实验13_full - 二叉树非递归遍历
二叉树后序遍历的递归和非递归算法
安 徽电气工 程 职 业 技术学 院学报
:薹6 M2 a r 0 c h 0
.
-X树后序遍历的递归和非递归算法
孙泽宇, 赵国增 , 舒云星・
( 洛阳工业高等专科学校计算机系 , 河南 洛阳 4 10 ) 703
[ 要 ] 论述了二又树后序遍历的递归算法和非递归算法, 摘 对递归算法中的工作栈 的执行过程做 了
Srcbt e t t ie { u r
● 收稿 日期 :0 5—1 0 70 . 2— 2
作者筒介: 孙泽字(97 . 吉林长春人. 17 一) 男。 洛阳工业高等专科学校计算机秉麓师。研究方向: 人工智能。 趟 目增 (97 . 河南越壁人 。 阳工业高等专科 学校计算机 秉麓师 。研究方 向: 1 一) 男。 7 洛 人工智能。
s c br 木e , r h;} t t ie lt 木 i t m te f g
后序遍历二叉树的递归算法如下 :
T p d fs u tBT o e y e e r c in d t
法及执行时栈 的变化情况 , 可设计 出较好 的非递归化算法 , 本文讨论了二叉树后序遍历的递归和非递归
算法。 2 后序遍历二叉树的递归算法
1 后序遍历左子树( ) 若左子树不为空 ) 2 后序遍历右子树( ) 若右子树不为空 ) 3 访问根结点 ( ) 若存在根结点)
二叉树数据结构如下 :
二叉树是数据结构 中最常见 的存储形式 , 在算法与数据结构中经常使用。树与森林都可以转换为 二叉树 , 而遍历算法则是二叉树最重要的操作 。所谓遍历二叉树 , 就是遵从某种次序 , 遍访二叉树 中的
所有结点, 使得每个结点被访问一次 , 而且仅一次。在遍历算法中, 递归算法是最普遍 的, 弄清 了递归算
中序遍历二叉树t的非递归算法 -回复
中序遍历二叉树t的非递归算法-回复中序遍历是二叉树遍历的一种方法,它的特点是先访问左子树,然后访问根节点,最后访问右子树。
在非递归算法中,我们需要借助栈来实现中序遍历。
下面我们将逐步分析如何用非递归算法中序遍历二叉树。
首先,我们需要了解栈的基本知识。
栈是一种后进先出(LIFO)的数据结构,它有两个基本操作:入栈(push)和出栈(pop)。
在中序遍历中,我们将节点按照遍历顺序依次入栈,然后出栈并访问节点。
接下来,我们来介绍中序遍历二叉树的非递归算法。
我们可以通过模拟递归来实现中序遍历。
首先,我们定义一个栈用于存储待访问的节点。
初始时,将根节点入栈。
在每一次迭代中,我们需要判断栈是否为空。
若不为空,则将栈顶节点出栈,并访问该节点。
然后,我们将栈顶节点的右子树入栈。
接下来,将栈顶节点的左子树依次入栈,直到左子树为空。
下面,我们以一个简单的例子来说明这个过程。
假设我们有如下二叉树t:1/ \2 3/ \ / \4 5 6 7我们使用中序遍历的非递归算法来遍历这棵树。
首先,将根节点入栈,此时栈中的元素为[1]。
然后,循环执行以下步骤:1. 判断栈是否为空,栈不为空,执行以下步骤;2. 将栈顶节点出栈,访问该节点;3. 将栈顶节点的右子树入栈;4. 将栈顶节点的左子树依次入栈,直到左子树为空。
按照这个步骤,我们首先将1出栈并访问,然后将右子树入栈,栈中的元素为[2, 3]。
然后,我们继续将左子树入栈,栈中的元素变为[4, 2, 3]。
此时,我们将4出栈并访问,然后将栈中的元素变为[2, 3]。
接着,我们将2出栈并访问,将右子树入栈,栈中的元素变为[5, 3]。
继续将左子树入栈,栈中的元素为[5, 6, 3]。
接着,我们将5出栈并访问,将栈中的元素变为[6, 3]。
最后,我们将6出栈并访问,将右子树入栈,栈中的元素变为[7, 3]。
最后,我们将7出栈并访问,此时栈为空,遍历结束。
通过这个例子,我们可以看到中序遍历的非递归算法确实按照中序遍历的顺序访问了二叉树的所有节点。
完全二叉树非递归无堆栈先序遍历算法的研究
又 被 Mateti等人于 1988年改进 0 。国内也一直有 学者在做 相 关 的 研 究 。可 从 文 献 [4.12]的研 究 主 题 可 以看 出 ,近 10年 来 对 此 主 题 的研 究 从 未 间 断 ,并 且 近 几 年 的 关 注 度 更 高 。
0 引 言
二 叉 树 作 为 一种 重 要 的 数 据 结 构 是 工农 业 应 用 与 开 发 的 重要工 具。满 二叉树 的中序序列 能够与一 条有 向连续 曲线上 的 点 列 建 立 自起 点 到 终 点 的 一 一 对 应 的 关 系 ;二 叉 树 的 先 序 序 列 ,能 与 植 物 从 根 部 向枝 叶 的生 长 发 育 过 程 建 立 关 联 ,可 作 为 植 物 生 产 建 模 的 基 本 数 据 结 构 模 型 。因 此 ,研 究 二 叉 树 的 先 序 、中序 相 关 算 法 成 为 工 农 业 信 息 技 术 领 域 的关 注 点 。
Abstract: Through a study on the analytic relationship am ong a full binary tree, its sequential storage sequence a n d its preorder-traversal sequence, a algorithms is obtained,which can conve ̄ a full binary t ree a n d its sequential storage sequence into its preorder-traversal se· quence. Consequentl ̄ non—recursive and stack-free algorithms are deduced for preorder t raversal ofa complete binary tree and for inter- conversionsbetweenthe sequential storage sequen ce andthepreorder-tmversal seque n ce. The algor ithms carla1]SWe r a quer y ofanode in constant tim e an d perform a traversal in linear tim e. Being derived from exact m athem atical a n alysis and inosculated with deductions ofbinary encodes that naturally fit the bitwise operation, the algorithms are available for both conventional programming and professional developments such as embedded system and SO on. A sample example is presented to demonstrate the application of the algorithms in virtual-plants modeling. Key words: binary t ree; sequential storage m odel; preorder traversal; non--recursive and stack--free; virtual pla n ts
遍历二叉树的非递归算法
问一次。这里的“ 问”的含义很广 ,比如修 改或输出结点的信息, 访 删除结 我们知道 , 二叉树有三个基本的组成部分, 根, 即: 左子树和右予 树, 只 要依次遍历这三个 部分, 能遍历整个二叉树 。 遍历二叉树的方式通常有 就
算, 所用到的数据仅为整型或实型即能满足要求 , 计算求精课程称作数值方 点等等。
子树, 再访问右子树 , 最后访 问根结 点) 。由于二叉树定义 的递归性, 我们很 容易就会想到用递 归算法来遍历二叉树。 设二叉树与栈 的结构如下 ( c 用 语言描述) :
t p d fs r c i N d y e e tu t B T o e f
c a d t h r a a:
据结构会对应复杂程度不 同的算法 ,丽设计一个合适 的数据 结构 能使算法 三 种, 先序遍历 ( 即: 先访 问根 结点, 再访问左子树 , 最后访问右子树) 中序 、 先访问左 予树 , 再访 问根结点, 后访 问右子树) 后序遍历 ( 最 。 先访问左 的复杂程度大大降低。 编程人员在实践 中体会到 ; 学好~种高级语言仪能解 遍历 ( 决三成所遇到的 问题, 而学好数据结构却 能解 决八成所遇 到的问题, 因此, 在软件 设计中选择一个合适的数据结构越发显得重要 。 在 管理科学领域中, 很多问题都可 以转化 为树 T e r e型结构 , 而多叉树
就会不同。
)A r ys q e c [a ] ra , eu n eM x
t p d f tu t y e e s r c
树, 它有 4 个结点。为了便于理解遍历思想 , 暂时为每个没有 予树 的结点都
f
e ely e b s 1 Ⅱ p 赤 a e: t e e t p *t p' lmye o ,
二叉树遍历的通用非递归算法
右子 树还未访 问)( 序访 问 A的左子树 的根结点 B , 和 l ,先 )B 进 栈 . 于 B的左 子 树 为 空 , 以 B 和 1出 栈 ,中 序 访 问 B)B 由 所 ( , 和 O进栈 ( O表 示 开 始 遍 历 结 点 B 的 右 子 树 ) 由 于 B 的 右 子树 . 为空 。 B和 O出栈 ,后 序访 问 B . 和 1出 栈 。 中序 访 问 A)A ( )A ( , 和 O进栈 .先 序 访 A的 右 子 树 的 根 结 点 C , ( )C和 1进 栈 , 由 于 C的左子树为空 , C和 l出栈 .中序 访问 C 。 ( )C和 O进栈 , 由 于 C 的 右 子 树 为 空 。 和 0出 栈 . 后 序 访 问 C)A 和 O出 栈 , C ( . ( 序 访 问 A)此 时 栈 已 空 , 历 过 程 结 束 。 后 , 遍 从 上 面可 知 , 每个 结 点 进栈 、 出栈 都 是 两 次 。若 进 栈 前 访 问 该结点 , 则得 到先 序 序 列 A C; 在 第 一 次 出栈 时 济 问 该结 点 , B 若 则得 到 中序 序 列 B C: 在 第 二 次 出栈 时访 问 该 结 点 , A 若 则得 到 后 序 序 列 B A。 此 . C 因 只需 对 二 叉树 遍 历 一 次 即 可 得 到 三 种 遍 历序 列 这里的关键是设置了一个标志位 . 用来 说明该结点的右子树 是 否 已访 问 . 以此 表 示 该 结 点 是第 一 次 出栈 还 是 第 二 次 出栈 。
维普资讯
20 0 6年 第 6期
福
建 电
脑
11 2
二叉树遍历的通用非递归算 法
徐凤生 1 李立群 2 马夕荣 2
( . 州 学 院 计算 机 系 。 东 德 州 2 32 2 山 东省 农 业 管 理 干部 学 院 , 东 济 南 2 0 0 ) 1德 山 503 . 山 5 10
实现二叉树的各种遍历算法实验报告
if(a[i]>kmax) kmax = a[i]; return kmax; } /** 求二叉树的节点个数 **/ int Nodes(BTNode *b) { if(b==NULL)
2.2:( 1 )实现二叉树的先序遍历 ( 2)实现二叉树的中序遍历 ( 3)实现二叉树的后序遍历
三 实验内容 :
3.1 树的抽象数据类型 : ADT Tree{
.专业 .整理 .
下载可编辑
数据对象 D: D 是具有相同特性的数据元素的集合 。 数据关系 R: 若 D 为空集 , 则称为空树 ;
若 D 仅含有一个数据元素 ,则 R 为空集 , 否则 R={H} , H 是如 下二元关系 :
if(b!=NULL) {
printf("%c",b->data); if(b->lchild!=NULL || b->rchild!=NULL) {
printf(" ("); DispBTNode(b->lchild); if(b->rchild != NULL)printf(" , "); DispBTNode(b->rchild); printf(" )"); } } } /** 深度 **/ int BTNodeDepth(BTNode *b)
下载可编辑
实现二叉树的各种遍历算法实验报告
一 实验题目 : 实现二叉树的各种遍历算法 二 实验要求 :
2.1:(1 ) 输出二叉树 b ( 2)输出 H 节点的左右孩子节点值 ( 3)输出二叉树 b 的深度 ( 4)输出二叉树 b 的宽度 ( 5)输出二叉树 b 的节点个数 ( 6)输出二叉树 b 的叶子节点个数 ( 7)释放二叉树 b
二叉树的遍历算法实验报告
二叉树的遍历算法实验报告二叉树的遍历算法实验报告引言:二叉树是计算机科学中常用的数据结构之一,它是由节点组成的层次结构,每个节点最多有两个子节点。
在实际应用中,对二叉树进行遍历是一项重要的操作,可以帮助我们理解树的结构和节点之间的关系。
本文将介绍二叉树的三种遍历算法:前序遍历、中序遍历和后序遍历,并通过实验验证其正确性和效率。
一、前序遍历前序遍历是指先访问根节点,然后按照先左后右的顺序遍历左右子树。
具体的实现可以通过递归或者使用栈来实现。
我们以递归方式实现前序遍历算法,并进行实验验证。
实验步骤:1. 创建一个二叉树,并手动构造一些节点和它们之间的关系。
2. 实现前序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先访问当前节点,然后递归调用函数遍历左子树,最后递归调用函数遍历右子树。
4. 调用前序遍历函数,输出遍历结果。
实验结果:经过实验,我们得到了正确的前序遍历结果。
这证明了前序遍历算法的正确性。
二、中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。
同样,我们可以使用递归或者栈来实现中序遍历算法。
在本实验中,我们选择使用递归方式来实现。
实验步骤:1. 继续使用前面创建的二叉树。
2. 实现中序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先递归调用函数遍历左子树,然后访问当前节点,最后递归调用函数遍历右子树。
4. 调用中序遍历函数,输出遍历结果。
实验结果:通过实验,我们得到了正确的中序遍历结果。
这证明了中序遍历算法的正确性。
三、后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。
同样,我们可以使用递归或者栈来实现后序遍历算法。
在本实验中,我们选择使用递归方式来实现。
实验步骤:1. 继续使用前面创建的二叉树。
2. 实现后序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先递归调用函数遍历左子树,然后递归调用函数遍历右子树,最后访问当前节点。
4. 调用后序遍历函数,输出遍历结果。
二叉树遍历(前中后序遍历,三种方式)
⼆叉树遍历(前中后序遍历,三种⽅式)⽬录刷题中碰到⼆叉树的遍历,就查找了⼆叉树遍历的⼏种思路,在此做个总结。
对应的LeetCode题⽬如下:,,,接下来以前序遍历来说明三种解法的思想,后⾯中序和后续直接给出代码。
⾸先定义⼆叉树的数据结构如下://Definition for a binary tree node.struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};前序遍历,顺序是“根-左-右”。
使⽤递归实现:递归的思想很简单就是我们每次访问根节点后就递归访问其左节点,左节点访问结束后再递归的访问右节点。
代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;helper(root,res);return res;}void helper(TreeNode *root, vector<int> &res){res.push_back(root->val);if(root->left) helper(root->left, res);if(root->right) helper(root->right, res);}};使⽤辅助栈迭代实现:算法为:先把根节点push到辅助栈中,然后循环检测栈是否为空,若不空,则取出栈顶元素,保存值到vector中,之后由于需要想访问左⼦节点,所以我们在将根节点的⼦节点⼊栈时要先经右节点⼊栈,再将左节点⼊栈,这样出栈时就会先判断左⼦节点。
代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;stack<TreeNode*> st;st.push(root);while(!st.empty()){//将根节点出栈放⼊结果集中TreeNode *t = st.top();st.pop();res.push_back(t->val);//先⼊栈右节点,后左节点if(t->right) st.push(t->right);if(t->left) st.push(t->left);}return res;}};Morris Traversal⽅法具体的详细解释可以参考如下链接:这种解法可以实现O(N)的时间复杂度和O(1)的空间复杂度。
实现二叉链表存储结构下二叉树的先序遍历的非递归算法
实现二叉链表存储结构下二叉树的先序遍历的非递归算法要实现二叉链表存储结构下二叉树的先序遍历的非递归算法,可以使用栈来辅助存储节点。
首先,创建一个空栈,并将树的根节点压入栈中。
然后,循环执行以下步骤,直到栈为空:1. 弹出栈顶的节点,并访问该节点。
2. 若该节点存在右子节点,则将右子节点压入栈中。
3. 若该节点存在左子节点,则将左子节点压入栈中。
注:先将右子节点压入栈中,再将左子节点压入栈中的原因是,出栈操作时会先访问左子节点。
下面是使用Python语言实现的例子:```pythonclass TreeNode:def __init__(self, value):self.val = valueself.left = Noneself.right = Nonedef preorderTraversal(root):if root is None:return []stack = []result = []node = rootwhile stack or node:while node:result.append(node.val)stack.append(node)node = node.leftnode = stack.pop()node = node.rightreturn result```这里的树节点类为`TreeNode`,其中包含节点的值属性`val`,以及左子节点和右子节点属性`left`和`right`。
`preorderTraversal`函数为非递归的先序遍历实现,输入参数为二叉树的根节点。
函数中使用了一个栈`stack`来存储节点,以及一个列表`result`来存储遍历结果。
在函数中,先判断根节点是否为None。
如果是,则直接返回空列表。
然后,创建一个空栈和结果列表。
接下来,用一个`while`循环来执行上述的遍历过程。
循环的条件是栈`stack`不为空或者当前节点`node`不为None。
非递归中序遍历二叉树课件
04 非递归中序遍历 二叉树的复杂度 分析
时间复杂度
最好情况:O(n) 最坏情况:O(n)
平均情况:O(n)
空间复杂度
最好情况:O(1) 最坏情况:O(n)
平均情况:O(n)
05 非递归中序遍历 二叉树的优缺点
优点
01
02
03
空间效率高
非递归算法通常只需要常 数级别的额外空间,相比 之下,递归算法可能需要 更多的堆栈空间。
代码简洁
非递归算法的代码通常更 简洁,更易于理解和维护。
适合处理大型数据
由于非递归算法不需要大 量的堆栈空间,因此更适 合处理大型数据集。
缺点
编程技巧要求高
非递归算法需要更多的编程技巧, 特别是对于那些不熟悉这种技术 的人来说,理解和实现可能会比 较困难。
遍历过程
01
02
03
04
弹出栈顶元素,访问该 节点。
如果该节点右子节点存 在,将右子节点入栈。
如果该节点左子节点存 在,将左子节点入栈。
重复上述步骤,直到栈 为空。
遍历后的结果
01
中序遍历的顺序为:左子树 -> 根节点 -> 右子树。
02
非递归方法利用了栈的性质,实 现了从上到下、从左到右的遍历 顺序。
THANKS
感谢观看
栈为空。
实例二:复杂的二叉树
总结词:进阶应用
详细描述:对于复杂的二叉树,非递归中序遍历需要 更加细致的处理。由于树的形状可能不规则,我们需 要更加灵活地使用栈来处理节点之间的关系。在遍历 过程中,我们需要注意处理各种特殊情况,例如循环 引用、节点值相等的情况,以避免陷入无限循环或访 问错误的节点。此外,我们还需要注意优化算法的时 间复杂度和空间复杂度,以提高遍历的效率和准确性。
二叉树遍历实验报告
二叉树遍历实验报告二叉树遍历实验报告一、引言二叉树是计算机科学中常用的数据结构之一,它由节点组成,每个节点最多有两个子节点。
二叉树的遍历是指按照一定的规则访问二叉树中的所有节点。
本实验旨在通过实际操作,探索二叉树的三种遍历方式:前序遍历、中序遍历和后序遍历,并分析它们的应用场景和性能特点。
二、实验方法1. 实验环境本实验使用Python编程语言进行实现,并在Jupyter Notebook中运行代码。
2. 实验步骤(1)定义二叉树节点类首先,我们定义一个二叉树节点类,该类包含节点值、左子节点和右子节点三个属性。
(2)构建二叉树在主函数中,我们手动构建一个二叉树,包含多个节点,并将其保存为根节点。
(3)实现三种遍历方式通过递归的方式,实现二叉树的前序遍历、中序遍历和后序遍历。
具体实现过程如下:- 前序遍历:先访问根节点,然后递归遍历左子树,最后递归遍历右子树。
- 中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树。
- 后序遍历:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。
(4)测试遍历结果在主函数中,我们调用实现的三种遍历方式,对构建的二叉树进行遍历,并输出结果。
三、实验结果与分析经过实验,我们得到了二叉树的前序遍历、中序遍历和后序遍历的结果。
以下是我们的实验结果及分析:1. 前序遍历结果前序遍历结果为:A - B - D - E - C - F - G前序遍历的应用场景包括:复制整个二叉树、计算二叉树的深度和宽度等。
前序遍历的时间复杂度为O(n),其中n为二叉树的节点数。
2. 中序遍历结果中序遍历结果为:D - B - E - A - F - C - G中序遍历的应用场景包括:二叉搜索树的中序遍历可以得到有序的节点序列。
中序遍历的时间复杂度为O(n),其中n为二叉树的节点数。
3. 后序遍历结果后序遍历结果为:D - E - B - F - G - C - A后序遍历的应用场景包括:计算二叉树的高度、判断二叉树是否对称等。
二叉树的建立和遍历的实验报告
竭诚为您提供优质文档/双击可除二叉树的建立和遍历的实验报告篇一:二叉树遍历实验报告数据结构实验报告报告题目:二叉树的基本操作学生班级:学生姓名:学号:一.实验目的1、基本要求:深刻理解二叉树性质和各种存储结构的特点及适用范围;掌握用指针类型描述、访问和处理二叉树的运算;熟练掌握二叉树的遍历算法;。
2、较高要求:在遍历算法的基础上设计二叉树更复杂操作算法;认识哈夫曼树、哈夫曼编码的作用和意义;掌握树与森林的存储与便利。
二.实验学时:课内实验学时:3学时课外实验学时:6学时三.实验题目1.以二叉链表为存储结构,实现二叉树的创建、遍历(实验类型:验证型)1)问题描述:在主程序中设计一个简单的菜单,分别调用相应的函数功能:1…建立树2…前序遍历树3…中序遍历树4…后序遍历树5…求二叉树的高度6…求二叉树的叶子节点7…非递归中序遍历树0…结束2)实验要求:在程序中定义下述函数,并实现要求的函数功能:createbinTree(binTreestructnode*lchild,*rchild;}binTnode;元素类型:intcreatebinTree(binTreevoidpreorder(binTreevoidInorder(binTreevoidpostorder(binTreevoidInordern(binTreeintleaf(bi nTreeintpostTreeDepth(binTree2、编写算法实现二叉树的非递归中序遍历和求二叉树高度。
1)问题描述:实现二叉树的非递归中序遍历和求二叉树高度2)实验要求:以二叉链表作为存储结构3)实现过程:1、实现非递归中序遍历代码:voidcbiTree::Inordern(binTreeinttop=0;p=T;do{while(p!=nuLL){stack[top]=p;;top=top+1;p=p->lchild;};if(top>0){top=top-1;p=stack[top];printf("%3c",p->data);p=p->rchild;}}while(p!=nuLL||top!=0);}2、求二叉树高度:intcbiTree::postTreeDepth(binTreeif(T!=nuLL){l=postTreeDepth(T->lchild);r=postTreeDepth(T->rchil d);max=l>r?l:r;return(max+1);}elsereturn(0);}实验步骤:1)新建一个基于consoleApplication的工程,工程名称biTreeTest;2)新建一个类cbiTree二叉树类。
二叉树的建立和遍历实验报告
二叉树的建立和遍历实验报告一、引言(100字)二叉树是一种常见的数据结构,它由根节点、左子树和右子树组成,具有递归性质。
本次实验的目的是了解二叉树的建立过程和遍历算法,以及熟悉二叉树的相关操作。
本实验采用C语言进行编写。
二、实验内容(200字)1.二叉树的建立:通过输入节点的值,逐个建立二叉树的节点,并通过指针连接起来。
2.二叉树的遍历:实现二叉树的三种常用遍历算法,即前序遍历、中序遍历和后序遍历。
三、实验过程(400字)1.二叉树的建立:首先,定义二叉树的节点结构,包含节点值和指向左右子树的指针;然后,通过递归的方式,依次输入节点的值,创建二叉树节点,建立好节点之间的连接。
2.二叉树的前序遍历:定义一个函数,实现前序遍历的递归算法,先输出当前节点的值,再递归遍历左子树和右子树。
3.二叉树的中序遍历:同样,定义一个函数,实现中序遍历的递归算法,先递归遍历左子树,再输出当前节点的值,最后递归遍历右子树。
4.二叉树的后序遍历:同样,定义一个函数,实现后序遍历的递归算法,先递归遍历左子树和右子树,再输出当前节点的值。
四、实验结果(300字)通过实验,我成功建立了一个二叉树,并实现了三种遍历算法。
对于建立二叉树来说,只要按照递归的思路,先输入根节点的值,再分别输入左子树和右子树的值,即可依次建立好节点之间的连接。
建立好二叉树后,即可进行遍历操作。
在进行遍历算法的实现时,我首先定义了一个函数来进行递归遍历操作。
在每一次递归调用中,我首先判断当前节点是否为空,若为空则直接返回;若不为空,则按照特定的顺序进行遍历操作。
在前序遍历中,我先输出当前节点的值,再递归遍历左子树和右子树;在中序遍历中,我先递归遍历左子树,再输出当前节点的值,最后递归遍历右子树;在后序遍历中,我先递归遍历左子树和右子树,再输出当前节点的值。
通过运行程序,我成功进行了二叉树的建立和遍历,并得到了正确的结果。
可以看到,通过不同的遍历顺序,可以获得不同的遍历结果,这也是二叉树遍历算法的特性所在。
二叉树的遍历实验报告
二叉树的遍历实验报告一、实验目的1.了解二叉树的基本概念和性质;2.理解二叉树的遍历方式以及它们的实现方法;3.学会通过递归和非递归算法实现二叉树的遍历。
二、实验内容1.二叉树的定义在计算机科学中,二叉树是一种重要的数据结构,由节点及它们的左右儿子组成。
没有任何子节点的节点称为叶子节点,有一个子节点的节点称为一度点,有两个子节点的节点称为二度点。
二叉树的性质:1.每个节点最多有两个子节点;2.左右子节点的顺序不能颠倒,左边是父节点的左子节点,右边是父节点的右子节点;3.二叉树可以为空,也可以只有一个根节点;4.二叉树的高度是从根节点到最深叶子节点的层数;5.二叉树的深度是从最深叶子节点到根节点的层数;6.一个深度为d的二叉树最多有2^(d+1) -1个节点,其中d>=1;7.在二叉树的第i层上最多有2^(i-1)个节点,其中i>=1。
2.二叉树的遍历方式二叉树的遍历是指从根节点出发,按照一定的顺序遍历二叉树中的每个节点。
常用的二叉树遍历方式有三种:前序遍历、中序遍历和后序遍历。
前序遍历:先遍历根节点,再遍历左子树,最后遍历右子树;中序遍历:先遍历左子树,再遍历根节点,最后遍历右子树;后序遍历:先遍历左子树,再遍历右子树,最后遍历根节点。
递归算法:利用函数调用,递归实现二叉树的遍历;非递归算法:利用栈或队列,对二叉树进行遍历。
三、实验步骤1.创建二叉树数据结构并插入节点;2.实现二叉树的前序遍历、中序遍历、后序遍历递归算法;3.实现二叉树的前序遍历、中序遍历、后序遍历非递归算法;4.测试算法功能。
四、实验结果1.创建二叉树数据结构并插入节点为了测试三种遍历方式的算法实现,我们需要创建一个二叉树并插入节点,代码如下:```c++//定义二叉树节点struct TreeNode {int val;TreeNode* left;TreeNode* right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};递归算法是实现二叉树遍历的最简单方法,代码如下:```c++//前序遍历非递归算法vector<int> preorderTraversal(TreeNode* root) {stack<TreeNode*> s;vector<int> res;if (!root) return res;s.push(root);while (!s.empty()) {TreeNode* tmp = s.top();s.pop();res.push_back(tmp->val);if (tmp->right) s.push(tmp->right);if (tmp->left) s.push(tmp->left);}return res;}4.测试算法功能return 0;}```测试结果如下:preorderTraversal: 4 2 1 3 6 5 7inorderTraversal: 1 2 3 4 5 6 7postorderTraversal: 1 3 2 5 7 6 4preorderTraversalNonRecursive: 4 2 1 3 6 5 7inorderTraversalNonRecursive: 1 2 3 4 5 6 7postorderTraversalNonRecursive: 1 3 2 5 7 6 4本次实验通过实现二叉树的递归和非递归遍历算法,加深了对二叉树的理解,并熟悉了遍历算法的实现方法。
二叉树的创建与遍历的实验总结
二叉树的创建与遍历的实验总结引言二叉树是一种重要的数据结构,在计算机科学中有着广泛的应用。
了解二叉树的创建和遍历方法对于数据结构的学习和算法的理解至关重要。
本文将对二叉树的创建和遍历进行实验,并总结相应的经验和思考。
二叉树的定义在开始实验之前,我们首先需要了解二叉树的定义和基本概念。
二叉树是一种每个节点最多拥有两个子节点的树形结构。
每个节点包含一个值和指向其左右子节点的指针。
根据节点的位置,可以将二叉树分为左子树和右子树。
创建二叉树二叉树的创建可以采用多种方法,包括手动创建和通过编程实现。
在实验中,我们主要关注通过编程方式实现二叉树的创建。
1. 递归方法递归是一种常用的创建二叉树的方法。
通过递归,我们可以从根节点开始,逐层创建左子树和右子树。
具体步骤如下:1.创建一个空节点作为根节点。
2.递归地创建左子树。
3.递归地创建右子树。
递归方法的代码实现如下所示:class TreeNode:def __init__(self, value):self.value = valueself.left = Noneself.right = Nonedef create_binary_tree(values):if not values:return None# 使用队列辅助创建二叉树queue = []root = TreeNode(values[0])queue.append(root)for i in range(1, len(values)):node = TreeNode(values[i])# 当前节点的左子节点为空,则将新节点作为左子节点if not queue[0].left:queue[0].left = node# 当前节点的右子节点为空,则将新节点作为右子节点elif not queue[0].right:queue[0].right = node# 当前节点的左右子节点已经齐全,可以从队列中删除该节点queue.pop(0)# 将新节点添加到队列中,下一次循环时可以使用该节点queue.append(node)return root2. 非递归方法除了递归方法,我们还可以使用非递归方法创建二叉树。
复制二叉树的非递归算法
复制二叉树的非递归算法二叉树是一种重要的数据结构,它由节点组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。
在实际应用中,经常需要复制一个二叉树,以便进行一些操作而不影响原始树的结构。
本文将介绍一种非递归算法,用于复制二叉树。
我们需要了解什么是非递归算法。
非递归算法是一种不使用递归调用的算法,它通过使用栈或队列等数据结构来模拟递归过程,从而实现相同的功能。
在复制二叉树的过程中,我们可以使用非递归算法来遍历原始树的节点,并创建相应的新节点,从而复制整棵树。
下面是复制二叉树的非递归算法的详细步骤:1. 创建一个空的栈和一个空的新树。
2. 将原始树的根节点入栈。
3. 进入循环,直到栈为空:a. 弹出栈顶节点,记为当前节点。
b. 如果当前节点不为null,则创建一个与当前节点值相同的新节点,并将其插入新树中。
c. 如果当前节点的右子节点不为null,则将右子节点入栈。
d. 如果当前节点的左子节点不为null,则将左子节点入栈。
4. 返回新树。
通过上述算法,我们可以实现对二叉树的复制。
下面是一个具体的例子,以帮助读者更好地理解算法的实现过程。
假设原始树如下所示:```1/ \2 3/ \4 5```根据上述算法,我们可以得到复制后的新树如下所示:```1/ \2 3/ \4 5```在这个例子中,我们首先将根节点1入栈。
然后进入循环,弹出栈顶节点1,并在新树中创建一个值为1的新节点。
由于根节点1的右子节点3不为null,所以将节点3入栈。
由于根节点1的左子节点2不为null,所以将节点2入栈。
接下来,弹出栈顶节点2,并在新树中创建一个值为2的新节点。
由于节点2的右子节点5不为null,所以将节点5入栈。
由于节点2的左子节点4不为null,所以将节点4入栈。
此时栈为空,循环结束。
最终我们得到了复制后的新树。
通过这个例子,我们可以看到非递归算法的实现过程是比较直观和简单的。
通过使用栈来保存待处理的节点,我们可以按照先右后左的顺序遍历原始树的节点,并创建相应的新节点。
二叉树的四种遍历算法
⼆叉树的四种遍历算法⼆叉树作为⼀种重要的数据结构,它的很多算法的思想在很多地⽅都⽤到了,⽐如STL算法模板,⾥⾯的优先队列、集合等等都⽤到了⼆叉树⾥⾯的思想,先从⼆叉树的遍历开始:看⼆叉树长什么样⼦:我们可以看到这颗⼆叉树⼀共有七个节点0号节点是根节点1号节点和2号节点是0号节点的⼦节点,1号节点为0号节点的左⼦节点,2号节点为0号节点的右⼦节点同时1号节点和2号节点⼜是3号节点、四号节点和五号节点、6号节点的双亲节点五号节点和6号节点没有⼦节点(⼦树),那么他们被称为‘叶⼦节点’这就是⼀些基本的概念⼆叉树的遍历⼆叉树常⽤的遍历⽅式有:前序遍历、中序遍历、后序遍历、层序遍历四种遍历⽅式,不同的遍历算法,其思想略有不同,我们来看⼀下这四种遍历⽅法主要的算法思想:1、先序遍历⼆叉树顺序:根节点 –> 左⼦树 –> 右⼦树,即先访问根节点,然后是左⼦树,最后是右⼦树。
上图中⼆叉树的前序遍历结果为:0 -> 1 -> 3 -> 4 -> 2 -> 5 -> 62、中序遍历⼆叉树顺序:左⼦树 –> 根节点 –> 右⼦树,即先访问左⼦树,然后是根节点,最后是右⼦树。
上图中⼆叉树的中序遍历结果为:3 -> 1 -> 4 -> 0 -> 5 -> 2 -> 63、后续遍历⼆叉树顺序:左⼦树 –> 右⼦树 –> 根节点,即先访问左⼦树,然后是右⼦树,最后是根节点。
上图中⼆叉树的后序遍历结果为:3 -> 4 -> 1 -> 5 -> 6 -> 2 -> 04、层序遍历⼆叉树顺序:从最顶层的节点开始,从左往右依次遍历,之后转到第⼆层,继续从左往右遍历,持续循环,直到所有节点都遍历完成上图中⼆叉树的层序遍历结果为:0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6下⾯是四种算法的伪代码:前序遍历:preOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束cout << tree[n].w ; // 输出当前节点内容preOrderParse(tree[n].leftChild); // 递归输出左⼦树preOrderParse(tree[n].rightChild); // 递归输出右⼦树}中序遍历inOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束inOrderParse(tree[n].leftChild); // 递归输出左⼦树cout << tree[n].w ; // 输出当前节点内容inOrderParse(tree[n].rightChild); // 递归输出右⼦树}pastOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束pastOrderParse(tree[n].leftChild); // 递归输出左⼦树pastOrderParse(tree[n].rightChild); // 递归输出右⼦树cout << tree[n].w ; // 输出当前节点内容}可以看到前三种遍历都是直接通过递归来完成,⽤递归遍历⼆叉树简答⽅便⽽且好理解,接下来层序遍历就需要动点脑筋了,我们如何将⼆叉树⼀层⼀层的遍历输出?其实在这⾥我们要借助⼀种数据结构来完成:队列。
先序遍历二叉树的算法非递归算法
先序遍历二叉树的算法非递归算法一、引言二叉树是一种常见的数据结构,其遍历方式包括先序遍历、中序遍历和后序遍历。
先序遍历是一种常用的遍历方式,它按照根节点-左子树-右子树的顺序访问每个节点。
在递归实现先序遍历二叉树的基础上,非递归算法的出现使得算法的实现更为简洁和高效。
二、非递归算法原理非递归算法的实现原理基于栈数据结构。
我们首先将根节点入栈,然后不断弹出栈顶元素并访问,同时将右子树和左子树分别入栈。
当栈为空时,表示遍历完成。
这种方法避免了递归调用可能导致的堆栈溢出问题,同时提高了算法的效率。
三、非递归算法实现以下是用Python实现的非递归先序遍历二叉树的算法:```pythondefpreorder_traversal_non_recursive(node):ifnodeisNone:return#将当前节点入栈stack.append(node)#当栈不为空时,不断弹出栈顶元素并访问whilestack:curr=stack.pop()#弹出栈顶元素print(curr.value)#访问当前节点#将右子节点入栈ifcurr.right:stack.append(curr.right)#将左子节点入栈ifcurr.left:stack.append(curr.left)```四、算法应用与讨论非递归算法的应用范围广泛,不仅可以应用于二叉树的遍历,还可以应用于二叉树的创建、插入、删除等操作。
在实际应用中,我们可以通过Python中的列表或者类来实现栈数据结构,进而实现非递归算法。
此外,非递归算法还可以与其他算法结合,如深度优先搜索(DFS)和广度优先搜索(BFS),以实现更复杂的数据处理任务。
五、总结非递归先序遍历二叉树的算法是一种实用的技术,它能够简化代码、提高效率并避免堆栈溢出问题。
通过使用栈数据结构,我们可以轻松地实现非递归算法,并将其应用于各种二叉树操作中。
这种技术对于理解和应用二叉树数据结构具有重要的意义。
数据结构中二叉树的生成及遍历非递归算法浅析
及运算 都较为简练 , 因此 , 二叉树 在数据结构课 程 中显得 特别 c a dt; hr aa s ut to eci , hd t c bnd h dr i ; r l l cl 二叉树是 由结点的有 限集合构成 ,这个有限集合或者为空 }t e Br ; e 集 ,或者是 由一个根节点及两棵互不相交的分别称之为这个根 Bre [ as e t Q m xi ] e z;
一
、
引言
# c d “aoh il e m1 ・ nu ] ” c
t ee。 c b oe y d t t t d{ p n
、
二叉树是一种重要 的树形结构 , 其结构规整。许多实际问 # en U L0 df e L i N
题抽象 出来 的数据结构往往是二叉树 的形式 , 而且其存储结构 重要 , 这里 我们先 了解一下二叉树 。
,
立二 叉链表。 一般的二 对于 叉树, 必须添加一些 虚结点, 使其成 ‘ ~’ : 一 、
队列是一个指针类型 的数组 , 保存已输入 的结点 _… 、
… ~ … 一 ’
,
# e n x i 0 d f ema sz 1 0 i e 衔n l d sdoh” cu e“ t i.
s> 一
l= L ; d U L
r a+ ; e r +
Qra1s r ; e =
。
3 办公 自动化杂志 o。
i ra- 1T s f er= )= : ( =
es le
f=t kt ] T s c [p; a o
近 >i = p 卜 r =) 曲t
fr f“ " - dt ; pi (%c , > aa n T )
递归算法 , 故有关二叉树的试题通 常要求采用非递归算 法, 这就 Br , ; te e s 使得掌握二叉树的生成及遍历的非递归算法成为必要 。 tN I ; = uJ L
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十三二叉树非递归遍历
1. 创建一个包含数字元素的完全二叉树,使用switch函数,根据用户的输入,同时具有如下功能:
【1】初始化一个二叉树
提示:scanf("%d%d",&i,&x);//i是按满二叉树编号,节点应有的序号,x是节点的数据先建立一个新节点,再利用性质5,建立新节点与其双亲的左/右孩子的关系。
【2】前序非递归遍历,打印出各节点的数据
【3】中序非递归遍历,打印出各节点的数据
【4】后序非递归遍历,打印出各节点的数据
【5】结束程序运行
#include<stdio.h>
#include<stdlib.h>
struct node
{
int data;
struct node *lc,*rc;
};
struct node *root;
int m=0;
main()
{
int cord;
struct node* creat();
void preorderz(struct node *t);
void inorder(struct node *t);
void postorder(struct node *t);
do
{
printf("\n 主菜单\n");
printf(" 1 建立二叉树\n");
printf(" 2 先序非递归遍历\n");
printf(" 3 中序非递归遍历\n");
printf(" 4 后序非递归遍历\n");
printf(" 5 结束程序运行\n");
printf("-----------------------------------\n");
printf("请输入您的选择(1, 2, 3, 4, 5)");
scanf("%d",&cord);
switch(cord)
{
case 1:
{
root=creat(); // 建立二叉树
printf("建立二叉树程序以执行完,\n");
printf("请返回主菜单,用遍历算法验证程序的正确性\n");
}break;
case 2:
{
preorderz(root);
}break;
case 3:
{
inorder(root);
}break;
case 4:
{
postorder(root);
}break;
case 5:
{
printf("二叉树程序执行完,再见!\n");
exit(0);
}
}
}while(cord<=6);
}
struct node* creat()
{
struct node *t,*q,*s[30];
int i,j,x;
printf("i,x=");
scanf("%d%d",&i,&x);//i是按满二叉树编号,节点应有的序号,x是节点的数据 while((i!=0)&&(x!=0))
{
q=(struct node*)malloc(sizeof(struct node));
q->data=x;
q->lc=NULL; q->rc=NULL;//建立新节点q
s[i]=q;
if(i==1)
t=q; //t代表树根节点
else
{
j=i/2; //i的双亲节点的编号
if((i%2)==0)
s[j]->lc=q;
else
s[j]->rc=q;
}
printf("i,x=");
scanf("%d%d",&i,&x);
}
return(t);
}
void preorderz(struct node* p)//前序非递归算法
{
struct node *q,*s[30]; //s辅助栈
int top,bools;
q=p;top=0; //栈顶指针
bools=1; //bools=1为真值继续循环;bools=0为假时栈空,结束循环 do
{
while(q!=NULL)
{
printf("%6d",q->data); //访问节点
top++;
s[top]=q;
q=q->lc;
}
if(top==0)
bools=0;
else
{
q=s[top];
top--;
q=q->rc;
}
}while(bools);
printf("\n");
}
void inorder(struct node* p)//中序非递归遍历{
struct node *s[30],*q;
int top,bools;
q=p;top=0;
bools=1;
do
{
while(q!=NULL)
{
top++;
s[top]=q;
q=q->lc;
}
if(top==0)
bools=0;
else
{
q=s[top];
top--;
printf("%6d",q->data); //访问节点
q=q->rc;
}while(bools);
}
void postorder(struct node* p) {
struct node *s[30],*s2[30],*q; int top,bools;
q=p;top=0;
bools=1;
do
{
while(q!=NULL)
{
top++;
s[top]=q;
s2[top]=1;
q=q->lc;
}
if(top==0)
bools=0;
else
{
if(s2[top]==1)
{
s2[top]=2;
q=s[top];
q=q->rc;
}
else
q=s[top];
//s2[top]=0;
top--;
printf("%6d",q->data);
q=NULL;
}
}
}while(bools);
}。