '<,则函数()h x 单调递减;当2x >时,()0h x '>,则函数()h x 单调递增;所以()()22min 2e 210h x h -==-+=,所以()()20h x h ≥=,即当21e a ≥时,()0f x >.16.(2023·江西·统考模拟预测)已知函数()ln af x x x=+的图象在1x =处的切线方程为y b =.(1)求a ,b 的值及()f x 的单调区间.(2)已知()()2e e x x xf x mxF x x x-+=-,是否存在实数m ,使得曲线()y F x =恒在直线1y x =+的上方?若存在,求出实数m 的值;若不存在,请说明理由.【解析】(1)因为()ln af x x x=+,所以21()a f x x x '=-,又()f x 在1x =处的切线方程为y b =,所以(1)10,f a ='-=故1a =,又()1ln11f a =+=,所以切线方程为1y =,故1b =,所以()1ln f x x x=+,则22111().x f x x x x -'=-=当01x <<时,()0f x '<,()f x 单调递减;当1x ≥时,()0f x '≥,()f x 单调递增.综上,()f x 的单调递减区间为()0,1,单调递增区间为[)1,+∞.(2)22e ()e e ln e ln (),0,1x x x x x f x mx x x mx x mF x x x x x x x -+++===>---且1x ≠.由曲线()y F x =恒在直线1y x =+的上方,知e ln 11x x m x x +>+-.当1x >时,e ln 11x x mx x +>+-等价于2e ln 1x x m x +>-,即2e ln 10.x x x m -++>设2 ()e ln 1(1),x g x x x m x =-++>则112()e (ln )2e (ln )ex xx x g x x x x x x '=+-=+-.由(1)可知,当1x >时,()1ln f x x x=+单调递增,所以()()11f x f >=.设2()e x x h x =,则2(1)()e xx h x -'=,当1x >时,()0h x '<,所以()h x 在()1,+∞上单调递减,所以2()(1)1eh x h <=<.所以当1x >时,12()e (ln 0exx xg x x x '=+->,所以()g x 在()1,+∞上单调递增,所以()(1)g x g m >=,所以0m ≥.当01x <<时,e ln 11x x mx x +>+-等价于2e ln 1x x m x +<-,即2e ln 10.x x x m -++<设2()e ln 1(01),x g x x x m x =-++<<由①可知12()e (ln e x xxg x x x '=+-.。

江苏省溧中、省扬中、镇江一中、江都中学2025届高考冲刺押题(最后一卷)数学试卷含解析

江苏省溧中、省扬中、镇江一中、江都中学2025届高考冲刺押题(最后一卷)数学试卷含解析

江苏省溧中、省扬中、镇江一中、江都中学2025届高考冲刺押题(最后一卷)数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数的图象可能是下面的图象( )A .B .C .D .2.执行如下的程序框图,则输出的S 是( )A .36B .45C .36-D .45-3.已知α是第二象限的角,3tan()4πα+=-,则sin 2α=( ) A .1225B .1225-C .2425D .2425-4.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵111ABC A B C -中,AC BC ⊥,12AA =,当阳马11B ACC A -体积的最大值为43时,堑堵111ABC A B C -的外接球的体积为( )A .4π3B .82π3C .32π3D .642π35.将函数()sin 2f x x =的图象向左平移02πϕϕ⎛⎫≤≤ ⎪⎝⎭个单位长度,得到的函数为偶函数,则ϕ的值为( ) A .12π B .6π C .3π D .4π 6.已知i 是虚数单位,则(2)i i +=( ) A .12i +B .12i -+C .12i --D .12i -7.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为( )A .4πB .8πC .642+D .83π8.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( ) A .z 的虚部为i -B .2z =C .z 的共轭复数为1i --D .2z 为纯虚数9.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P 表示π的近似值),若输入10n =,则输出的结果是( )A .11114(1)35717P =-+-+⋅⋅⋅+ B .11114(1)35719P =-+-+⋅⋅⋅- C .11114(1)35721P =-+-+⋅⋅⋅+D .11114(1)35721P =-+-+⋅⋅⋅-10.函数()2f x ax =-与()xg x e =的图象上存在关于直线y x =对称的点,则a 的取值范围是( ) A .,4e ⎛⎤-∞ ⎥⎝⎦B .,2e ⎛⎤-∞ ⎥⎝⎦C .(],e -∞ D .(2,e ⎤-∞⎦11.公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面1000米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米,当阿基里斯跑完下一个100米时,乌龟先他10米,当阿基里斯跑完下-个10米时,乌龟先他1米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为0.1米时,乌龟爬行的总距离为( )A .5101900-米B .510990-米C .4109900-米D .410190-米12.已知抛物线C :24y x =,过焦点F 的直线l 与抛物线C 交于A ,B 两点(A 在x 轴上方),且满足3AF BF =,则直线l 的斜率为( ) A .1 B 3 C .2D .3二、填空题:本题共4小题,每小题5分,共20分。

2025届江苏省南京师范大学苏州实验学校高考数学押题试卷含解析

2025届江苏省南京师范大学苏州实验学校高考数学押题试卷含解析

2025届江苏省南京师范大学苏州实验学校高考数学押题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为a 的正方形及正方形内一段圆弧组成,则这个几何体的表面积是( )A .234a π⎛⎫-⎪⎝⎭B .262a π⎛⎫-⎪⎝⎭C .264a π⎛⎫-⎪⎝⎭D .2364a π⎛⎫-⎪⎝⎭2.函数()y f x =满足对任意x ∈R 都有()()2f x f x +=-成立,且函数()1y f x =-的图象关于点()1,0对称,()14f =,则()()()201620172018f f f ++的值为( )A .0B .2C .4D .13.设12,x x 为()()3sin cos 0f x x x ωωω=->的两个零点,且12x x -的最小值为1,则ω=( ) A .πB .2π C .3π D .4π 4.存在点()00,M x y 在椭圆22221(0)x y a b a b +=>>上,且点M 在第一象限,使得过点M 且与椭圆在此点的切线00221x x y y a b +=垂直的直线经过点0,2b ⎛⎫- ⎪⎝⎭,则椭圆离心率的取值范围是( )A .2⎛ ⎝⎦B .2⎫⎪⎪⎝⎭C .3⎛ ⎝⎦D .3⎫⎪⎪⎝⎭5.已知12log 13a =131412,13b ⎛⎫= ⎪⎝⎭,13log 14c =,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .b c a >>D .a c b >>6.设,则"是""的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为( ) A .25B .1325C .35D .19258.复数()(1)2z i i =++的共轭复数为( ) A .33i -B .33i +C .13i +D .13i -9.函数()xf x e ax =+(0a <)的图像可以是( )A .B .C .D .10.已知等差数列{}n a 的前n 项和为n S ,且43a =-,1224S =,若0+=i j a a (*,i j ∈N ,且1i j ≤<),则i 的取值集合是( ) A .{}1,2,3B .{}6,7,8C .{}1,2,3,4,5D .{}6,7,8,9,1011.已知i 为虚数单位,复数z 满足()1z i i ⋅-=,则复数z 在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限12.已知底面是等腰直角三角形的三棱锥P -ABC 的三视图如图所示,俯视图中的两个小三角形全等,则( )A .PA ,PB ,PC 两两垂直B .三棱锥P -ABC 的体积为83C.||||||PA PB PC ===D .三棱锥P -ABC的侧面积为二、填空题:本题共4小题,每小题5分,共20分。

江苏省南京市中华中学2025届高考压轴卷数学试卷含解析

江苏省南京市中华中学2025届高考压轴卷数学试卷含解析

江苏省南京市中华中学2025届高考压轴卷数学试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知实数,x y 满足约束条件11220220x y x y x y ≥-⎧⎪≥-⎪⎨-+≥⎪⎪--≤⎩,则23x y -的最小值是A .2-B .72-C .1D .42.已知数列{}n a 的通项公式是221sin 2n n a n π+⎛⎫=⎪⎝⎭,则12312a a a a +++⋅⋅⋅+=( ) A .0B .55C .66D .783.()()()cos 0,0f x A x A ωϕω=+>>的图象如图所示,()()sin g x A x ωϕ=--,若将()y f x =的图象向左平移()0a a >个单位长度后所得图象与()y g x =的图象重合,则a 可取的值的是( )A .112π B .512π C .712π D .11π124.已知点(m ,8)在幂函数()(1)n f x m x =-的图象上,设,(ln ),()m a f b f c f n n π⎛⎫=== ⎪⎝⎭,则( ) A .b <a <cB .a <b <cC .b <c <aD .a <c <b5.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有 A .72种B .36种C .24种D .18种6.已知向量()3,2AB =,()5,1AC =-,则向量AB 与BC 的夹角为( ) A .45︒B .60︒C .90︒D .120︒7.已知函数22,0,()1,0,x x x f x x x ⎧-=⎨+<⎩,则((1))f f -=( )A .2B .3C .4D .58.已知等差数列{}n a 中,468a a +=则34567a a a a a ++++=( ) A .10B .16C .20D .249.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足2AP PM =,则()PA PB PC ⋅+等于( ) A .49B .49-C .43D .43-10.设{|210}S x x =+>,{|350}T x x =-<,则S T ( )A .∅B .1{|}2x x <-C .5{|}3x x >D .15{|}23x x -<< 11.已知函数()f x 的定义域为[]0,2,则函数()()2g x f x = ) A .0,1 B .[]0,2 C .[]1,2D .[]1,312.关于函数()sin |||cos |f x x x =+有下述四个结论:( )①()f x 是偶函数; ②()f x 在区间,02π⎛⎫- ⎪⎝⎭上是单调递增函数;③()f x 在R 上的最大值为2; ④()f x 在区间[]2,2ππ-上有4个零点. 其中所有正确结论的编号是( ) A .①②④B .①③C .①④D .②④二、填空题:本题共4小题,每小题5分,共20分。

江苏省南京市(新版)2024高考数学苏教版真题(押题卷)完整试卷

江苏省南京市(新版)2024高考数学苏教版真题(押题卷)完整试卷

江苏省南京市(新版)2024高考数学苏教版真题(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知集合,,则()A.B.C.D.第(2)题数列的前n项和为,满足,则数列的前n项积的最大值为()A.B.C.D.第(3)题若某10人一次比赛得分数据如茎叶图所示,则这组数据的众数是A.93B.83C.82.5D.72第(4)题若集合,,则()A.B.C.D.第(5)题定义:设函数在上的导函数为,若在上也存在导函数,则称函数在上存在二阶导函数,简记为.若在区间上,则称函数在区间上为“凹函数”.已知在区间上为“凹函数”,则实数的取值范围为()A.B.C.D.第(6)题双曲线的渐近线方程是()A.B.C.D.第(7)题已知等差数列的前项和为,,则下列结论一定成立的是()A.B.C.D.第(8)题已知全集,集合,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题下列关于排列组合数的等式或说法正确的有()A.B.已知,则等式对任意正整数都成立C.设,则的个位数字是6D.等式对任意正整数都成立第(2)题已知实数,,满足,且,则下列结论正确的是()A.的最小值为B.的最大值为C.的最小值为D.取最小值时第(3)题在正方体中,,点P在正方体的面内(含边界)移动,则下列结论正确的是()A.当直线平面时,则直线与直线成角可能为B.当直线平面时,P点轨迹被以A为球心,为半径的球截得的长度为C.若直线与平面所成角为,则点P的轨迹长度为D.当直线时,经过点B,P,的平面被正方体所截,截面面积的取值范围为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知某品种小麦的穗粒数服从正态分布,且,则该品种小麦的穗粒数超过粒的概率为__________ .第(2)题若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k=_______.第(3)题已知函数在处有极值0,则__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题2022年的男足世界杯在卡塔尔举办,参赛的32支球队共分为8个小组,每个小组有4支球队,小组赛采取单循环赛制,即每支球队都要和同组的其他3支球队各比赛一场.每场比赛获胜的球队积3分,负队积0分.若打平则双方各积1分,三轮比赛结束后,积分从多到少排名靠前的2支球队小组出线(如果积分相等,还要按照其他规则来排名).已知甲、乙、丙、丁4支球队分在同一个组,且甲队与乙、丙、丁3支球队比赛获胜的概率分别为,,,与三支球队打平的概率均为,每场比赛的结果相互独立.(1)某人对甲队的三轮小组赛结果进行了预测,他认为三场都会是平局,记随机变量X=“结果预测正确的场次”,求X的分布列和数学期望;(2)假设各队先后对阵顺序完全随机,记甲队至少连续获胜两场的概率为p,那么甲队在第二轮比赛对阵哪个对手时,p的取值最大,这个最大值是多少?第(2)题已知函数,,其中为自然对数的底数.(1)若函数的极值点恰有个,求实数的取值范围;(2)记若函数,试讨论函数的零点个数.第(3)题已知函数.(1)求的最小值;(2)若为正实数,且,证明不等式.第(4)题已知函数(1)若,(为的导函数),求函数在区间上的最大值;(2)若函数有两个极值点,求证:第(5)题记的三个内角A,B,C所对的边分别为a,b,c,.(1)求A;(2)若,求的面积的最大值.。

数学高考压轴题含答案

数学高考压轴题含答案

数学高考压轴题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.3.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.6.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.7.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828= 是自然对数的底数)参考答案:1.(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a-=-,整理得到1ln 1a a a -=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,∞+上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.(2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x '<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e0x bx b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.2.(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=,即tan 2α=-,2tan 0αα-=,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d =,故PAQ △的面积为11623⨯=3.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有<整理得到:()ln 1ln n n +-()ln 2ln1ln 3ln 2ln 1ln n n +-+-+++- ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.4.(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b ,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为直线QM ,∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283kx ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.5.(1)y x=(2)()g x 在[0,)+∞上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,由第二问结论可知()m x 在[0,+∞)上单调递增,即得证.(1)解:因为()e ln(1)x f x x =+,所以()00f =,即切点坐标为()0,0,又1()e (ln(1))1xf x x x=+++',∴切线斜率(0)1k f '==∴切线方程为:y x =(2)解:因为1()()e (ln(1))1xg x f x x x=++'=+,所以221()e (ln(1))1(1)xg x x x x =++++',令221()ln(1)1(1)h x x x x =++-++,则22331221()01(1)(1)(1)x h x x x x x +=-+=>++++',∴()h x 在[0,)+∞上单调递增,∴()(0)10h x h ≥=>∴()0g x '>在[0,)+∞上恒成立,∴()g x 在[0,)+∞上单调递增.(3)解:原不等式等价于()()()(0)f s t f s f t f +->-,令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,∵()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+,e e ()e ln(1)e ln(1)()()11x t x x tx m x x t x g x t g x x t x++=++++-=+-++'+,由(2)知1()()e (ln(1))1xg x f x x x=++'=+在[)0,∞+上单调递增,∴()()g x t g x +>,∴()0m x '>∴()m x 在()0,∞+上单调递增,又因为,0x t >,∴()(0)m x m >,所以命题得证.6.(1)11;(2)5.【解析】【分析】(1)设,sin )Q θθ是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =⋅+,由柯西不等式即可求出最小值.(1)设,sin )Q θθ是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ θθθθθ⎛⎫=+-=--=-+≤⎭+⎪⎝,当且仅当1sin 11θ=-时取等号,故||PQ (2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-2=35161656565231555k =⋅=≥=+,当且仅当316k =时取等号,故CD 的最小值为5.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.7.(1)()f x 的减区间为e 02⎛⎫⎪⎝⎭,,增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.(1)()22e 12e 22xf x x x x -'=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02⎛⎫⎪⎝⎭,,()f x 的增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭,设()()21e e ln 22g x x a x b x x x ⎛⎫=---+ ⎪⎝⎭,则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭()()31e x x a x =---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a >+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<-+-+=-- ⎪ ⎪⎝⎭⎝⎭,设()3e ln 22u a a a =--,则()2e-202au a a '=<,故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+> ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =∈,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2ea at t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e ,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea at t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎝⎭⎝⎭,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-⨯-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=--> ⎪⎝⎭-,设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>,故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m ω---+-+'=>>++,所以()m ω在()0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。

2025届江苏省南通市第一中学高考压轴卷数学试卷含解析

2025届江苏省南通市第一中学高考压轴卷数学试卷含解析

2025届江苏省南通市第一中学高考压轴卷数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.2021年部分省市将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为 A .18B .14 C .16 D .12 2.若实数x ,y 满足条件25024001x y x y x y +-≤⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,目标函数2z x y =-,则z 的最大值为( )A .52B .1C .2D .03.已知命题p :“a b >”是“22a b >”的充要条件;:q x ∃∈R ,|1|x x +≤,则( )A .()p q ⌝∨为真命题B .p q ∨为真命题C .p q ∧为真命题D .()p q ∧⌝为假命题4.已知椭圆22y a +22x b=1(a >b >0)与直线1y a x b -=交于A ,B 两点,焦点F (0,-c ),其中c 为半焦距,若△ABF 是直角三角形,则该椭圆的离心率为( )A.2 B.2 C.14 D.145,体积为3,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离等于( )A .12B .1C .104D .526.执行如图所示的程序框图,则输出的S =( )A .2B .3C .23D .12- 7.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( )A .内切B .相交C .外切D .相离8.下列命题中,真命题的个数为( )①命题“若1122a b <++,则a b >”的否命题; ②命题“若21x y +>,则0x >或0y >”;③命题“若2m =,则直线0x my -=与直线2410x y -+=平行”的逆命题.A .0B .1C .2D .39.如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线段11A C 上,F 、M 分别是AD 、CD 的中点,则下列结论中错误的是( )A .11//FM AC ,B .存在点E ,使得平面//BEF 平面11CCD D C .BM ⊥平面1CC F D .三棱锥B CEF -的体积为定值10.若复数()()31z i i =-+,则z =( ) A .22 B .25 C .10 D .2011.执行如图所示的程序框图后,输出的值为5,则P 的取值范围是( ).A .37,48⎛⎤ ⎥⎝⎦B .59,610⎛⎤ ⎥⎝⎦C .715,816⎛⎤ ⎥⎝⎦D .1531,1632⎛⎤ ⎥⎝⎦12.函数的图象可能是下列哪一个?( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

压轴题02 指、对、幂形数的大小比较问题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题02  指、对、幂形数的大小比较问题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题02指、对、幂形数的大小比较问题指、对、幂形数的大小比较问题是高考重点考查的内容之一,也是高考的热点问题,命题形式主要以选择题为主.每年高考题都会出现,难度逐年上升.考向一:引入媒介值考向二:含变量问题考向三:构造函数考向四:数形结合考向五:特殊值法、估算法考向六:放缩法考向七:不定方程(1)利用函数与方程的思想,构造函数,结合导数研究其单调性或极值,从而确定a ,b ,c 的大小.(2)指、对、幂大小比较的常用方法:①底数相同,指数不同时,如1x a 和2x a ,利用指数函数x y a =的单调性;②指数相同,底数不同,如1ax 和2ax 利用幂函数a y x =单调性比较大小;③底数相同,真数不同,如1log a x 和2log a x 利用指数函数log a x 单调性比较大小;④底数、指数、真数都不同,寻找中间变量0,1或者其它能判断大小关系的中间量,借助中间量进行大小关系的判定.(3)转化为两函数图象交点的横坐标(4)特殊值法(5)估算法(6)放缩法、基本不等式法、作差法、作商法、平方法(7)构造函数比较大小主要方法有:①通过找中间值比较大小,要比较的两个或者三个数之间没有明显的联系,这个时候我们就可以通过引入一个常数作为过渡变量,把要比较的数和中间变量比较大小,从而找到他们之间的大小关系.②通过构造函数比较大小,要比较大小的几个数之间可以看成某个函数对应的函数值,我们只要构造出函数,然后找到这个函数的单调性就可以通过自变量的大小关系,进而找到要比较的数的大小关系.有些时候构造的函数还需要通过放缩法进一步缩小范围.1.(2023·全国·模拟预测)若实数a ,b ,(0,1)c ∈,且满足0.8e 0.8e a a =, 1.2e 1.2e b b =,1.6e 1.6e c c =,则a ,b ,c 的大小关系是()A .c >b >a B .b >a >cC .a >b >cD .b >c >a【答案】B【解析】由0.8e 0.8e a a =, 1.2e 1.2e b b =, 1.6e 1.6e c c =,得0.80.8e e a a =, 1.21.2e e b b =, 1.61.6e e c c =,令()e x x f x =,则()1e xxf x -'=,当1x <时,()0f x ¢>,当1x >时,()0f x '<,所以()f x 在(),1-∞上是增函数,在()1,+∞上是减函数,于是()()1.2 1.6f f >,即()()f b f c >,又b ,()0,1c ∈,所以b c >;0.80.8 1.60.80.80.80.80.80.8 1.60.80.820.8e 2e e e e e e e e ea c a c ⨯--=-==⨯⨯,因为4956252512=>=,所以445522>⨯,45522⎛⎫> ⎪⎝⎭,45522⎛⎫> ⎪⎝⎭,因此450.85e 2202⎛⎫->-> ⎪⎝⎭,于是()()f a f c >,又a ,()0,1c ∈,所以a c >;令()22e e x x x x g x --=-,则()()()()22e e e e 1110e e ex x x x x x x g x x -+-+-=='---⋅≥,所以()g x 在(),-∞+∞上是增函数,()()0.81g g <,0.820.80.820.80e e ---<,即0.8 1.20.8 1.20e e -<,0.8 1.20.8 1.2e e <,()()0.8 1.2f f <,于是()()f a f b <,又a ,()0,1b ∈,所以a b <;综上b a c >>.故选:B .2.(2023·山东·沂水县第一中学校联考模拟预测)已知0.03e 1a =-,ln1.03b =,tan 0.03c =,其中e 2.71828= 为自然对数的底数,则a ,b ,c 的大小关系是()A .c a b >>B .a c b >>C .b c a >>D .a b c>>【答案】B【解析】0.03e 1tan 0.03a c --=-,令()e cos cos sin e 1tan cos x xx x xf x x x--=--=,π04x <<,令()e cos cos sin xg x x x x =--,则()()()e 1cos sin x g x x x '=--,当π04x <<时,()0g x '>,所以()g x 在π0,4⎛⎫⎪⎝⎭上单调递增,又()00e cos 0cos 0sin 0110g =--=-=,所以()0g x >,又cos 0x >,所以()0f x >在π0,4⎛⎫⎪⎝⎭上恒成立,所以()0.03e 1tan 0.0300.03f -=->,即0.03e 1tan 0.03->,即a c >,令()()ln 1h x x x =+-,π02x <<,所以()1111x h x x x-'=-=++,因为π02x <<,所以()01x h x x -'=<+,所以()h x 在π0,2x ⎛⎫∈ ⎪⎝⎭上单调递减,所以()()00h x h <=,即()ln 1x x +<在π0,2⎛⎫ ⎪⎝⎭恒成立,所以()ln 10.03ln1.030.03+=<,令()tan m x x x =-,π0,2x ⎛⎫∈ ⎪⎝⎭,所以()211cos m x x=-',因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以()2110cos m x x'=-<,故()tan m x x x =-在π0,2x ⎛⎫∈ ⎪⎝⎭上单调递减,所以()()00m x m <=,即tan x x <在π0,2x ⎛⎫∈ ⎪⎝⎭恒成立,当0.03x =时,0.03tan 0.03<,故ln1.030.03tan 0.03<<,即b c <,综上,a c b >>故选:B3.(2023·广西·统考三模)已知2()cos f x x x =+,若3441e ,ln ,54a f b f c f -⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则a ,b ,c 的大小关系为()A .b c a<<B .c a b<<C .c b a<<D .a c b<<【答案】A【解析】因为2()cos ,R f x x x x =+∈,定义域关于原点对称,()22()()cos()cos f x x x x x f x -=-+-=+=,所以()f x 为R 上的偶函数,当0x ≥时,()2sin ,f x x x '=-,设()2sin g x x x =-,则()2cos g x x =-',1cos 1x -≤≤ ,()0g x '∴>,所以()g x 即()f x '在[0,)+∞上单调递增,所以()(0)0f x f ''≥=,所以()f x 在[0,)+∞上单调递增,又因为()f x 为偶函数,所以()f x 在(,0]-∞上单调递减,又因为41ln0,054<-<,所以445ln ln ln 554b f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1144c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭又因为31411ee e 4-->=>,因为141ln e 4=,41445e e, 2.4e 4⎛⎫⎛⎫=≈< ⎪ ⎪⎝⎭⎝⎭,所以145e 4>,所以145ln e ln 4>,即15ln 44>,所以3415eln 44->>,所以3441e 5ln 4f f f -⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,即a c b >>.故选:A.4.(2023·全国·模拟预测)已知0.50.75e ,e ln1.5, 1.125a b c ===则a ,b ,c 的大小关系是()A .b c a <<B .b a c<<C .c<a<bD .a c b<<【答案】A【解析】构造函数1()ln e f x x x =-,0x >,则()11ef x x '=-,当0e x <<时,()0f x ¢>,当e x >时,()0f x '<,则函数1()ln ef x x x =-在()0,e 上单调递增,在()e,+∞上单调递减,故()(e)ln e 10,f x f ≤=-=,故ln 1e x x ≤,当且仅当e x =时取等号.由于20x >,则22ln ex x ≤,则22ln e x x ≤,则2ln 2e x x ≤,则22(2)2ln 22e e x x x ≤=,当且仅当2x =时取等号.当0.75x =时,221ln1.50.75 1.125e e<⨯=⨯,所以eln1.5 1.125<,所以b c <.构造函数()1e x g x x -=-,则()1e 1x g x -'=-,当1x >时,()0g x '>,当1x <时,()0g x '<,所以()1ex g x x -=-在()1,+∞上单调递增,在(),1-∞上单调递减,故()()10g x g ≥=,所以1e x x -≥,当且仅当1x =时取等号,故21e 2x x -≥,当且仅当0.5x =时取等号.当0.75x =时,0.5e 1.5>,则0.50.75e 0.751.5 1.125>⨯=,所以a c >.综上得:b c a <<.故选:A .5.(2023·山东青岛·统考一模)已知函数()31sin 2f x x x =-,若π0,12θ⎛⎫∈ ⎪⎝⎭,()()sin cos a fθθ=,()()sin sin b fθθ=,12c f ⎛⎫=-- ⎪⎝⎭,则a ,b ,c 的大小关系为()A .a b c >>B .b a c>>C .a c b>>D .c a b>>【答案】A【解析】因为()()3311()sin()(sin )22f x x x x x f x -=---=--=-,所以()f x 在R 上是奇函数.所以1122c f f ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭对()31sin 2f x x x =-求导得,()213cos 2f x x x'=-令()213cos 2g x x x =-,则()16sin 2g x x x'=+当112x <<时,()0g x '>,所以()g x 在1,12⎛⎫ ⎪⎝⎭上单调递增,则112x <<时,()131131cos 10242242g x g ⎛⎫>=->-⨯> ⎪⎝⎭,即()0f x ¢>,所以()f x 在1,12⎛⎫⎪⎝⎭上单调递增.因为π0,12θ⎛⎫∈ ⎪⎝⎭,所以1cos sin 2θθ>>,因为sin 10sin 2y xθθ⎛⎫=<< ⎪⎝⎭在()0,∞+上单调递增,所以()()sin sin cos sin θθθθ>.令()ln ln 2h x x x =+,则()ln 1h x x '=+所以当10e x <<时,()()0,h x h x '<单调递减;当1ex >时,()()0,h x h x '>单调递增.所以()1111ln ln 2ln 2e e e e h x h ⎛⎫≥=+=- ⎪⎝⎭,而e 2e >,即1e 2e >,所以1ln 2e >,即1ln 20e->.所以ln ln 2x x >-,即12xx >,则()sin 1sin 2θθ>所以()()sin sin 1cos sin 2θθθθ>>所以()()()()sin sin 1cos sin 2fff θθθθ⎛⎫>> ⎪⎝⎭,即a b c >>.故选:A6.(2023·河南开封·开封高中校考模拟预测)若sin 0.1tan 0.1a =+,0.2b =,0.20.16e c =,则a ,b ,c 的大小关系为()A .a b c <<B .b<c<aC .c b a <<D .c a b<<【答案】C【解析】构造函数()πsin tan 2(02f x x x x x =+-<<,则()21cos 220cos f x x x ->'=+>,所以()f x 在π0,2⎛⎫⎪⎝⎭上单调递增,则()()0.100f f >=,故a b >,构建()e 1(0)x g x x x =--<,则()e 1xg x '=-,()0g x '<在(),0∞-上恒成立,故()g x 在(),0∞-上单调递减,则()()00g x g >=,∴e 1(0)x x x >+<,所以0.2e 10.2->-,即()0.210.2e 1-<,所以0.20.8e 1cb=<,故b c >,综上,c b a <<,故选:C7.(2023·江西九江·统考二模)设1sin4a =,1b =,5ln 4c =,则a ,b ,c 的大小关系为()A .a b c >>B .b a c >>C .b c a>>D .c b a>>【答案】B【解析】将14用变量x 替代,则sin a x =,e 1x b =-,ln(1)c x =+,其中()0,1x ∈,令()sin ln(1)f x x x =-+,则1()cos 1f x x x '=-+,令1()()cos 1g x f x x x '==-+,则21()sin (1)g x x x '=-++,易知()g x '在()0,1上单调递减,且(0)10g '=>,1(1)sin104g '=-<,∴0(0,1)x ∃∈,使得()00g x '=,当()00,x x ∈时,()0g x '>,()f x '单调递增;当()0,1x x ∈时,()0g x '<,()f x '单调递减.又(0)0f '=,1(1)cos102f =->',∴()0f x '>,∴()f x 在()0,1上单调递增,∴()()00f x f >=,即sin ln(1)x x >+,∴a c >,记()()e sin 1x h x x =-+,()0,1x ∈,则()e cos 0xh x x =->',()h x 在()0,1上单调递增,又()()00e sin 010h =-+=,所以1((0)04h h >=,所以b a>综上,b a c >>.故选:B .8.(2023·河南洛阳·校联考三模)已知函数()21xf x =-,记()0.5log 3a f =,()5log 3b f =,()lg 6c f =,则a ,b ,c 的大小关系为().A .a b c <<B .a c b <<C .b<c<a D .c b a<<【答案】C【解析】由()21x f x =-,()()2121x xf x f x --=-=-=,所以函数()f x 为偶函数,又当0x ≥时,()21xf x =-,所以函数()f x 在()0,∞+上单调递增,因为0.5122log 3log 3log 3==-,且2log 31>又5ln 3log 3ln 5=,50log 31<<,ln 6ln 2ln 3lg 61ln10ln 2ln 5+==<+,0lg 61<<,则5log 3ln 3ln 2ln 5ln 2ln 3ln 3ln 5lg 6ln 5ln 2ln 3ln 2ln 5ln 3ln 5+⋅+⋅=⋅=+⋅+⋅,又ln 5ln 3ln 20>>>,则ln 2ln 5ln 3ln 5ln 2ln 3ln 3ln 5⋅+⋅>⋅+⋅,所以5log 3ln 2ln 3ln 3ln 51lg 6ln 2ln 5ln 3ln 5⋅+⋅=<⋅+⋅,所以52log 3lg 6log 3<<,所以()()()()520.5log 3lg 6log 3log 3f f f f <<=,即b<c<a ,故选:C.9.(2023·安徽·统考一模)已知()0.9329e 1,ln 0.9e 10a b c =+==,则,,a b c 的大小关系为()A .a c b >>B .c b a >>C .b a c >>D .a b c>>【答案】D【解析】0.9e 1,0.92,ln03.9a b c =++=+=构造函数123e 1,2,ln 3xy y x y x =+=+=+,令()12e 1xf x y y x =-=--,()0,1x ∈,则()e 10,xf x '=->所以()f x 在()0,1单增,所以()()0.900f f >=,所以0.9e 1.9>,所以0.9e 0.921>++,所以a b >.令()23ln 1g x y y x x =-=--,()0,1x ∈,()110g x x'=-<,所以()g x 在()0,1x ∈为减函数,所以()(1)0g x g >=,所以0.9ln0.910-->,所以0.92ln0.93+>+,所以b c >,所以a b c >>.故选:D.10.(2023·贵州毕节·统考二模)已知e e m m +=,5e n n +=,则lg n m 与lg m n 的大小关系是()A .lg lg n m m n <B .lg lg n m m n>C .lg lg n m m n=D .不确定【答案】B【解析】5e e n n n n +=>+,又e e m m +=,则e e m n m n +>+,设()e xt x x =+,显然()t x 为增函数,因为()()t m t n >,所以m n>又()01e t =<,()ee e e e t =+>,则0en m <<<令()lg ln ln10x xf x x x ==,设()ln x g x x =,则()21ln x g x x -'=,当()0,e x ∈时()g x 单调递增,则()()ln ln10ln10g x xf x x ==在()0,e x ∈上单调递增,故()()lg lg m n f m f n m n >⇒>,解得lg lg n m m n >.故选:B11.(2023·全国·模拟预测)已知 1.4a =,0.41.1e b =,0.5e c =,则,,a b c 的大小关系是()A .a b c <<B .a c b <<C .b c a<<D .c b a<<【答案】A【解析】构造函数()()1.5e xf x x =-,则()0.4b f =,()0.5c f =,且()()0.5e xf x x '=-,当0.5x <时,()0f x ¢>,函数()f x 在(),0.5-∞上单调递增,当0.5x >时,()0f x '<,函数()f x 在()0.5,+∞上单调递减,所以()()0.40.5b f f c =<=;设()e 1x g x x =--,则()e 1xg x '=-,当0x <时,()0g x '<,函数()g x 在(),0∞-上单调递减,当0x >时,()0g x '>,函数()g x 在()0,∞+上单调递增,所以()e 100xx g --≥=故e 1x x ≥+,所以0.41.1e 1.11.4 1.4>⨯>,即a b <.综上,a b c <<,故选:A .12.(2023·四川·校联考一模)设130121,sin ,e 124330a b c ===-,则a ,b ,c 的大小关系是()A .b a c >>B .a b c>>C .a c b>>D .c a b>>【答案】C【解析】由130e 1c =-,15124430a ==⨯,构造函数()5e 14xf x x =-+,105x ≤≤,则()5e 4xf x '=-,因为()5e 4x f x '=-在10,5⎡⎤⎢⎥⎣⎦上为减函数,所以当105x ≤≤时,()1555e 44e xf x >=--',又5531253e 41024⎛⎫=>> ⎪⎝⎭,所以155e 4>,故()0f x ¢>,所以函数()5e 14xf x x =-+在10,5⎡⎤⎢⎥⎣⎦单调递增,故()130151e 10030430f f ⎛⎫=⨯-+>= ⎪⎝⎭,故1301e 124a c >-==,因为21sin330b =,130e 1c =-,构造函数()e 1si 2n 3xg x x =--,01x ≤≤,则()co 3e s 2xg x x '=-,因为22e 1cos 33xx ≥>≥所以()0g x '>,所以()g x 在[]0,1是增函数,所以()10030g g ⎛⎫>= ⎪⎝⎭,即1300231e 1sin 30-->,所以13021e 13sin 3->,即c b >,综上,a c b >>.故选:C.13.(2023·吉林·通化市第一中学校校联考模拟预测)已知 1.01 1.03 1.021.03, 1.01, 1.02a b c ===,则a ,b ,c 的大小关系是()A .c b a <<B .c<a<bC .b<c<aD .a c b<<【答案】C【解析】构造ln(0.01)(),(0,)x f x x x +=∈+∞,则2ln(0.01)0.01()xx x f x x-+'+=,构造()ln(0.01)0.01xu x x x =-++,则220.011()0(0.01)0.01(0.01)xu x x x x -=-=<++'+,故()u x 在(0,)+∞内单调递减,110.01)022u -=-=>.故2()()0u x f x x '=>对任意0.01)x ∈-恒成立,则()f x在0.01)单调递增,因为2(1.020.01) 1.0609e +=<,所以1.020.01<,故(1.02)(1.01)f f >,即ln1.03ln1.021.02 1.01>,即1.01ln1.03 1.02ln1.02>,即 1.01 1.02ln1.03ln1.02>,即 1.01 1.021.03 1.02a c =>=,同理构造ln(0.01)(),(0.01,)x g x x x -=∈+∞,则2ln(0.01)0.01()xx x g x x--'-=,构造()ln(0.01)0.01xv x x x =---,则220.011()0(0.01)0.01(0.01)x v x x x x --=---'=-<,故()v x 在(0.01,)+∞内单调递减,e 0.011(e 0.01)10e 100ev ++=-=>,故2()()0v x g x x '=>对任意(0,e 0.01)x ∈+恒成立,则()g x 在(0,e 0.01)+单调递增,故(1.03)(1.02)g g >,即ln1.02ln1.011.03 1.02>,即1.02ln1.02 1.03ln1.01>,即 1.02 1.03ln1.02ln1.01>,即 1.02 1.031.02 1.01c b =>=,则a ,b ,c 的大小关系是b c a <<.故选:C .14.(2023·四川巴中·统考一模)若 1.1ln1.1a =,0.10.1e b =,110c =,则a ,b ,c 的大小关系为()A .a b c <<B .c a b<<C .b a c<<D .a c b<<【答案】B【解析】设()()()1ln 1e xf x x x x =++-,则()()()()ln 11e e ln 11e 1x x x f x x x x x '=++--=++-+,设()()()()()1,e 2,01x h x f x h x x x x ''==-+>+,由于()2,e xy x y =+=在0x >单调递增,且其值均大于0,11y x =+单调递减,所以()()1e 21x h x x x '=-++单调递减,又()010h '=-<,所以()h x 在0x >单调递减,且()00h =,所以在0x >时,()()0h x f x '=<,因此()f x 在0x >时单调递减,故()()00.1f f >,即0.11.1ln1.10.1e 0-<,即0.11.1ln1.10.1e a b <⇒<,设()()()()()()1ln 1,ln 111ln 1,g x x x x g x x x '=++-=++-=+当0x >时,()()ln 10g x x '=+>,所以()g x 在()0,∞+单调递增,所以()()0.10g g >,即1.1ln1.10.1a c >⇒>,综上可知c a b <<,故选:B15.(2023·河南·洛阳市第三中学校联考一模)已知12,ln3e 3a b c ===-,则,,a b c 的大小关系为()A .a b c <<B .b<c<aC .a c b <<D .b a c<<【答案】A【解析】方法一:比较,a b 的大小时,(法一)设函数()ln x f x x =,则()21ln xf x x-'=,令()0f x '=,得e x =,当()0,e x ∈时,()0f x ¢>,函数()f x 单调递增;当()()e,,0x f x ∞'∈+<,函数()f x 单调递减,所以当e x =时,函数取得最大值1(e)ef =,因为()()ln21lne2,e ,e 22e e a f b f ======>,所以()()2e f f <,即a b <.(法二)因为ln2lne,2ea b ==,设()()2,ln2,e,lne ,A B O 为坐标原点,结合函数ln y x =的图象知OA OB k k <,所以a b <;比较,b c 的大小时,设函数()ln 1,0g x x x x =-->,则()1x g x x-'=,当01x <<时,()0g x '<,所以函数()g x 在()0,1上单调递减;当1x >时,()0g x '>,所以函数()g x 在()1,+∞上单调递增,因为1e b g ⎛⎫= ⎪⎝⎭,13c g ⎛⎫= ⎪⎝⎭,又11013e <<<,所以11e 3g g ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即b c <,综上可得,a b c <<,故B ,C ,D 错误.故选:A.方法二(估值法):因为10.69112ln20.345,0.37,ln3 1.10.6722e 2.73a b c ==≈==≈≈=-≈-=0.43.所以a b c <<,故B ,C ,D 错误.故选:A.16.(2023·河南·统考模拟预测)实数x ,y ,z 分别满足2022e x =,20222023y =,20222023z =,则x ,y ,z 的大小关系为()A .x y z >>B .x z y >>C .z x y >>D .y x z>>【答案】B【解析】由已知得12022e x =,2022log 2023y =,20232022z =,设ln ()xf x x=,21ln ()x f x x -'=,当()e,x ∈+∞时,()0f x '<,所以ln ()xf x x=在()e,+∞上单调递减,因此20232022f f <()(),即ln 2023ln 202220232022<所以20222023ln 2023log 20232022ln 2022>=,z y >;又设()e 1x h x x =--,()e 1xh x '=-,当()0,x ∈+∞时,()0h x '>,所以()e 1xh x x =--在()0,x ∈+∞上单调递增,因此()1202211e10020222022h h ⎛⎫=-->= ⎪⎝⎭,所以1202212023e 120222022>+=,则>x z ;综上得x z y >>.故选:B .17.(2023·全国·模拟预测)已知a =ee b =,2e ln 2=c ,试比较a ,b ,c 的大小关系为()A .b c a >>B .b a c >>C .c a b >>D .c b a>>【答案】B【解析】先证明两个不等式:(1)12ln (1)x x x x <->,设1()2ln (1)f x x x x x=-+>,则22211()110(1)f x x x x x ⎛⎫'=--=--<> ⎪⎝⎭,即()f x 在(1,)+∞上单调递减,故()(1)0f x f <=,即12ln (1)x x x x<->成立(2)2(1)ln (1)1x x x x ->>+,设2(1)()ln (1)1x g x x x x -=->+,则22214(1)()0(1)(1)(1)x g x x x x x x -'=-=>>++,即()g x 在(1,)+∞上单调递增,故()(1)0g x g >=,即2(1)ln (1)1x x x x ->>+成立再说明一个基本事实,显然3π 3.24<<,于是1.73 1.8<<<.由(1)可得,取2x =,可得0.752ln 2 1.5ln 20.75e 2<⇔<⇔>;由(2)可得,取2x =,可得2ln 23>,再取43x =,可得42ln 0.2737>>,即0.270.2743e e34-<⇔>.e e e 1.80.75e e e 1222b a -==>>>,显然0a >,于是b a >;22220.271.730e e 3e ln 2e e e 12ln 24c a ==<<=<=,显然0a >,于是c a <.故b a c >>.故选:B18.(2023·辽宁沈阳·统考一模)已知1ea =,25b =,3ln 2c =,则a ,b ,c 的大小关系为()A .a b c <<B .a c b <<C .b<c<aD .c<a<b【答案】A 【解析】构建()ln t f t t =,则()21ln t f t t-'=,令()0f t '>,则0e x <<;令()0f t '<,则e x >,故()f t 在()0,e 上单调递增,在()e,+∞上单调递减,可得()()12e e5f t f ≤=<,即a b <,构建()()234111ln 1234g x x x x x x =+-+-+,则()4231111x g x x x x x x '=-+-+=++,当0x >时,()0g x '>恒成立,故()g x 在()0,+∞上单调递增,则()()00g x g >=,可得()234111ln 1234x x x x x +>-+-在()0,+∞上恒成立,则31111772ln22824641925>-+-=>,即c b >,故a b c <<.故选:A.19.(2023·全国·模拟预测)若实数a ,b ,[]0,1c ∈,且满足e e a a =, 1.2e 1.2e b b =,l.6e 1.6e c c =,则a ,b ,c 的大小关系是()A .c b a >>B .b a c>>C .a b c>>D .b c a>>【答案】C【解析】由e e a a =, 1.2e 1.2e b b =, 1.6e 1.6e c c =,得1e e a a =, 1.21.2e e b b =, 1.61.6e e c c =,令()e x x f x =,则1()ex xf x -'=,当1x <时()0f x '>,当1x >时()0f x '<,所以()f x 在(,1)-∞上是增函数,在(1,)+∞上是减函数,于是(1)(1.2)(1.6)f f f >>,即()()()f a f b f c >>,又a ,b ,[0,1]c ∈,所以a b c >>.故选:C.20.(2023·河南郑州·统考二模)π和e 是数学上两个神奇的无理数.π产生于圆周,在数学中无处不在,时至今日,科学家借助于超级计算机依然进行π的计算.而当涉及到增长时,e 就会出现,无论是人口、经济还是其它的自然数量,它们的增长总是不可避免地涉及到e .已知π3e a -=,ln(eπ2e)b =-,2π5π2c -=-,π2d =-,则a ,b ,c ,d 的大小关系是()A .c b d a <<<B .c d b a<<<C .d c a b<<<D .b c a d<<<【答案】A【解析】依题意,π3(π2)1e e a ---==,ln(π2)1b =-+,12π2c =--,令函数1()e ,1x f x x x -=->,求导得1()e 10x f x -'=->,函数()f x 在(1,)+∞上单调递增,则当1x >时,()(1)0f x f >=,即1e x x ->,而π21->,因此π3e π2->-,即a d >;令函数()ln 1,1g x x x x =-+>,求导得1()10g x x'=-<,函数()g x 在(1,)+∞上单调递减,则当1x >时,()(1)0g x g <=,即ln 1x x +<,因此2ln(e ln(π2e)π2)1π-=-+<-,即d b >;令函数1()ln 1,1h x x x x=+->,求导得22111()0x h x xx x-=-=>,函数()h x 在(1,)+∞上单调递增,则当1x >时,()(1)0h x h >=,即11ln 1ln 12x x xx>-⇔+>-,因此2l 1n(12π5π2e ln(2e)π2)2ππ--=-+>-=--,即b c >,所以c b d a <<<.故选:A21.(2023·天津南开·统考一模)已知()1e lg2,lg ln2,ln2ab c ===,则,,a b c 的大小关系是()A .c b a <<B .b a c <<C .a c b <<D .b c a<<【答案】C【解析】由e lg2a =,得()ln lg 2a =,因为1lg 22<=,所以()1ln lg 2ln2<,即a c <,因为1ln 212=<,所以111ln ln 222c -<==-<-,则()11lg ln 2lg22>>=-,所以()1lg ln 2ln 2>,即b c >,所以a c b <<.故选:C.22.(2023·四川巴中·统考一模)若0.111.1ln1.1,0.1e ,9a b c ===,则,,a b c 的大小关系为()A .a b c <<B .c a b <<C .b a c <<D .a c b<<【答案】A【解析】设()()()e 1,0,1x f x x x =-∈,则()()()e 1e 1e 0x x xf x x x =-+-=-<'恒成立,所以函数()f x 在()0,1上单调递减,则()()0.101f f <=,即0.1e 0.91⨯<,所以0.11e 0.9<,于是有0.10.110.1e 0.99<=,即b c <;设()(1)ln(1)e x h x x x x =++-,()ln(1)1e (1)x h x x x +-'=++,0x =时,(0)0h '=,设()()s x h x '=,则1()e (2)1x s x x x =-++',0x ≥时,()0s x '<,所以()h x '是减函数,所以()0h x '≤恒成立,所以()h x 在0x >时是减函数,并且(0)0h =,所以0.1x =时,0.1(10.1)ln(10.1)0.1e 0++-<,所以a b <.综上,a b c <<.故选:A .23.(2023·四川凉山·二模)已知1202320232023tan ,e ,20222022a b c ===,则a ,b ,c 大小关系是()A .c b a <<B .a c b <<C .c<a<bD .b<c<a【答案】D【解析】令()tan f x x x =-,312x <<,则()2110cos f x x '=->,即当3(1,)2x ∈时,()0f x ¢>,∴()f x 在3(1,)2上单调递增,∴()202312022f f ⎛⎫> ⎪⎝⎭,∴20232023tantan11020222022->->,∴20232023tan 20222022>,即a c >;令()1ln 1x g x x=+-,()1,x ∈+∞,∴()221110x g x x x x-'=-=>,∴()g x 在(1,)+∞上单调递增,∴()2023102022g g ⎛⎫>=⎪⎝⎭,∴202311ln12023202220232022>-=,∴120232023e 2022>,即c b >,综上可知:b<c<a .故选:D24.(2023·内蒙古呼和浩特·统考一模)已知eππe e ,π,a b c ===,则这三个数的大小关系为()A .c b a <<B .b c a<<C .b a c<<D .c a b<<【答案】A 【解析】令()()ln ,0x f x x x =>,则()()21ln ,0xf x x x -'=>,由()0f x ¢>,解得0e x <<,由()0f x '<,解得e x >,所以()()ln ,0xf x x x=>在()0,e 上单调递增,在()e,+∞上单调递减;因为πe >,所以()()πe f f <,即ln πln eπe<,所以e ln ππln e <,所以e πln πln e <,又ln y x =递增,所以e ππe <,即b a <;eeππ=⎡⎤⎢⎥⎣⎦,在同一坐标系中作出xy =与y x =的图象,如图:由图象可知在()2,4中恒有(2xx >,又2π4<<,所以ππ2>,又e y x =在()0,∞+上单调递增,且ππ2>所以eπeπeπ2=2⎡⎤>⎢⎥⎣⎦,即b c >;综上可知:c b a <<,故选:A25.(2023·四川南充·四川省南充高级中学校考模拟预测)设150a =,112ln sin cos 100100b ⎛⎫=+ ⎝⎭,651ln 550c =,则a ,b ,c 的大小关系正确的是()A .a b c <<B .a c b <<C .b<c<aD .b a c<<【答案】D【解析】因为10.0250ln e ln e a ==,211ln sin cos 100100b ⎛⎫=+ ⎝⎭,6551ln 50c ⎛⎫= ⎪⎝⎭,所以只要比较6250.02 1.211151e ,sin cos 1sin 1sin 0.02,(10.02)1001005050x y z ⎛⎫⎛⎫==+=+=+==+ ⎪ ⎪⎝⎭⎝⎭的大小即可,令()e (1sin )(0)x f x x x =-+>,则()e cos 0x f x x '=->,所以()f x 在(0,)+∞上递增,所以()(0)f x f >,所以e 1sin x x >+,所以0.02e 1sin 0.02>+,即1x y >>,令 1.2()(1)e x g x x =+-,则0.2() 1.2(1)e x g x x '=+-,0.8()0.24(1)e x g x x -''=+-因为()g x ''在(0.)+∞上为减函数,且(0)0.2410g ''=-<,所以当0x >时,()0g x ''<,所以()g x '在(0.)+∞上为减函数,因为(0) 1.210g '=->,0.20.2 1.20.2(0.2) 1.2 1.2e 1.2e g '=⨯-=-,要比较 1.21.2与0.2e 的大小,只要比较 1.2ln1.2 1.2ln1.2=与0.2lne 0.2=的大小,令()(1)ln(1)(0)h x x x x x =++->,则()ln(1)11ln(1)0h x x x '=++-=+>,所以()h x 在上递增,所以()(0)0h x h >=,所以当,()0x ∈+∞时,(1)ln(1)x x x ++>,所以1.2ln1.20.2>,所以 1.21.2>0.2e ,所以0.20.2 1.20.2(0.2) 1.2 1.2e 1.2e 0g '=⨯-=->,所以当(0,0.2)x ∈时,()0g x '>,所以()g x 在(0,0.2)上递增,所以()(0)0g x g >=,所以 1.2(1)e x x +>,所以 1.20.02(10.02)e +>,所以z x >,所以z x y >>,所以c a b >>,故选:D26.(2023·广西南宁·统考一模)23(2ln 3)1ln 3,,3a b c e e -===,则a ,b ,c 的大小顺序为()A .a c b <<B .c<a<bC .a b c <<D .b a c<<【答案】A【解析】令ln ()xf x x=,则222ln 3(33e e af e ==,ln ()e b f e e ==,ln 3(3)3c f ==,而21ln ()x f x x -'=且0x >,即0<<x e 时()f x 单调增,>x e 时()f x 单调减,又2133ee <<<,∴b c >,b a >.若ln x t x =有两个解12,x x ,则121x e x <<<,1(0,)t e ∈,即2121ln ln x x t x x -=-,1212ln x x x x t+=,令2(1)()ln (1)1x g x x x x -=->+,则22(1)()0(1)x g x x x -'=>+,即()g x 在(1,)+∞上递增,∴()(1)0g x g >=,即在(1,)+∞上,2(1)ln 1x x x ->+,若21x x x =即212121ln ln 2x x x x x x ->-+,故122ln t t x x >,有212x x e >∴当23x =时,213e e x >>,故21(()(3)3ef f x f <=,综上:b c a >>.故选:A27.(2023·全国·模拟预测)下列大小关系正确的为()A .()0.010.012ln e e 3-+<B .sin 0.01ln 0.990+<C .cos 0.01ln1.011+<D . 2.01 1.993425+>【答案】B【解析】对于选项A ,因为28e >,所以232e >,则2ln 23>,又因为0.010e e 1>=,则有0.010.010.010.011ee e 2e-+=+>,所以0.010.012ln(ee )ln 23-+>>,故选项A 错误;对于选项B ,构造函数()sin f x x x =-,则()cos 10f x x '=-≤,所以函数()f x 在[0,)+∞上单调递减,则()(0)0f x f £=,所以(0.01)0f <,即sin 0.010.01<,令()ln 1(01)g x x x x =-+<<,则11()10x g x x x-'=-=>,所以()g x 在(0,1)上单调递增,则()(1)0g x g <=,即ln 1x x <-,所以ln 0.990.9910.01<-=-,故sin 0.01ln 0.990.01(0.01)0+<+-=,故选项B 正确;对于选项C ,构造函数1()cos ln(1)(02x x x x ϕ=++<<,则1()sin 1x x x ϕ'=-++,由选项B 可知:当0x >时,sin x x <,所以sin x x ->-,则有2111()sin 111x x x x x x x x ϕ--+'=-+>-+=+++,因为函数21y x x =--+在1(0,)2上恒大零,所以()0x ϕ'>,则函数()ϕx 在1(0,2上单调递增,所以(0.01)(0)ϕϕ>,即cos 0.01ln1.011+>,故选项C 错误;对于选项D ,因为 2.01 1.992+0.012-0.010.010.010.010.0134=3+4=93+16494+164--+⨯⨯<⨯⨯,令0.014t =,则1 1.3t <<,令()169(1 1.3)=+<<F t t t t,则22216916()9-'=-=t F t t t ,令()0F t '<,解得:4433t -<<,因为1 1.3t <<,所以()F t 在()1,1.3上单调递减,故()(1)91625<=+=F t F ,即0.010.0194+16425-⨯⨯<,所以 2.01 1.993425+<,故选项D 错误,故选:B .28.(2023·四川绵阳·统考模拟预测)设0.03,2ln1.01,ln1.1x y z ===,则x ,y ,z 的大小关系为()A .z x y >>B .x y z >>C .x z y >>D .z y x>>【答案】A 【解析】由3100x =,12ln(1)100y =+,1ln(1)10z =+,若110t =,则23x t =,22ln(1)y t =+,ln(1)z t =+,令22ln(1)3()2f y t x t t +-=-=且01t <<,则2222(13)1)01(64t t t t tt f t -+'-=<++=,所以()f t 在(0,1)上递减,故()(0)0f t f <=,即y x <,令2ln(1)(3)g t t z x t =+--=且01t <<,则1()16t g t t'=+-在(0,1)上递减,若()0g t '=,则116t t +=,可得t =,故上()0g t '>,()g t 递增,而130106<<,且在3(0,)6上()(0)0g t g >=,所以0z x ->,即z x >,综上,z x y >>.故选:A29.(2023·辽宁·辽宁实验中学校考模拟预测)若200a =,()99lg 101b =,101lg99c =,则a 、b 、c 的大小关系为()A .a c b >>B .c a b >>C .c b a >>D .a b c>>【答案】B【解析】设()()()100lg 100f x x x =-+,[]1,1x ∈-,当[]1,1x ∈-时,()()100lg 100lg e 100xf x x x-'=-+++,令()()100lg 100lg e 100x g x x x-=-++⋅+,则()()21200lg e e 0100100g x x x '=--<++,所以函数()g x 在区间[]1,1-上单调递减,所以()101991011lg 99lg e lg e lg 9999g -=-+=-,又101299e e 99<<,所以()()()10f x g x g '=<-<,所以函数()f x 在区间[]1,1-上单调递减,所以()()()()991101lg990100lg100200199lg101lg 101f f f -=>==>==,故c a b >>.故选:B.30.(2023·四川德阳·统考一模)已知a 、b 、c 是正实数,且2e 2e e 0a a b b c ++-+=,则a 、b 、c 的大小关系不可能为()A .a b c ==B .a b c>>C .b c a>>D .b a c>>【答案】D【解析】因为2e 2e e 0a a b b c ++-+=,a 、b 、c 是正实数,所以()()2e e e e e e e e e e 0a a b b c a b a a b b c a+++-+-=-+-=,1,>1,e 1e e a b c >>,对于A ,若a b c ==,则e e e e 0a b c a --==,满足题意;对于B ,若a b c >>,则0,e e e 0e a b c a --><,满足题意;对于C ,若b c a >>,则0,e e e 0e a b c a --<>,满足题意;对于D ,若b a c >>,则0,e e e 0e a b c a --<<,不满足题意.故选:D.31.(2023·江西吉安·统考一模)若0.310,ln3,e 7a b c d ====,则a b c d ,,,的大小关系是___________.【答案】a d c b>>>【解析】设()e 1x g x x =--,则()e 1xg x '=-,当0x ≥时,()()()0,00g x g x g ≥'≥=,故e 1e 1x x x x -≥+⇒≥-+,若()0,1x ∈,则1e 1x x <-,从而0.3110e 10.37d a =<==-b c -=,因为函数1()2ln ,1f x x x x x ⎛⎫=--> ⎪⎝⎭()22221(1)10x f x x x x -=--=-<',()f x \在()1,+∞上递减,()()10f x f <=,0f∴<,得0.3,e10.3 1.3, 1.2b c d c ==><+=,d c ∴>,故a d c b >>>.故答案为:a d c b>>>32.(2023·内蒙古赤峰·校联考一模)已知sin13a =,bπ9c =,则,,a b c 的大小关系是___________.【答案】c a b>>【解析】根据题意,设()sin 3x f x x =,则其导数()2cos sin 3x x x f x x -'=.令()cos sin g x x x x =-,()cos sin cos sin g x x x x x x x'=--=-故在区间π0,2⎛⎫⎪⎝⎭上,()0g x '<恒成立,则有()(0)g x g <,即cos sin 0x x x -<恒成立()0f x '∴<在π0,2⎛⎫ ⎪⎝⎭上恒成立,∴函数()f x 在π0,2⎛⎫⎪⎝⎭上单调递减,则有()π13f f ⎛⎫> ⎪⎝⎭,即πsinsin13π333>⨯a b∴>又πsin193c a -=-πsin1sin 3<=2π6018c a -∴->>,即c a >故答案为:c a b >>。

2025届江苏省启东中学高三压轴卷数学试卷含解析

2025届江苏省启东中学高三压轴卷数学试卷含解析

2025届江苏省启东中学高三压轴卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值,则函数()y xf x =-'的图象可能是( )A .B .C .D .2.过抛物线22(0)y px p =>的焦点作直线交抛物线于A B ,两点,若线段AB 中点的横坐标为3,且8AB =,则抛物线的方程是( ) A .22y x = B .24y x =C .28y x =D .210y x =3.已知复数z 534i=+,则复数z 的虚部为( ) A .45B .45-C .45iD .45-i 4.函数()xf x e ax =+(0a <)的图像可以是( )A .B .C .D .5.将函数22cos 128x y π⎛⎫=+- ⎪⎝⎭的图像向左平移()0m m >个单位长度后,得到的图像关于坐标原点对称,则m 的最小值为( ) A .3π B .4π C .2π D .π6.已知函数在上的值域为,则实数的取值范围为( ) A .B .C .D .7.已知向量a b (3,1),(3,3)=-=,则向量b 在向量a 方向上的投影为( ) A .3B 3C .1-D .18.设函数()()21ln 11f x x x=+-+,则使得()()1f x f >成立的x 的取值范围是( ). A .()1,+∞ B .()(),11,-∞-+∞ C .()1,1-D .()()1,00,1-9.已知实数集R ,集合{|13}A x x =<<,集合|2B x y x ⎧==⎨-⎩,则()R A C B ⋂=( ) A .{|12}x x <≤ B .{|13}x x << C .{|23}x x ≤<D .{|12}x x <<10.若()f x 是定义域为R 的奇函数,且()()2f x f x +=-,则 A .()f x 的值域为RB .()f x 为周期函数,且6为其一个周期C .()f x 的图像关于2x =对称D .函数()f x 的零点有无穷多个11.已知函数3()1f x x ax =--,以下结论正确的个数为( ) ①当0a =时,函数()f x 的图象的对称中心为(0,1)-; ②当3a ≥时,函数()f x 在(–1,1)上为单调递减函数; ③若函数()f x 在(–1,1)上不单调,则0<<3a ; ④当12a =时,()f x 在[–4,5]上的最大值为1. A .1B .2C .3D .412.在直角ABC ∆中,2C π∠=,4AB =,2AC =,若32AD AB =,则CD CB ⋅=( )A .18-B .63-C .18D .63二、填空题:本题共4小题,每小题5分,共20分。

2025届江苏省徐州一中、如皋中学高考冲刺押题(最后一卷)数学试卷含解析

2025届江苏省徐州一中、如皋中学高考冲刺押题(最后一卷)数学试卷含解析

2025届江苏省徐州一中、如皋中学高考冲刺押题(最后一卷)数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设{|210}S x x =+>,{|350}T x x =-<,则S T ( )A .∅B .1{|}2x x <-C .5{|}3x x >D .15{|}23x x -<< 2.某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A .8B .83C .822+D .842+3.某几何体的三视图如图所示,若侧视图和俯视图均是边长为2的等边三角形,则该几何体的体积为A .83B 43C .1D .24.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是( )A .13B .14C .15D .165.已知2π()12cos ()(0)3f x x ωω=-+>.给出下列判断: ①若12()1,()1f x f x ==-,且12minπx x -=,则2ω=;②存在(0,2)ω∈使得()f x 的图象向右平移6π个单位长度后得到的图象关于y 轴对称; ③若()f x 在[]0,2π上恰有7个零点,则ω的取值范围为4147,2424⎡⎫⎪⎢⎭⎣; ④若()f x 在ππ,64⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为20,3⎛⎤ ⎥⎝⎦.其中,判断正确的个数为( ) A .1B .2C .3D .46.已知直线y =k (x ﹣1)与抛物线C :y 2=4x 交于A ,B 两点,直线y =2k (x ﹣2)与抛物线D :y 2=8x 交于M ,N 两点,设λ=|AB |﹣2|MN |,则( ) A .λ<﹣16B .λ=﹣16C .﹣12<λ<0D .λ=﹣127.偶函数()f x 关于点()1,0对称,当10x -≤≤时,()21f x x =-+,求()2020f =( ) A .2B .0C .1-D .18.P 是正四面体ABCD 的面ABC 内一动点,E 为棱AD 中点,记DP 与平面BCE 成角为定值θ,若点P 的轨迹为一段抛物线,则tan θ=( )AB .2C .4D .9.方程2(1)sin 10x x π-+=在区间[]2,4-内的所有解之和等于( ) A .4B .6C .8D .1010.已知复数z 满足()14i z i -=,则z =( )A .B .2C .4D .311.某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用22⨯列联表,由计算得27.218K ≈,参照下表:得到正确结论是( )A .有99%以上的把握认为“学生性别与中学生追星无关”B .有99%以上的把握认为“学生性别与中学生追星有关”C .在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D .在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”12.设抛物线24y x =上一点P 到y 轴的距离为1d ,到直线:34120l x y ++=的距离为2d ,则12d d +的最小值为( ) A .2B .153C .163D . 3二、填空题:本题共4小题,每小题5分,共20分。

江苏省溧水高级中学2025届高考压轴卷数学试卷含解析

江苏省溧水高级中学2025届高考压轴卷数学试卷含解析

江苏省溧水高级中学2025届高考压轴卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y 的值为2,则输入的x 的值为( )A .74B .5627C .2D .164812.设1i2i 1iz -=++,则||z = A .0B .12C .1D .23.函数()xf x e ax =+(0a <)的图像可以是( )A .B .C .D .4.已知双曲线22122:1x y C a b -=与双曲线222:14y C x -=没有公共点,则双曲线1C 的离心率的取值范围是( )A .(1,3⎤⎦B .)3,⎡+∞⎣C .(1,5⎤⎦D .)5,⎡+∞⎣5.如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为( )A .52B .23C .8D .36.已知A ,B 是函数()2,0ln ,0x x a x f x x x a x ⎧++≤=⎨->⎩图像上不同的两点,若曲线()y f x =在点A ,B 处的切线重合,则实数a 的最小值是( ) A .1-B .12-C .12D .17.若双曲线()22210x y a a-=>的一条渐近线与圆()2222x y +-=至多有一个交点,则双曲线的离心率的取值范围是( ) A .)2,⎡+∞⎣B .[)2,+∞C .(2D .(]1,28.已知六棱锥P ABCDEF -各顶点都在同一个球(记为球O )的球面上,且底面ABCDEF 为正六边形,顶点P 在底面上的射影是正六边形ABCDEF 的中心G ,若6PA 2AB =,则球O 的表面积为( )A .163πB .94π C .6πD .9π9.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为1F 、2F ,过1F 的直线l 交双曲线的右支于点P ,以双曲线的实轴为直径的圆与直线l 相切,切点为H ,若113F P F H =,则双曲线C 的离心率为( ) A .132B 5C .5D 1310.复数()()()211z a a i a R =-+-∈为纯虚数,则z =( )A .iB .﹣2iC .2iD .﹣i11.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )A .B .2C .D .12.正三棱柱111ABC A B C -中,12AA AB =,D 是BC 的中点,则异面直线AD 与1A C 所成的角为( ) A .6π B .4π C .3π D .2π 二、填空题:本题共4小题,每小题5分,共20分。

江苏省海门中学2025届高三压轴卷数学试卷含解析

江苏省海门中学2025届高三压轴卷数学试卷含解析

江苏省海门中学2025届高三压轴卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设i 是虚数单位,若复数5i2i()a a +∈+R 是纯虚数,则a 的值为( ) A .3- B .3C .1D .1-2.函数()()23ln 1x f x x+=的大致图象是A .B .C .D .3.在区间[]3,3-上随机取一个数x ,使得301xx -≥-成立的概率为等差数列{}n a 的公差,且264a a +=-,若0n a >,则n 的最小值为( ) A .8B .9C .10D .114.已知正方体1111ABCD A B C D -的棱长为2,点M 为棱1DD 的中点,则平面ACM 截该正方体的内切球所得截面面积为( ) A .3π B .23π C .πD .43π 5.函数()cos 22x xxf x -=+的部分图像大致为( )A .B .C .D .6.小张家订了一份报纸,送报人可能在早上6:307:30-之间把报送到小张家,小张离开家去工作的时间在早上7.008:00-之间.用A 表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为x ,小张离开家的时间为y ,(,)x y 看成平面中的点,则用几何概型的公式得到事件A 的概率()P A 等于( )A .58B .25C .35D .787.若()*3nx n N ⎛+∈ ⎝的展开式中含有常数项,且n 的最小值为a,则aa-=( ) A .36πB .812πC .252πD .25π8.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,c =,sin sin 3b A a B π⎛⎫=-⎪⎝⎭,则sin C =( ) A.7B.7C.12D.199.已知等差数列{}n a 的前n 项和为n S ,若1512,90a S ==,则等差数列{}n a 公差d =( ) A .2B .32C .3D .410.设复数z 满足i(i i2i z z -=-为虚数单位),则z =( ) A .13i 22- B .13i 22+ C .13i 22--D .13i 22-+ 11.已知正项数列{}{},n n a b 满足:1110n n nn n n a a b b a b ++=+⎧⎨=+⎩,设n n n a c b =,当34c c +最小时,5c 的值为( )A .2B .145C .3D .412.设不等式组00x y x +≥⎧⎪⎨≤⎪⎩表示的平面区域为Ω,若从圆C :224x y +=的内部随机选取一点P ,则P 取自Ω的概率为( ) A .524B .724C .1124D .1724二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年江苏高考数学原创压轴题2008年将是不平静的一年,除了奥运会的举办等国际国内的大事以外,就数牵动千百万家庭的高考了,特别是江苏的高考,是进入新课程后的第一次高考,全新的课程标准、全新的教学方法、全新的高考模式、全新的录取形式,所以必然出现全新的高考命题模式.通过认真学习《高中数学课程标准》、《江苏省课程标准教学要求》等纲领性文件,反复研读了2005、2006、2007三年高考江苏卷的试卷评析报告,下面给出几个原创题,供高三师生参考,权当抛砖引玉.1.如果复数()()21m i mi ++是实数,则实数m=____________________.解: ()()21m i mi ++展开后,“原始项”共四项,但是我们并 不关心实部项,虚部项为:21m mi i ⋅+⋅,只需310m +=即可,所以1m =-.【命题意图】考查复数的运算和相关基本概念的理解.过去复数在《选修Ⅱ》中,《选修Ⅰ》没有复数,所以,近几年江苏一直不讲复数,因此,复数成了新内容.2.设[]x 表示不大于x 的最大整数,集合{}2|2[]3A x x x =-=,1|288x B x ⎧⎫=<<⎨⎬⎩⎭,则A B =I _________________. 解:不等式1288x <<的解为33x -<<,所以(3,3)B =-. 若x A B ∈I ,则22[]333x x x ⎧-=⎨-<<⎩,所以[]x 只可能取值3,2,1,0,1,2---. 若[]2x ≤-,则232[]0x x =+<,没有实数解;若[]1x =-,则21x =,解得1x =-;若[]0x =,则23x =,没有符合条件的解;若[]1x =,则25x =,没有符合条件的解;若[]2x =,则27x =,有一个符合条件的解x =因此,{A B =-I .【命题意图】此题是一元二次方程根分布问题,涉及指数不等式的解法,函数与方程思想,分类讨论思想等.数学的精华在于数学思想方法,思考问题的支撑点也是数学思想方法,只有理解了数学思想方法,才算真正学明白了数学.3.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D .测得 00153030BCD BDC CD ∠=∠==,,米,并在点C 测得塔顶A 的仰角为060,则塔高AB= _____ .解:由原解答得()tan sin 30tan 60sin 30156sin()sin 1530s AB θβαβ⋅===++o oo o (米) 【命题意图】在2007年的课改区高考试题中,十分重视弘扬和发展学生的数学应用意识.新课标卷更注意数学应用意识和实践能力的考查,试题设计更加注意贴近生活实践.4.若关于,x y 的方程组22110ax by x y +=⎧⎨+=⎩有解,且所有的解都是整数,则有序数对(),a b 的数目为 .解:因为2210x y +=的整数解为:()()()()()()()()1,3,3,1,1,3,3,1,1,3,3,1,1,3,3,1--------, 所以这八个点两两所连的不过原点的直线有24条,过这八个点的切线有8条,每条直线确定了唯一的有序数对(),a b ,所以有序数对(),a b 的数目为32.【命题意图】本题主要考察直线与圆的概念,以及组合的知识,既要数形结合,又要分类考虑,要结合圆上点的对称性来考虑过点的直线的特征.是较难问题.5.若数列{a n }的通项公式a n =21(1)n +,记12()2(1)(1)(1)n f n a a a =--⋅⋅⋅-,试通过计算(1)f ,(2)f ,(3)f 的值,推测出()f n = .解:∵ ()()1213(1)2121211f a ⎡⎤=-=⨯-=⎢⎥+⎢⎥⎣⎦,122314(2)2(1)(1)1233f a a ⎛⎫=⨯--=-= ⎪⎝⎭,()3415(3)(2)113164f f a ⎛⎫=-=-= ⎪⎝⎭,∴归纳猜想得2(1)n f n n +=+. 【命题意图】考查考生对归纳猜想和递推的理解和运用.此题涉及属探索性问题,考生可根据特殊情形归纳概括一般性结论.6.已知三个正数,,a b c 满足a b c <<.(1)若,,a b c 是从129,,101010⎧⎫⋅⋅⋅⎨⎬⎩⎭中任取的三个数,求,,a b c 能构成三角形三边长的概率; (2)若,,a b c 是从(0,1)中任取的三个数,求,,a b c 能构成三角形三边长的概率.分析:在(1)中,,a b c 的取值是有限可数的,可用列举法解决;(2)中,,a b c 的取值是无穷的,得用几何概型的方法求解.解:(1)若,,a b c 能构成三角形,则4,10a b c c +>≥. ①若410c =时,32,1010b a ==.共1种; ②若510c =时.432,,101010b a ==.共2种;同理610c =时,有3+1=4种; 710c =时,有4+2=6种; 810c =时,有5+3+1=9种; 910c =时,有6+4+2=12种. 于是共有1+2+4+6+9+12=34种.下面求从129,,101010⎧⎫⋅⋅⋅⎨⎬⎩⎭中任取的三个数,,a b c (a b c <<)的种数: ①若110a =,210b =,则39,,1010c =⋅⋅⋅,有7种;349,,,101010b c ==⋅⋅⋅,有6种;410b =,59,,1010c =⋅⋅⋅,有5种;……; 89,1010b c ==,有1种. 故共有7+6+5+4+3+2+1=28种.同理,210a =时,有6+5+4+3+2+1=21种;310a =时,有5+4+3+2+1=15种;410a =时,有4+3+2+1=10种;510a =时,有3+2+1=6种;610a =时,有2+1=3种;710a =时,有1种. 这时共有28+21+15+10+6+3+1=84种.∴,,a b c 能构成三角形的概率为34174824=. (2)a b c 、、能构成三角形的充要条件是0101a b c a b c c <<<<⎧⎪+>⎨⎪<<⎩.在坐标系aOb 内画出满足以上条件的区域(如右图阴影部分),由几何概型的计算方法可知,只求阴影部分的面积与图中正方形的面积比即可.又12S =阴影,于是所要求的概率为112.12P == 【命题意图】统计、概率对于现代社会(经济发达)越来越显得重要,也是学生由确定性数学向不确定性(随机性)数学的一个转变,有着基本的重要性,考查是必然的.7.请认真阅读下列程序框图:已知程序框图(1)i i x f x =-中的函数关系式为42()1x f x x -=+,程序框图中的D 为函数()f x 的定义域,把此程序框图中所输出的数i x 组成一个数列{}n x .(理科考生请完成下列各题)(1) 若输入04965x =,请写出数列{}n x 的所有项; (2) 若输出的无穷数列{}n x 是一个常数列,试求输入的初始值0x 的值;(3) 若输入一个正数0x 时,产生的无穷数列{}n x 满足:*n N ∀∈,都有1n n x x +<,试求正数0x 的取值范围.(文科考生请完成下列各题)(1) 若输入04965x =,请写出输出的所有数i x ; (2) 若输出的所有数i x 都相等,试求输入的初始值0x 的值.解:(1)当04965x =时,12349111111165191955x f x f x f ⎛⎫⎛⎫⎛⎫======- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, 所以输出的数列为1111195-,,…………………(3分) (2)数列{}n x 是一个常数列,则有120n x x x x ==⋅⋅⋅== 即000042()1x x f x x -==-,解得:0012x x ==或 所以输入的初始值0x 为1或2时输出的为常数列.(3)由题意知 142()1n n n n n x x f x x x +-==>+,因00x >, 0n x ∴>,有: 421n n n x x x ->+得42(1)n n n x x x ->+ 即2320n n x x -+<,即(2)(1)0n n x x --<要使*n N ∀∈,都有1n n a a +>,须00(2)(1)0x x --<,解得:012x <<,所以当正数0x 在(1,2)内取值时,所输出的数列{}n x 对任意正整数n 满足1n n x x +<(文科)解:(1)当04965x =时,12349111111165191955x f x f x f ⎛⎫⎛⎫⎛⎫======- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,所以输出的数为1111195-,,,要使输出的数i x 都相等,即11()i i i x f x x --== (2)此时有 100()x f x x ==,即00421x x -+=0x ,解得01x =或02x =,所以输入初始值01x =或02x =时,输出的数i x 均相等.【命题意图】算法思想可以贯穿于整个中学数学内容之中,有很丰富的层次递进的素材,而在算法的具体实现上又可以和信息技术相联系,因此,算法与函数,数列等知识的融合,有利于培养学生理性精神和实践能力,是实施探究性学习的良好素材.8.已知二次函数2(),f x ax bx c =++直线21:8l y t t =-+(其中t 为常数);2:2=x l .若直线12,l l 与函数()f x 的图象以及1l ,y 轴与函数()f x 的图象所围成的封闭图形如阴影所示.(Ⅰ)求a 、b 、c 的值(Ⅱ)求阴影面积S 关于t 的函数()S t 的解析式;(Ⅲ)若,ln 6)(m x x g +=问是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有两个不同的交点?若存在,求出m 的值;若不存在,说明理由.解:(I )由图形知:2201880804164c a a b c b c ac b a⎧⎪==-⎧⎪⎪⎪⋅+⋅+==⎨⎨⎪⎪=-⎩⎪=⎪⎩,解之得:,∴函数()f x 的解析式为x x x f 8)(2+-= (Ⅱ)由⎪⎩⎪⎨⎧+-=+-=x x y t t y 8822得2128(8)0,,8,x x t t x t x t ---=∴==-∵0≤t ≤2,∴直线l 1与()f x 的图象的交点坐标为()8,2t t t +-由定积分的几何意义知:⎰⎰+--+-++--+-=102222]8()8[()]8()8[()(t dx t t x x dx x x t t t S 12223222088(8)()()(8)32032tx x x x t t x t t x ⎡⎤⎡⎤=-+--++-+--+⋅⎢⎥⎢⎥⎣⎦⎣⎦34016103423+-+-=t t t (Ⅲ)令.ln 68)()()(2m x x x x f x g x ++-=-=ϕ因为x >0,要使函数()f x 与函数()g x 有且仅有2个不同的交点,则函数 m x x x x ++-=ln 68)(2ϕ的图象与x 轴的正半轴有且只有两个不同的交点262862(1)(3)()28(0)x x x x x x x x x xϕ-+--'∴=-+==> 当x ∈(0,1)时,()0,()x x ϕϕ'>是增函数;当x ∈(1,3)时,()0,()x x ϕϕ'<是减函数当x ∈(3,+∞)时,()0,()x x ϕϕ'>是增函数当x=1或x=3时,()0x ϕ'=∴;7)1()(-=m x ϕϕ极大值为153ln 6)3()(-+=m x ϕϕ极小值为又因为当x →0时,-∞→)(x ϕ当+∞→+∞→)(x x ϕ时,所以要使0)(=x ϕ有且仅有两个不同的正根,必须且只须(1)0(3)0(3)0(1)0ϕϕϕϕ==⎧⎧⎨⎨'<>⎩⎩,或 即706ln 31506ln 315070m m m m -=+-=⎧⎧⎨⎨+-<->⎩⎩,或, ∴m=7或.3ln 615-=m∴当m=7或.3ln 615-=m 时,函数()f x 与函数()g x 的图象有且只有两个不同交点.【命题意图】对江苏来说,与以往不同的是,增加了正弦、余弦、指数、对数的导数,还有积的导数,商的导数.对理科另外还有求形如)(b ax f +的复合函数导数以及定积分.高校教师熟悉微积分,历来是命题的热点(江苏2003年21题就很难),加上新增加许多函数的导数,2008年大题考导数,定积分的可能性极大.。

相关文档
最新文档