动能定理练习题(附答案)

合集下载

高一物理动能定理试题答案及解析

高一物理动能定理试题答案及解析

高一物理动能定理试题答案及解析1.一子弹以速度v飞行恰好射穿一块铜板,若子弹的速度是原来的3倍,那么可射穿上述铜板的数目为()A.3块B.6块C.9块D.12块【答案】C【解析】子弹以速度v运动时,恰能水平穿透一块固定的木板,根据动能定理有:,设子弹的速度为时,穿过的木板数为n,则有:联立两式并代入数据得:n=9块,C正确。

【考点】考查了动能定理的应用2.在一次试车实验中,汽车在平直的公路上由静止开始做匀加速运动,当速度达到v时,立刻关闭发动机让其滑行,直至停止。

其v-t图象如图所示。

则下列说法中正确的是()A.全程牵引力做功和克服阻力做功之比为1:1B.全程牵引力做功和克服阻力做功之比为2:1C.牵引力和阻力之比为2:1D.牵引力和阻力之比为3:1【答案】AD【解析】试题解析:由于物体初始的速度为零,最后的速度也为零,故物体的动能没有变化,即动能的增量为零,根据动能定理可知,物体受到的合外力也为零,即全程牵引力做功和克服阻力做功相等,故它们的比值为1:1,A正确,B错误;由图像可知,1s前物体在牵引力的作用下运动,其位移为x,则后2s内物体的位移为2x,故由动能定理可得:Fx=f(x+2x),所以牵引力F和阻力f之比为3:1,D正确,C错误。

【考点】动能定理。

3.甲、乙两物体质量之比m1∶m2=1∶2,它们与水平桌面间的动摩擦因数相同,若它们以相同的初动能在水平桌面上运动,则运动位移之比为.【答案】2:1。

【解析】根据动能定理得可知,对于甲物体:m1gμ×x1=Ek,对于乙物体:m2gμ×x2=Ek,联立以上两式解之得x1:x2=m2:m1=2:1,故位移之比为2:1。

【考点】动能定理。

4.一根用绝缘材料制成的轻弹簧,劲度系数为k,一端固定,另一端与质量为m、带电量为+q的小球相连,静止在光滑绝缘的水平面上,当施加一水平向右的匀强电场E后(如图所示),小球开始作简谐运动,关于小球运动有如下说法中正确的是A.球的速度为零时,弹簧伸长qE/kB.球做简谐运动的振幅为qE/kC.运动过程中,小球的机械能守恒D.运动过程中,小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零【答案】BD【解析】球的平衡位置为Eq=kx,解得x= qE/k,在此位置球的速度最大,选项A 错误;球做简谐运动的振幅为qE/k,选项B正确;运动过程中,由于电场力和弹力做功,故小球的机械能不守恒,选项C 错误;运动过程中,由于电场力和弹力做功,所以小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零,选项D 正确。

动能定理功能关系练习题142题含答案

动能定理功能关系练习题142题含答案

动能定理练习稳固根底一、不定项选择题〔每题至少有一个选项〕1.以下关于运动物体所受合外力做功和动能变化的关系,以下说法中正确的选项是〔〕A.如果物体所受合外力为零,那么合外力对物体所的功一定为零;B.如果合外力对物体所做的功为零,那么合外力一定为零;C.物体在合外力作用下做变速运动,动能一定发生变化;D.物体的动能不变,所受合力一定为零。

2.以下说法正确的选项是〔〕A.某过程中外力的总功等于各力做功的代数之和;B.外力对物体做的总功等于物体动能的变化;C.在物体动能不变的过程中,动能定理不适用;D.动能定理只适用于物体受恒力作用而做加速运动的过程。

3.在光滑的地板上,用水平拉力分别使两个物体由静止获得一样的动能,那么可以肯定〔〕A.水平拉力相等 B.两物块质量相等C.两物块速度变化相等 D.水平拉力对两物块做功相等4.质点在恒力作用下从静止开场做直线运动,那么此质点任一时刻的动能〔〕A.与它通过的位移s成正比B.与它通过的位移s的平方成正比C.与它运动的时间t成正比D.与它运动的时间的平方成正比5.一子弹以水平速度v射入一树干中,射入深度为s,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v/2的速度射入此树干中,射入深度为〔〕A.s B.s/2 C.2/s D.s/4 6.两个物体A、B的质量之比m A∶m B=2∶1,二者动能一样,它们和水平桌面的动摩擦因数一样,那么二者在桌面上滑行到停顿所经过的距离之比为〔〕A.s A∶s B=2∶1 B.s A∶s B=1∶2 C.s A∶s B=4∶1 D.s A∶s B=1∶47.质量为m的金属块,当初速度为v0时,在水平桌面上滑行的最大距离为L,如果将金属块的质量增加到2m,初速度增大到2v0,在同一水平面上该金属块最多能滑行的距离为〔〕A.L B.2L C.4L D.8.一个人站在阳台上,从阳台边缘以一样的速率v0,分别把三个质量一样的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,那么比拟三球落地时的动能〔〕A.上抛球最大 B.下抛球最大 C.平抛球最大 D.三球一样大9.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当它落到地面时速度为v,用g表示重力加速度,那么此过程中物块克制空气阻力所做的功等于〔 〕A .2022121mv mv mgh --B .mgh mv mv --2022121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,那么物体刚被抛出时,其重力势能与动能之比为〔 〕A .sin 2θB .cos 2θC .tan 2θD .cot 2θ11.将质量为1kg 的物体以20m/s 的速度竖直向上抛出。

高考物理动能与动能定理题20套(带答案)

高考物理动能与动能定理题20套(带答案)

高考物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

高中动能定理试题及答案

高中动能定理试题及答案

高中动能定理试题及答案一、选择题1. 动能定理表明,一个物体的动能变化量等于外力对它做的功。

以下哪个选项描述了正确的动能定理?A. 动能的变化量等于外力做的功B. 动能的变化量等于外力做的功的负值C. 动能的变化量等于外力做的功的两倍D. 动能的变化量等于外力做的功的一半答案:A2. 一个物体从静止开始,沿着光滑斜面下滑,其动能变化量与下列哪个因素无关?A. 斜面的长度B. 斜面的角度C. 物体的质量D. 物体的初速度答案:D二、填空题3. 动能定理的数学表达式为:\(\Delta E_k = W\),其中\(\Delta E_k\)表示动能的变化量,W表示_______。

答案:外力做的功4. 一个质量为2kg的物体从高度为5m的平台上自由落体,忽略空气阻力,其落地时的动能为_______J(g取10m/s²)。

答案:100三、计算题5. 一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车,经过10s后停止。

假设汽车在刹车过程中受到的阻力是恒定的,求阻力的大小。

答案:2000N四、简答题6. 描述动能定理在实际生活中的应用。

答案:动能定理在实际生活中有广泛的应用,例如在汽车的制动系统设计中,通过计算刹车时的动能变化量,可以确定所需的制动力,以确保车辆在安全距离内停止。

此外,在运动训练中,运动员通过控制动能的变化来优化运动表现,如跳高运动员通过助跑来增加起跳时的动能,以跳得更高。

五、实验题7. 设计一个实验来验证动能定理。

请描述实验步骤和预期结果。

答案:实验步骤:- 准备一个斜面、一个质量已知的小车、一个测力计和一把尺子。

- 将小车放置在斜面的不同高度,测量小车从静止开始滑下到达斜面底部的速度。

- 使用测力计测量小车在滑下过程中受到的摩擦力。

- 计算小车在不同高度滑下时的动能变化量和摩擦力做的功。

预期结果:- 预期小车的动能变化量与摩擦力做的功相等,从而验证动能定理。

完整版)高中物理动能定理典型练习题(含答案)

完整版)高中物理动能定理典型练习题(含答案)

完整版)高中物理动能定理典型练习题(含答案)1.正确答案是D。

对于一个物体来说,只有在速度大小(速率)发生变化时,它的动能才会改变。

速度的变化是一个矢量,它可以完全由于速度方向的变化而引起,例如匀速圆周运动。

速度变化的快慢是指加速度,加速度大小与速度大小之间没有必然的联系。

2.一个物体从高度为H的地方自由落体,落到高度为h的沙坑中停止。

假设物体的质量为m,重力加速度为g,根据动能定理,当物体速度为v时,mgH = 1/2mv^2,因此v =sqrt(2gH)。

在沙坑中,重力做正功,阻力做负功,根据动能定理,1/2mv^2 - Fh = mgh,其中F为物体在沙坑中受到的平均阻力。

解方程得到F = (H + h)mg / (gh)。

3.一个物体沿一曲面从A点无初速度滑下,滑至曲面的最低点B时,下滑高度为5m,物体质量为1kg,速度为6m/s。

假设物体在滑行过程中克服了摩擦力,设摩擦力为F,根据动能定理,mgh - W = 1/2mv^2,其中W为物体克服阻力所做的功。

解方程得到W = 32J。

课后创新演练:1.滑块的质量为1kg,初速度为4m/s,水平力方向向左,大小未知。

在一段时间内,水平力方向变为向右,大小不变为未知。

根据动能定理,水平力所做的功等于滑块动能的变化量,即1/2mv^2 - 1/2mu^2,其中v和u分别为滑块在水平力作用下的末速度和初速度。

根据题意,v = u = 4m/s,解方程得到水平力所做的功为16J。

2.两个物体的质量之比为1:3,高度之比也为1:3.根据动能定理,物体的动能等于1/2mv^2,其中v为物体的速度。

假设两个物体在落地时的速度分别为v1和v2,则v1 : v2 =sqrt(h1) : sqrt(h2),其中h1和h2分别为两个物体的高度。

因此,v1^2 : v2^2 = h1 : h2 = 1 : 9,即它们落地时的动能之比为1:9.3.物体沿长为L的光滑斜面下滑,速度达到末速度的一半时,物体沿斜面下滑的距离为L。

高考物理动能与动能定理题20套(带答案)

高考物理动能与动能定理题20套(带答案)

【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛
顿定律、动能定理及几何关系求解。
2.如图所示,竖直平面内有一固定的光滑轨道 ABCD,其中 AB 是足够长的水平轨道,B 端 与半径为 R 的光滑半圆轨道 BCD 平滑相切连接,半圆的直径 BD 竖直,C 点与圆心 O 等 高.现有一质量为 m 的小球 Q 静止在 B 点,另一质量为 2m 的小球 P 沿轨道 AB 向右匀速 运动并与 Q 发生对心碰撞,碰撞后瞬间小球 Q 对半圆轨道 B 点的压力大小为自身重力的 7 倍,碰撞后小球 P 恰好到达 C 点.重力加速度为 g.
5.如图所示,一长度 LAB=4.98m,倾角 θ=30°的光滑斜面 AB 和一固定粗糙水平台 BC 平 滑连接,水平台长度 LBC=0.4m,离地面高度 H=1.4m,在 C 处有一挡板,小物块与挡板 碰撞后原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内。在斜面顶 端 A 处静止释放质量为 m="2kg" 的小物块(可视为质点),忽略空气阻力,小物块与 BC 间的动摩擦因素 μ=0.1,g 取 10m/s2。问:
m( g h R R cos37 Lsin)对滑块从 P 到第二次经过 B 点的运动过程应用动能定理可得
1 2
mvB 2
mg
h
R
2mgL
cos 37
0.54mg
mgR
所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出 A 点。
mv2- mv02=2
Lbcn
n=25 次 考点:动能定理、平抛运动 【名师点睛】解决本题的关键一是要会根据平抛运动的规律求出落到 D 时平抛运动的初速 度;再一个容易出现错误的是在 BC 段运动的路程与经过 B 点次数的关系,需要认真确 定。根据功能关系求出在 BC 段运动的路程。

(完整版)动能定理习题(附答案)

(完整版)动能定理习题(附答案)

A1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B : G 10J W mgh =-=-克服重力做功1G G 10J W W ==克(2) m 由A 到B ,根据动能定理2:2102J 2W mv ∑=-=(3) m 由A 到B :G F W W W ∑=+ F 12J W ∴=2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W .解:(1) m 由A 到B :根据动能定理:2201122mgh mv mv =-20m/s v ∴= (2) m 由A 到B ,根据动能定理3:22t 01122mgh W mv mv -=- 1.95J W ∴=3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解: (3a)球由O 到A ,根据动能定理4:201050J 2W mv =-=(3b)球在运动员踢球的过程中,根据动能定理5:2211022W mv mv =-=1 不能写成:G10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重力所做的功为负.2 也可以简写成:“m :A B →:k W E ∑=∆Q ”,其中k W E ∑=∆表示动能定理.3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功.4踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.5 结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等.v mv 'O A →A B →4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:(1)求钢球落地时的速度大小v . (2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解:(1) m 由A 到B :根据动能定理:2201122mgH mv mv =-v ∴(2)变力6. (3) m 由B 到C ,根据动能定理:2f 102mgh W mv +=-()2f 012W mv mg H h ∴=--+(3) m 由B 到C : f cos180W f h =⋅⋅o()2022mv mg H h f h++∴=5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求:(1)撤去推力F 时的速度大小. (2)冰车运动的总路程s .解: (1) m 由1状态到2状态:根据动能定理7: 2111cos0cos18002Fs mgs mv μ+=-o o3.74m/s v ∴==(2) m 由1状态到3状态8:根据动能定理: 1cos0cos18000Fs mgs μ+=-o o100m s ∴=6此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力.8也可以用第二段来算2s ,然后将两段位移加起来. 计算过程如下: m 由2状态到3状态:根据动能定理: 221cos18002mgs mv μ=-o270m s ∴=则总位移12100m s s s =+=.v t v vfA6、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数.解:(1) m 由A 到C 9:根据动能定理:f 00mgR W +=-f 8J W mgR ∴=-=-(2) m 由B 到C :f cos180W mg x μ=⋅⋅o0.2μ∴=7、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s 2),求:(1)物体到达B 点时的速度大小.(2)物体在圆弧轨道上克服摩擦力所做的功.解:(1) m 由B 到C :根据动能定理:2B 1cos18002mg l mv μ⋅⋅=-oB 2m/s v ∴=(2) m 由A 到B :根据动能定理:2f B 102mgR W mv +=- f 0.5J W ∴=- 克服摩擦力做功f 0.5J W W ==克f8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数证:设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位移为2s ,如图所示10.m 由A 到B :根据动能定理: 2cos cos180cos18000mgh mg l mgs μθμ+⋅⋅+⋅=-o o又1cos l s θ=Q 、12s s s =+ 则11:0h s μ-= 即: hsμ=9也可以分段计算,计算过程略.10 题目里没有提到或给出,而在计算过程中需要用到的物理量,应在解题之前给出解释。

高中物理-动能定理典型练习题(含答案)

高中物理-动能定理典型练习题(含答案)

图 5-3-5动能定理典型练习题 典型例题讲解1.下列说法正确的是( ) A 做直线运动的物体动能不变,做曲线运动的物体动能变化 B 物体的速度变化越大,物体的动能变化也越大 C 物体的速度变化越快,物体的动能变化也越快 D 物体的速率变化越大,物体的动能变化也越大 【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度 的变化是矢量,它完全可以只是由于速度方向的变化而引起•例如匀速圆周运动 .速度变化的快 慢是指加速度,加速度大小与速度大小之间无必然的联系 【答案】D 2•物体由高岀地面 H 高处由静 进入沙坑h 停止(如图5-3-4所 的多少倍? 止自由落下,不考虑空气阻力,落至沙坑表面 示).求物体在沙坑中受到的平均阻力是其重力【解析】选物体为研究对象, 先研究自由落体过程,只有重 图 5-3-4力做功,设物体质量为 m ,落到沙坑表面时速度为V ,根据动能定理有 mgH 1mv 2 0 ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有 1mgh Fh 0 mv 2 ② 由①②两式解得 F H h mg h 另解:研究物体运动的全过程,根据动能定理有 mg(H h) Fh 0 0 0 解得H h mg h 3.如图5-3-5所示,物体沿一曲面从 A 点无初速度滑下,滑至曲面的最低点 B 时,下滑高度为 【解析】设物体克服摩擦力 5m ,若物体的质量为 Ikg ,物体克服阻力所做的功为多 到B 点时的速度为6m/s ,则在下滑过程中, 少?(g 取 10m/s 2)所做的功为W ,对物体由A运动到B 用动能定理得即物体克服阻力所做的功为 32J.课后创新演练1•一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水 平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为 4m/s ,则在这段时间内水平力所做的功为( A )A • 0B • 8JC • 16JD • 32J2.两物体质量之比为 1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为(C ) A • 1:3B • 3:1C • 1:9D • 9:13 • 一个物体由静止沿长为 L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A ) 1 — A • B • ( 2 1)L4C •LD •L224•如图5-3-6所示,质量为 M 的木块放在光滑的水平面上, 质量为m 的子弹以速度 v o 沿水平射中木块,并最终留在木块中与木块一起以速度v 运动•已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s •若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是1f ( L + s ) = — mv o25•如图5-3-7所示,质量为 m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定 滑轮由地面以速度 v o 向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向为(D ) A • mv 。

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。

(完整版)高中物理动能定理经典计算题和答案

(完整版)高中物理动能定理经典计算题和答案

动能和动能定理经典试题例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。

例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

(g 取10m/s 2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv=0 B. Δv =12m/s C. W=0 D. W=10.8J例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220-例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。

小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件2-7-3 θ F O PQ l h H 2-7-2轻轻地放在传送带底端,由传送带传送至h =2m 的高处。

高中物理动能与动能定理题20套(带答案)

高中物理动能与动能定理题20套(带答案)

高中物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==3.如图所示,斜面高为h ,水平面上D 、C 两点距离为L 。

动能和动能定理练习含答案

动能和动能定理练习含答案

动能和动能定理精选练习一夯实基础1.如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度。

木箱获得的动能一定()A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功【答案】A【解析】:A对、B错:由题意知,W拉-W阻=ΔE k,则W拉>ΔE k;C、D错:W阻与ΔE k的大小关系不确定。

2.(2019·浙江温州九校高一下学期期中)如图,小飞用手托着质量为m的“地球仪”,从静止开始沿水平方向运动,前进距离L后,速度为v(地球仪与手始终相对静止,空气阻力不可忽略),地球仪与手掌之间的动摩擦因数为μ,则下列说法正确的是()A.手对地球仪的作用力方向竖直向上B.地球仪所受摩擦力大小为μmgC.手对地球仪做的功等于mv2/2 D.地球仪对手做正功【答案】C【解析】:经受力分析知,手对地球仪的作用力斜向前上方,A错;地球仪所受摩擦力f=ma,B错;由动能定理W f=12mv2,C对;地球仪对手做负功,D错。

3.(2019·山东省诸城一中高一下学期期中)2018年2月22日平昌冬奥会短道速滑接力赛,中国男队获得亚军。

观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲,甲获得更大的速度向前冲出。

在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则()A .甲对乙的作用力与乙对甲的作用力相同B .乙对甲的作用力一定做正功,甲的动能增大C .甲对乙的作用力可能不做功,乙的动能可能不变D .甲的动能增加量一定等于乙的动能减少量【答案】B【解析】:甲、乙间的相互作用力大小相等方向相反,A 错;根据动能定理可判B 正确,C 、D 错误。

4.在水平路面上,有一辆以36 km/h 行驶的客车,在车厢后座有一位乘客甲,把一个质量为4 kg 的行李以相对客车5 m/s 的速度抛给前方座位的另一位乘客乙,则以地面为参考系行李的动能和以客车为参考系行李的动能分别是( )A .200 J 50 JB .450 J 50 JC .50 J 50 JD .450 J 450 J【答案】B【解析】:行李相对地面的速度v =v 车+v 相对=15 m/s ,所以行李的动能E k =12mv 2=450 J 。

高考物理复习专题五 动能定理 能量守恒定律练习题(含详细答案)

高考物理复习专题五 动能定理 能量守恒定律练习题(含详细答案)

高考物理复习专题五动能定理能量守恒定律一、单选题1.如图所示,在竖直平面内有一固定轨道,其中AB是长为R的粗糙水平直轨道,BCD是圆心为O,半径为R的3/4光滑圆弧轨道,两轨道相切于B点.在推力作用下,质量为m的小滑块从A 点由静止开始做匀加速直线运动,到达B点时即撤去推力,小滑块恰好能沿圆轨道经过最高点C。

重力加速度大小为g,取AB所在的水平面为零势能面。

则小滑块()A.在AB段运动的加速度为2gB.经B点时加速度为零C.在C点时合外力的瞬时功率为D.上滑时动能与重力势能相等的位置在直径DD′上方2.运输人员要把质量为,体积较小的木箱拉上汽车。

现将长为L的木板搭在汽车尾部与地面间,构成一固定斜面,然后把木箱沿斜面拉上汽车。

斜面与水平地面成30o角,拉力与斜面平行。

木箱与斜面间的动摩擦因数为,重力加速度为g。

则将木箱运上汽车,拉力至少做功()A.B.C.D.3.如图所示,轻质弹簧的一端固定在粗糙斜面的挡板O点,另一端固定一个小物块。

小物块从P1位置(此位置弹簧伸长量为零)由静止开始运动,运动到最低点P2位置,然后在弹力作用下上升运动到最高点P3位置(图中未标出)。

在此两过程中,下列判断正确的是()A.下滑和上滑过程弹簧和小物块系统机械能守恒B.下滑过程物块速度最大值位置比上滑过程速度最大位置高C.下滑过程弹簧和小物块组成系统机械减小量比上升过程小D.下滑过程克服弹簧弹力和摩擦力做功总值比上滑过程克服重力和摩擦力做功总值小4.如图所示,水平桌面上有一小车,装有砂的砂桶通过细绳给小车施加一水平拉力,小车从静止开始做直线运动。

保持小车的质量M不变,第一次实验中小车在质量为m1的砂和砂桶带动下由静止前进了一段距离s;第二次实验中小车在质量为m2的砂和砂桶带动下由静止前进了相同的距离s,其中。

两次实验中,绳对小车的拉力分别为T1和T2,小车,砂和砂桶系统的机械能变化量分别为和,若空气阻力和摩擦阻力的大小保持不变,不计绳,滑轮的质量,则下列分析正确的是()A.B.C.D.5.小车静止在光滑的水平导轨上,一个小球用细绳悬挂在车上由图中位置无初速释放,在小球下摆到最低点的过程中,下列说法正确的是( )A.绳对球的拉力不做功B.球克服绳拉力做的功等于球减少的机械能C.绳对车做的功等于球减少的动能D.球减少的重力势能等于球增加的动能6.如图所示,自动卸货车静止在水平地面上,车厢在液压机的作用下,θ角缓慢增大,在货物相对车厢仍然静止的过程中,下列说法正确的是()A.货物受到的支持力变小B.货物受到的摩擦力变小C.货物受到的支持力对货物做负功D.货物受到的摩擦力对货物做负功7.一质量为0.6kg的物体以20m/s的初速度竖直上抛,当物体上升到某一位置时,其动能减少了18J,机械能减少了3J。

动能定理有详解答案

动能定理有详解答案

2015动能定理试题一、选择题(题型注释)1.如图所示,一个质量为m,均匀的细链条长为L,置于光滑水平桌面上,用手按住一端,使L/2长部分垂在桌面下,(桌面高度大于链条长度,取桌面为零势能面),则链条的重力势能为()2.如图4所示,一小球用轻绳悬挂在某固定点,现将轻绳水平拉直,然后由静止开始释放小球。

不计空气阻力,分析小球由静止开始运动到最低点的过程,以下结论正确的有A.小球的速率不断增大B.重力的功率不断增大C.绳子的拉力不断增大D.绳子拉力的功率不断增大3.将横截面积为S的玻璃管弯成如图5-4-5所示的连通器,放在水平桌面上,左、右管处在竖直状态,先关闭阀门K,往左、右管中分别注入高度为h1和h2、密度为ρ的液体,然后打开阀门K,直到液体静止.在上述过程中,液体的重力势能减少量为()A.ρgS(h1-h2)(h1-h2)2 图5-4-5(h1-h2)2(h1-h2)45-4-8所示,重物A质量为m.弹簧长为L,劲度系数为k,下端与物体A相拴接.现将弹簧上端点P缓慢地竖直提起一段高度h使重物A离开地面.这时重物具有的重力势能为(以地面为零势能面)()A.mg(L-h)B.mg(h-L+mg/k)C.mg(h-mg/k)D.mg(h-L-mg/k)5.一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置P点很缓慢地移动到Q点,如图7-5-11所示.则水平力F所做的功为()图7-5-11A.mgL cosθB.mgL(1-cosθ)C.FL sinθD.FLθ6.一质量均匀的不可伸长的绳索(其重不可忽略),A、B两端固定在天花板上,如图7-5-7所示,今在最低点C施加一竖直向下的力将绳索拉至D点,在此过程中,绳索的重心位置将( )图7-5-7A.逐渐升高B.逐渐降低C.先降低后升高D.始终不变7.质量为30 kg 的小孩从高度为2.0 m 的滑梯顶端由静止开始滑下,滑到底端时的速度为2.0 m/s.取g =10 m/s 2,关于力对小孩做的功,以下结果正确的是( )A.支持力做功50 JB.阻力做功540 JC.合外力做功60 JD.重力做功500 J8.如图所示,细线的一端固定于O 点,另一端系一小球.在水平拉力F 作用下,小球以恒定速率在竖直平面内由A 点运动到B 点.在此过程中拉力的瞬时功率变化情况是A .逐渐增大B .逐渐减小C .先增大,后减小D .先减小,后增大9.小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面。

1动能定理练习题(附答案)

1动能定理练习题(附答案)

A动能定理练习题1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B : G 10J W m g h =-=-克服重力做功1G G 10J W W ==克(2) m 由A 到B ,根据动能定理2:2102J 2W mv ∑=-=(3) m 由A 到B :G F W W W ∑=+ F 12J W ∴=2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W .解:(1) m 由A 到B :根据动能定理:221122mgh mv mv =-20m/s v ∴= (2) m 由A 到B ,根据动能定理3:22t 01122mgh W mv mv -=- 1.95J W ∴=3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功?3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:(3a)球由O 到A ,根据动能定理4:201050J 2W mv =-=(3b)球在运动员踢球的过程中,根据动能定理5:2211022W mv mv =-=1不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重力所做的功为负.2也可以简写成:“m :A B →:k W E ∑=∆”,其中k W E ∑=∆表示动能定理.3此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功.4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.5结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等.v mv 'O A →A B→4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:(1)求钢球落地时的速度大小v . (2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解:(1) m 由A 到B :根据动能定理:2201122mgH mv mv =-v ∴(2)变力6. (3) m 由B 到C ,根据动能定理:2f 102mgh W mv +=-()2f 012W mv mg H h ∴=--+(3) m 由B 到C : f cos180W h =⋅⋅()2022mv mg H h f h++∴=5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求:(1)撤去推力F 时的速度大小. (2)冰车运动的总路程s . 解: (1) m 由1状态到2状态:根据动能定理7: 2111cos0cos18002Fs mgs mv μ+=-3.74m/s v ∴=(2) m 由1状态到3状态8:根据动能定理:1cos0cos18000Fs mgs μ+=-100m s ∴=6此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力. 8也可以用第二段来算2s ,然后将两段位移加起来. 计算过程如下: m 由2状态到3状态:根据动能定理: 221cos18002mgs mv μ=-270m s ∴=则总位移12100m s s s =+=.v t vfA6、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数.解:(1) m 由A 到C 9:根据动能定理:f 00mgR W +=-f 8J W mgR ∴=-=- (2) m 由B 到C :f cos180W mg x μ=⋅⋅0.2μ∴=7、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g= 10m/s 2),求:(1)物体到达B 点时的速度大小.(2)物体在圆弧轨道上克服摩擦力所做的功.解:(1) m 由B 到C :根据动能定理:2B 1cos18002mg l mv μ⋅⋅=-B 2m/s v ∴=(2) m 由A 到B :根据动能定理:2f B 102mgR W mv +=- f 0.5J W ∴=-克服摩擦力做功f 0.5J W W ==克f8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数证:设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位移为2s ,如图所示10.m 由A 到B :根据动能定理: 2cos cos180cos18000mgh mg l mgs μθμ+⋅⋅+⋅=-又1cos l s θ=、12s s s =+ 则11:0h s μ-= 即: h sμ= 证毕.9 也可以分段计算,计算过程略.10 题目里没有提到或给出,而在计算过程中需要用到的物理量,应在解题之前给出解释。

高考物理《动能和动能定理》真题练习含答案

高考物理《动能和动能定理》真题练习含答案

高考物理《动能和动能定理》真题练习含答案1.[2024·江苏省淮安市学情调研]质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一水平放置的轻弹簧O 端相距s ,轻弹簧的另一端固定在竖直墙上,如图所示,已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,重力加速度为g ,则从开始碰撞到弹簧被压缩至最短的过程中,克服弹簧弹力所的功为( )A .12 m v 20 -μmg (s +x )B .12m v 20 -μmgx C .μmg (s +x )-12m v 20 D .-μmg (s +x ) 答案:A解析:从开始碰撞到弹簧被压缩至最短的过程中,由动能定理-μmg (s +x )-W =0-12m v 20 ,解得W =12 m v 20 -μmg (s +x ),A 正确.2.[2024·河南省部分学校摸底测试]如图所示,水平圆盘桌面上放有质量为0.1 kg 的小铁碗A (可视为质点),一小孩使圆盘桌面在水平面内由静止开始绕过圆盘中心O 的轴转动,并逐渐增大圆盘转动的角速度,直至小铁碗从圆盘的边缘飞出,飞出后经过0.2 s 落地,落地点与飞出点在地面投影点的距离为80 cm.若不计空气阻力,该过程中,摩擦力对小铁碗所做的功为( )A.0.2 J B .0.4 JC .0.8 JD .1.6 J答案:C解析:小铁碗飞出后做平抛运动,由平抛运动规律可得v =x t,解得v =4 m/s ,小铁碗由静止到飞出的过程中,由动能定理有W =12m v 2,故摩擦力对小铁碗所做的功W =0.8 J ,C 正确.3.(多选)如图所示,在倾角为θ的斜面上,质量为m 的物块受到沿斜面向上的恒力F 的作用,沿斜面以速度v 匀速上升了高度h .已知物块与斜面间的动摩擦因数为μ、重力加速度为g .关于上述过程,下列说法正确的是( )A .合力对物块做功为0B .合力对物块做功为12m v 2 C .摩擦力对物块做功为-μmg cos θh sin θD .恒力F 与摩擦力对物块做功之和为mgh答案:ACD解析:物体做匀速直线运动,处于平衡状态,合外力为零,则合外力做功为零,故A正确,B 错误;物体所受的摩擦力大小为f =μmg cos θ,物体的位移x =h sin θ,摩擦力对物块做功为W f =-fx =-μmg cos θh sin θ,C 正确;物体所受各力的合力做功为零,则W G +W F +W f =0,所以W F +W f =-W G =-(-mgh )=mgh ,D 正确.4.(多选)质量为2 kg 的物体,放在动摩擦因数μ=0.1的水平面上,在水平拉力的作用下由静止开始运动,水平拉力做的功W 和物体发生的位移x 之间的关系如图所示,重力加速度g 取10 m/s 2,则此物体( )A .在位移x =9 m 时的速度是33 m/sB .在位移x =9 m 时的速度是3 m/sC .在OA 段运动的加速度是2.5 m/s 2D .在OA 段运动的加速度是1.5 m/s 2答案:BD解析:运动x =9 m 的过程由动能定理W -μmgx =12m v 2,得v =3 m/s ,A 错误,B 正确;前3 m 过程中,水平拉力F 1=W 1x 1 =153N =5 N ,根据牛顿第二定律,F 1-μmg =ma 得a =1.5 m/s 2,C 错误,D 正确.5.[2024·张家口市期末考试]如图所示,倾角为θ=37°的足够长光滑斜面AB 与长L BC =2 m 的粗糙水平面BC 用一小段光滑圆弧(长度不计)平滑连接,半径R =1.5 m 的光滑圆弧轨道CD 与水平面相切于C 点,OD 与水平方向的夹角也为θ=37°.质量为m 的小滑块从斜面上距B 点L 0=2 m 的位置由静止开始下滑,恰好运动到C 点.已知重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.(1)求小滑块与粗糙水平面BC 间的动摩擦因数μ;(2)改变小滑块从斜面上开始释放的位置,小滑块能够通过D 点,求小滑块的释放位置与B 点的最小距离.答案:(1)0.6 (2)6.75 m解析:(1)滑块恰好运动到C 点,由动能定理得mgL 0sin 37°-μmgL BC =0-0解得μ=0.6(2)滑块能够通过D 点,在D 点的最小速度,由mg sin θ=m v 2D R解得v D =3 m/s设滑块在斜面上运动的距离为L ,由动能定理得mgL sin θ-μmgL BC -mgR (1+sin θ)=12m v 2D -0 解得L =6.75 m。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 动能定理练习题1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功.解:(1) m 由A 到B : G 10J W mgh =-=-克服重力做功1G G 10J W W ==克(2) m 由A 到B ,根据动能定理2: 2102J 2W mv ∑=-=【(3) m 由A 到B :G F W W W ∑=+ F 12J W ∴=2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W .解:(1) m 由A 到B :根据动能定理:2201122mgh mv mv =-20m/s v ∴= (2) m 由A 到B ,根据动能定理3: 22t 01122mgh W mv mv -=- 1.95J W ∴=~3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少 解: (3a)球由O 到A ,根据动能定理4:201050J 2W mv =-=(3b)球在运动员踢球的过程中,根据动能定理5: : 2211022W mv mv =-=1 不能写成:G10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重力所做的功为负.2 也可以简写成:“m :A B →:k W E ∑=∆”,其中k W E ∑=∆表示动能定理.3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功.4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.5 结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,v m0v 'O A→A B →4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:(1)求钢球落地时的速度大小v . (2)泥土对小钢球的阻力是恒力还是变力 (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 、解:(1) m 由A 到B :根据动能定理:2201122mgH mv mv =-v ∴(2)变力6. (3) m 由B 到C ,根据动能定理:2f 102mgh W mv +=-()2f 012W mv mg H h ∴=--+(3) m 由B 到C : f cos180W f h =⋅⋅()2022mv mg H h f h++∴=5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求:|(1)撤去推力F 时的速度大小. (2)冰车运动的总路程s .解: (1) m 由1状态到2状态:根据动能定理7: 2111cos0cos18002Fs mgs mv μ+=-3.74m/s v ∴== (2) m 由1状态到3状态8:根据动能定理:1cos0cos18000Fs mgs μ+=-6 此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力.8 也可以用第二段来算2s ,然后将两段位移加起来. 计算过程如下:m 由2状态到3状态:根据动能定理:。

221cos18002mgs mv μ=-270m s ∴=v t v vfA100m s ∴=·6、如图所示,光滑1/4圆弧半径为,有一质量为的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数. 解:(1) m 由A 到C 9:根据动能定理:f 00mgR W +=-f 8J W mgR ∴=-=- ~(2) m 由B 到C :f cos180W mg x μ=⋅⋅0.2μ∴=7、粗糙的1/4圆弧的半径为,有一质量为的物体自最高点A 时,然后沿水平面前进到达C 点停止. 设物体与轨道间的动摩擦因数为 (g = 10m/s 2),求: (1)物体到达B 点时的速度大小.(2)物体在圆弧轨道上克服摩擦力所做的功.解:(1) m 由B 到C :根据动能定理:2B 1cos18002mg l mv μ⋅⋅=-B 2m/s v ∴=(2) m 由A 到B :根据动能定理:2f B 102mgR W mv +=- f 0.5J W ∴=--克服摩擦力做功f 0.5J W W ==克f8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数证:设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位移为2s ,如图所示10.m 由A 到B :根据动能定理: 2cos cos180cos18000mgh mg l mgs μθμ+⋅⋅+⋅=-又1cos l s θ=、12s s s =+则11:0h s μ-= 即: hs μ=9 也可以分段计算,计算过程略. 10 11具体计算过程如下:由1cos l s θ=,得:`Af证毕.9、质量为m 的物体从高为h 的斜面顶端自静止开始滑下,最后停在平面上的B 点. 若该物体从斜面的顶端以初速度v 0沿斜面滑下,则停在平面上的C 点. 已知AB = BC ,求物体在斜面上克服摩擦力做的功.解:设斜面长为l ,AB 和BC 之间的距离均为s *m 由O 到B :根据动能定理:f2cos18000mgh W f s ++⋅⋅=-m 由O 到C :根据动能定理:f 2012cos18002mgh W f s mv ++⋅⋅=-2f 012W mv mgh ∴=-克服摩擦力做功2f 012W W mgh mv ==-克f10、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求:(1)阻力的大小. (2)这一过程牵引力所做的功. (3)这一过程汽车行驶的距离. 解12:(1)汽车速度v 达最大m v 时,有F f =,故: m m P F v f v =⋅=⋅ 1000N f ∴=(2)汽车由静止到达最大速度的过程中:6F 1.210J W P t =⋅=⨯(2)汽车由静止到达最大速度的过程中,由动能定理:2F m 1cos18002W f l mv +⋅⋅=- 800m l ∴=11.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。

一小球自A 点起由静止开始沿轨道下滑。

已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。

求 (1)小球运动到B 点时的动能; —(2)小球经过圆弧轨道的B 点和水平轨道的C 点时,所受轨道支持力N B 、N C 各是多大(3)小球下滑到距水平轨道的高度为R 21时速度的大小和方向; ,解:(1)m :A →B 过程:∵动能定理2B 102mgR mv =-12即:0h s μ-=*A B CD2KB B 12E mv mgR ∴== ① (2) m :在圆弧B 点:∵牛二律2BB v N mg m R-= ②将①代入,解得 N B =3mg 在C 点:N C =mg(3) m :A →D :∵动能定理 211022D mgR mv =-D v ∴=与竖直方向成30.《12.固定的轨道ABC 如图所示,其中水平轨道AB 与半径为R /4的光滑圆弧轨道BC 相连接,AB 与圆弧相切于B 点。

质量为m 的小物块静止在水一平轨道上的P 点,它与水平轨道间的动摩擦因数为μ=,PB =2R 。

用大小等于2mg 的水平恒力推动小物块,当小物块运动到B 点时,立即撤去推力(小物块可视为质点)(1)求小物块沿圆弧轨道上升后,可能达到的最大高度H ; (2)如果水平轨道AB 足够长,试确定小物块最终停在何处 解:(1)13 m :P →B ,根据动能定理: \ ()211202F f R mv -=-其中:F =2mg ,f =μmg∴ v 21=7Rgm :B →C ,根据动能定理:22211122mgR mv mv -=-∴ v 22=5Rgm :C 点竖直上抛,根据动能定理:22102mgh mv -=- ;∴ h =∴ H=h +R =(2)物块从H 返回A 点,根据动能定理:mgH -μmgs =0-0 ∴ s =14R小物块最终停在B 右侧14R 处13.如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,13 也可以整体求解,解法如下:m :B →C ,根据动能定理:2200F R f R mgH ⋅-⋅-=-其中:F =2mg ,f =μmgC圆形轨道的半径为R 。

一质量为m 的小物块(视为质点)从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。

(g 为重力加速度) 》(1)要使物块能恰好通过圆轨道最高点,求物块初始位置相对于圆形轨道底部的高度h 多大; (2)要求物块能通过圆轨道最高点,且在最高点与轨道间的压力不能超过5mg 。

求物块初始位置相对于圆形轨道底部的高度h 的取值范围。

解:(1) m :A →B →C 过程:根据动能定理: 21(2)02mg h R mv -=- ① 物块能通过最高点,轨道压力N =0∵牛顿第二定律 2v mg m R= ②∴ h =(2)若在C 点对轨道压力达最大值,则、m :A’→B →C 过程:根据动能定理:2max 2mgh mgR mv '-= ③物块在最高点C ,轨道压力N =5mg ,∵牛顿第二定律2v mg N m R'+= ④∴ h =5R∴ h 的取值范围是:2.55R h R ≤≤…15.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的两个圆形轨道组成,B 、C 分别是两个圆形轨道的最低点,半径R 1=、R 2=。

相关文档
最新文档