第八章玻璃的熔制与窑炉.

合集下载

《玻璃工艺学》教学大纲

《玻璃工艺学》教学大纲

《玻璃工艺学》课程教学大纲英文名称: Glasses Technology课程编码:E014404课内教学时数:80学时,其中课堂授课64学时,实验16学时。

学分:5学分;适用专业:无机非金属材料工程本科开课单位:应用化学与环境工程系撰写人:王秋芹审核人:制定(或修订)时间:2014年8月一、课程的性质和任务玻璃工艺学是无机非金属材料专业的主要专业选修课程之一。

本课程旨在使学生掌握玻璃工艺的同时,培养学生实践能力,培养自学、讲解、协作和分析的综合能力。

要求学习本课程前应修完普通物理、材料物理、普通化学、材料科学基础、材料制备技术、无机材料化学、玻璃与非晶态材料等课程。

开设这门课的目的是让学生了解玻璃的种类、结构特点、基本性能、原料组成和制备工艺,了解玻璃在各个领域的应用现状和发展趋势.通过这门课的学习使学生对玻璃的性能和生产工艺过程有一个初步的掌握。

二、课程教学内容的基本要求、重点和难点第一单元玻璃的定义与结构㈠基本要求了解玻璃的发展历史,玻璃的发展前景,玻璃的通性,玻璃的结构理论,掌握玻璃组成、结构与性能之间的关系。

了解玻璃结构的研究方法.㈡教学重点玻璃的结构理论㈢教学难点玻璃组成、结构与性能之间的关系㈣教学内容1、玻璃的定义2、玻璃的通性3、玻璃的结构(1)玻璃的结构理论(2)传统玻璃结构(3)重金属玻璃结构(4)非氧化物玻璃的结构(5)金属玻璃的结构(6)有机玻璃的结构。

4、玻璃组成、结构与性能之间的关系(1)玻璃的阳离子分类(2)玻璃组成对结构的影响(3)结构对性质的影响。

5、玻璃结构的研究方法第二单元玻璃的形成与规律㈠基本要求通过本章的教学使学生了解玻璃形成方法,初步了解各种氧化物在玻璃熔体中的作用,理解玻璃的类型及结构学说,掌握玻璃的生成规律及玻璃成分、结构和性能之间的关系,领会玻璃的生成规律。

㈡教学重点玻璃的类型及结构学说。

㈢教学难点玻璃形成的动力学,热力学。

㈣教学内容1、玻璃形成物资(1)结晶化学理论(2)氧化物在玻璃中的作用2、玻璃形成方法(1)熔体冷却法(2)气相制备技术(3)液相制备技术(4)固相制备技术。

制作玻璃的窑炉原理

制作玻璃的窑炉原理

制作玻璃的窑炉原理
玻璃窑炉是用于制造玻璃的设备,其原理基于高温下的玻璃成型。

玻璃窑炉通常由一个或多个燃烧室、玻璃熔炉、排放系统和控制系统组成。

在玻璃窑炉中,原材料和燃料被加入到玻璃熔炉中,熔炉被加热至高温,使原材料熔化。

通常,玻璃熔炉由陶瓷砖或特殊的耐火材料构建而成,能够承受高温和腐蚀。

熔炉底部通常有一个小孔,使得熔融的玻璃可以流出并制成玻璃制品。

燃烧室通常用于加热玻璃熔炉。

燃料可以是天然气、石油、煤等,通过燃烧室中的燃烧,使熔炉达到高温。

排放系统则用于控制排放和废气的处理,以减少对环境的影响。

控制系统则用于监测和调节熔炉的温度、压力、气体流量等参数,以确保生产的玻璃质量和工艺流程的稳定性。

总之,玻璃窑炉的原理是利用高温和熔融的玻璃材料,通过燃烧室和控制系统来实现玻璃制品的生产。

玻璃的熔制及熔窑.ppt

玻璃的熔制及熔窑.ppt
连续通道式结构单位面积受热面积小,但它的格 子孔道互不相通,可以防止气流分层,使气体分 布均匀。
编篮式是连续通道式格子体结构的改进形式,由 于格子砖的两个端面都是受热面,所以其单位格 子体体积的受热面积最大,而且稳定性也好。
十字形格子砖是一种新型格子砖,是AZS电熔浇 注砖,耐高温侵蚀性能好,容积密度大、热容量 高、热导率大等特性。蓄热效能好,周期温度波 动小,是一种理想的格子体。
3 玻璃的熔制及熔窑
3.2.2 热源供给及余热回收部分
3.2.2.1 热源供给 主要指小炉和燃烧喷嘴。 小炉是玻璃熔窑的重要组成部分,是使燃料和
空气预热、混合、组织燃烧的配置。 (1)燃油与天然气小炉 (2) 燃煤气小炉
A.小炉结构:应保证火焰有一定长度、亮度、刚 度、角度,有足够的覆盖面积,不发飘,不分层, 还要满足窑内所需的温度和气氛的要求。
e.炉条碹
炉条是承受蓄热室格子体重力的砖材结构。实际上 也是拱碹结构,是由单一的碹砖砌成的一条一条拱 碹,条与条之间留空以通气体,俗称炉条碹。
炉条碹是承受格子体重力的拱碹,上面码砌格子砖, 因此拱碹上面必须找平。
找平的方法有几种: ①在拱碹的弧形上面用爬碴砖砌平 ②直接用上面平直而下面弧形的碹砖砌成。
玻璃池窑那些部位耐火材料受到的侵蚀 最严重?举例说明蓄热室格子体耐火材 料的配置方案?
A 连通式蓄热室 熔窑一侧小炉下面的空气蓄热室为连通的一个 室,煤气蓄热室也为连通的一个室。 气流分布不均,容易形 成局部过热使格子砖很快烧损,目前已不再使用。
B 分隔式蓄热室 熔窑一侧蓄热室以每个小炉分成若干个互不相通的独立室, 气体分配分别由各分支烟道上的闸板调节,并分别与煤气及 空气支烟道上的闸板调节,并分别与煤气及空气支烟道相通。 其结构特点是气体分配调节方便,热修条件较好,但分隔墙 占据较多空间,减少了格子体的有效体积。是最普遍采用的 方式之一.2.2 余热回收部分

玻璃窑炉的理论课

玻璃窑炉的理论课

玻璃窑炉的理论课一、玻璃的熔制过程:玻璃的熔制过程分为五个阶段:(一)硅酸盐形成阶段:在高温(约800—1000℃)作用下发生变化:如粉料受热、水分蒸发、盐类分解、多晶转变等,变成不透明的烧结物;(二)玻璃形成阶段温度升高到1200℃时,各种硅酸盐开始为熔融,继续升高温度,未熔化的硅酸盐和石英砂完全熔解于熔融体中,形成大量可见气泡,这一阶段称为配合料熔化阶段;(三)玻璃液澄清阶段:当温度达到1400—1500℃时,玻璃液的黏度降低,使气泡大量逸出;(四)玻璃液均化阶段:达到玻璃液均化主要依靠扩散和对流作用。

高温是一个主要条件,因为它可以减少玻璃液黏度,使扩散作用加强,另外搅拌是提高均匀性的好方法;(五)玻璃液冷却阶段:澄清均化后的玻璃液黏度太小,不适于成型,必须通过冷却达到成形温度,成形温度比澄清温度低200—300℃。

以上各阶段不一定按顺序进行,各阶段没有明显的界线的二、对窑炉关键部位的了解和掌握以及作用1)加料口的作用:玻璃池窑将加料池发展为预熔池。

预熔池内的温度保持在1100—1300℃,配合料内各组分之间的硅酸盐反应在预熔池内开始,料堆表面已经开始熔融。

已初步熔化的料堆,当它进入熔化池后,其熔化速度可以加快。

在熔化池面积一定时,熔化速度加快了,相对来说,其澄清时间就延长了。

因此,加料口的作用就是能提高熔化率、改善玻璃质量、降低热耗的作用;池内粉料飞扬的情况大大减少,格子体堵塞情况大大改善。

2)窑坎:窑坎是放在窑池深层的挡墙,墙高为池深的1/2以上,有的可达到3/4;窑坎是控制玻璃液流,提高熔化率的技术措施。

窑坎作用是:迫使熔化部玻璃液呈一薄层全部流经窑池上层,经高温加热后再进入流液洞,这样提高了玻璃液的温度,有利于气泡的排除,加快澄清速度,从而改善玻璃液质量;设置窑坎后,玻璃液在窑坎处产生回旋,可延迟玻璃液在熔化部停留时间,可阻挡池底脏料流往澄清部。

3)流液洞:流液洞是熔化部和冷却部的玻璃液连通起来的位于池窑底部的涵洞,是由一套特制的优质耐火材料砌筑成的。

玻璃的烧制方法

玻璃的烧制方法

玻璃的烧制方法玻璃的烧制方法是指将原料加热至高温,使其熔化并在适当条件下冷却形成固态玻璃的过程。

下面我将按照易于理解的术语解释玻璃的烧制方法,以确保准确无误。

1. 原料准备:玻璃的主要原料是二氧化硅(硅石英砂)和其他辅助材料,如碳酸钠、石灰石、氟化物等。

这些原料经过筛选、混合和称量,以确保配比精确,并去除杂质。

2. 熔化过程:原料混合后,被送入特殊的玻璃窑炉中。

玻璃窑炉是一个高温容器,通常由耐火材料构成。

炉内的温度通常高达1500摄氏度以上,这样可以将原料熔化成黏稠的液体。

3. 系统调节:在熔化过程中,控制熔融玻璃的温度和成分非常重要。

通过调节炉内的加热元件和气氛(通常是氧气和天然气的混合物),可以控制温度和压力,以确保玻璃质量的稳定性。

4. 玻璃形成:一旦熔融玻璃达到适当的温度和流动性,可以使用不同的方法来形成玻璃制品。

常见的方法包括拉伸、挤压、浇注和吹制。

- 拉伸:将玻璃液体注入特殊的模具中,然后通过拉伸模具使玻璃形成所需的形状。

这种方法常用于生产平板玻璃。

- 挤压:将熔融玻璃通过模具挤压出来,形成所需的形状。

这种方法常用于生产玻璃管和玻璃纤维。

- 浇注:将熔融玻璃直接倒入特殊的模具中,使其自然冷却形成所需的形状。

这种方法常用于生产玻璃块。

- 吹制:将熔融玻璃液体吹入一个特殊的模具中,通过口吹或机械吹制使其膨胀成空心形状。

这种方法常用于生产玻璃容器和玻璃器皿。

5. 冷却和退火:一旦玻璃制品形成,它们需要经过冷却和退火过程。

冷却过程中,玻璃逐渐从高温转变为室温,这样可以增加其强度和稳定性。

退火是将玻璃制品加热至较低温度,然后缓慢冷却,以减轻内部应力,增加耐热性和耐冲击性。

总结:玻璃的烧制方法包括原料准备、熔化过程、系统调节、玻璃形成以及冷却和退火。

通过控制温度、压力和成分,将原料熔化成液体并形成所需的形状。

最后,通过冷却和退火过程,使玻璃制品获得所需的强度和稳定性。

玻璃窑炉-讲稿

玻璃窑炉-讲稿
2
二、玻璃的熔制过程

玻璃的熔化是将配合料投入耐火材料砌筑的熔窑中,
经高温加热,得到无固体颗粒、符合成形要求的各种单相
连续体的过程。


传统的方法生产玻璃------是通过加热,经过高温熔制而 得到的。加热的温度是多高哪?-----1580-1590℃ 。 玻璃熔化所用的设备------熔窑。熔窑是一个由多种耐火
进一步的澄清、均化和冷却以满足玻璃液成型的 要求。 玻璃池窑冷却部(Cooling End)的结构与熔化 部的结构基本上相同,也分为下部窑池和上部空 间两部分。 下部窑池由池底和池壁所组成,上部空间由胸 墙和大碹所组成。只是冷却部的窑池深度比熔化 部的窑池深度稍浅,冷却部的胸墙高度略低于熔 化部的胸墙高度。 冷却部冷却时要注意降温要稳定,避免温度较 大的波动,造成二次气泡。

为了提高玻璃液的质量,现代浮法玻璃窑炉的结 构有了演变-----熔化区、澄清区-----微小气泡。
18

(4)熔化部澄清区长度和宽度的确定

为了便于计算和分区,国内外一般以未对小炉中心
线外1.0m处开始到卡脖拐角处为止这一段的距离来 确定为浮法玻璃池窑熔化部澄清区的长度,它和熔化 区的长度一起构成整个熔化部的长度。
9000
600 14695 11250
9375
650 15163 11625
9750
700 15627 12000
10125
21

玻璃池窑熔化部澄清区的宽度BR与玻璃池窑
熔化部熔化区的宽度Bm相同。
(5)窑池的深度



关于窑池的深度,国内外有两种比较通用的结
构形式。
深池结构和浅池结构。

008-窑炉知识培训

008-窑炉知识培训



鼓泡的位置:
1、在池长1/3处布置一排鼓泡起助熔作用,在池长2/3- 4/5处布置另一排鼓泡,起促进澄清和均化作用。 2、第一排鼓泡在池长2/3附近,第二排紧随其后,两排间 相距约1m或更近。起到阻挡生料和加强玻璃液均化。



流液洞的两种结构:
1、流液洞形式 2、铂金挡砖结构

正在砌筑中流液洞

锆砖
产品 指标 ZrO2含量(%) SiO2含量(%) Fe2O3含量(%) 显气孔率(%) 体积密度 (g/cm3) 常温耐压强度 (MPa) 荷重软化始点 To.6(0C) 高致密锆砖 等静压 HDZS-65 65 33 0.3 ≤1 ≥4.25 ≥300 ≥1680 高锆致密 砖等静压 HDZS-69 69 29 0.3 ≤9 ≥4.15 ≥200 ≥1680 优质标准 锆砖压制 HPZS-B 65 33 0.5 ≤18 ≥3.75 ≥120 ≥1700 高纯异型 标准锆砖 VCZS 65 33 0.5 ≤20 ≥3.65 ≥100 ≥1680




铬刚玉砖(AZCS-30) 密度≥3.35g/cm3, 显气孔率≤18%,常温耐压强度,Cr2O3 30±1%,ZrO2 17±1%, SiO2 10±1%, Al2O3 41±1% 铬刚玉泥浆(AZCS-30) Cr2O3 30±1%,ZrO2 17±1%, SiO2 10±1%, Al2O3 41±1% 致密氧化铬砖具有最佳的抗高温E玻璃的侵蚀性,其侵蚀 物基本上对玻璃液不造成污染,是首选的优质耐火材料砖 材 致密氧化铬砖采用等静压法成型,其致密度非常高,其抗 侵蚀性是致密氧化锆的两倍。主要应用在直接接触高温玻 璃液的熔化部池壁、熔化部高温部位池底、主通路池壁和 池底、分配通路池壁和池底等高温部位。 主要厂家:美国的科哈特、德国的VGT、广州石井。

玻璃熔制及熔窑---熔制的工艺制度解析

玻璃熔制及熔窑---熔制的工艺制度解析

熔制的工艺制度
3.温度曲线 热点:不是一个点,而是玻璃液表面的最高温度带 (1)“山”型曲线
小炉序号 1 2 3 4 5 6
温度分布℃ 1430 1480 1530 1550 1520 1440
燃料分配% 16 18 20 21 16 8~9
特点:热点突出,热点与1#小炉及末对小炉间的温差大,玻璃 液对流剧烈,泡界线清晰稳定,容易达到稳定作业;配合料熔 化滞后,难以充分利用窑的潜力。
❖ d.温度 ❖ 当熔化部温度高时,玻璃液粘度减小,回流速度加快,
参与回流的玻璃液量增多,配合料迅速熔化,泡界线趋 近于投料口;
❖ 熔化部温度降低时,玻璃液粘度变大,回流慢,液量少, 未熔配合料增多,泡界线挪后变远;当窑内横向温差变 大时,横向液流明显加剧,泡界线紊乱、模糊,直至偏 斜,发生“跑料”现象。
熔制的工艺制度
窑内对火焰的要求 温度: 亮度:与火焰的碳黑量有关(燃料的性质、空气过剩系数) 长度:距离对面胸墙0.5m左右 宽度:覆盖面积 角度:平直稍向下斜 刚度:清亮有力,不分层,不发飘,与火焰喷出速度有关
玻璃池窑的工作原理
(玻璃液的流动和窑内应热交换)
玻璃液.增加了热量的损失; 4.加速了对窑体的侵蚀。 二、玻璃池窑内的热交换
玻璃池窑的工作原理
(玻璃液的流动和窑内应热交换)
A.火焰空间内的热交换(火焰、窑墙和碹顶、被加热的配合 料和玻璃液)
熔制的工艺制度
“桥形”曲线: 热点前后两对小炉的温度与最高温度相差不大,温度曲线似 拱桥形。 特点:熔化高温带较长,有利于配合料的熔化和玻璃液的澄 清。热点不明显,我浓度梯度小,向投料口的回流弱,易产 生“跑料”现象,但易于控制。
小炉序号
1
2

3 玻璃的熔制及熔窑(3)

3  玻璃的熔制及熔窑(3)
3.2 浮法玻璃熔窑
根据各部分功用分为: 玻璃熔制、热源供给、余热回收、排烟供气。 本节主要讲述熔窑各部结构、作用,设计内 容放在《课程设计》进行。
3.2.1 玻璃熔制部分
该部分由投料部分、熔化部(分隔设备之 前)、分隔设备、冷却部四部分组成。
(1)投料部分
A.投料机 投料机简介及国内主要应用 的型号。
B.投料口和投料池 a.投料机的工作环境 b.投料方式 c.预熔池
Байду номын сангаас.前脸墙 a.何为前脸墙
b.普通碹 c.变形平碹
d.普通碹外加碹结构
e.L型吊墙结构
(2)熔化部
A.作用 B.结构
C.窑池 a.池壁 池壁砖的结构
b.池底 池底的结构
D.耳池

第八章玻璃的熔制与窑炉

第八章玻璃的熔制与窑炉
玻璃工艺学
11
铅硅酸盐玻璃
1 Na 2O K 2O PbO 8 其中:氧化物—各氧化物在玻璃中的重量百分数; —表示玻璃相对难熔的特征值; 与值相应的熔化温度
SiO 2Fra bibliotek值
6
1450~1460
5.5
1420
4.8
1380~1400
4.2
1320~1340
熔化温度℃
注意:常数是一经验值,确定熔制温度时,此常数不能认 为是唯一的决定因素,它未考虑如粒度、温度等因素。
玻璃工艺学 6
2.多组分反应:除了包括单组分和双组分的加热反应特点外, 还包括含自身反应特点,如复盐的反应;形成低共熔物,使得熔制 温度低,所以组成越多,熔制温度越低;硅酸盐的生成等。 如:生成CO2的来源有碳酸盐的单组分分解、碳酸盐生成硅酸 盐的反应、复盐的分解等。 因此配合料的加热反应基本上是单组分和多组分加热反应的综 合。
1000℃
900℃
SiO2+Na2O+CaO反应速度与温度
玻璃工艺学 8
分解% 100
75 50 25 0
4
3
2
1
10 20
30 40
50
60
70 80 分钟
CaCO3与SiO2在不同比例时的反应速度 1—CaCO3;2—CaCO3+SiO2;3—CaCO3+2SiO2; 4—CaCO3+3SiO2;
此外,还有部分气体吸附在玻璃表面上(量很少)。 玻璃的澄清过程一般是指排除可见气泡,完全排除包括化 学结合气体在内的玻璃中的气体(去气)只有采用特殊方法熔 制才可实现。 (三)气泡的生成和长大 气泡的形成即是玻璃中新相的形成,分两个阶段: 泡核的形成和气泡的长大 1.小于临界泡核的,不能长大,将溶解于玻璃内;大于临 界泡核的,长大。

3 玻璃的熔制及熔窑(2)讲解

3  玻璃的熔制及熔窑(2)讲解

(3)泡界线
A.泡界线 泡界线——泡沫稠密区与清净玻璃液之间就 形成了一条整齐明晰的分界线,在线的里面, 玻璃形成反应激烈进行,液面有很多泡沫。 而在线的外面,液面像镜子一样明亮。这条 分界线就是泡界线。
B.泡界线的形成
进入熔窑的配合料受到三方面的作用 : 投料机将料堆向前推进的力 ; 从热点向投料口的对流对料堆施加的阻止其 前进的反方向的力 ; 高温熔化作用 。 在三者的作用平衡时,料堆就固定在熔窑的 某一位置消失。此后未熔粉料颗粒和反应放 出的气体形成泡沫稠密区,并在三者作用下 完全熔融,形成清净的玻璃液。
d.温度 当熔化部温度高时,玻璃液粘度减小,回流 速度加快,参与回流的玻璃液量增多,配合 料迅速熔化,泡界线趋近于投料口; 熔化部温度降低时,玻璃液粘度变大,回流 慢,液量少,未熔配合料增多,泡界线挪后 变远;当窑内横向温差变大时,横向液流明 显加剧,泡界线紊乱、模糊,直至偏斜,发 生“跑料”现象。
e.生产量的变化 但生产量的多少与拉引速度、品种、厚度变 化有关。当作业流量增加时,泡界线变远, 反之变近。 f.卡脖水包的影响 卡脖水包冷却强度越大,插入玻璃液中越深, 玻璃液回流量越小,泡界线越向后移。 反之,玻璃液回流量大,泡界线向前移。
g.其它因素 如小炉碹、喷火口、小炉舌头的角度、长 度设计得不合理以及熔窑在生产中因受侵蚀、 烧损而变得不合理,使煤气与空气混合得不 好,或火焰上飘、下倾,都使熔化受影响, 泡界线不正常。由于热修等也可引起泡界线 的波动。
D.熔化率与熔化温度的关系
玻璃熔化温度(℃)1370 1420 1470 1500 1530 1600 熔化率(kg/m2· d) 350 700 1050 1500 2000 3000

3__玻璃的熔制及熔窑(2)解析

3__玻璃的熔制及熔窑(2)解析

C.窑压波动的原因 ①造成窑压过大 烟囱抽力不够; 阻力过大 。 ②窑压小 其主要原因是抽力过大 。
D.窑压控制
一般夏季的窑压比冬季低2~4Pa,窑炉后 期时窑压比前期稍低些。;
换火操作也是引起窑压波动的主要因素之一, 采用合适的换火程序和自控调节参数可将换 火时的窑压波动控制在1Pa。
高温计(光学高温计较为准确,热
电偶测的是后滞温度,起参考作用。)
B.温度制度的作用
温度制度对配合料熔化速度、玻璃液对流情 况、成型作业、燃料消耗、窑龄等有影响。
C.温度曲线 ①“山形”曲线
热点(不是一个点,而是玻璃液表面的最高 温度带)突出,热点与1#小炉及末对小炉 间的温差大,泡界线清晰稳定;配合料熔化 滞后。
窑产量增长率 (%)
2
1
0.7
(2)压力制度
A.压力分布 压力制度用压力分布曲线表示,压力指的是
系统所具有的静压。 气流压力分布—整个气体流程(从进气到排
烟)的压力分布; 纵向压力分布 —沿玻璃液流程的空间压力
分布 。
气流压力分布图
B.窑压稳定的重要性
窑压波动立即影响成型部,使成型温度不稳。
C.影响泡界线的因素
窑内温度分布、玻璃液流状况、成型作业和 投料情况。
D.泡界线的作用
根据泡界线的形状、位置和清晰程度,可以 判断出熔化作业的好坏,并据此予以调节。
E.泡界线的控制
a.配合料 化学组成—当原料成分发生变化时,应及时予以控
制调整,微量的变化也可能引起熔化条件的改变 均匀率—当均匀度低时,泡界线变远 ; 水 分—配合料水分大,易结团,影响均匀度的提
高,入窑后料层虚高,前进速度快,泡界线变远; 水分小,运输分层明显,投入窑后飞料严重,不仅 堵塞蓄热室格孔,加剧窑体侵蚀,而且料堆小,沉 入液面深,造成熔化困难,泡界线也会变远。

玻璃原料、熔化及窑炉

玻璃原料、熔化及窑炉

浮法玻璃成分
就浮法玻璃而言,对成分的要求可以概括如下: 高钙,中镁,低铝,微铁,少碱。
2.玻璃的配合料制备
配合料制备工艺流程
配合料的外观质量判断
水分检查:看配合料的干、湿度,有无料蛋。 质量的检查:是否有砖头,铁块或其他有害杂物。 配合料是否均匀:颗粒度是否合乎规定的标准。 配合料料进入窑后,看熔化的快慢及配合料料本身
原料粒径小,玻璃的熔化速率快,但生产中硅砂却不能有200目超细粉, 因为:
1、粒径小,颗粒比表面积大,颗粒之间的静电吸附效应较强,造成配合料 易结团而不利于熔化;
2、颗粒小,玻璃熔融反应速度加快,发泡变得激烈,但产生的大量微小气 泡却不易排除,使玻璃液澄清困难。
3、细颗粒级物料在窑内受热气流的冲击后飞散,易改变配合料组成,飞料 随废气排出时,会堵塞蓄热室格子砖体。
黄色,影响玻璃的外观质量。
氧化钙,氧化镁:
CaO:提高玻璃的机械强度、硬度和化学稳定性, 高温降低玻璃的粘度利于熔化和澄清,低温增 加玻璃的粘度提高硬化速度。但CaO含量过高易 使玻璃析晶,使玻璃发脆,降低玻璃的热稳定 性。 MgO作用与CaO相似,但能克服CaO析晶能力强的 特点,加宽作业温度范围,利于玻璃成型。 白云石主要引入CaO、MgO;石灰石主要引入CaO。
的变化情况。
配合料的相关质量因素
配合料的质量指标:化学成份、水份、颗粒度、混 合均匀度、温度等。
配合料成份准确:原料成份稳定、化验结果正确、 原料水份准确、称量的精确。
配合料的水份一般控制在4~5%,温度要求在35.4℃ 以上。
配合料混合均匀度:含碱均方差≤0.3。
二.玻璃的燃料简介
1.重油
重油又称燃料油,呈暗黑色液体,主要是以原油加 工过程中的常压油,减压渣油、裂化渣油、裂化柴 油和催化柴油等为原料调合而成。

玻璃球窑之窑炉的结构和熔制

玻璃球窑之窑炉的结构和熔制

玻璃球窑之窑炉的结构和熔制一、球窑的种类1.E玻璃球窑生产E玻璃成分的窑炉被称为E玻璃球窑。

适合的窑型有:蓄热式马蹄焰窑;蓄热式横火焰窑;换热式单元窑。

其中单元窑能较好控制玻璃质量,但在我国玻璃球生产初期,国内缺少高热值燃油及煤气,燃烧器和金属换热器方面的技术落后,因此实际上单元窑从没有用于生产玻璃球。

横火焰窑生产的玻璃质量相对较好,但因蓄热式横火焰窑池宽度一般要求大于4mm,以保证燃烧完全和窑炉热效率高。

这样,横火焰窑的熔化面积较大,使制球机半圆型工作池的布置受到限制,因此这种窑型的使用也很少。

但可以认为,随着制球机的改进,以及能源供给的多样化,采用横火焰窑还是有一定应用前景的。

马蹄焰窑至今仍是国内制造E玻璃球的首选窑型。

2.C玻璃球窑生产C玻璃成分的窑炉被称为C玻璃球窑,C玻璃球窑也以采用马蹄形火焰窑为主。

过去4台制球机以下的C玻璃球窑曾采用过双碹窑。

应该说单元窑和横火焰窑同样也适用于C玻璃球窑,但由于如前所述的原因,实际生产中从未采用。

3.电熔球窑适合于小规模特种成分玻璃球或玻璃块的生产。

二、马蹄焰球窑结构设计1.结构尺寸(1)熔化面积。

窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加速对耐火材料的侵蚀,降低球质和影响炉龄。

而采取鼓泡和电助熔技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔化率。

(2)熔池长宽比。

长宽比越大,玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的限制。

采用高热值燃料的球窑池长可达到10mm,所以可选择较大的长宽比。

而采用低热值燃料的球窑应选择较小的长宽比。

一般长宽比选用范围为1.4—2.0。

(3)池深。

池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。

一般池底温度在1200—1360℃之间较为合适。

玻璃熔制及熔窑---玻璃熔制过程共43页

玻璃熔制及熔窑---玻璃熔制过程共43页
玻璃熔制及熔窑---玻璃熔制 过程
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
玻璃工艺学
11
铅硅酸盐玻璃
1 Na 2O K 2O PbO 8 其中:氧化物—各氧化物在玻璃中的重量百分数; —表示玻璃相对难熔的特征值; 与值相应的熔化温度

SiO 2


6
1450~1460
5.5
1420
4.8
1380~1400
4.2
1320~1340
熔化温度℃
注意:常数是一经验值,确定熔制温度时,此常数不能认 为是唯一的决定因素,它未考虑如粒度、温度等因素。
玻璃工艺学
12
2、石英颗粒的大小 鲍特维金公式:
K 1r
3
—玻璃形成的时间(分钟); r-石英颗粒的原始半径(厘米); K1-与玻璃组成和温度有关的常数; 3、熔制温度 bt 索林诺夫经验公式: a e —玻璃形成时间(小时); a、b—常数(与玻璃组成、原料粒度有关)。对窗玻璃, a=101256, b=0.00815; e—自然常数 t—熔融体温度(℃)
三、玻璃的形成阶段
(一)玻璃形成阶段的反应: 溶解:石英砂粒表面的SiO2进入液相; 扩散:溶解的SiO2向周围熔体扩散,速度最慢;
(二)玻璃形成动力学 玻璃熔制过程中玻璃形成速度与玻璃组成、砂粒大小、熔制 温度等有关。 1、玻璃组成: 沃尔夫(M.Volf)提出如下玻璃熔化速度常数的方程式。
SiO 2 Al 2O 3 一般工业玻璃 Na2O K 2O SiO 2 Al 2O 3 硼硅酸盐玻璃 1 Na 2O K 2O B 2O 3 2
玻璃工艺学
13
四、玻璃的澄清阶段
玻璃液的澄清过程是玻璃熔化过程中极其重要的一环,它与
玻璃工艺学 6
2.多组分反应:除了包括单组分和双组分的加热反应特点外, 还包括含自身反应特点,如复盐的反应;形成低共熔物,使得熔制 温度低,所以组成越多,熔制温度越低;硅酸盐的生成等。 如:生成CO2的来源有碳酸盐的单组分分解、碳酸盐生成硅酸 盐的反应、复盐的分解等。 因此配合料的加热反应基本上是单组分和多组分加热反应的综 合。
玻璃工艺学 5
芒硝Na2SO4: 235℃ 无水芒硝(斜方晶系) 884℃ 熔融 自1200℃左右开始分解 Na2SO4 (有还原剂时,反应加速) ②盐类分解
偏位芒硝(单斜晶系)
Na2O+SO3
各类碳酸盐、硫酸盐、硝酸盐在一定温度下均发生分 解并释放出气体。 ③析出结晶水和化学结合水 如含水硼砂(Na2B4O7· 10H2O)、纯碱、芒硝等易吸 潮的原料、含水芒硝(Na2SO4· 10H2O)、结晶纯碱 (Na2CO3· 10H2O)、瓷土(Al2O3· 2SiO2· 2H2O)
但由于低共熔作用,在多组分配合料中碳酸盐的分解、硅酸盐
的形成和均化开始得早,即多组分配合料的硅酸盐形成和玻璃形成 要比双组分快得多。 而且从低温到高温的反应顺序会因为颗粒度
大小等因素而发生改变。
玻璃工艺学 7
(二)硅酸盐形成 在此阶段,主要的反应为化学反应,故该阶段化学反应 动 力是其动力学因素。反应进行的速度和各种不同因素对反应速 度的影响是硅酸盐形成过程动力学研究的主要内容。 1300℃ 1200℃ 1100℃
1000℃
900℃
SiO2+Na2O+CaO反应速度与温度
玻璃工艺学 8
分解% 100
75 50 25 0
4
3
2
1
10 20
30 40
50
60
70 80 分钟
CaCO3与SiO2在不同比例时的反应速度 1—CaCO3;2—CaCO3+SiO2;3—CaCO3+2SiO2; 4—CaCO3+3SiO2;
物 理 变 化 化 学 变 化 物 理 化 学 过 程
配合料加热升温 配合料脱水
固相反应 碳酸盐、硫酸盐、硝酸 盐的分解
共熔体的生成 固态的溶解与液态间互溶
各组分的熔化
晶相转变 个别组分的挥发
水化物的分解
化学结合水的分解 硅酸盐的形成与相互作 用
玻璃工艺学
玻璃液、炉气、气泡间的相互 作用
玻璃液与耐火材料间的作用
第八章 玻璃的熔制与窑炉
主要内容: 玻璃的熔 制过程及其影 响因素,熔制 制度,熔窑和 耐火材料的侵 蚀过程等。
玻璃工艺学 1
一、 玻璃熔制过程概述 玻璃的熔制过程就是将配合料经高温加热熔融成为均匀的、 无气泡的符合成型要求的玻璃液的过程。 玻璃熔制过程是一个很复杂的过程,它包括一系列的物理、 化学、物理化学反应。研究指出各种不同的配合料在加热时发生 如下所列的各种变化:
2
这些复杂的反应常可根据熔制过程中的不同实质而分为如 下五个阶段: 1、硅酸盐形成阶段; 要 的 固 相 反 应 完 成 800 ( 900 C) 配合料 主 不透明烧结物 (由硅酸盐和未熔二氧化硅组成) 2、玻璃形成阶段; 二 氧 化 硅 在 硅 酸 盐 中解 溶扩 散 烧结物 透明体 含 有 大 量 气 泡 和 不 均体 匀(1200 C ) 3、玻璃液的澄清阶段;
玻璃工艺学 9
从上述反应关系可以得出与反应速度相关的动力学因素有: 1、温度: 温度的提升
熔体中各组分的自由能
反应的可能
分子间的碰撞几率 质点运动速度加快 2、反应时间 反应时间越长 反应物减少,生成物增多 反应速度降低
反应加快
3、反应物的浓度
浓度增大 分子间碰撞次数增加
反应速度增加
玻璃工艺学
10
逐 步 排 除 可 见 气 泡 到许 允程 度 透明体 无气泡的玻璃液 对钠钙硅玻璃温度 1400 ~ 1500 C
4、玻璃的均化阶段; 5、玻璃的冷却阶段; 五个阶段的相互关系
玻璃工艺学 3
池窑中玻璃熔融过程模型图
玻璃工艺学
4
二、 硅酸盐的形成
(一)配合料的加热反应: 1.单组分反应:多晶转变、盐类分解(如碳酸盐、硫酸盐、硝 酸盐等的分解反应)、析出结晶水和化学结合水。 ①多晶转变 例如: 石英:573℃ β-石英 α-石英 870℃ α-石英 α-磷石英 1470℃ α-磷石英 α-方石英 1710℃ 熔化 碳酸钡BaCO3: 811℃ 斜方γ晶形 六方β晶形 982℃ 六方β晶形 等轴α晶形 ~950℃ 2BaCO3 CO2+BaO· BaCO3 ~1000℃ BaO· BaCO3 2BaO+CO2
相关文档
最新文档