一笔画概念及其经典几何图形、答案

合集下载

完整第10讲 学习一笔画带答案_20190723_215508

完整第10讲 学习一笔画带答案_20190723_215508

第10讲进修一笔画【专题简析】一笔画,确实是从图形某点动身,笔不分开纸,并且每条线段都只画一次不反复。

它是一种风趣的数学游戏。

那么,哪些图形不克不及一笔画成,哪些图形能够一笔画成呢?一个图形是否一笔画成,要害在于双数点的几多,有2个或0个双数点的图形就能够一笔画成,双数点在一笔画中只能作为终点跟终点。

【例题1】一些立体图形是由点跟线形成的,这里的“线〞能够是线段,也能够是一段曲线,请本人画一些图研讨每个点跟线的衔接状况。

思绪导航:请小冤家细心不雅看以下各图中的点,他们分不与几多条线相连。

①②③④(1)与一条线段相连的点有:(2)与两条线段相连的点有:(3)与三条线段相连的点有:(4)与四条线段相连的点有:归结:把跟一条、三条、五条等双数条线连得点叫做双数点;把跟两条、四条、六条、八条等双数条线连的点叫双数点,每个图中的点要么是双数点,要么是双数点。

训练11.恣意寻一个立体图形,数一数图中有几多个双数点,几多个双数点。

2.上面图形中有哪几多个双数点?谜底:AD3.数一数上面图形中有几多个双数点,分不是哪些点?谜底:ABCDEF【例题2】上面的图形能不克不及一笔画成?假如能,应当怎么样画?ACABC〔1〕O〔2〕BDDEFABCC〔3〕D【思绪导航】图〔1〕中A、B、C、D、O五个点基本上双数点,因而那个图形能够一笔画成。

画时能够从恣意一点动身。

图〔2〕中A、C、D、F四个点基本上双数点,B跟E两个点是双数点,因而那个图形也能够一笔画成。

画时要从双数点动身,最初回到另一个双数点。

图〔3〕中A、D是双数点,B、C、E跟F四个点是双数点,双数点的个数超越了两个,那个图形不克不及一笔画成。

训练21.上面的图形能不克不及一笔画成,假如能,请阐明画法,假如不克不及,请阐明来由(1)〔2〕谜底:图〔1〕能够一笔画成,因为双数点有两个图〔2〕不克不及一笔画成,因为双数点年夜于两个2.以以下图形能一笔画成吗?什么原因?答:图〔1〕能够一笔画成,因为双数点个数为零图〔2〕不克不及够画成,因为双数点只要一个图〔3〕不克不及够画成,双数点个数年夜于两个3.不雅看以以下图形,哪个图形能够一笔画成?如何画?图〔1〕双数点个数为0,能够一笔画出图〔2〕双数点个数为4个,不克不及够一笔画出图〔3〕双数点2个,能够画出【例题3】以以下图是某地域一切街道的立体图,甲、乙两人同时候不从A、B动身,以一样的速率走遍一切的街道,最初抵达C.那么两人谁先抵达?思绪导航:题中请求两人必需走遍一切街道,最初抵达C.细心不雅看,能够发觉图中有两个双数点:A、C。

数学人教版六年级下册一笔画

数学人教版六年级下册一笔画

图6
2
2
能 择3幅图研究,所研究图中的奇
图7
2
4
点用红笔做上记号。小组长快

速填写组员研究结果。
图8
6
0
不能
2、表格填完后讨论:能一笔画
图9
0
6
能 成的图形,它的奇点与偶点个
数有什么特点?
例2:下列图形各有几个奇点?几个偶点?这些图形能一笔画成吗?
●B
A●
图1
A
A
B
E
B
C
图2


C
D
图3
A

A

●E



例2:下列图形各有几个奇点?几个偶点?这些图形能一笔画成吗?
A ●B
A

B●
●E
A A
E
A ●●
图1
B
C
图2


C
D
图3
F
BD C
图4
B C
D 图5
E
D
A
D
A
A
D
F
F
பைடு நூலகம்
E
C B
图6
B
C
图7
B
C
图8
A
B
F
C
E
D
图9
统计表
图形序号 奇点个数 偶点个数 能否一笔画
图1
图2
图3
图4
合作要求:
图5
1、4人合作,组员每人顺次选择3
在这美丽的地方,人们议论着一个有 趣的问题:一个游人怎样才能不重复地 一次走遍七座桥,最后又回到出发点呢 ?

小学奥数 奇妙的一笔画 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  奇妙的一笔画 精选练习例题 含答案解析(附知识点拨及考点)

所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空例题精讲知识点拨4-1-5.奇妙的一笔画【关键词】华杯赛,六年级,初赛,第10题【解析】最少需要3种颜色的旗子。

因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。

陈伟强-图形推理中“一笔画”问题 (1)

陈伟强-图形推理中“一笔画”问题 (1)

XC—图形推理中“一笔画”问题—陈伟强—20120929所谓“一笔画”,就是指能够一笔画成的图形。

“一笔画”题目隶属于线数量问题。

在早期的国考中有所涉及,虽然在前几年的考试中没有考到,但是在最近几次大型考试中又出现了这类考点,并且难度有所加大。

因此掌握好“一笔画”问题的解题方法和技巧,对于提高我们的做题速度和解题正确性有很大的帮助。

首先,我们来了解一下什么样的图能够一笔画成。

1.全部都由偶点组成的联通图。

2.只由两个奇点组成的联通图。

符合上面两个条件之一的图形都能够一笔画成。

这里面出现了两个概念:偶点和奇点。

所谓偶点就是由这个点发散出的线条数目是偶数(见图1);奇点就是由这个点发散出的线条数目是奇数(见图2)。

图1:偶点图2:奇点我们来看一个典型的一笔画图形:五角星(见图3)。

我们发现五角星中一共有十个交点。

外围有五个点,每个点都发散出两条线;中间有五个点,每个点都发散出四条线。

我们判断五角星都是由偶点组成,因此能够一笔画成。

图3:五角星了解一笔画图形的构成之后我们再来看看如何识别一个图形是不是“一笔画”。

(2010年-江西省公务员考试-行测-58)【答案】B【解析】通过观察图形可以发现题干中各个图形的组成比较简单,通过查找各个元素的数量均得不到规律,我们就要考虑是否是“一笔画”的问题。

我们通过观察又发现:第一个图形左上和右下两个点都发散出了三条线,因此有两个奇点,能够一笔画成;第二个图形外围曲线与三角形有三个交点,这三个交点都发散出了四条线,因此第二个图形都由偶点组成,能够一笔画成;第三个图形也都是由偶点组成,可以一笔画成。

而选项中,只有B选项都由偶点组成能够一笔画成,因此正确答案为B选项。

A选项由六个奇点组成;C选项由四个奇点组成;D选项由四个奇点组成,不能一笔画成。

(2011年-9.17联考-行测-66)【答案】C【解析】通过观察图形可以发现题干中各个图形的组成非常复杂,而且交点清晰。

因此我们考虑“一笔画”问题。

奥数问题:一笔画

奥数问题:一笔画

奥数问题:一笔画
一笔画问题是研究平面上由曲线段构成的一个图形能不能一笔画成,且使得在每条线段上都不重复。

数学家欧拉找到一笔画的规律是:
⒈凡是由偶点组成的连通图,一定可以一笔画成。

画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。

⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。

画时必须把一个奇点为起点,另一个奇点终点。

⒊其他情况的图都不能一笔画出。

(有偶数个奇点除以二可以算出此图至少需几笔画成。


备注:
顶点与指数:设一个平面图形是由有限个点及有限条弧组成的,这些点称为图形的顶点,从任一顶点引出的该图形的弧的条数,称为这个顶点的指
数。

奇顶点:指数为奇数的顶点。

可以简单地理解为,以此点为顶点的直线段和曲线段的条数为奇数。

偶顶点:指数为偶数的顶点。

可以简单地理解为,以此点为顶点的直线段和曲线段的条数为偶数。

在1736年,欧拉解决了柯尼斯堡七桥问题,并且发表了论文《关于位置几何问题的解法 (Solutioproblematisadgeometriamsituspertinentis)》,对一笔画问题进行了阐述,是最早运用图论和拓扑学的典范,开创了数学上的新分支――图形与几何拓扑。

能一笔画出并回到起点的图为欧拉图。

他发表了“一笔画定理”:
一个图形要能一笔画完成必须符合两个条件:图形是联通的;图形中的奇点(与奇数条边相连的点)个数为0或2。

一笔画问题

一笔画问题

在行测考试中,图形推理中的一笔画问题,一直都是考生在考试中容易失分的题目。

其实主要问题存在于几个方面。

一、考生无法判断,什么样的图形考查的是一笔画;二、对一笔画图形的判断方法不了解。

接下来,中公教育专家卢志喜会从这两个方面给大家揭开一笔画的神秘面纱。

一、什么样的图形是一笔画图形定义:一笔画图形是一个图形从起点到终点可由一笔画成而中间没有间断,一笔画图形点可以重复,而线不可以重复。

一笔画图形具有两个比较明显的特点。

①图形相异;②图形简单;③图形一部分。

因此考生在复习图形推理时,除了要掌握相异图形常考的考点,点、线之外,还要掌握一笔画。

在复习备考的过程中首先要掌握一些简单的一笔画图形。

例如:长方形、正方形、三角形、五角星、圆。

当出现这些基本图形,或者在简单图形上增减了部分线条时,有一定的敏感性。

二、如何判断一个图形是否是一笔画图形方法一、奇偶点判断法奇点:从一个点引出的线条数为奇数;偶点:从一点引出的线条数为偶数。

规律:⒈凡是奇点数为2或者0的图形,一定可以一笔画成。

画时必须把一个奇点为起点,另一个奇点终点。

(利用奇点数判断,图形必须是一部分,比如“回”,奇点数为0,但是不能一笔画)2.其他情况的图都不能一笔画出。

(有偶数个奇点除以二便可算出此图需几笔画成。

)利用奇偶点法判断下列几个图形是否为一笔画图形,非一笔画图形需几笔画成分析:图形1.奇点数为2,偶点为2,可以一笔画成。

图2.奇点为0,偶点为3,可一笔画。

图3.奇点为6,偶点为0,三笔可画成。

图4.奇点为0,偶点为10,可一笔画。

图5.奇点为4,偶点为5,可2笔画。

图6.奇点为4,可2笔画。

奇偶点判断法规律适合一切一笔画图形。

方法二、区域连通法规律:1、平面内区域可以构成两两连通的区域(表示图形没有单独的出头的线条),且区域之间属于单连通,这样的图形可以一笔画。

(单连通表示从一个区域到另一个区域只有唯一的路径,且经过的区域不能重复)利用区域连通法,判断下列几个图形是否为一笔画图形分析:首先对图形进行区域划分,如下:图1.区域1到区域2是单连通,可以一笔画。

一笔画问题

一笔画问题
上下对折再左右对折成轮胎形状图A两两相连的区域可以不经过其它区域到达任何一个区域。P。J希伍德以 毕生精力研究四色定理,并且证明了5色定理,稀伍德考察了一般曲面着色问题提出一个推测:在有P>1个洞的封 闭曲面上,足以为任何地图着色的最小数等于(左图上下对折再左右对折就是一个轮胎,7个区域两两相连,可以 一笔画)。
一笔画问题
数学定理
01 定义
目录
02 例子
03 一笔画的规律
04 相关名词含义
05 欧拉图
06 一笔画定理
传统意义上的几何学是研究图形的形状大小等性质,而存在一些几何问题,它们所研究的对象与图形的形状 和线段的长短没关系,而只和线段的数目和它们之间的连接关系有关,比如一笔画问题就是如此。即平面上由曲 线段构成的一个图形能不能一笔画成,使得在每条线段上都不重复。例如汉字“日”和“中”字都可一笔画,而 “田”和“目”则不能。两两相连区域可一笔画,例如,平面4个区域两两相连区域可一笔划;轮胎状上7个两两 相连区域可一笔画;我们可以构造一个多维空间的无穷个两两相连区域一笔划。
比如附图:(a)为⑴情况,因此可以一笔画成;(b)(c)(d)则没有符合以上两种情况,所以不能一笔 画成。
相关名词含义
◎顶点与指数:设一个平面图形是由有限个点及有限条弧组成的,这些点称为图形的顶点,从任一顶点引出 的该图形的弧的条数,称为这个顶点的指数。
◎奇顶点:指数为奇数的顶点。 ◎偶顶点:指数为偶数的顶点
一笔画的规律
数学家欧拉找到一笔画的规律是:
⒈凡是由偶点组成的连通图,一定可以一笔画成。画时可以把任一偶点为起点,最后一定能以这个点为终点 画完此图。图B的平面图
⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。画时必须把一个奇点为起点,另一个 奇点终点。

奥数知识点一笔画.doc

奥数知识点一笔画.doc

学习一笔画【专题简析】1 .概念:(1)连通图:图中任意两点都是连通的,那么图被称作连通图。

(2)一笔画:是指笔不离开纸,而且每条线都只画一次不准重复而画成的图形。

(3)一笔画一定是连通图,连通图不一定是一笔画。

2.图中的点可分两大类:(1)偶数点:从这点出发的线的数目是偶数的,叫偶数点(偶点)。

(2)奇数点:从这点出发的线的数目是奇数的,叫奇数点(奇点)。

3.规律一■一个图形能否一笔画成,关键在于图中单数点的多少。

(1)同进同出:凡是图形中没有奇数点的一定可以一笔画成。

(2)一进一出:凡是图形中只有两个单数点,一定可以一笔画成,画时必须从一个单数点为起点,最后以另一单数点为终点。

(3)凡是图形中单数点的个数多于两个时,此图肯定是不能一笔画成。

【例题1] 一些平面图形是由点和线构成的,这里的“线”可以是线段,也可以是一段曲线, 请自己画一些图研究每个点和线的连接情况。

思路导航:请小朋友仔细观察下列各图中的点,他们分别与几条线相连。

(1)与一条线段相连的点有:•..(2)与两条线段相连的点有:(3)与三条线段相连的点有:(4)与四条线段相连的点有:下列平面图形中,数一数图中有几个单数点?口甲田人虫下面图形中有哪几个单数点?下面图形中有哪几个单数点?A.• • H ••• G砂D P F EC D下面的图形能不能一笔画成?如果能,应该怎样画?下图是某地区所有街道的平面图,甲、乙两人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达C.那么两人谁先到达?为什么?C. B. .A下图是某新村小区主干道平面图。

甲、乙两人同时分别从A、B出发,以相同的速度走遍所有的主干道,最后到达C.问谁能最先到达C?为什么?B.A e Y给下面的图形添一条线,使它能够一笔画成。

下面的图形能不能一笔画成,如果能,请说明画法,如果不能,请说明理由甲、乙两辆车同时以相同的速度分别从A、B出发,哪辆车能最先行驶完所有的路程?为什么?A C• •B,一只蚂蚁分别从A点和B点出发,爬遍所有的小路。

一笔画(奥数)

一笔画(奥数)

一笔画【知识要点】1.概念:一笔画是指笔不离开纸,而且每条线都只画一次不准重复而画成的图形。

2.分类:图中的点可分两大类:(1)双数点:从这点出发的线的数目是双数的,叫双数点。

(2)单数点:从这点出发的线的数目是单数的,叫单数点。

3.规律:一个图形能否一笔画成,关键在于图中单数点的多少。

(1)凡是图形中没有单数点的一定可以一笔画成。

(2)凡是图形中只有两个单数点,一定可以一笔画成,画时必须从一个单数点为起点,最后以另一单数点为终点。

(3)凡是图形中单数点的个数多于两个时,此图肯定是不能一笔画成。

【题目】1 判断下面图形中哪些点是单数点哪些点是双数点。

2 下列图形中各有几个单数点?能一笔画成吗?3 判断下面图形能不能一笔画成?如果能,应该怎样画?ADBEABACAB A DE F ACBBCA5 如图是一个大型花池中小路的平面图,你能否不重复地一次走完所有的小路?进出口应设在什么地方?6 将下图加上最少的线改成一笔画的图形。

7.将下图去掉最少的线改成一笔画图形。

8.下图中的线段代表小路,请小朋友想一想,能够不重复地爬遍小路的甲蚂蚁还是乙蚂蚁?该怎么爬?9.为迎接2008年奥运会在北京召开,你能一笔画出奥运会的五环图案吗?10.下图是一个公园的平面图,应怎样走才能使游客走通每条路而不重复,设计一条最佳路线。

A B H C G F E D11 一个公园的平面图如下,请你设计好入口、出口,并给出一条浏览路线,要求走遍每一条路且不重复。

12.如图,是一个公园的平面图,请你设计好入口、出口,并给出一种游玩路线,要求走遍每一条路且不重复。

13.如图,是一个名画展厅的平面图,要使参观者不重复地走遍每一条画廊,问:出口、入口应设在哪里?14.黑色的鱼与白色的鱼所能游动的河道如下图所示。

黑色的鱼在A 点位置,白色的鱼在B点位置。

哪条鱼能不重复地游遍所有的河道?15.能用一根铁丝弯成下面的图形吗?16.一个邮递员投递信件要走的街道如图,为节约时间,他想自己设计一条线路,可以不重复的走遍每一条街道,你能帮帮他吗?17.一只蚂蚁要想不重复的爬遍每一条线路,应从哪里出发,到哪里结束?18.你能用一笔画成4条线段把下图的9个点都连起来吗?A B A BA B CFEA BC EF H IAB19.下图能否一笔画成?如果能,应怎样画?20.如图,在一个六面体的顶点A 和B 处各有一只蜗牛,它们比赛看谁能不重复地爬遍每一棱线到达C点。

小学奥数教程:奇妙的一笔画_全国通用(含答案)

小学奥数教程:奇妙的一笔画_全国通用(含答案)

所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答 【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空 【关键词】华杯赛,六年级,初赛,第10题 【解析】 最少需要3种颜色的旗子。

因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。

小学奥数—奇妙的一笔画

小学奥数—奇妙的一笔画
4-1-5.奇妙的一笔画
知识点拨
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次, 不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢? 下面,我们就来探求解决这个问题的方法.
什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏. 我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题: (1)能一笔画出的图形必须是连通的图形; (2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题: 我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于 任意的连通图来说,如果有 2n 个奇点(n 为自然数),那么这个图一定可以用 n 笔画成.
【例 17】 下图中不能一笔画成,请你在下图中添加最少的线段,将其改成一笔画的图形,并画出路线图.
A
E
D
G
H
B
C
F
【例 18】 如图所示,某小区花园的道路为一个长 480 米,宽 200 米的长方形;一个边长为 260 米的菱形和十 字交叉的两条道路组成.一天,王大爷 A 处进入花园,走遍花园的所有道路并从 A 处离开.如果
【巩固】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一 次不重复地走遍这七座桥?
【例 21】 一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发, 要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?

奥数-03一笔画+答案

奥数-03一笔画+答案
解析:图(1)有 8 个奇点,所以要 4 笔画出。图(2)有 12 个奇点,所以要 6 笔画出。图(3)能一笔画出。
【例 8】 如图 A 所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河 岸。问:一个散步者能否一次不重复地走遍这七座桥?
解析:通过画图,把一个实际问题转化为一个几何图形(如图 B),成为一笔画 的问题了,而图 B 中有 2 个奇点,所以能一笔画出。 练习四 1、右边各图至少要用几笔画完?
1
【例 1】 右图中,哪些点是偶点?哪些点是奇点? 解析:我们把一个图形上与偶数条线相连的点叫
做偶点,与奇数条线相连的点叫做奇点。奇点有 J、D、 H,偶点有 A、B、C、E、F、G、I。
【例 2】 下面图形能不能一笔画成?如果能,应该怎样画?
解析:图 1 能一笔画,因为图中只有两个奇点。图 2 也能一笔画,因为图中全 是偶点,图 3 不能一笔画,因为有 4 个奇点。
条线,将其改成成可一笔画的图形。
G
H
A
I
J
F
B
K
L
E
C
图b
D
【例 2】 右图是某展览厅的平面图,它由五个展室组 成,任两展室之间都有门相通,整个展览厅还有一个进 口和一个出口,问游人能否从入口进,从出口出,并且 一次不重复地穿过所有的门?
解析:将图形中的 6 个区域看成 6 个点,每个门看 成连结他们的线段,显然 6 个点都是偶点,所以游人能 一次不重复的走过所有的门。
2
【例 4】 右图中的线段表示小路,请你仔细观 察,认真思考,能够不重复地爬遍小路的是甲蚂 蚁还是乙蚂蚁?该怎样爬?
解析:要想不重复爬遍小路,需要图形能 一笔画出,由于图中有两个奇点,所以应该从 奇点出发才能一笔画出图形,所以甲蚂蚁能够。

一笔画问题

一笔画问题

一笔画问题 Company number:【WTUT-WT88Y-第三节一笔画问题从图形上的某一点出发,找出一条路线,用笔不离开纸,连续不断又不重复地经过图形上所有部分,这样画成的图形叫做一笔画。

奇数点:与奇数条线段相连的点。

偶数点:与偶数条线段相连的点。

一笔画图形有如下三条规律:1、凡是图形中没有单数点的一定可以一笔画成,画时可以从任意一个双数点为起点,最后仍回到这点,如图(1)2、凡是图形中只有两个单数点的一定可以一笔画成,画时必须从一个单数点为起点,最后以另一个单数点为终点,如图(2)3、凡是图形中单数点的个数多于两个时此图形不能一笔画成,如图(3)(1)(2)(3)解题方略:判断一幅图能否一笔画的关键1、一笔画的前提:必须是连通图;2、砍图中是否有奇点,有,有几个。

例题解析:例1、判断下面图形哪些能一笔画哪些不能一笔画说明判断依据。

(1)(2)(3)解析:图(1)能一笔画,因为它没有奇点,全为为偶点,画时从任意一个偶点起笔,终点又回到这一偶点。

图(1)能一笔画,因为它只有两个奇点,其它都为偶点,画时从一个奇点起笔到另一个奇点终点。

图(1)不能一笔画,因为它只有4个奇点,其它都为偶点。

例2、一笔画出下面每个图形。

D BE AB C EC例2-1 例2-2解析:例2-1图中有5个点,其中B、C成为奇点,只要以这两个点分别做一笔画起、终点,此图就能画出来。

下面是一种画法:DAE(起点)B C(终点)例2-2图中有5个点,其中B、C为奇点,只要以这两点分别做一笔画起、终点,此图就能画出来。

下面是一种画法:B→D→A→E→D→A→E→C→B→A→C例3、先数一数下列各图形中奇结点的个数。

如果有的图形不能一笔画成,那么,至少几笔才能画成解析:图(a)中只有两个奇结点,可从A点出发一笔画出到B点结束,图(b)中有四个奇结点,不能一笔画成。

图(b)与图(a)比较,多出了折线CEFD。

如果先一笔画出图(a),再添一笔画出折线CEFD,就可得到图(b)。

一笔画的知识点

一笔画的知识点

一笔画的知识点
嘿,今天咱就来聊聊超有意思的一笔画!啥是一笔画呀?简单来说,就是能一笔不间断地画出来的图形。

就像画个圆,“唰”的一下就能画出来啦!
你想想,小时候咱玩连线游戏,那可不就是一笔画嘛!比如连那些星星图案,要是能一笔连上,哇塞,那感觉多棒呀。

说到一笔画,这里面可有不少门道呢。

有些图形看起来超级简单,可就是不能一笔画成,奇怪吧?就像那个“田”字,你试试,怎么都得停好几下才能画完。

我记得有一次和朋友一起做一笔画挑战,我画了个特别复杂的图案,得意洋洋地跟朋友说:“你肯定画不出来!”结果他还真被我难住了,在那绞尽脑汁地画呀画,最后只能服输,哈哈。

那怎么判断一个图形能不能一笔画呢?这就涉及到一些规律啦。

如果一个图形中奇数点的个数是 0 或者 2,那它就能一笔画。

啥是奇数点呢?就是从这个点出发有奇数条线的点呗。

比如说一个三岔路口就是奇数点。

哎呀,这一笔画真的是又有趣又神奇,就像一个隐藏的小秘密等你去发现。

你难道不想去试试,看看哪些图形能一笔画,哪些不能吗?它能让你在无聊的时候找到乐趣,还能锻炼你的思维呢!
我的观点就是,一笔画超好玩,而且还很有意义,大家都应该去了解了解,说不定你会爱上它哟!。

图形推理如何判断“一笔画”

图形推理如何判断“一笔画”

图形推理如何判断“一笔画”
一、“一笔画出”规律简介
所谓“一笔画成”规律,即一个图形从起点到终点可由一笔画成而线路不中断。

一笔画中,点可以重复但线不可以重复。

“偶点”,即交点处所连接的线条数位偶数,如图(1)中的②、③;
“奇点”,即交点数所连接的线条数为奇数,如图(1)中的①、④。

图(1)
一、只有偶点,可以一笔画,并且可以以任意一点作为起点。

例:图(2)都是偶点,画的线路可以是:①→③→⑤→⑦→②→④→⑥→⑦→①
图(2)
二、只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点。

(图(1)的线路的数条,例如:①→②→③→①→④。


三、奇点超过两个,则不能一笔画。

对于一些比较复杂的路线问题,可以先转化为简单的几何图形,然后根据判定是否能一笔画的方法进行解答。

二、真题演练
例:从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性()。

【解析】C。

本题考查的是一笔画成规律。

题干各图形均可由一笔画成。

故选C。

小学奥数 奇妙的一笔画 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  奇妙的一笔画 精选练习例题 含答案解析(附知识点拨及考点)

所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空例题精讲知识点拨4-1-5.奇妙的一笔画【关键词】华杯赛,六年级,初赛,第10题【解析】最少需要3种颜色的旗子。

因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。

奇妙的一笔画(含详细解析)

奇妙的一笔画(含详细解析)

所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.例题精讲知识点拨4-1-5.奇妙的一笔画【考点】一笔画问题【难度】2星【题型】填空【关键词】华杯赛,六年级,初赛,第10题【解析】最少需要3种颜色的旗子。

因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一笔画概念及其经典几何图形、答案江苏省泗阳县李口中学沈正中
所谓一笔画,指的就是:从图的一点出发,笔不离纸,遍及图中的每条线段一次,即每条边都只画一次,不准重复。

从定义上容易看出:能一笔画出的图首先必须是连通图。

一笔画的图形必须同时具备的条件:
(1)图形必须是连通的。

即任一点通过一些线一定能达到其他任意点。

不连通的图形不能一笔画,连通的图形才有可能一笔画。

(2)图中的奇(数)点的个数只能是0或2。

即没有奇(数)点的才有可能一笔画,而且起点和终点是同一点或有2个奇(数)点的才有可能一笔画,并且一个奇(数)点是起点,另一个奇(数)点是终点。

奇(数)点个数超过两个的连通图形是不可能一笔画的。

一笔画都是以任一点为起点,最后仍回到该点;或以一个奇(数)点为起点,另一个奇(数)点为终点。

所谓奇(数)点:就是从一个点(指的是交点或顶点或端点)引出的线有奇数条,就是一个奇(数)点。

如果从一个点(指的是交点或顶点或端点)引出的线有偶数条,就是一个偶(数)点。

例如一条线段“——”的两个端点,每个点引出的线都只有1条,这两个点都是奇(数)点,所以一条线段有两个奇(数)点。

简单地说,有0个或2个奇点的连通图可以一笔画。

全都是偶点的连通图可以一笔画。

由于奇(数)点都是成对出现的。

所以对于任意多笔画图形的连通图来说,笔画数=奇(数)点数÷2。

以下是一些经典一笔画几何图形,你能画出下面的每个图形吗?试试看。

参考答案
图13可简化为图13右边图,“一笔画的图形必须同时具备的条件”可知,右图有4个奇点,不符合“图中的奇(数)点的个数只能是0或2”,所以是不可能每座桥都走一次,最后又回到原来的出发点的。

图14可简化为图14右边图,在这个图中,只有2个奇点,是可以每座桥都走一次,最后又回到原来的出发点的,如图15所示。

相关文档
最新文档