受体激动效应总结
药理学中一系列受体
现在纵览各受体,突然发现了一点大体的规律,有少数特殊的不符合这个规律,有些地方有点另类或牵强,能方便记忆才是王道!
把兴奋性质的,如收缩、收缩增强、自律性增高、心率加快、传导加快、
瞳孔开大肌收缩所致的散瞳,瞳孔括约肌收缩所致的缩瞳,统一归为收缩
把其它相反性质的,如舒张、松弛、收缩减弱、自律性降低、心率减慢、传导减慢 ,统一归为舒张
那么有如下规律:
激动 β(β1、β2)、M2 的效应为舒张
去甲强烈缩血管,升压作用不翻转,
只能静滴要缓慢,引起肾衰很常见,
用药期间看尿量,休克早用间羟胺。
异丙肾上腺Байду номын сангаас
异丙扩张支气管,哮喘急发它能缓,
扩张血管治“感染”,血容补足效才显。
兴奋心脏复心跳,加速传导律不乱,
哮喘耐受防猝死,甲亢冠心切莫选。
α受体阻断药
α受体阻断药,酚妥拉明酚苄明,
但激动 β(β1、β2)对心脏、括约肌(胃)为收缩
激动其它受体: α(α1、α2)、M(M、M1、M3)、N2的效应均为收缩
但激动α对胃肠运动和张力为减弱,激动M3对除瞳孔括约肌外的胃肠、膀胱括约肌为舒张
α1、β、M、N1均为增加分泌
但α1对体内腺体(支气管、肠)的作用为抑制分泌
β 1受体主要分布于心脏、肾小球旁系细胞
β 2受体主要分布于平滑肌、骨骼肌、肝脏
拟肾上腺素药
血管:小动脉与静脉收缩,
皮肤粘膜强烈,腹腔其次。 血压:升高 2)胃肠道:较弱的收缩(a 受体)。 3)腺体:汗腺与唾液腺分泌增加,
1
而支气管腺体分泌减少。 4)代谢:糖原与脂肪分解。
β 受体激动效应
1)心脏:正性作用强,收缩性与传导性 自律性均增强。(β 1受体) 血管:冠脉与腹腔血管舒张, 骨骼肌血管舒张(β 2受
二.体内过程:
口服在肠黏膜产生磺基化结合反应 而失效,舌下给药可从黏膜下舌下静 脉丛迅速吸收发挥作用,气雾吸入给 药,吸收较快。静脉注射t1/2约数分钟: 吸 入 给 药 2—5min 起 效 , 维 持 时 间 0.5~2h。主要经肝脏和其他组织中 COMT代谢失活,作用时间短暂。
三 .临床应用 1.支气管哮喘:
舌下或气雾剂吸入给药.
2.房室传导阻滞:治疗Ⅱ、Ⅲ度, 一般舌下给药,严重静滴给药 . 3.心脏骤停 4.感染性休克
四.不良反应
1.心悸、头晕、头痛.
2.可引起室性心律失常.
五.禁忌:
冠心病、糖尿病,甲亢.
α、β受体激动药
肾上腺素 一. 心血管作用:
1.心脏正性作用强,β1受体激动为主。 2.血管:α、β受体激动综合效应。 3.血压:升高。 二.支气管:激动支气管平滑肌β 受体, 抑制组胺释放,收缩支气管粘膜。
二.药理作用
非选择性激动α1、α2受体, 对心脏β1受体作用较弱, 对β2受体几无作用。
1. 心血管系统 1)血管: 激动血管α1受体,
使小动脉和小静脉收缩。 皮肤粘膜血管最明显, 其次肾血管,肠系膜血管收缩, 内脏和肝血流量减少。 腺苷增加,使冠状动脉扩张。
(2) 血压: 小剂量静脉滴注去甲肾上腺素, 使收缩压、舒张压上升不明显,脉压 加大. 大剂量,收缩压、舒张压明显升 高,脉压变小,总外周阻力加大. (图10-2)。
受体激动效应的总结
药理学中一系列受体(肾上腺素受体α1、α2,β1、β2 、β3 ,胆碱受体M1、M2、M3……;N1(NN)、N2(NM)),被激动时,什么时候什么地方哪些收缩哪些舒张,一直没有没搞清楚,也一直没贯通的去总结过,困惑了我五年,问过同学问过度娘,没有一个满意的答案。
现在纵览各受体,突然发现了一点大体的规律,有少数特殊的不符合这个规律,有些地方有点另类或牵强,能方便记忆才是王道!把兴奋性质的,如收缩、收缩增强、自律性增高、心率加快、传导加快、瞳孔开大肌收缩所致的散瞳,瞳孔括约肌收缩所致的缩瞳,统一归为收缩把其它相反性质的,如舒张、松弛、收缩减弱、自律性降低、心率减慢、传导减慢,统一归为舒张那么有如下规律:激动β(β1、β2)、M2的效应为舒张但激动β(β1、β2)对心脏、括约肌(胃)为收缩激动其它受体:α(α1、α2)、M(M、M1、M3)、N2的效应均为收缩但激动α对胃肠运动和张力为减弱,激动M3对除瞳孔括约肌外的胃肠、膀胱括约肌为舒张α1、β、M、N1均为增加分泌但α1对体内腺体(支气管、肠)的作用为抑制分泌α1、β2、β3对肝脏各项代谢均为增加代谢肾上腺素受体、胆碱受体M 在心脏和胃肠处的效应相反更精简的话就一句话了:激动β、M2 舒张,其它的为收缩,激动各受体均为增加分泌与代谢。
(但有红色的那些例外,要注意)PS:α受体主要分布于血管平滑肌、瞳孔开大肌、心脏等β1受体主要分布于心脏、肾小球旁系细胞β2受体主要分布于平滑肌、骨骼肌、肝脏M受体主要分布于胆碱能神经节后纤维支配的效应器:心脏、胃肠平滑肌、膀胱逼尿肌、瞳孔括约肌、各种腺体N1(NN)受体分布于神经节、肾上腺髓质N2(NM)受体主要分布于神经肌肉接头(骨骼肌)多巴胺受体主要分布于肾、肠血管平滑肌肾上腺受体、M胆碱受体均为G蛋白偶联型受体N受体为配体门控离子通道型受体典型药物:M激动-毛果芸香碱N激动-烟碱M、N激动-卡巴胆碱抗胆碱酯酶-溴新斯的明、有机磷酸酯类M 拮抗-阿托品N1 拮抗-美卡拉明N2 拮抗-筒箭毒碱、琥珀胆碱胆碱酯酶复活-氯解磷定α、β激动-肾上腺素α激动-去甲肾上腺素β激动-异丙肾上腺素α1 激动-去氧肾上腺素α2 激动-可乐定β1 激动-多巴酚丁胺β2 激动-沙丁胺醇α、β拮抗-拉贝洛尔α拮抗-酚妥拉明(短效)、酚苄明(长效)β拮抗-普萘洛尔α1 拮抗-哌唑嗪α2 拮抗-育享宾β1 拮抗-阿替洛尔β2 拮抗-布他沙明间接激动-麻黄碱其他机制-利舍平(利血平)(耗竭周围交感神经末梢的肾上腺素,心、脑及其他组织中的儿茶酚胺和5-羟色胺达到抗高血压、减慢心率和抑制中枢神经系统的作用)融会发散:关于肾上腺素的细节在皮肤、肾脏、胃肠道的血管平滑肌(大多数血管)上α受体占优势,骨骼肌、肝的血管上β2受体占优势,小剂量肾上腺素以兴奋β2为主,引起血骨骼肌、肝的血管舒张(降压),大剂量时对α受体作用明显,引起大多数血管收缩,总外周阻力增大(升压),由此可以得出,如果同时使用α受体阻断药,因为α受体阻断药选择性地阻断了与血管收缩有关的α受体,留下与血管舒张有关的β受体;所以能激动α、β受体的肾上腺素的血管收缩作用被取消,而血管舒张作用得以充分地表现出来,由升压作用翻转为降压作用,此乃肾上腺素作用的翻转,氯丙嗪,酚妥拉明有此作用,使用时应注意。
药理学中受体激动后所产生的效应
药理学中受体激动后所产生的效应下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!药理学中的受体激动效应:深入解析在药理学中,受体激动是一个关键的概念,它解释了药物如何与生物体的细胞相互作用,进而产生特定的生理或药理效应。
神经递质受体激动剂和拮抗剂的类型
神经递质受体激动剂和拮抗剂的类型在我们的神经系统中,神经递质就如同传递信息的“信使”,而神经递质受体则是接收这些“信息”的“信箱”。
神经递质受体激动剂和拮抗剂就像是影响这些“信箱”开合和接收信息能力的关键因素。
接下来,让我们一起深入了解一下神经递质受体激动剂和拮抗剂的类型。
先来说说神经递质受体激动剂。
这类物质能够激活神经递质受体,增强神经递质的作用效果。
常见的类型包括完全激动剂和部分激动剂。
完全激动剂具有很强的活性,能够最大程度地激活神经递质受体,产生强烈的生理效应。
比如,在胆碱能神经系统中,乙酰胆碱就是一种天然的神经递质。
而某些药物,如卡巴胆碱,它的作用就类似于乙酰胆碱,能够完全激活胆碱能受体,从而引起平滑肌收缩、腺体分泌等生理反应。
部分激动剂则相对温和一些,它们只能部分地激活神经递质受体,产生的生理效应也相对较弱。
例如,丁螺环酮是 5-羟色胺 1A 受体的部分激动剂,在治疗焦虑症方面发挥着一定的作用。
再看看神经递质受体拮抗剂。
它们的作用是阻止神经递质与受体的结合,或者即使结合了也不能产生正常的生理效应。
拮抗剂也有不同的类型,比如竞争性拮抗剂和非竞争性拮抗剂。
竞争性拮抗剂与神经递质竞争受体的结合位点。
如果竞争性拮抗剂的浓度增加,那么神经递质与受体结合的机会就会减少。
例如,阿托品是乙酰胆碱受体的竞争性拮抗剂,它能与乙酰胆碱竞争受体结合位点,从而抑制乙酰胆碱的作用,导致瞳孔放大、心率加快等。
非竞争性拮抗剂则是通过其他方式来发挥作用的。
它们不是与神经递质竞争结合位点,而是通过改变受体的结构或功能,使其无法对神经递质做出正常反应。
比如,某些金属离子可以与受体的特定部位结合,导致受体失去活性,从而起到非竞争性拮抗的作用。
在中枢神经系统中,多巴胺受体的激动剂和拮抗剂具有重要的意义。
多巴胺是与运动控制、奖赏机制和情感调节等相关的重要神经递质。
像溴隐亭就是多巴胺受体的激动剂,常用于治疗帕金森病,通过激活多巴胺受体来改善患者的运动症状。
受体理论总结
受体理论一、受体的概念:存在于细胞膜、细胞质、细胞核内的大分子蛋白质,能识别、结合特异性配体并产生特定效应。
二、受体的特性(1)特异性:一种特定受体只与它的特定配体结合,产生特定的生理效应,而不被其他生理信号干扰(2)灵敏性:受体对配体的结合具有高度亲和力,微量的配体就能够与配体结合而产生明显的效应。
(3)饱和性:受体的数量是有限的,当配体达到一定浓度时,受体可能全部被结合,此时再增加配体浓度也不会增加与受体的结合量,作用于同一受体的不同配体检存在着竞争性拮抗作用。
(4)可逆性:配体与受体的结合是可逆的。
从配体一受体结合物中解离出的配体仍为原来形式,且配体与受体的结合可被其他特异性配体置换。
(5)可调节性:细胞和受体蛋白都在不断地更新,其合成和降解速率影响着受体的数目和构象,生理和病理情况的改变,也可对其发生影响。
受体与配体作用,其有关的受体数目和亲和力的变化称受体调节。
根据受体调节的效果,可分为向下调节(衰减性调down regulation)和向上调节(上增性调节, up regulation)。
长期使用激动剂,如用异丙肾上腺素治疗哮喘,可使受体向下调节,其疗效逐渐下降。
长期使用拮抗剂,如用普萘洛尔突然停药,可出现肾上腺素能受体向上调节,而引起反跳现象,表现敏感性增高。
三、作用于受体的药物(1)受体激动剂:较强亲和力和内在活性(2)受体拮抗剂:较强亲和力,但无内在活性①竞争性拮抗剂②非竞争性拮抗剂四、药物的作用机制(一)非特异性作用机制:与药物理化性质有关(二)特异性作用机制:与药物化学结构有关1、影响酶活性2、参与干扰细胞代谢3、影响细胞膜离子通道4、影响活性物质的释放5、影响核酸代谢6、影响免疫功能7、作用于受体。
药理学中的受体激动剂和拮抗剂
药理学中一系列受体(肾上腺素受体α1、α2,β1、β2、β3,胆碱受体M1、M2、M3……;N1(NN)、N2(NM)),被激动时,什么时候什么地方哪些收缩哪些舒张,一直没有没搞清楚,也一直没贯通的去总结过,困惑了我五年,问过同学问过度娘,没有一个满意的答案。
现在纵览各受体,突然发现了一点大体的规律,有少数特殊的不符合这个规律,有些地方有点另类或牵强,能方便记忆才是王道!把兴奋性质的,如收缩、收缩增强、自律性增高、心率加快、传导加快、瞳孔开大肌收缩所致的散瞳,瞳孔括约肌收缩所致的缩瞳,统一归为收缩把其它相反性质的,如舒张、松弛、收缩减弱、自律性降低、心率减慢、传导减慢,统一归为舒张那么有如下规律:激动β(β1、β2)、M2的效应为舒张但激动β(β1、β2)对心脏、括约肌(胃)为收缩激动其它受体:α(α1、α2)、M(M、M1、M3)、N2的效应均为收缩但激动α对胃肠运动和张力为减弱,激动M3对除瞳孔括约肌外的胃肠、膀胱括约肌为舒张α1、β、M、N1均为增加分泌但α1对体内腺体(支气管、肠)的作用为抑制分泌α1、β2、β3对肝脏各项代谢均为增加代谢肾上腺素受体、胆碱受体M 在心脏和胃肠处的效应相反更精简的话就一句话了:激动β、M2 舒张,其它的为收缩,激动各受体均为增加分泌与代谢。
(但有红色的那些例外,要注意)PS:α受体主要分布于血管平滑肌、瞳孔开大肌、心脏等β 1受体主要分布于心脏、肾小球旁系细胞β 2受体主要分布于平滑肌、骨骼肌、肝脏M受体主要分布于胆碱能神经节后纤维支配的效应器:心脏、胃肠平滑肌、膀胱逼尿肌、瞳孔括约肌、各种腺体N1(N N)受体分布于神经节、肾上腺髓质N2(N M)受体主要分布于神经肌肉接头(骨骼肌)多巴胺受体主要分布于肾、肠血管平滑肌肾上腺受体、M胆碱受体均为G蛋白偶联型受体N受体为配体门控离子通道型受体典型药物:M激动-毛果芸香碱N激动-烟碱M、N激动-卡巴胆碱抗胆碱酯酶-溴新斯的明、有机磷酸酯类M 拮抗-阿托品N1 拮抗-美卡拉明N2 拮抗-筒箭毒碱、琥珀胆碱胆碱酯酶复活-氯解磷定α、β激动-肾上腺素α激动-去甲肾上腺素β激动-异丙肾上腺素α1 激动-去氧肾上腺素α2 激动-可乐定β1 激动-多巴酚丁胺β2 激动-沙丁胺醇α、β拮抗-拉贝洛尔α拮抗-酚妥拉明(短效)、酚苄明(长效)β拮抗-普萘洛尔α1 拮抗-哌唑嗪α2 拮抗-育享宾β1 拮抗-阿替洛尔β2 拮抗-布他沙明间接激动-麻黄碱其他机制-利舍平(利血平)(耗竭周围交感神经末梢的肾上腺素,心、脑及其他组织中的儿茶酚胺和5-羟色胺达到抗高血压、减慢心率和抑制中枢神经系统的作用)融会发散:关于肾上腺素的细节在皮肤、肾脏、胃肠道的血管平滑肌(大多数血管)上α受体占优势,骨骼肌、肝的血管上β2受体占优势,小剂量肾上腺素以兴奋β2为主,引起血骨骼肌、肝的血管舒张(降压),大剂量时对α受体作用明显,引起大多数血管收缩,总外周阻力增大(升压),由此可以得出,如果同时使用α受体阻断药,因为α受体阻断药选择性地阻断了与血管收缩有关的α受体,留下与血管舒张有关的β受体;所以能激动α、β受体的肾上腺素的血管收缩作用被取消,而血管舒张作用得以充分地表现出来,由升压作用翻转为降压作用,此乃肾上腺素作用的翻转,氯丙嗪,酚妥拉明有此作用,使用时应注意。
精神科神经递质效应汇总
α1受体(消化和泌尿)
1.消化:瑞波西汀增加NE能,激动α1受体,抑制肠蠕动,引起便秘;坦索洛新阻断α1受体,加快肠蠕动,促进排空,以利食物消化。哌甲酯和托莫西汀增加NE能,激动α1受体,可收缩胆总管上的奥狄氏括约肌,抑制胆汁和胰液流入十二指肠,有引起消化不良、阻塞性黄疸和胰腺炎的可能。
2.血压:拟α1受体可收缩全身动脉血管,升高血压。文拉法辛、度洛西汀、安非他酮、哌甲酯拟NE能,可升高血压,原有高血压患者更易感。相反,氯丙嗪和氯氮平阻断α1受体,舒张血管平滑肌,引起直立性低血压。
3.鼻塞和腮腺肿大:拟α1受体收缩血管平滑肌。利培酮阻断α1受体,扩张血管平滑肌,引起鼻粘膜充血,主诉鼻塞;氯氮平抗α1受体,扩张血管平滑肌,增加腮腺的血浆外渗,在易感者可引起无痛性腮腺肿大。
三抗:
1.抗排尿:5-HT抑制膀胱传入信号,抑制逼尿肌收缩,增加尿储量,故SSRIS对神经性尿频理论上有效。
2.抗社交焦虑障碍:社交焦虑障碍患者丘脑和右额叶皮质眶部的5-HT转运体结合密度比健康对照者高,导致突触间隙5-HT浓度降低,5-HT能够迟钝情感反应,5-HT浓度降低导致易感社交焦虑障碍,SSRIS增加5-HT能,迟钝情感反应,改善社交焦虑障碍。
激动5-HT2A受体引起性功能障碍和锥体外系反应;
激动5-HT3和5-HT4受体引起上吐下泻;
阻断5-HT6和5-HT7受体能抗抑郁和改善认知
增加5-HT能抗冲动和抗强迫。
去甲肾上腺素能效应
去甲肾上腺素(NE)能激动α和β受体,其中α受体又分为α1和α2受体。
阻断α1受体要记住的有镇静和直立性低血压效应
2.抑制阴茎勃起:西地那非激动NO合酶合成NO,促进勃起,5-HT抑制NO合酶,抑制阴茎充血和勃起,故5-HT抑制性功能的概率高达75%。
α-2受体激动剂作用机制及应用
• 代谢紊乱 • 血氧不足 • 遗传易患性(?)
• 精神活性药物 (苯二氮卓类,阿片类)
• 睡眠缺乏
Inouye, JAMA 1996;275:852-57 Dubois,Interns Care Med 2001;27:1297-1304 Inouye,NEJM 1999;340:669-676 Mibrandt,Crit Care Med.2005;33:116-9
• Orion, Abbott提供咨询和实验室支持 • 右美托咪定未获准连续输注超过24小时
报告内容
• 右美托咪定和可乐定的药代动力学特性 • 右美托咪定催眠作用的药效学特性 • 右美托咪定催眠作用的分子机制 • 右美托咪定催眠作用的神经基质 • 与其他催眠剂的比较 • 右美托咪定在ITU的临床预后研究
镇静不足的患者
右美托咪定
劳拉西泮 Pandharipande et al,JAMA2007;298:2644-53
认知结果
结果 无谵妄/昏迷日数 无谵妄日数 有谵妄日数 昏迷日数 昏迷发生率 谵妄发生率
劳拉西泮 3(1,6)
7(5,10) 4(1,5) 3(2,5) 92% 82%
右美托咪定 7(1,10)
假说
以α2受体为作用靶点
(右美托咪定) 与以GABAA受体为靶点的镇静方案(劳拉西泮)相比,
对进行机械通气的内外科ICU患者更易达到镇静 目的,并缩短谵妄和昏迷时间.
Maximize Efficacy of targeted sedation and reduce Neurological Dysfunction
基线特征
人口统计学资料 劳拉西泮(n=51)
年龄
药学三基知识点汇总
三基教材药理部分1、受体、激动药、拮抗药、治疗指数概念受体:是一类介导细胞信号转导的功能蛋白质,能识别周围环境中某种微量化学物质,首先与之结合,并通过中介的信号放大系统,触发后续的生理反应或药理效应。
激动药:为既有亲和力又有内在活性的药物,能和受体结合并激动受体而产生效应。
拮抗药:能与受体结合,具有较强亲和力而无内在活性的药物。
治疗指数(TI):半数致死量和半数有效量的比值称为治疗指数。
治疗指数大的药物相对较治疗指数小的药物安全。
2、影响药物作用的主要因素(1)药物方面的因素:a.药物剂型:相同药物不同剂型,药物吸收速度和吸收的量可能不同,导致药物起效时间和作用强度的差异。
b.联合用药及药物相互作用:联合用药可能在药动学和药效学方面发生相互作用致药物作用改变。
(2)机体方面因素:年龄、性别、遗传、病理和心理因素对药物作用均可能产生影响。
3、传出神经系统药物分类及代表性药物M、N受体激动药(氨甲酰胆碱)胆碱受体激动药M受体激动药(毛果芸香碱)拟胆碱药N受体激动药(烟碱)胆碱酯酶抑制药可逆性抑制剂(新斯的明)不可逆性抑制剂(有机磷酸酯类)拟似药α、β受体激动药(肾上腺素、麻黄碱)α1、α2受体激动药(去甲肾上腺素)α1受体激动药(去氧肾上腺素、甲氧明)α2受体激动药(可乐定)肾上腺素受体激动药β1、β2受体激动药(异丙肾上腺素)β1受体激动药(多巴酚丁胺)β2受体激动药(沙丁胺醇)M受体阻断药(阿托品)胆碱受体阻断药M1受体阻断药(哌仑西平)N受体阻断药N1阻断(美卡拉明)抗胆碱药N2阻断去极化(琥珀胆碱)胆碱酯酶复活药(碘解磷定)非去极化(筒箭毒碱)α1、α2受体阻断药(酚妥拉明)α1受体阻断药(哌唑嗪)阻断药肾上腺素受体阻断药β1、β2受体阻断药(无内在活性,普萘洛尔;有内在活性,吲哚洛尔)β1受体阻断药(无内在活性,阿替洛尔;有内在活性,醋丁洛尔)α、β受体阻断药(拉贝洛尔)去甲肾上腺素能神经阻滞药(利血平)4、临床常用镇静催眠药主要类别、代表性药物,各类药物的主要特点(1)苯二氮卓类:代表性药物有地西泮(安定)、三唑仑等,其特点是有较好的抗焦虑和镇静催眠作用,安全范围大。
受体激动的名词解释
受体激动的名词解释当我们谈论药物的作用机制或信号传递,经常会听到一个名词:“受体激动”。
受体激动是生理学和药理学中的一个关键概念,它解释了人体和动物体内的化学物质如何与细胞进行交流,并产生一系列的生理和药理效应。
本文将对受体激动的含义、作用机制和示例进行深入探讨。
受体激动指的是外界的化学物质(称为激动剂)结合到细胞膜上的特定蛋白质(称为受体),引起特定信号传递的过程。
受体蛋白质通常位于细胞膜表面,但也可以存在于胞质中。
当激动剂与受体结合时,它们会启动一系列信号传递路径,这些路径包括离子通道的打开、酶的活化、细胞内信号分子的释放等,最终导致特定的细胞反应或生理效应的发生。
受体激动过程的关键是激动剂与受体的结合。
每种受体都具有高度的特异性,只能与特定类型的激动剂结合。
比如,多巴胺受体只能与多巴胺结合,而不能与其他化学物质发生作用。
这种选择性结合保证了细胞能够检测出合适的信号,而不会受到其他化学物质的干扰。
受体激动可以分为两种:激动和抑制。
在激动过程中,激动剂的结合会引起某种生理效应的增强。
例如,当肌肉细胞上的肾上腺素受体被儿茶酚胺类药物(如肾上腺素)结合时,肌肉细胞收缩的力度会增加。
在抑制过程中,激动剂的结合抑制了某种生理效应的发生。
例如,阿托品等抗胆碱药物通过与乙酰胆碱受体结合,抑制了乙酰胆碱在神经系统中的作用。
受体激动在药物领域具有广泛的应用。
许多药物通过与受体结合来产生治疗效果。
例如,β受体阻滞剂通过结合心脏细胞上的β受体,减慢心率,降低血压,从而用于治疗高血压和心律失常等疾病。
同样地,抗组胺药物通过结合组胺受体,抑制过敏反应,减少过敏症状。
除了药物应用,受体激动还在许多生理过程中起着关键的作用。
例如,视网膜细胞上的视物质受体能够感知光线,启动视觉传导路径,使我们能够看到周围的世界。
嗅觉受体则能够感知气味分子,让我们享受到各种美食的香气。
此外,我们的免疫系统中的T细胞上的抗原受体可以辨识并对抗入侵的病原体,保护我们的身体免受感染。
胆碱受体和肾上腺素受体的类型及效应
胆碱受体和肾上腺素受体的类型及效应胆碱受体的类型及效应
类型效应
M受体(毒蕈碱型)
呈现M样作用,主要表现为心脏抑制、血管扩张、一般平滑肌收缩、腺体分泌增加、瞳孔缩小等
N受体
(烟碱型)
呈现N样作用
N1受体主要表现为自主神经节兴奋和肾上腺髓质分泌N2受体主要表现为骨骼肌收缩
肾上腺素受体的类型及效应
类型效应
α受体呈现α型作用
α1受体主要表现为皮肤、黏膜和内脏血管收缩、瞳孔扩大等
α2受体主要表现为抑制去甲肾上腺素的释放
β受体呈现β作用
β1受体主要表现为心脏兴奋、肾素分泌增加等
β2受体主要表现为血管扩张、糖原分解、促进去甲肾上腺素的释放等
β3受体主要表现为脂肪分解
胆碱受体和肾上腺素受体的激动作用既有相似之处,也有相反之处。
M受体能扩张血管,与β2受体激动的作用相似,但是α1受体激动可引起皮肤黏膜血管收缩;M受体可使我们的瞳孔缩小,但α1受体激动能使瞳孔扩大;M受体可抑制心脏,但β1受体激动可表现为心脏兴奋,等等。
所以我们在临床是怎么应用这两种药物呢?
毛果芸香碱是M受体激动药的代表药物,由于具有M受体激动的作用,能够缩小瞳孔,降低眼内呀,因此可用于青光眼,尤其是闭角型青光眼。
而肾上腺素能够直接激动肾上腺素受体的α和β受体,能够兴奋心脏,加强心肌收缩力,使心排量增加,故可用于溺水、手术过程中的意外、药物中毒等导致的心脏骤停。
所以两种药物虽有相似之处,但是临床应用确不一样。
以上就是胆碱受体和肾上腺素受体的类型及效应,药物作用类似的药物有很多种,但是我们在临床上的实际应用中,重点考虑的是药物的最主要作用以及它的不良反应等等,以最少的药量达到最大的治疗效果,希望今天的知识能够对大家有所帮助。
传出神经受体的类型、分布和效应
主要位于自主神经节和肾上腺髓质。
N1受体激动时主要表现为自主神经节兴奋和肾上腺髓质分泌。
N2受体
主要位于骨骼肌细胞膜上。
N2受体激动时主要表现为骨骼肌收缩。
2、肾上腺素受体:能选择性地与肾上腺素(AD)或去甲肾上腺素(NA)结合的受体。
α型肾上腺素受体(α受体)
α受体激动呈现α型作用。
α1受体
主要分布于血管平滑肌、瞳孔开大肌。
α1受体激动时主要表现为皮肤、黏膜和内脏血管收缩、瞳孔扩大等。
α2受体
主要分布于去甲肾上腺负反馈)。
β型肾上腺素受体(β受体)
β受体激动呈现β型作用。
β1受体
主要分布于心脏、肾小球球旁细胞。
β1受体激动时主要表现为心脏兴奋、肾素分泌增加等。
传出神经受体的类型、分布和效应
1、胆碱受体:能选择性地与乙酰胆碱(AcH)结合的受体。
类型
分布
效应
毒蕈碱型胆碱受体(M受体)
主要分布于节后胆碱能神经所支配的效应器细胞膜上。
M受体激动呈现M样作用,主要表现为心脏抑制、血管扩张、一般平滑肌收缩、腺体分泌增加、瞳孔缩小等。
烟碱型胆碱受体(N受体)
N受体激动剂呈现N样作用。
β2受体
主要分布于平滑肌、骨骼肌、肝脏、去甲肾上腺素能神经的突触前膜上。
β2受体激动时主要表现为血管扩张、平滑肌舒张、糖原分解、促进去甲肾上腺素的释放(正反馈)等。
β3受体
主要分布于脂肪组织。
β3受体激动时主要表现为脂肪分解。
3、多巴胺受体:能选择性地与DA结合的受体。
多巴胺(DA)受体
外周主要分布于肾血管平滑肌和肠平滑肌上。
亲和力内在活性受体激动药受体阻断药
亲和力
受体激动药 +
内在活性
++
受体阻断药
部分激动药
+
+
+
受体作用机制
4、受体的调节 指受体的数量、亲和力、效应力受到药物、疾 病等因素的影响而发生的变化。 '主要有两种形式: (1)向上调节: 如长期使用受体阻断药,使受体的数量增多, 亲和力增大。这是突然停药出现反跳现象的原因 之一。 (2)向下调节: 如长期使用受体激动药,使受体的数量减少, 亲和力减弱。这变酶的活性 2、参与或干扰机体的代谢过程 3、作用于离子通道 4、改变体内活性物质的合成、释放或储存 5、改变内环境的理化性质
(1)受体激动药:与受体有较强的亲和力 又有较强的效应力的药物,能与受体结合 并激动受体而产生效应。 (2)受体阻断药:与受体有较强的亲和力 但无效应力的药物,因占据受体而拮抗激 动药的效应。也称受体拮抗药。
受体作用机制
(3)受体部分激动药或部分阻断药:与受体 有较强的亲和力,但仅有较弱的效应力的 药物。当其单独使用时,具有较弱的受体 激动效应,若与受体激动药同时使用,则 表现为拮抗激动药的效应,使激动药效应 减弱。
药物的作用机制
药物的作用机制
药物的作用机制是研究药物如何与机体细 胞或靶位点结合而发挥作用。通过对药物 作用机制的研究,有助于阐明药物的防治 作用和不良反应,为提高疗效,减少不良 反应发生提供理论基础。
受体作用机制
1、受体的概念 是存在于细胞膜或细胞内,能识别、结合特 异性配体(如药物、激素、化学递质等), 并产生特定生物效应的大分子物质。
受体作用机制
3、药物与受体 药物通过与受体结合发挥作用或效应, 药物与受体结合产生效应,必须具备两个 条件: 一是药物与受体结合的能力,即亲和力, 决定药物作用的强度。 二是药物与受体结合后,激活受体产生特 殊药理效应的能力,即效应力,也称内在 活性,决定药物作用的最大效应。
受体激动效应总结
药理学中一系列受体(肾上腺素受体α1、α2,β1、β2 、β3 ,胆碱受体M1、M2、M3……;N1(NN)、N2(NM)),被激动时,什么时候什么地方哪些收缩哪些舒张,一直没有没搞清楚,也一直没贯通的去总结过,困惑了我五年,问过同学问过度娘,没有一个满意的答案.现在纵览各受体,突然发现了一点大体的规律,有少数特殊的不符合这个规律,有些地方有点另类或牵强,能方便记忆才是王道!把兴奋性质的,如收缩、收缩增强、自律性增高、心率加快、传导加快、瞳孔开大肌收缩所致的散瞳,瞳孔括约肌收缩所致的缩瞳,统一归为收缩把其它相反性质的,如舒张、松弛、收缩减弱、自律性降低、心率减慢、传导减慢,统一归为舒张那么有如下规律:激动β(β1、β2)、M2的效应为舒张但激动β(β1、β2)对心脏、括约肌(胃)为收缩激动其它受体:α(α1、α2)、M(M、M1、M3)、N2的效应均为收缩但激动α对胃肠运动和张力为减弱,激动M3对除瞳孔括约肌外的胃肠、膀胱括约肌为舒张α1、β、M、N1均为增加分泌但α1对体内腺体(支气管、肠)的作用为抑制分泌α1、β2、β3对肝脏各项代谢均为增加代谢肾上腺素受体、胆碱受体M 在心脏和胃肠处的效应相反更精简的话就一句话了:激动β、M2 舒张,其它的为收缩,激动各受体均为增加分泌与代谢。
(但有红色的那些例外,要注意)PS:α受体主要分布于血管平滑肌、瞳孔开大肌、心脏等β 1受体主要分布于心脏、肾小球旁系细胞β 2受体主要分布于平滑肌、骨骼肌、肝脏M受体主要分布于胆碱能神经节后纤维支配的效应器:心脏、胃肠平滑肌、膀胱逼尿肌、瞳孔括约肌、各种腺体N1(NN)受体分布于神经节、肾上腺髓质N2(NM)受体主要分布于神经肌肉接头(骨骼肌)多巴胺受体主要分布于肾、肠血管平滑肌肾上腺受体、M胆碱受体均为G蛋白偶联型受体N受体为配体门控离子通道型受体典型药物:M激动-毛果芸香碱N激动-烟碱M、N激动-卡巴胆碱抗胆碱酯酶-溴新斯的明、有机磷酸酯类M 拮抗-阿托品N1 拮抗-美卡拉明N2 拮抗-筒箭毒碱、琥珀胆碱胆碱酯酶复活-氯解磷定α、β激动-肾上腺素α激动-去甲肾上腺素β激动-异丙肾上腺素α1 激动-去氧肾上腺素α2 激动-可乐定β1 激动-多巴酚丁胺β2 激动-沙丁胺醇α、β拮抗-拉贝洛尔α拮抗-酚妥拉明(短效)、酚苄明(长效)β拮抗-普萘洛尔α1 拮抗-哌唑嗪α2 拮抗-育享宾β1 拮抗-阿替洛尔β2 拮抗-布他沙明间接激动-麻黄碱其他机制-利舍平(利血平)(耗竭周围交感神经末梢的肾上腺素,心、脑及其他组织中的儿茶酚胺和 5-羟色胺达到抗高血压、减慢心率和抑制中枢神经系统的作用)融会发散:关于肾上腺素的细节在皮肤、肾脏、胃肠道的血管平滑肌(大多数血管)上α受体占优势,骨骼肌、肝的血管上β2受体占优势,小剂量肾上腺素以兴奋β2为主,引起血骨骼肌、肝的血管舒张(降压),大剂量时对α受体作用明显,引起大多数血管收缩,总外周阻力增大(升压),由此可以得出,如果同时使用α受体阻断药,因为α受体阻断药选择性地阻断了与血管收缩有关的α受体,留下与血管舒张有关的β受体;所以能激动α、β受体的肾上腺素的血管收缩作用被取消,而血管舒张作用得以充分地表现出来,由升压作用翻转为降压作用,此乃肾上腺素作用的翻转,氯丙嗪,酚妥拉明有此作用,使用时应注意。
受体类型与效应
β2
肌糖原分解+
M
α1,β1, β2
脂肪分解+++ (产热作 用)
肾上腺髓质 植物神经节
骨髓肌
——
——
Nn
——
——
β2
收缩
Nm
拟似药
拮抗药
一、胆碱受体激动药
一、胆碱受体阻断药
1
M,N受体激动药
卡巴胆碱 M受体阻断药
2
M受体激动药
毛果芸香碱
1
非选择性M受体阻断药
3
N受体激动药
烟碱
2
M1受体阻断药
二、抗胆碱酯酶药
支气管平滑肌的松驰、冠状动脉及骨骼肌血管扩张 当突触前膜的β受体兴奋时,能促进NA释放,使血压升高;中枢的β受体兴奋时,可
兴奋交感中枢的兴奋性神经元,使外周交感神经的兴奋性增强,血压升高。
心脏 平滑肌
效应器
窦房结 心房肌 房室结
心室肌
皮肤、粘膜
腹腔内脏
冠状
动脉
骨骼肌
脑
肺
肾
静脉
气管、支气管
肾上腺素能神经兴奋时
收缩+++ 收缩+++ 舒张+
胆碱能神经兴奋时 效应
收缩+ 收缩+++ 舒张++ 不定 不定 —— 收缩(缩 瞳)+++ 收缩(缩 瞳)+++ 分泌(交感 神经)+++
分泌K++和 H2O+++ 分泌+++
——
分泌肾上腺 素和去甲肾 上腺素(交 感神经节前
受体的激动剂名词解释
受体的激动剂名词解释受体的激动剂是一种影响生物体的细胞、组织或器官的物质。
当它们与受体结合时,能够模拟或增强自然的生理效应。
受体可存在于细胞的表面,也可位于细胞内。
它们被认为是生物体内信息传递的重要组成部分,因为它们与神经递质、激素和许多其他化学物质之间的相互作用起着关键的调节作用。
1. 受体的分类与功能受体可以分为两类:离子通道受体和G蛋白偶联受体。
离子通道受体位于细胞膜上,当受体与激动剂结合时,离子通道打开或关闭,导致特定离子进出细胞。
G 蛋白偶联受体则会激活细胞内的信号传导途径,通过细胞内的蛋白酶酶联反应或二次信使产生生物效应。
根据受体与激动剂的相互作用方式,受体的激动剂可分为激动剂(agonist)、拮抗剂(antagonist)和部分激动剂(partial agonist)。
激动剂与受体结合能够激活或增强生理效应,拮抗剂则阻断受体激活,抑制生理效应。
而部分激动剂则表现出介于激动剂和拮抗剂之间的效应。
2. 受体激动剂的应用受体的激动剂在医学和药物领域中具有广泛的应用。
例如,某些药物通过模拟内源性激动剂与受体结合,从而治疗疾病或症状。
高血压患者可使用β肾上腺素能受体激动剂,它们能够与受体结合,使血管扩张,从而降低血压。
另外,受体激动剂也常用于治疗哮喘、心衰等疾病,以及控制疼痛、恶心等症状。
除了医学应用,受体的激动剂还在科学研究中发挥关键作用。
研究人员可以使用激动剂来研究受体的结构和功能,进一步了解细胞信号传导的机制,促进药物的研发。
3. 受体的激动剂研究的挑战与发展尽管受体的激动剂在许多领域具有广泛的应用,但研究仍然面临一些挑战。
首先,由于不同受体的结构和功能多样,研究人员需要开发特异性强、亲和力适中的激动剂。
这需要对受体的结构有深入的了解,并进行大量的药物筛选。
其次,激动剂的副作用也是一个重要的问题。
有些激动剂可能会与其他受体结合,导致不相关的生理效应。
因此,在药物研发过程中,研究人员需要进行广泛的安全性评估,确保激动剂对目标受体的选择性和安全性。
受体的激动剂名词解释
受体的激动剂名词解释受体的激动剂是指一种能够结合并激活生物体中特定受体的化合物。
受体是生物体内负责传递信号的分子,它们可以在细胞膜表面、胞质中或细胞核中出现。
受体的激动剂可以通过与受体结合来改变其构象,从而引发一系列的生物效应。
受体的激动剂可以分为内源性和外源性两类。
内源性激动剂是由生物体内部合成的化合物,例如荷尔蒙和神经递质。
外源性激动剂则是由外部环境中获得的化合物,例如药物和毒素。
根据其作用机制,受体的激动剂可以分为激动剂和阻断剂。
激动剂能够结合受体并引起其活化,从而促使下游信号传导的发生。
阻断剂则能够与受体结合,但阻止其活化,从而抑制下游信号的传递。
受体的激动剂在生物学研究和医学临床中有广泛的应用。
在研究中,受体的激动剂常用来研究受体的功能和调节机制。
通过使用激动剂,研究人员可以刺激受体并观察相关的细胞反应,从而了解受体在生理和病理过程中的作用。
在医学临床上,受体的激动剂可以作为药物来治疗各种疾病。
例如,β受体激动剂可以用于治疗哮喘和心脏病,而阿司匹林是一种非甾体抗炎药,能够通过抑制COX酶活性来缓解疼痛和发热。
受体的激动剂的发展和研制是一项复杂的过程。
首先,研究人员需要识别出适合的受体作为研究对象。
然后,他们会筛选和合成大量的化合物,以寻找能够与目标受体结合并激活其的激动剂。
这一过程通常需要进行多轮的筛选和优化,以获得具有高选择性和活性的激动剂。
最后,研究人员会对激动剂进行生物活性和毒性测试,并对其进行临床试验以评估其治疗效果和安全性。
总之,受体的激动剂是一类能够与特定受体结合并激活其的化合物。
它们在生物学研究和医学临床中有着广泛的应用,并且对于了解生物体的信号传导和治疗疾病具有重要意义。
受体总结
受体与信号转导献礼版一、受体的基本特点1.都是特定氨基酸序列和特定立体构象的蛋白质。
2.每一种受体在细胞上都有特定的宏观和微观分布。
3.每种受体分子占总蛋白份额很小,功能十分重要;它对机体内源性的特定信号有特定的可逆性结合能力,结合后通过受体特定的信号传递系统,引起细胞特定的反应,这几个“特定”决定了受体是高等动物适应体内外环境,协调整体各种细胞功能的关键性分子。
4.内源性信号指机体本身产生的化学物质,它和受体的特定结合是生物发展进化过程中逐步形成的,在生理浓度就有作用,通产也称内源性配基(intrinsic ligand).药物、毒物则称外源性配基(extrinsic ligand)。
如果有一个蛋白质,目前还只知道他和某些外源性配基有结合反应,没有找到内源性配基,则还不能确认为受体,成为“孤儿受体(orphan receptor)”.二、受体和配基结合的规律1.可逆性(reversibility),所有的内源性配基与受体的结合都是可逆反应,属于非共价键结合,如:氢键、离子键、范德华力等结合能较低的健。
2.可饱和性(saturability),每种受体在体内都有一定的含量,当配基浓度很高时,受体-配基复合物浓度达到最大,不在上升。
3.特异性(specificity),表现在一种受体只和一定结构的配基发生特异性、高亲和力的结合反应,KD值常在10-8—10-10nmol/L之间.需要指出的是,结合反应的特异性对受体蛋白和配基的立体结构都有严格的要求。
4.受体配基结合反应细胞效应的一致性:1.受体的组织和细胞分布和相应特异性配基引起的细胞效应有高度的一致性。
2.受体配基的的特异性结合上应当合在浓度上应当和配基引起的生物效应的浓度相一致。
3.受体配基的的特异性结合引起该种受体后续信号转导系统的相应变化。
三、受体不同区域功能研究的方法---基因突变法1.用定点突变法改变它的一段碱基序列2.用缺损突变法使一段碱基序列缺失3. 将另一种受体的相应一段碱基序列替代原有的一段碱基序列,然后转染到适当的哺乳动物细胞中,制成转基因细胞并使之表达,和受体原有完整基因的转基因细胞相比较,寻找功能缺陷或功能变化,由此分析氨基酸序列和功能的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[转]药理学中让我迷茫了五年的受体激动效应总结作者:陈熙
药理学中一系列受体(肾上腺素受体α1、α2,β1、β2 、β3 ,胆碱受体M1、M2、M3……;N1(N N)、N2(NM)),被激动时,什么时候什么地方哪些收缩哪些舒张,一直没有没搞清楚,也一直没贯通的去总结过,困惑了我五年,问过同学问过度娘,没有一个满意的答案。
现在纵览各受体,突然发现了一点大体的规律,有少数特殊的不符合这个规律,有些地方有点另类或牵强,能方便记忆才是王道!
把兴奋性质的,如收缩、收缩增强、自律性增高、心率加快、传导加快、
瞳孔开大肌收缩所致的散瞳,瞳孔括约肌收缩所致的缩瞳,统一归为收缩
把其它相反性质的,如舒张、松弛、收缩减弱、自律性降低、心率减慢、传导减慢,统一归为舒张
那么有如下规律:
激动β(β1、β2)、M2的效应为舒张
但激动β(β1、β2)对心脏、括约肌(胃)为收缩
激动其它受体:α(α1、α2)、M(M、M1、M 3)、N2的效应均为收缩
但激动α对胃肠运动和张力为减弱,激动M3对除瞳孔括约肌外的胃肠、膀胱括约肌为舒张
α1、β、M、N1均为增加分泌
但α1对体内腺体(支气管、肠)的作用为抑制分泌α1、β2、β3对肝脏各项代谢均为增加代谢
肾上腺素受体、胆碱受体M 在心脏和胃肠处的效应相反
更精简的话就一句话了:激动β、M2 舒张,其它的为收缩,激动各受体均为增加分泌与代谢。
(但有红色的那些例外,要注意)
PS:
α受体主要分布于血管平滑肌、瞳孔开大肌、心脏等
β 1受体主要分布于心脏、肾小球旁系细胞
β 2受体主要分布于平滑肌、骨骼肌、肝脏
M受体主要分布于胆碱能神经节后纤维支配的效应器:心脏、胃肠平滑肌、膀胱逼尿肌、瞳孔括约肌、各种腺体
N1(NN)受体分布于神经节、肾上腺髓质
N2(NM)受体主要分布于神经肌肉接头(骨骼肌)多巴胺受体主要分布于肾、肠血管平滑肌
肾上腺受体、M胆碱受体均为G蛋白偶联型受体
N受体为配体门控离子通道型受体
典型药物:
M激动-毛果芸香碱
N激动-烟碱
M、N激动-卡巴胆碱
抗胆碱酯酶-溴新斯的明、有机磷酸酯类
M 拮抗-阿托品
N1 拮抗-美卡拉明
N2 拮抗-筒箭毒碱、琥珀胆碱
胆碱酯酶复活-氯解磷定
α、β激动-肾上腺素
α激动-去甲肾上腺素
β激动-异丙肾上腺素
α1 激动-去氧肾上腺素
α2 激动-可乐定
β1 激动-多巴酚丁胺
β2 激动-沙丁胺醇
α、β拮抗-拉贝洛尔
α拮抗-酚妥拉明(短效)、酚苄明(长效)β拮抗-普萘洛尔
α1 拮抗-哌唑嗪
α2 拮抗-育享宾
β1 拮抗-阿替洛尔
β2 拮抗-布他沙明
间接激动-麻黄碱
其他机制-利舍平(利血平)(耗竭周围交感神经末梢的肾上腺素,心、脑及其他组织中的儿茶酚胺和 5 -羟色胺达到抗高血压、减慢心率和抑制中枢神经系统的作用)
融会发散:
关于肾上腺素的细节
在皮肤、肾脏、胃肠道的血管平滑肌(大多数血管)上α受体占优势,骨骼肌、肝的血管上β2受体占优势,小剂量肾上腺素以兴奋β2为主,引起血骨骼肌、肝的血管舒张(降压),大剂量时对α受体作用明显,引起大多数血管收缩,总外周阻力增大(升压),由此可以得出,如果同时使用α受体阻断药,因为α受体阻断药选择性地阻断了与血管收缩有关的α受体,留下与血管舒张有关的β受体;所以能激动α、β受体的肾上腺素的血管收缩作用被取消,而血管舒张作用得以充分地表现出来,由升压作用翻转
为降压作用,此乃肾上腺素作用的翻转,氯丙嗪,酚妥拉明有此作用,使用时应注意。
对于主要作用于血管α受体的去甲肾上腺素,它们只能取消或减弱其升压效应而无“翻转作用”。
再反观药理学口诀中相应片段,已经比较好理解
肾上腺素
α、β受体兴奋药,肾上腺素是代表;
血管收缩血压升,局麻用它延时间,
局部止血效明显,过敏休克当首选,
心脏兴奋气管扩,哮喘持续它能缓,
心跳骤停用“三联”,应用注意心血管,
α受体被阻断,升压作用能翻转。
去甲肾上腺素
去甲强烈缩血管,升压作用不翻转,
只能静滴要缓慢,引起肾衰很常见,
用药期间看尿量,休克早用间羟胺。
异丙肾上腺素
异丙扩张支气管,哮喘急发它能缓,
扩张血管治“感染”,血容补足效才显。
兴奋心脏复心跳,加速传导律不乱,
哮喘耐受防猝死,甲亢冠心切莫选。
α受体阻断药
α受体阻断药,酚妥拉明酚苄明,
扩张血管治栓塞,血压下降诊治瘤,
NA释放心力增,治疗休克及心衰。
β受体阻断药
β受体阻断药,普萘洛尔是代表,
临床治疗高血压,心律失常心绞痛。
三条禁忌记心间,哮喘、心衰、心动缓。
传出神经药在休克治疗中的应用
(一)药物的种类
抗休克药分二类,舒缩血管有区分;
正肾副肾间羟胺,收缩血管为一类;
莨菪碱类异丙肾,加上α受体阻断剂;
还有一类多巴胺,扩张血管促循环。
(二)常见休克的药物选用:
过敏休克选副肾,配合激素疗效增;
感染用药分阶段,扩容纠酸抗感染,
早期需要扩血管,山莨菪碱为首选;
后期治疗缩血管,间羟胺替代正肾。
心源休克须慎重,选用“二胺”方能行。
说明:“二胺”指多巴胺和间羟胺。