高中物理动量和能量知识点
高中物理公式大全(全集)八动量与能量
![高中物理公式大全(全集)八动量与能量](https://img.taocdn.com/s3/m/113a7b9ceefdc8d376ee32cd.png)
高中物理公式大全(全集)八动量与能量1.动量 2.机械能1.两个〝定理〞〔1〕动量定理:F ·t =Δp 矢量式 (力F 在时刻t 上积存,阻碍物体的动量p ) 〔2〕动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积存,阻碍物体的动能E k )动量定理与动能定理一样,差不多上以单个物体为研究对象.但所描述的物理内容差不极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时刻积存作用成效——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化.例如,质量为m 的小球以速度v 0与竖直方向成θ角打在光滑的水平面上,与水平面的接触时刻为Δt ,弹起时速度大小仍为v 0且与竖直方向仍成θ角,如下图.那么在Δt 内:以小球为研究对象,其受力情形如下图.可见小球所受冲量是在竖直方向上,因此,小球的动量变化只能在竖直方向上.有如下的方程:F ′击·Δt -mg Δt =mv 0cos θ-〔-mv 0cos θ〕小球水平方向上无冲量作用,从图中可见小球水平方向动量不变.综上所述,在应用动量定理时一定要专门注意其矢量性.应用动能定理时就无需作这方面考虑了.Δt 内应用动能定理列方程:W 合=mυ02/2-mυ02 /2 =02.两个〝定律〞〔1〕动量守恒定律:适用条件——系统不受外力或所受外力之和为零公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′〔2〕机械能守恒定律:适用条件——只有重力〔或弹簧的弹力〕做功公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k3.动量守恒定律与动量定理的关系一、知识网络二、画龙点睛 规律动量守恒定律的数学表达式为:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,可由动量定理推导得出. 如下图,分不以m 1和m 2为研究对象,依照动量定理:F 1Δt = m 1v 1′- m 1v 1 ①F 2Δt = m 2v 2′- m 2v 2 ②F 1=-F 2 ③∴ m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ 可见,动量守恒定律数学表达式是动量定理的综合解.动量定理能够解决动量守恒咨询题,只是较苦恼一些.因此,不能将这两个物理规律孤立起来.4.动能定理与能量守恒定律关系——明白得〝摩擦生热〞(Q =f ·Δs )设质量为m 2的板在光滑水平面上以速度υ2运动,质量为m 1的物块以速度υ1在板上同向运动,且υ1>υ2,它们之间相互作用的滑动摩擦力大小为f ,通过一段时刻,物块的位移为s 1,板的位移s 2,现在两物体的速度变为υ′1和υ′2由动能定理得:-fs 1=m 1υ1′2/2-m 1υ12/2 ①fs 2=m 2υ2′2/2-m 2υ22/2 ②在那个过程中,通过滑动摩擦力做功,机械能不断转化为内能,即不断〝生热〞,由能量守恒定律及①②式可得:Q =(m 1υ12/2+m 2υ22/2)-(m 1υ1′2/2-m 2υ2′2/2)=f (s 1-s 2)= f ·Δs ③ 由此可见,在两物体相互摩擦的过程中,缺失的机械能〔〝生热〞〕等于摩擦力与相对位移的乘积。
高中物理必修一知识点梳理归纳
![高中物理必修一知识点梳理归纳](https://img.taocdn.com/s3/m/d05c8b85f021dd36a32d7375a417866fb84ac0e3.png)
高中物理必修一知识点梳理归纳1500字高中物理必修一主要包括运动学、力学、能量与动量、电学四个部分。
下面将对这些知识点进行梳理归纳。
一、运动学1. 物体的位置:位移、直线运动和曲线运动、速度、加速度。
2. 运动的规律:匀速直线运动、变速直线运动、匀速曲线运动、变速曲线运动。
3. 运动的描述:用图象来描述运动、用函数来描述运动。
二、力学1. 牛顿的运动定律:第一定律(惯性定律)、第二定律(物体的加速度与作用力成正比,与物体的质量成反比)、第三定律(作用力与反作用力大小相等,方向相反)。
2. 弹簧力与摩擦力:胡克定律、摩擦力的类型及计算。
3. 静力学:静平衡、平衡力的条件。
4. 动力学:动量的概念、动量守恒定律、冲量及冲量定理。
5. 万有引力:质点的万有引力、行星的运动、地球表面附近物体的重力、弹力与重力的比较。
三、能量与动量1. 功与机械能:功的定义、功的计算、功的单位、功率的定义及计算、能量的转化与守恒、动能与重力势能、机械能的守恒、机械能的应用。
2. 惯性力与非惯性力:匀速圆周运动、牛顿力学的局限性。
四、电学1. 电流与电阻:电流的概念、电路的基本组成、电阻和电阻器。
2. 电压与电功:电压的概念、电压和电动势、电功和功率。
3. 理想电源电路:理想电源的作用、电流分布、串联电路和并联电路。
4. 半导体与 PN 结:半导体的性质、PN 结的形成、PN 结的特性与应用。
以上是高中物理必修一的主要知识点梳理,通过学习这些知识点,可以建立起对物理基本概念和原理的理解,为后续物理学习打下坚实的基础。
当然,学习物理最重要的是理解和掌握物理规律和运用物理知识解决问题的能力,因此在学习过程中要注重理论与实践相结合,积累解决问题的经验。
同时,物理知识与实际生活紧密相关,学习物理过程中要善于与实际应用结合,通过观察、实验和实际操作,加深对物理知识的理解和应用能力的培养。
高中物理《动量与能量》知识点与学习方法
![高中物理《动量与能量》知识点与学习方法](https://img.taocdn.com/s3/m/ce642a1458f5f61fb6366667.png)
高中物理《动量与能量》知识点与学习方法动量与能量动量与能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题。
分析这类问题时,应首先建立清晰的物理图象,抽象出物理模型,选择合理的物理规律建立方程进行求解。
一、力学规律的选用原则1、如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律。
2、研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间问题)或动能定理(涉及位移问题)去解决。
3、若研究的对象为一物体系统,且它们之间有相互作用,一般用两个守恒定律去解决问题,但须注意研究的问题是否满足守恒条件。
4、在涉及相对位移问题时,则优先考虑能量守恒定律,即用系统克服摩擦力所做的总功等于系统机械能的减少量,也即转变为系统内能的量。
5、在涉及有碰撞、爆炸、打击、绳绷紧等物理现象时,须注意到一般这些过程均隐含有系统机械能与其他形式能量之间的转化,这种问题由于作用时间都极短,故动量守恒定律一般能派上大用场。
二、利用动量观点和能量观点解题应注意下列问题(1)动量定理和动量守恒定律是矢量表达式,还可以写出分量表达式,而动能定理和能量守恒定律是标量式,绝无分量式。
(2)从研究对象上看动量定理既可研究单体,又可研究系统,但高中阶段一般用于单体,动能定理在高中阶段只能用于单体。
(3)动量守恒定律和能量守恒定律,是自然界最普遍的规律,它们研究的是物体系统,解题时必须注意动量守恒的条件和机械能守恒的条件,在应用这两个规律时,应当确定了研究对象及运动状态变化的过程后,根据问题的已知条件和要求解未知量,选择研究的两个状态列方程求解。
(4)中学阶段可用力的观点解决的问题,若用动量观点或能量观点求解,一般都要比用力的观点简便,而中学阶段涉及的曲线运动(加速度不恒定)、竖直面内的圆周运动、碰撞等,就中学只是而言,不可能单纯考虑用力的观点解决,必须考虑用动量观点和能量观点解决。
机械振动1、判断简谐振动的方法简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。
高中物理选修三的知识点
![高中物理选修三的知识点](https://img.taocdn.com/s3/m/49b2261fe009581b6ad9ebee.png)
高中物理选修三的知识1动量守恒定律一、动量;动量守恒定律1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的一种量度。
动量的表达式P=mv。
单位是。
动量是矢量,其方向就是瞬时速度的方向。
因为速度是相对的,所以动量也是相对的。
2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。
动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。
运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。
②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。
③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。
④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。
⑤动量守恒定律也可以应用于分动量守恒的情况。
有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。
⑥动量守恒定律有广泛的应用范围。
只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。
系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。
3、动量与动能、动量守恒定律与机械能守恒定律的比较。
动量与动能的比较:①动量是矢量, 动能是标量。
②动量是用来描述机械运动互相转移的物理量,而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。
比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了。
高中物理中动量和动能、冲量的关系
![高中物理中动量和动能、冲量的关系](https://img.taocdn.com/s3/m/ef91cb1b76232f60ddccda38376baf1ffd4fe312.png)
高中物理中动量和动能、冲量的关系全文共四篇示例,供读者参考第一篇示例:动量和动能、冲量是高中物理中非常重要的概念,它们之间有着紧密的关系。
理解这些概念对于我们理解物体在运动中的状态以及相互作用的原理至关重要。
本文将详细讨论动量、动能和冲量之间的关系,并探讨它们在物理学中的实际应用。
我们先来了解一下这三个概念的基本定义。
动量是描述物体运动状态的物理量,其定义为物体的质量与速度的乘积,即P=mv(其中P 为动量,m为物体的质量,v为物体的速度)。
动量是矢量量,具有方向性,其方向与速度方向一致。
动能则是物体由于运动而具有的能量,其计算公式为K=\frac{1}{2} mv^2(其中K为动能)。
而冲量则是描述物体在力作用下产生的改变速度的物理量,其定义为物体所受合力在时间间隔内的累积,即I=F\Delta t(其中I为冲量,F为合力,\Delta t为时间间隔)。
动量和动能之间存在着密切的关系。
根据牛顿第二定律,力的作用会改变物体的动量,即F=\frac{\Delta P}{\Delta t}。
在力作用下,物体的动能也会发生改变,根据功的定义,力对物体做功等于物体动能的改变量,即W=\Delta K。
在力的作用下,物体的动量和动能是相互关联的,它们之间存在着密切的对应关系。
动量和冲量之间的关系也非常重要。
根据冲量-动量定理,物体受到的冲量等于物体动量的变化量,即I=\Delta P。
这表明,冲量是导致物体动量发生变化的原因,是力在时间间隔内对物体产生的“瞬时影响”。
冲量的大小取决于作用力的大小和作用时间的长短,可以通过控制力的大小和时间来实现对物体动量的控制。
在物理学中,动量和冲量的概念广泛应用于各种物理现象的分析和计算。
在碰撞过程中,动量守恒定律可以用来描述物体碰撞前后动量的总和不变的原理。
而在工程中,通过控制物体受到的冲量来实现对机械装置的动力传递和控制。
在实际生活中,我们也可以通过控制物体的动能和动量来改变其运动状态,实现对物体运动的调控和控制。
高中物理重要知识点总结(精华版)
![高中物理重要知识点总结(精华版)](https://img.taocdn.com/s3/m/9e88224a53ea551810a6f524ccbff121dd36c58b.png)
高中物理重要知识点总结(精华版)
本文总结了高中物理学科中的一些重要知识点。
以下为主要内容:
力学
- 牛顿三定律:物体的运动状态取决于作用在其上的力;
- 动能定理:物体的动能等于其质量乘以速度的平方的一半;
- 动量定理:物体的动量变化等于作用于它的力乘以作用时间;
- 弹力定律:弹簧的伸缩力与其伸缩程度成正比;
- 万有引力定律:两个物体之间的引力与它们质量的乘积成正比,与它们之间的距离的平方成反比;
热学
- 温度和热量:温度是物体内部粒子运动状态的度量,热量是
物体与外界之间传递的能量;
- 热传导:热量在物体内部的传递方式,遵循热量从高温区到
低温区的传递规律;
- 温度与热量的变化:物体的温度变化与所吸收或释放的热量相关;
- 热膨胀:物体受热后体积膨胀,遵循热胀冷缩原理;
光学
- 光的反射和折射:光在反射和折射时遵循入射角等于反射角或折射角的定律;
- 光的色散:光通过透明介质时会发生不同波长的光的偏折现象,形成光的色散;
- 光的干涉和衍射:光通过干涉和衍射现象呈现出干涉条纹和衍射图样;
电学
- 电流和电阻:电流是电荷在单位时间内通过导体横截面的数量,电阻是导体阻碍电流流动的程度;
- 电压和电功率:电压是电流在电路中的推动力,电功率是电流在电路中所做的功;
- 电阻和电流的关系:电阻随电流的增大而增大,遵循欧姆定律;
- 并联和串联电路:并联电路中电流分流,串联电路中电压分压;
以上为高中物理学科的一些重要知识点总结,希望对您有所帮助!。
高中物理,动量和能量知识点总结,高频考点题详解
![高中物理,动量和能量知识点总结,高频考点题详解](https://img.taocdn.com/s3/m/6f318d0b842458fb770bf78a6529647d2628347b.png)
高中物理,动量和能量知识点总结,高频考点题详解
高中物理动量和能量的知识点是理念物理高考试题的热点与重点,但是学生在学习动量和能量知识点时,由于方法正确,导致自身的物理考试成绩相对较低.
因此,我们在学习物理动量与能量知识点时,应该掌握合适的学习方法,先从物理动量和能量的概念入手,然后学习相关定律,在对典型例题进行强化练习,以此提高自身的物理考试成绩.学姐对自己高中物理动量与能量知识点的学习经验进行了总结,能够为广大高中生提高成绩。
“物理128”
历年高考,很多同学苦于无法提升成绩,清北众多学霸们,通过对近7年高考大纲深入总结,以及全国各省市上百套真题试卷精准提炼
发现历年高考数学,无非259个常考题型,其中包含120道必考题型,
发现历年高考物理,无非156个常考题型,其中包含78道必考题型,
高考数学、物理,无非这些知识点,可惜很多学生、家长还不知道...
《高考满分秘籍》根据高考大纲梳理了高考重要考点以及各科的解题技巧,逐一击破高中及高考遇到的各类难题,例如数学
“压轴题大通关”、物理“逆向思维解题法”、历史“选择秒杀技巧”、语文“作文满分秘籍”、生物“疫情考点大解析”抓住核心考点,必考、常考知识清单是最省时、高效的提分方法!。
高中物理二级结论动量
![高中物理二级结论动量](https://img.taocdn.com/s3/m/5e3908f727284b73f242509f.png)
动量:1、质量为m 的物体的动量P 和动能之间存在下列关系K mE p 2=或者E K =P 2/2m 。
2、动量守恒是矢量守恒(1)总动量的方向保持不变。
(2)矢量方程:注意规定好正方向,各动量代入正负号计算。
3、两物体m 1、m 2碰撞之后,总动量必须和碰前大小方向都相同,总动能小于或等于碰前总动能,碰后在没有其他物体的情况下,保证不再发生碰撞。
原来静止的系统,因其相互作用而分离,则m 1s 1+m 2s 2=0。
4、一维的两物体m 1、m 2以速度v 1、v 2发生弹性碰撞之后的速度分别变为:若v 2≠0,m 1=m 2,则1221','v v v v ==,交换速度。
m 1>>m 2,则212112','v v v v v -==。
m 1<<m 2,则22121',2'v v v v v =-=若v 2=0,m 1=m 2时,121',0'v v v ==。
m 1>>m 2时,12112','v v v v ==。
m 1<<m 2时,0','211=-=v v v 。
质量大碰小,一起向前;小碰大,向后转;质量相等,速度交换。
碰撞中动能不会增大,反弹时被碰物体动量大小可能超过原物体的动量大小。
5、两物体发生弹性碰撞后,相对速度大小不变,方向相反,2211''v v v v -=-;也可以说两物体的速度之和保持不变,即''2121v v v v +=+6、反弹:动量变化量大小()∆p m v v =+127、“弹开”(初动量为零,分成两部分):速度和动能都与质量成反比。
8、人船模型(反冲)解决这种问题的前提条件是要两物体的初动量为零(或某方向上初动量为零),画出两物体的运动示意图有利于发现各物理量之间的关系,特别提醒要注意各物体的位移是相对于地面的位移(或该方向上相对于地面的位移)。
能量和动量的综合应用(超详细)
![能量和动量的综合应用(超详细)](https://img.taocdn.com/s3/m/9895a6114431b90d6c85c78a.png)
【本讲主要内容】能量和动量的综合应用相互作用过程中的能量转化及动量守恒的问题【知识掌握】【知识点精析】1. 应用动量和能量的观点求解的问题综述:该部分是力学中综合面最广,灵活性最大,内容最为丰富的部分。
要牢固树立能的转化和守恒思想,许多综合题中,当物体发生相互作用时,常常伴随多种能量的转化和重新分配的过程。
因此,必须牢固地以守恒(系统总能量不变)为指导,这样才能正确无误地写出能的转化和分配表达式。
2. 有关机械能方面的综述:(1)机械能守恒的情况:例如,两木块夹弹簧在光滑水平面上的运动,过程中弹性势能和木块的动能相互转化;木块冲上放在光滑面上的光滑曲面小车的过程,上冲过程中,木块的动能减少,转化成木块的重力势能和小车的动能。
等等……(2)机械能增加的情况:例如,炸弹爆炸的过程,燃料的化学能转化成弹片的机械能;光滑冰面上两个人相互推开的过程,生物能转化成机械能。
等等……(3)机械能减少的情况:例如,“子弹击木块”模型,包括“木块在木板上滑动”模型等;这类模型为什么动量守恒,而机械能不守恒(总能量守恒),请看下面的分析:如图1所示,一质量为M 的长木板B 静止在光滑水平面上,一质量为m 的小滑块A 以水平速度v 0从长木板的一端开始在长木板上滑动,最终二者相对静止以共同速度一起滑行。
滑块A 在木板B 上滑动时,A 与B 之间存在着相互作用的滑动摩擦力,大小相等,方向相反,设大小为f 。
因水平面光滑,合外力为零,以A 、B 为系统,动量守恒。
(过程中两个滑动摩擦力大小相等,方向相反,作用时间相同,对系统总动量没有影响,即系统的内力不影响总动量)。
由动量守恒定律可求出共同速度0v m M m v += 上述过程中,设滑块A 对地的位移为s A ,B 对地位移为s B 。
由图可知,s A ≠s B ,且s A =(s B +Δs ),根据动能定理:对A :W fA =2020202B 21)(212121)(mv m M mv m mv mv s s f -+=-=∆+- 对B :202B fB )(21021mM mv M Mv fs W +=-== 以上两式表明:滑动摩擦力对A 做负功,对B 做正功,使A 的动能减少了,使B 的动(1)撤去力F 后木块B 能够达到的最大速度是多大?(2)木块A 离开墙壁后,弹簧能够具有的弹性势能的最大值多大?分析:本题第一问,撤去力F 后木块B 只在弹簧弹力作用下运动,木块A 不动,弹簧的弹性势能转化为木块B 的动能,弹簧第一次恢复原长时,木块B 有最大速度。
物理能量和动量经典总结知识点
![物理能量和动量经典总结知识点](https://img.taocdn.com/s3/m/db0a7375192e45361066f580.png)
运用动量和能量观点解题的思路动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。
试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。
试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。
冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对空间的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。
能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个重要而普遍的思路。
应用动量定理和动能定理时,研究对象一般是单个物体,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。
因此,在用它们解题时,首先应选好研究对象和研究过程。
对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。
选取时应注意以下几点:1.选取研究对象和研究过程,要建立在分析物理过程的基础上。
临界状态往往应作为研究过程的开始或结束状态。
2.要能视情况对研究过程进行恰当的理想化处理。
3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时这样做,可使问题大大简化。
4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过程。
确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原则是:1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量定理,而涉及位移的应选用动能定理。
2.若是多个物体组成的系统,优先考虑两个守恒定律。
专题二 动量和能量
![专题二 动量和能量](https://img.taocdn.com/s3/m/32c9c3e8524de518964b7d1b.png)
内容最 丰富 的部 分 . 以两 大 定律 与 两 大 定理 为 核心 构 筑 了力 学 体 系 . 够 能 渗 透 到 中学 物 理 大 部 分 章 节 与 知 识
点 中。将 各 章节 知 识不 断 分 化 . 与 再
一
动 量 守恒
、
解题 方 法 总 结 归纳 讲 解
( ) 用 动 量 守 恒 定 律 解 Байду номын сангаас 问题 一 应
的基 本 思 路 和 一 般 方 法
会 形成 综 合 型考 查 问题 . 面考 查 知 全
识 掌 握 程 度 与 应 用 物 理 知识 解 决 问 题 的 能力 。这 是 历 年 高考 的 热点 , 其
- .
1 量恒律l2 l№ l 体统合力0, 内状变情 ②船动—箭s 定定m+2' — l 系受外为时 统部态化况 ③冲型 S ;= 动 vv V l =l m mt + — 物 系 人模:火S 反运—= £ M +
考 考 纲 解 读
~
合 到带 电 粒 子 的 运 动 及 电 磁 感 应 之
命 题方 式 多样 、 型 全 、 量 重 , 到 题 分 小 选 择 题 . 到 压 轴 题 . 可 能在 此 出 大 都 题 考查 内容涉 及 中学 物理 的各 个 板 块. 因此 综 合性 强 。主要 综 合考 查 动
1分 析题 意 , . 明确 研 究 对 象 。在
分 析 相 互 作 用 的物 体 总 动 量 是 否 守 恒 时 . 常 把这 些 被 研究 的物 体 总称 通
析 . 明 确在 哪 些 阶 段 . 些 物 体 发 要 哪 生 相 互作 用 . 而确 定 所研 究 的 系统 从
高中物理公式大全全集八动量与能量
![高中物理公式大全全集八动量与能量](https://img.taocdn.com/s3/m/130459b887c24028905fc301.png)
八、动量与能量1.动量 2.机械能1.两个“定理”(1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p )(2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化.例如,质量为m 的小球以速度v 0与竖直方向成θ角打在光滑的水平面上,与水平面的接触时间为Δt ,弹起时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则在Δt 内:以小球为研究对象,其受力情况如图所示.可见小球所受冲量是在竖直方向上,因此,小球的动量变化只能在竖直方向上.有如下的方程:F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ)小球水平方向上无冲量作用,从图中可见小球水平方向动量不变.综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方面考虑了.Δt 内应用动能定理列方程:W 合=mυ02/2-mυ02 /2 =02.两个“定律”(1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′(2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k3.动量守恒定律与动量定理的关系一、知识网络二、画龙点睛 规律动量守恒定律的数学表达式为:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,可由动量定理推导得出. 如图所示,分别以m 1和m 2为研究对象,根据动量定理:F 1Δt = m 1v 1′- m 1v 1 ①F 2Δt = m 2v 2′- m 2v 2 ②F 1=-F 2 ③∴ m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ 可见,动量守恒定律数学表达式是动量定理的综合解.动量定理可以解决动量守恒问题,只是较麻烦一些.因此,不能将这两个物理规律孤立起来.4.动能定理与能量守恒定律关系——理解“摩擦生热”(Q =f ·Δs )设质量为m 2的板在光滑水平面上以速度υ2运动,质量为m 1的物块以速度υ1在板上同向运动,且υ1>υ2,它们之间相互作用的滑动摩擦力大小为f ,经过一段时间,物块的位移为s 1,板的位移s 2,此时两物体的速度变为υ′1和υ′2由动能定理得:-fs 1=m 1υ1′2/2-m 1υ12/2 ①fs 2=m 2υ2′2/2-m 2υ22/2 ②在这个过程中,通过滑动摩擦力做功,机械能不断转化为内能,即不断“生热”,由能量守恒定律及①②式可得:Q =(m 1υ12/2+m 2υ22/2)-(m 1υ1′2/2-m 2υ2′2/2)=f (s 1-s 2)= f ·Δs ③ 由此可见,在两物体相互摩擦的过程中,损失的机械能(“生热”)等于摩擦力与相对位移的乘积。
【高中物理】动量和动能的区别
![【高中物理】动量和动能的区别](https://img.taocdn.com/s3/m/cab2a69068dc5022aaea998fcc22bcd126ff4239.png)
【高中物理】动量和动能的区别
动量和动能都是反映物体运动状态的物理量,又都取决于运动物体的质量和速度,但
是这两个物理量有着本质的区别。
一、动量和动能的变化分别对应着力的两个不同的累积效应
动量定理叙述了冲量就是物体动量变化的量度。
动量就是表观运动状态的量,动量的
增量则表示物体运动状态的变化,冲量则就是引发运动状态发生改变的原因,并且就是动
量变化的量度。
动量定理叙述的就是一个过程,在此过程中,由于物体受冲量的促进作用,引致物体的动量发生变化。
动能定理揭示了动能的变化是通过做功过程来实现,且动能的变化是通过做功来量度的。
动能定理所揭示的这一关系。
也是功跟各种形式的能量变化的共同关系,即功是能量
变化的量度。
各种形式的能是可以相互转化的,这种转化也都是通过做功来实现的,且通
过做功来量度。
由此可见。
动量和动能的根本区别,就在于它们描述物理过程的特征和守
恒规律不同。
每一个运动的物体都具有一定的动量和动能,但动量的变化和能量的转化,
完全服从不同的规律。
因此要了解和区别这两个概念,就必须从物理变化过程中去考虑。
动量的变化整体表现着力对时间的积累效应,动量的变化与外力的冲量成正比;动能
的变化整体表现着力对空间的积累效应,动能的变化与外力搞的功成正比。
动量与冲量既
就是密切联系着的、又就是存有本质区别的物理量。
动量同意物体抵抗阻力能移动多久;
动能与功也就是密切联系着的。
又就是存有本质区别的物理量,动能同意物体抵抗阻力能
移动多离。
动量与能量守恒高三知识点
![动量与能量守恒高三知识点](https://img.taocdn.com/s3/m/430e5f144a73f242336c1eb91a37f111f1850dfe.png)
动量与能量守恒高三知识点动量与能量守恒是高中物理中的重要知识点,它们是描述物体运动的基本原理。
本文将从理论原理、实例分析以及应用等方面介绍动量与能量守恒的概念和作用。
一、动量与能量守恒的理论原理动量守恒定律是指在没有外力或者合外力为零的情况下,物体或系统的总动量保持不变。
动量的定义是物体的质量与速度的乘积,用数学公式表示为p=mv,其中p为动量,m为质量,v为速度。
根据动量守恒定律,如果物体在一个封闭系统内发生碰撞,那么碰撞前后物体的总动量将保持不变。
能量守恒定律是指在一个封闭系统中,能量总量保持不变。
能量可以分为动能和势能两种形式。
动能是指物体由于运动而具有的能量,计算公式为KE=1/2mv²,其中KE为动能,m为质量,v 为速度。
势能是指物体由于位置或状态而具有的能量,常见的包括重力势能、弹性势能等。
根据能量守恒定律,封闭系统内的能量总和在任何时刻都保持不变。
二、动量守恒实例分析1. 弹性碰撞在弹性碰撞中,碰撞前后物体的总动量保持不变。
例如,两个相互碰撞的小球A和小球B,它们之间不存在能量损失,碰撞前后它们的总动量保持不变。
假设小球A的质量为m1,速度为v1,小球B的质量为m2,速度为v2,根据动量守恒定律可得m1v1 +m2v2 = m1v1' + m2v2',其中v1'和v2'分别为碰撞后两个小球的速度。
2. 爆炸在爆炸过程中,物体内部发生剧烈的分解,将储存的内能转化为动能,物体的总动量保持不变。
例如,火箭发射时,燃料燃烧释放出巨大能量,将火箭推向空中。
此时,火箭与燃料的总动量保持不变,燃料的推力将火箭向上推进。
三、动量与能量守恒的应用1. 轨道运动在行星绕太阳的运动中,动量守恒保证了行星的运动轨道的稳定性。
太阳和行星的总动量始终保持不变,行星的速度和轨道半径相应调整以维持动量守恒。
同样地,卫星绕地球的运动也遵循动量守恒原理。
2. 交通事故分析在交通事故中,动量守恒和能量守恒的原理可以用来分析事故发生的原因和结果。
高中物理-动量守恒与能量
![高中物理-动量守恒与能量](https://img.taocdn.com/s3/m/c70fddf633687e21af45a9f4.png)
能量守恒类
5
(3)电路中产生的电 能
上次回顾
根据水平方向动量守恒有
0 mvx Mvx' mvx Mvx' mvxt Mvx' t mx1 Mx1' 累加后有mx Mx'
而据题意有x x' 2R,m M
xR
距水平方向动量守恒有
0 mvx Mvx' mvx Mvx'
条件不同--动量守恒要求系统外力必须为0,而机 械能守恒则要求只能有重力弹力做功,因此可以 有外力,如重力;也可以有其他的力(不做功即 可)故而机械能守恒时动量可以不守恒。 同样的,动量守恒时机械能可以不守恒。因为内 力的作用同样会产生其他形式的能。(比如系统 内的滑动摩擦力会产生热,碰撞时的撞击力也可 能会产生内能)因此要求我们能够熟练判断一道 题中的各个过程中动量与机械能的变化情况
mg(h0
R)
1 2mv2x源自1 2Mv'2x
我能口算,大 家相信么?
2.如图所示,质量为M的木板长为L(L未 知),置于光滑水平面上,木板上放一质量 为m的铁块,与木板一起以速度v向右运动, 当M与墙发生完全弹性碰撞后,原速弹回,, 已知动摩擦因数为μ.求L至少为多大时,铁 块不会掉下来
的碰撞叫做弹性碰撞. 3.非弹性碰撞:如果碰撞过程中机械能 不守恒 ,这
样的碰撞叫做非弹性碰撞. 4.完全非弹性碰撞:碰撞过程中物体的形变完全不能
恢复,以致两物体合为一体一起运动,即两物体在非弹
性碰撞后以同一速度运动,系统机械能损失最大.
有请 初大 速家 度想 怎一 么想 用如 这果 个第 式二 子个 呢球
当m M时物体会再次向右运动, 最终在无数次碰撞中最终停下
mgL 1 (M m)v2
中高中物理第九讲 动量 角动量和能量详细讲解
![中高中物理第九讲 动量 角动量和能量详细讲解](https://img.taocdn.com/s3/m/f29a5826bd64783e09122b42.png)
即冲量等于动量的增量,这就是质点动量定理。
在应用动量定理时要注意它是矢量式,速度的变化前后的方向可以在一条直线上,也可以不在一条直线上,当不在一直线上时,可将矢量投影到某方向上,分量式为:
Fy?t?mvty?mv0y Fz?t?mvtz?mv0z tx?mv0x Fx?t?mv
4.1.2.冲量
要使原来静止的物体获得某一速度,可以用较大的力作用较短的时间或用较小的力作用较长的时间,只要力F和力作用的时间?t的乘积相同,所产生的改变这个物体的速度效果就一样,在物理学中把F?t叫做冲量。
4.1.3.质点动量定理
由牛顿定律,容易得出它们的联系:对单个物体:
F?t?ma?t?m?v?mv1?mv0 F?t??p
动量对空间某点或某轴线的矩,叫动量矩,也叫角动量。
它的求法跟力矩完全一样,只要把力F换成动量P即可,故B点上的动量P对原点O的动量矩J为
???
J?r?P (r?)
以下介绍两个定理:
对于多个物体组成的物体系,按照力的作用者划分成内力和外力。对各个质点用动量定理:
第1个 I1外+I1内=m1v1t?m1v10
第2个 I2外+I2内=m2v2t?m2v20
? ?
第n个 In外+In内=mnvnt?mnvn0
高中物理竞赛热学教程第四讲动量 角动量和能量
第四讲 动量 角动量和能量
§4.1 动量与冲量 动量定理
4.1. 1.动量
在牛顿定律建立以前,人们为了量度物体作机械运动的“运动量”,引入了动量的概念。当时在研究碰撞和打击问题时认识到:物体的质量和速度越大,其“运动量”就越大。物体的质量和速度的乘积mv遵从一定的规律,例如,在两物体碰撞过程中,它们的改变必然是数值相等、方向相反。在这些事实基础上,人们就引用mv来量度物体的“运动量”,称之为动量。
高中物理公式(冲量与动量、功和能、分子动理论、能量守恒定律)
![高中物理公式(冲量与动量、功和能、分子动理论、能量守恒定律)](https://img.taocdn.com/s3/m/2e9d80eb700abb68a982fbb2.png)
高中物理公式(冲量与动量、功和能、分子动理论、能量守恒定律)六、冲量与动量(物体的受力与动量的变化)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N•s),F:恒力(N),t:力的作用时间(s),方向由F决定}4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p’´也可以是m1v1+m2v2=m1v1´+m2v2´6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1´=(m1-m2)v1/(m1+m2) v2´=2m1v1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移} 注:(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
高中物理【电磁感应中的动力学、能量、动量问题】
![高中物理【电磁感应中的动力学、能量、动量问题】](https://img.taocdn.com/s3/m/e2061e2f49649b6649d74787.png)
电磁感应中的动力学、能量、动量问题考点一电磁感应中的动力学问题1.“四步法”分析电磁感应动力学问题解决电磁感应中的动力学问题的一般思路是“先电后力”,具体思路如下:2.电磁感应中的动态分析在此类问题中,不论加速运动还是减速运动,加速度总是逐渐减小,最后达到匀速运动.具体思路如下:例1、如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T.一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r =0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动.金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m.求(g取10 m/s2)(1)金属棒在磁场I中运动的速度大小(2)金属棒滑过cd位置是的加速度大小(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小练习1.如图甲所示,电阻不计且间距L=1 m的光滑平行金属导轨竖直放置,上端接一阻值R=2 Ω的电阻,虚线OO′下方有垂直于导轨平面向里的匀强磁场,现将质量m=0.1 kg、电阻不计的金属杆ab从OO′上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触且始终水平,已知杆ab进入磁场时的速度v0=1 m/s,下落0.3 m的过程中加速度a与下落距离h的关系图象如图乙所示,g取10 m/s2,则( )A.匀强磁场的磁感应强度为1 TB.杆ab下落0.3 m时金属杆的速度为1 m/sC.杆ab下落0.3 m的过程中R上产生的热量为0.2 JD.杆ab下落0.3 m的过程中通过R的电荷量为0.25 C考点二电磁感应中的能量问题1.电磁感应中的能量转化2、求解焦耳热Q的三种方法例2如图所示,两根光滑金属导轨平行放置在倾角为30°的斜面上,导轨宽度为L,导轨下端接有电阻R,两导轨间存在一方向垂直于斜面向上,磁感应强度大小为B的匀强磁场,轻绳一端平行于斜面系在质量为m的金属棒上,另一端通过定滑轮竖直悬吊质量为m0的小木块.第一次将金属棒从PQ位置由静止释放,发现金属棒沿导轨下滑,第二次去掉轻绳,让金属棒从PQ位置由静止释放.已知两次下滑过程中金属棒始终与导轨接触良好,且在金属棒下滑至底端MN前,都已经达到了平衡状态.导轨和金属棒的电阻都忽略不计,已知mm0=4,mgRB2L2=gh(h为PQ位置与MN位置的高度差).求:(1)金属棒两次运动到MN时的速度大小之比;(2)金属棒两次运动到MN过程中,电阻R产生的热量之比.练习2、如图所示,在粗糙绝缘水平面上有一正方形闭合线框abcd,其边长为l,质量为m,金属线框与水平面的动摩擦因数为μ.虚线框a′b′c′d′内有一匀强磁场,磁场方向竖直向下.开始时金属线框的ab 边与磁场的d ′c ′边重合.现使金属线框以初速度v 0沿水平面滑入磁场区域,运动一段时间后停止,此时金属线框的dc 边与磁场区域的d ′c ′边距离为l .在这个过程中,金属线框产生的焦耳热为( )A. 12mv 20+μmglB. B.12mv 20-μmglC. 12mv 20+2μmglD. D.12mv 20-2μmgl考点三 电磁感应中的动量问题1.动量定理在电磁感应中的应用在电磁感应中用动量定理时,通常将下面两式结合应用:BLI ·Δt =Δmv q =I Δt =n ΔΦR2.动量守恒在电磁感应中的应用在“双棒切割”系统中,在只有安培力作用下,系统的合外力为零,通常应用动量守恒求解.例 3 如图所示,两根平行光滑的金属导轨MN 、PQ 放在水平面上,左端向上弯曲,导轨间距为L ,电阻不计,水平段导轨所处空间存在方向竖直向上的匀强磁场,磁感应强度为B .导体棒a 和b 的质量均为m ,电阻值分别为R a =R ,R b =2R .b 棒放置在水平导轨上且距弯曲轨道底部L 0处,a 棒在弯曲轨道上距水平面h 高度处由静止释放.运动过程中导体棒和导轨接触良好且始终和导轨垂直,重力加速度为g .求: (1)从a 棒开始下落到最终稳定的过程中,a 棒上产生的内能? (2)当a 、b 棒运动最终稳定时,通过a 棒的总电荷量?练习3、如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L ,导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q 最多是多少?(2)当ab 棒的速度变为初速度的34时,cd 棒的加速度a 是多少?考点四、高考常考的“切割模型”——导体棒或导体框切割磁感线运动模型模型1——导体转动切割磁感线模型 模型2——“单棒+导轨”模型 模型3——“双棒+导轨”模型 模型4——“线框切割”模型例4、[2017·海南卷](多选)如图,空间中存在一匀强磁场区域,磁场方向与竖直面(纸面)垂直,磁场的上、下边界(虚线)均为水平面;纸面内磁场上方有一个正方形导线框abcd,其上、下两边均与磁场边界平行,边长小于磁场上、下边界的间距.若线框自由下落,从ab边进入磁场时开始,直至ab边到达磁场下边界为止,线框下落的速度大小可能( ) A.始终减小B.始终不变C.始终增加D.先减小后增加例5、(多选)足够长的光滑金属导轨ab、cd水平放置,质量为m、电阻为R的两根相同金属棒甲、乙与导轨垂直且接触良好,磁感应强度为B的匀强磁场垂直导轨平面向里,如图所示,现用F作用于乙棒上,使它向右运动,用v、a、i和P 分别表示甲棒的速度、甲棒的加速度、甲棒中的电流和甲棒消耗的电功率,下列图象可能正确的是( )练习4、如图所示,两相互平行且足够长的光滑倾斜金属导轨,导轨与水平面间的夹角为37°,导轨宽度为1.0m,上端接一个电容器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学大教育设计人:马洪波高考物理知识归纳(三)---------------动量和能量1.力的三种效应:力的瞬时性(产生a)F=ma 、运动状态发生变化牛顿第二定律时间积累效应( 冲量)I=Ft 、动量发生变化动量定理空间积累效应( 做功)w=Fs 动能发生变化动能定理2.动量观点:动量:p=mv= 2mE 冲量:I = F tK动量定理:内容:物体所受合外力的冲量等于它的动量的变化。
公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键)I=F 合t=F 1t 1+F 2t 2+---= p=P 末-P 初=mv 末-mv初动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p ;p 0;p1 - p 2 P=P′(系统相互作用前的总动量P 等于相互作用后的总动量P′) ΔP=0 (系统总动量变化为0)如果相互作用的系统由两个物体构成,动量守恒的具体表达式为P1+P2=P1′+P2′(系统相互作用前的总动量等于相互作用后的总动量)m1V 1+m2V 2=m1V 1′+m2V2′ΔP=-ΔP'(两物体动量变化大小相等、方向相反)实际中应用有:m1v1+m2v2= ' 'm1v m v ;0=m1v1+m2v2 m1v1+m2v2=(m1+m2)v1 2 2共原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。
即:P+(-P)=0注意理解四性:系统性、矢量性、同时性、相对性矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算简化为代数运算。
相对性: 所有速度必须是相对同一惯性参照系。
同时性:表达式中v1 和v2 必须是相互作用前同一时刻的瞬时速度,v ’和v ’必须是相互作用后同一时刻1 2的瞬时速度。
解题步骤:选对象,划过程;受力分析。
所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。
3.功与能观点:功W = Fs cos (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度W= P ·t ( p= wt=F St=Fv) 功率:P =Wt(在t 时间内力对物体做功的平均功率) P = Fv(F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率;V 为平均速度时,P 为平均功率;P 一定时,F 与V 成正比)动能:E K=12 mv 22p2m重力势能E p = mgh (凡是势能与零势能面的选择有关)学大教育设计人:马洪波动能定理:外力对物体所做的总功等于物体动能的变化(增量)。
公式:W 合= W合=W 1 + W 2 + ⋯+W n = E k = E k2 一E k1 =122 21mV mV2 12机械能守恒定律:机械能=动能+重力势能+弹性势能(条件:系统只有内部的重力或弹力做功).守恒条件:(功角度)只有重力,弹力做功;(能转化角度)只发生动能与势能之间的相互转化。
“只有重力做功”不等于“只受重力作用”。
在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。
列式形式:E1=E2(先要确定零势面)P 减(或增)=E 增(或减) E A 减(或增)=E B增(或减)mgh1 + 122 21mV mgh mV 或者E p1 2 22减= E k增除重力和弹簧弹力做功外,其它力做功改变机械能;滑动摩擦力和空气阻力做功W =fd 路程 E内能( 发热) 4.功能关系:功和能的关系:功是能量转化的量度。
有两层含义:(1) 做功的过程就是能量转化的过程,(2) 做功的多少决定了能转化的数量, 即: 功是能量转化的量度强调:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与一个时刻相对应。
两者的单位是相同的( 都是J) ,但不能说功就是能,也不能说“功变成了能”。
做功的过程是物体能量的转化过程,做了多少功,就有多少能量发生了变化,功是能量转化的量度.(1)动能定理合外力对物体做的总功等于物体动能的增量.即 1 1W 2 12 2 1mv mv E合k E Ek k2 2(2) 与势重力重力做正功,重力势能减少;重力做负功,重力势能增加.重力对物体所做的功等能相关于物体重力势能增量的负值.即W G=E P1—E P2= —ΔE P力做功弹簧弹力弹力做正功,弹性势能减少;弹力做负功,弹性势能增加.导致弹力对物体所做的功等于物体弹性势能增量的负值.即W 弹力=E P1—E P2= —ΔE P与之相分子力分子力对分子所做的功=分子势能增量的负值关的势电场力电场力做正功,电势能减少;电场力做负功,电势能增加。
注意:电荷的正负及移动方向能变化电场力对电荷所做的功=电荷电势能增量的负值(3)机械能变化原因除重力(弹簧弹力)以外的的其它力对物体所做的功=物体机械能的增量即W F=E2—E1=ΔE当除重力(或弹簧弹力)以外的力对物体所做的功为零时,即机械能守恒(4)机械能守恒定律在只有重力和弹簧的弹力做功的物体系内,动能和势能可以互相转化,但机械能的总量保持不变.即E K2+E P2 = E K1+E P1,121mv 或ΔE K = —ΔE P2 2mgh mv mghmv或ΔE K = —ΔE P1 21 2 2(5)静摩擦力做功的(1)静摩擦力可以做正功,也可以做负功,还可以不做功;特点(2)在静摩擦力做功的过程中,只有机械能的互相转移,而没有机械能与其他形式的能的转化,静摩擦力只起着传递机械能的作用;(3)相互摩擦的系统内,一对静摩擦力对系统所做功的和总是等于零.(6)滑动摩擦力做功(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功;特点=滑动摩擦力跟物体间相对路程的乘积,即一对滑动摩擦力所做的功“摩擦所产生的热”(2)相互摩擦的系统内,一对滑动摩擦力对系统所做功的和总表现为负功,其大小为 :W= — fS 相对 =Q 对系统做功的过程中 ,系统的机械能转化为其他形式的能,相对为相互摩擦的物体间的相对位移 ;若相对运动有往复性 ,则S 相对 为相对运动的路程 ) (S(7)一对作用力与反 (1)作用力做正功时,反作用力可以做正功,也可以做负功,还可以不做功;作用 作用力做功的特点力做负功、不做功时,反作用力亦同样如此.(2)一对作用力与反作用力对系统所做功的总和可以是正功,也可以是负功 ,还可以零.外界对气体所做的功 W 与气体从外界所吸收的热量 Q 的和 =气体内能的变化(8)热学 外界对气体做功W+Q=△ U (热力学第一定律 ,能的转化守恒定律 )学大教育设计人:马洪波(9)电场力做功W=qu=qEd=F 电S E (与路径无关)(10)电流做功 22 u(1)在纯电阻电路中tw uIt I Rt (电流所做的功率=电阻发热功率)R(2) 在电解槽电路中,电流所做的功率=电阻发热功率+转化为化学能的的功率(3) 在电动机电路中,电流所做的功率=电阻发热功率与输出的机械功率之和P 电源t =uIt= +E 其它;W=IUt I 2Rt(11)安培力做功安培力所做的功对应着电能与其它形式的能的相互转化,即W安=△E电,安培力做正功,对应着电能转化为其他形式的能(如电动机模型);克服安培力做功,对应着其它形式的能转化为电能(如发电机模型);且安培力作功的绝对值,等于电能转化的量值,W=F 安d =BILd 内能(发热) (12)洛仑兹力永不做功洛仑兹力只改变速度的方向光子=hγ;一束光能量 E 光=N×hγ(N指光子数目)(13)光学光子的能量: E在光电效应中,光子的能量hγ=W+ 1 mv22(14)原子物理原子辐射光子的能量hγ=E 初— E 末,原子吸收光子的能量hγ= E 末— E初2爱因斯坦质能方程:E=mc(15)能量转化和守恒对于所有参与相互作用的物体所组成的系统,其中每一个物体的能量的数值及形式定律都可能发生变化,但系统内所有物体的各种形式能量的总合保持不变功和能的关系贯穿整个物理学。
现归类整理如下:常见力做功与对应能的关系常见的几种力做功能量关系力的种类做功的正负对应的能量变化情况数量关系式①重力mg + 减小重力势能E P–增加mgh=–ΔE P②弹簧的弹力kx + 减小弹性势能 E弹性–增加W弹=–ΔE 弹性③分子力 F 分子+ 减小分子势能 E分子–增加W分子力=–ΔE 分子④电场力Eq + 减小电势能 E电势–增加q U = –ΔE 电势⑤滑动摩擦力 f –内能Q 增加fs 相对= Q⑥感应电流的安培力 F 安培–电能 E 电增加W 安培力=ΔE电⑦合力 F合+增加动能E k–减小W合=ΔE k⑧重力以外的力 F +增加机械能 E机械–减小W F=ΔE 机械-19J 度=kwh=3.6×106J 1u=931.5Mev5.求功的方法:单位:J ev=1.9×10⊙力学:①W =Fscos α②W= P ·t ( p= wt=F St=Fv)③动能定理W 合=W 1+ W 2+ ⋯+W n = ΔE K =E 末-E初(W可以不同的性质力做功)④功是能量转化的量度( 易忽视)主要形式有:惯穿整个高中物理的主线重力的功------ 量度------ 重力势能的变化电场力的功----- 量度------电势能的变化学大教育 设计人:马洪波分子力的功 ----- 量度 ------ 分子势能的变化 合外力的功 ------量度 ------- 动能的变化除重力和弹簧弹力做功外 ,其它力做功改变机械能;摩擦力和空气阻力做功W =fd路程 E 内能(发热 )与势能相关的力做功特点: 如重力 ,弹力 ,分子力 , 电场力它们做功与路径无关 ,只与始末位置有关 .“功是能量转化的量度”这一基本概念理解。
⑴物体动能的增量由外力做的总功来量度: W 外 =ΔEk ,这就是动能定理。
⑵物体重力势能的增量由重力做的功来量度:W G = - ΔE P ,这就是势能定理。
⑶物体机械能的增量由重力以外的其他力做的功来量度: W 其=ΔE 机,(W 其表示除重力以外的其它力做的功) ,这就是机械能定理。
⑷当 W 其 =0 时,说明只有重力做功,所以系统的机械能守恒。
⑸一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。
f d=Q (d 为这两个物体间相对移动的路程) 。
⊙ 热学: ΔE=Q+W (热力学第一定律) ⊙ 电学:W AB =qU AB = F电d E =qEdE 动能 ( 导致电势能改变 ) W =QU =UIt = I 2Rt =U 2t/RQ = I 2RtE=I(R+r)=u外+u 内=u 外+Ir P 电源t =uIt+E 其它 P 2Rt电源=IE=I U +I⊙ 磁学 :安培力功 W = F22BLVB L V安d =BILd内能 ( 发热 )d BLdRR ⊙ 光学: 单个光子能量 E =h γ 一束光能量 E 总= Nh γ(N 为光子数目)1 2E kmmv=h γ-W 0 跃迁规律: h γ =E光电效应m222⊙ 原子: 质能方程: E =mc ΔE = Δmc注意单位的转换换算 末-E初辐射或吸收光子汽车的启动问题: 具体变化过程可用如下示意图表示. 关键是发动机的功率是否达到额定功率,恒定功率启动速度 V ↑ F=P 定a= Ffvm当 a=0 即 F=f 时, v 达到最大 v m保持 v m 匀速∣ →→→ 变加速直线运动 →→→→→→→∣ →→→→匀速直线运动 →→⋯ ⋯恒 定 加 速 度 启 动Ff定a定=m即 F 一定定v ↑P ↑ =F 即 P 随 v 的增大而增大当 P=P额时a 定=Ff定≠0,mv 还要增大F= a= P额v Ffm当 a=0时, v 达到最 大 v m ,此 后匀速∣ →→ 匀加速直线运动 →→→→∣ →→→ 变加速( a ↓)运动 →→→→→∣ → 匀速运动 →(1) 若额定功率下起动 , 则一定是变加速运动 , 因为牵引力随速度的增大而减小.求解时不能用匀变速运动的规律来解 .(2) 特别注意匀加速起动时 , 牵引力恒定.当功率随速度增至预定功率时的速度 ( 匀加速结束时的速度 ) ,并不是车行的最大速度.此后,车仍要在额定功率下做加速度减小的加速运动( 这阶段类同于额定功率起动 ) 直至 a=0 时速度达到最大.动量守恒 :内容:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。