2007073EMEA新药人体临床试验指导原则
药品临床试验原则
药品临床试验原则(1)准备在人体进行1项药品临床试验,必须有充分理由,即已有充分的科学依据,经权衡利弊后确认有进行临床试验的必要性,并符合正当的道德原则。
(2)符合《赫尔辛基宣言》和《人体生物医学研究国际道德指南》规定的原则。
(3)有科学的、详细的并经伦理委员会批准的临床试验方案。
(4)临床试验应在有条件的医疗机构中进行。
我国规定临床试验由卫生部审批、国家药品监督管理局认可的临床研究基地负责进行。
(5)药品临床试验要有有资格的现职临床医师、能履行申办者职责的机构或个人和符合要求的监察员参加。
(6)有受试者自愿签署的知情同意书,受试者的权益和个人隐私权应受到充分保护。
(7)临床试验中所有数据资料及其记录、处理和保存必须有可靠的质量控制和质量保证系统。
(8)试验用药的制造、处理、储存均应符合GMP规定,并与试验方案中的规定一致。
2.药品Ⅰ期临床试验标准操作规程药品I期临床试验的目的是:①研究人对新药的耐受程度;②提供安全有效的给药方案,并按下列顺序进行。
(1)准备阶段①有药政管理部门(国家药品监督管理局)批文,药检部门签发的新药质量检验报告。
②申办者提供研究者手册及其他有关资料。
③经申办者与研究者讨论并签字的临床试验方案。
研究者与申办者签订合同。
④有关文件(临床试验批文、药品质量检验报告、临床试验方案等)送伦理委员会审批,有书面批准书。
⑤挑选参加试验的研究人员。
⑥筛选正常志愿者。
对初筛合格者进行体格检查及其他有关检查(包括实验室检查人)。
⑦经上述检查合格的正常志愿者签署知情同意书。
(2)耐受性试验①试验开始前一日住院,住院时间根据需要而定。
②根据临床前研究资料,或参考同类品种的耐受剂量范围确定最小起始剂量。
③估计最大给药剂量。
④分组通常从最小剂量至最大剂量间设3~5组,每组6~8人。
⑤自小剂量组开始,每次进行一个剂量组的试验。
给药后详细观察并记录反应情况。
如无任何反应,才能进行下一个剂量的耐受性试验。
申报前临床试验指导原则
申报前临床试验指导原则临床试验指导原则是在进行申报前临床试验时必须遵循的指导原则,它主要包括研究目的、试验设计、样本大小和伦理考虑等方面的规定。
以下是申报前临床试验指导原则的主要内容。
一、研究目的在进行申报前临床试验时,首先要明确研究的目的和科学问题。
研究目的应当明确,能够为临床试验中的数据收集和分析提供明确的指导。
二、试验设计试验设计是申报前临床试验中的核心环节,主要包括研究的类型、试验组和对照组的选择、随机化和盲法、试验时间、终点指标等方面的规定。
试验设计应当合理、可行,并能够提供科学有效的证据。
(一)研究类型:根据研究目的的不同,可以选择不同类型的试验设计,如观察性研究、随机对照试验、交叉试验等。
试验类型的选择应当符合研究问题的特点和要求。
(二)试验组和对照组的选择:根据研究的需要,可以选择不同的试验组和对照组,如新药与安慰剂的比较、新药与标准疗法的比较等。
试验组和对照组的选择应当合理,并能够提供明确的比较结果。
(三)随机化和盲法:为了保证试验的科学性和可靠性,应当采用适当的随机化和盲法。
随机化可以减少实验的偏倚,盲法可以减少实验的主观性干扰。
(四)试验时间:试验时间的选择应当合理,并能够充分反映出药物的疗效和安全性。
试验时间的选择应当充分考虑研究对象的特点和疾病的自然病程。
(五)终点指标:终点指标是评价试验结果的主要指标,应当选择合适的终点指标,并能够客观地反映出药物的疗效和安全性。
三、样本大小样本大小是申报前临床试验中的重要问题,它直接影响试验结果的可靠性和推广性。
样本大小的确定应当充分考虑试验的研究目的、试验设计和所要求的统计效应。
四、伦理考虑在进行申报前临床试验时,应当充分考虑伦理方面的问题。
研究人员应当遵循伦理原则,保护受试者的权益和安全。
试验方案应当经过伦理委员会的审查和批准,并且获得受试者的知情同意。
综上所述,申报前临床试验指导原则是在进行申报前临床试验时必须遵循的指导原则,它涉及研究目的、试验设计、样本大小和伦理考虑等方面的规定。
EMEA临床试验用生物技术药物病毒安全性评价指导原则
发布日期20091022栏目生物制品评价>>生物制品质量控制标题EMEA临床试验用生物技术药物病毒安全性评价指导原则作者李敏罗建辉部门审评五部正文内容EMEA临床试验用生物技术药物病毒安全性评价指导原则--译自欧盟发布的guideline on virus safety evaluation ofbiotechnogical investigational medicinal products审评五部李敏罗建辉关键词:病毒安全性临床试验临床试验研究用药(IMPs)译稿说明本文系国外指导原则的中文译稿,翻译自2009年2月1日由欧盟颁布执行的“Guideline on virus safety evaluation of biotechnogical investigationalmedicinal products”,意在向关注国内外同类技术问题评价要求新动向的业界人士提供一个信息,可作为国内研究过程中科学技术相关层面的借鉴,但不代表药审中心出台的生物技术类药品指导原则。
执行概要本文件为临床试验用生物制品病毒安全性提供科学性指导原则,该指导原则包括以下内容:1)临床前及临床试验阶段所应完成病毒安全性评价的标准及其范围。
2)可作为参考内容用于病毒安全性评价的内部经验的范围。
3)安全性评价中应纳入的风险评估。
1、简介确保生物制品的病毒安全性是一个复杂的过程,可靠的IMP病毒安全性评价是非常关键的。
本指导原则为人用生物制品申报临床时应提交的病毒安全性研究数据及资料提供建议。
本原则参考ICH Q5A(见参考文献)制定,ICH Q5A定义了药品上市申请(MAA)时应提供的研究数据。
尽管ICH Q5A并未提供专供临床阶段用生物制品的相关指导原则,但其基本思想是恰当的且适用于本指导原则的。
本指导原则提供了一种经协约认可的IMPs病毒安全性评价方法,同时适用于整个欧盟范围内的药品制造商和监管部门。
本指导原则尤其有益于指导多中心临床研究,包括涉及多个国家参与的国际多中心临床试验。
识别和降低研究用新药在首次人体和早期临床试验中风险的策略指导原则(一)
·临床研究规范·识别和降低研究用新药在首次人体和早期临床试验中风险的策略指导原则(一)欧洲药品管理局人用医药产品委员会(2017年7月更新)(吴宇佳 译 陈菡菁 校 李雪宁 审校)译者按在新药研发的生命周期中,首次人体(first-in-human, FIH)和早期临床试验(clinical trials, CT)作为从体外到体内的过渡研究至关重要,安全性是早期CT关注的重点。
2016年1月,法国雷恩市的一项FIH临床试验中,1名受试者由于服用高剂量试验药品死亡。
为避免类似情况的发生,并且考虑到CT设计近年的发展,欧洲药品管理局人用医药产品委员会于2017年7月20日发布了更新版本的《识别和降低研究用新药在首次人体和早期临床试验中风险的策略指导原则》。
本文为该指导原则的中文译本,由复旦大学附属中山医院临床药理研究室吴宇佳翻译、陈菡菁校对、李雪宁教授审校。
第一部分介绍了该指导原则发布的背景、适用范围、一般考虑、质量方面和在人类首次使用研究性药品之前须考虑的非临床问题。
临床前的药动学、药效学和毒理学数据以及这些数据到人体的转化都是FIH/早期CT计划和执行的重要基础,了解药物在体外的靶点机制、药代动力学、药效动力学和毒理学等信息可有效降低人体临床试验中的风险。
该指导原则英文版请见https://www.ema.europa.eu。
这是本指导原则的首个修订版,本次修订在原有的欧盟指导原则上,扩展了关于综合方案(integrated protocols)的首次人体(first-in-human, FIH)和早期临床试验(clinical trials, CT)。
本次修订旨在进一步帮助相关人员从非临床研发到早期临床研发的过渡,以及影响新研究药物(investigational medicinal products, IMPs)风险因素的识别。
本指导原则包括了有关质量方面、非临床和临床试验的策略、研究设计以及FIH/早期CT执行方面的考虑。
药物临床试验的一般考虑指导原则
药物临床试验的一般考虑指导原则一、概述药物临床试验的一般考虑指导原则(以下称指导原则),是目前国家食品药品监督管理总局关于研究药物在进行临床试验时的一般考虑。
制定本指导原则的目的是为申请人和研究者制定药物整体研发策略及单个临床试验提供技术指导,同时也为药品技术评价提供参考。
另外,已上市药品增加新适应症等进行临床试验时,可参照本指导原则。
本指导原则主要适用于化学药物和治疗用生物制品。
二、临床试验基本原则(一)受试者保护1.执行相关法律法规药物临床试验必须遵循世界医学大会赫尔辛基宣言,执行国家食品药品监督管理总局公布的《药物临床试验质量管理规范》等相关法律法规。
2.应具备的安全性基础开展任何临床试验之前,其非临床研究或以往临床研究的结果必须足以说明药物在所推荐的人体研究中有可接受的安全性基础。
在整个药物研发过程中,应当由药理毒理专家和临床专家等动态地对药理毒理数据和临床数据进行评价,以评估临床试验可能给受试者带来的安全性风险。
对于正在或将要进行的临床试验方案,也应进行必要的调整。
参与药物临床试验的有关各方应当按各自职责承担保护受试者职责。
(二)临床试验基本方法1.临床试验一般规律药物研发的本质在于提出有效性、安全性相关的问题,然后通过研究进行回答。
临床试验是指在人体进行的研究,用于回答与研究药物预防、治疗或诊断疾病相关的特定问题。
通常采用两类方法对临床试验进行描述。
按研发阶段分类,将临床试验分为Ⅰ期临床试验、Ⅱ期临床试验、Ⅲ期临床试验和Ⅳ期临床试验。
按研究目的分类,将临床试验分为临床药理学研究、探索性临床试验、确证性临床试验、上市后研究。
两个分类系统都有一定的局限性,但两个分类系统互补形成一个动态的有实用价值的临床试验网络(图1)。
图1. 临床研发阶段与研究类型间的关系(实心圆代表在某一研发阶段最常进行的研究类型,空心圆代表某些可能但较少进行的研究类型)概念验证(Proof of Concept,POC)是指验证候选药物的药理效应可以转化成临床获益,一般在早期临床研究阶段进行,用以探索安全耐受剂量下有效性的信号,降低临床开发风险。
(完整版)EMEA发布的《非劣效性界值选择的指导原则》
EMEA发布的《非劣效性界值选择的指导原则》部门正文内容审评四部审评八室黄钦审校伦敦,2005年7月27日索引:EMEA/CPMP/EWP/2158/99人用药品委员会(CHMP)生效日期2006年1月目录前言 (2)1.背景 (3)2.一般考虑 (4)3.证明疗效 (5)3.1 三个组的试验:试验产品、参照品和安慰剂 (5)3.2 两个组的试验:试验产品和对照产品 (6)3.3 不能肯定优于安慰剂的情况 (7)4.确定与活性对照药相比可接受的疗效 (8)5. 难以证明有合理大小的非劣效性界值的情况 (9)5.1使用升高显著性水平的优效性 (9)5.2在另一方面有优势的产品 (11)6.结论 (11)前言许多将一种试验产品与一种活性对照药物进行比较的临床试验被设计为非劣效性试验。
目前“非劣效性”这一术语已得到普遍认可,但如果从字面上来理解可能会产生误导。
非劣效性试验的目的往往声明为了证实试验产品不亚于对照药物。
但只有优效性试验才能证实这一点。
事实上非劣效性试验的目的是为了证实试验产品不如对照产品的程度,不超过事先指定的一个较小的量。
这个量被称为非劣效性界值(non-inferiority margin),或称为Δ。
在许多情况下,可能进行非劣效性试验而不做优效性试验,或者除了做优效性试验,另外再做劣效性试验。
这些情况包括:➢在某些情况下不可能进行生物等效性研究时(例如缓释产品或局部用制剂),根据基本上相似的情况提出的申请;➢与标准治疗相比安全性方面可能有优势的产品需要与标准治疗进行疗效比较,以便进行风险-受益评价;➢需要直接与活性对照进行比较以协助风险受益评价的情况;➢与活性对照相比疗效没有显著降低可以接受的情况;➢不能用安慰剂组,要用活性对照试验以证实试验产品疗效的某些疾病。
在以上最后4种情况下,如果能显示优于参照产品则不一定要做非劣效性试验。
为证实非劣效性,推荐的方法是在方案中事先指定一个非劣效性的界值。
药品临床试验原则
药品临床试验原则(1)准备在人体进行1项药品临床试验,必须有充分理由,即已有充分的科学依据,经权衡利弊后确认有进行临床试验的必要性,并符合正当的道德原则。
(2)符合《赫尔辛基宣言》和《人体生物医学研究国际道德指南》规定的原则。
(3)有科学的、详细的并经伦理委员会批准的临床试验方案。
(4)临床试验应在有条件的医疗机构中进行。
我国规定临床试验由卫生部审批、国家药品监督管理局认可的临床研究基地负责进行。
(5)药品临床试验要有有资格的现职临床医师、能履行申办者职责的机构或个人和符合要求的监察员参加。
(6)有受试者自愿签署的知情同意书,受试者的权益和个人隐私权应受到充分保护。
(7)临床试验中所有数据资料及其记录、处理和保存必须有可靠的质量控制和质量保证系统。
(8)试验用药的制造、处理、储存均应符合GMP规定,并与试验方案中的规定一致。
2.药品Ⅰ期临床试验标准操作规程药品I期临床试验的目的是:①研究人对新药的耐受程度;②提供安全有效的给药方案,并按下列顺序进行。
(1)准备阶段①有药政管理部门(国家药品监督管理局)批文,药检部门签发的新药质量检验报告。
②申办者提供研究者手册及其他有关资料。
③经申办者与研究者讨论并签字的临床试验方案。
研究者与申办者签订合同。
④有关文件(临床试验批文、药品质量检验报告、临床试验方案等)送伦理委员会审批,有书面批准书。
⑤挑选参加试验的研究人员。
⑥筛选正常志愿者。
对初筛合格者进行体格检查及其他有关检查(包括实验室检查人)。
⑦经上述检查合格的正常志愿者签署知情同意书。
(2)耐受性试验①试验开始前一日住院,住院时间根据需要而定。
②根据临床前研究资料,或参考同类品种的耐受剂量范围确定最小起始剂量。
③估计最大给药剂量。
④分组通常从最小剂量至最大剂量间设3~5组,每组6~8人。
⑤自小剂量组开始,每次进行一个剂量组的试验。
给药后详细观察并记录反应情况。
如无任何反应,才能进行下一个剂量的耐受性试验。
药物临床试验指导原则汇总(2024)
引言:药物临床试验是评价新药安全性、有效性和可应用性的重要手段,对于保障患者安全和发展医药技术具有重要意义。
为了规范药物临床试验的实施,保证试验结果的科学性和可靠性,制定了一系列指导原则。
本文旨在汇总药物临床试验的指导原则,从试验设计、试验参与者、试验流程、数据收集和伦理要求等方面进行详细阐述,以期提高药物临床试验的质量和可靠性。
概述:药物临床试验指导原则旨在提供全面、规范和安全的药物临床试验指导,保障试验过程的科学性和可靠性。
这些原则主要包括试验设计的合理性、试验参与者的选择和知情同意、试验流程的规范、数据收集的准确性和质量控制、试验过程中的伦理要求等方面。
在实施药物临床试验时,必须遵循这些指导原则,严格执行规定,保证试验结果的可信度和可靠性。
正文内容:一、试验设计1.确定试验目标和主要研究问题2.制定试验设计的具体方案,包括研究类型、样本容量、分组方式等3.选择适当的对照组,确保试验结果的比较可靠性4.确定试验终点和评价指标,包括安全性和有效性指标5.建立试验流程和时间计划,明确每个环节的责任和工作流程二、试验参与者1.选择适当的试验参与者,符合研究对象的特点和需要2.为试验参与者提供充分的知情同意,并确保其理解试验的目的、过程和风险3.确保试验参与者的权益和安全,严格按照伦理要求进行保护4.对试验参与者进行适当的筛选和入组评估,排除不符合要求的个体5.与试验参与者建立良好的沟通和信任关系,确保试验的顺利进行三、试验流程1.制定试验操作规程,明确试验流程和要求2.建立试验数据管理系统,确保数据的准确性和完整性3.建立监测和审核机制,对试验过程进行监控和评价4.对试验过程中的异常情况进行处理和记录,并及时采取适当的措施5.建立试验终止和终结的标准和程序,确保试验的结果得到有效评价和总结四、数据收集1.制定数据收集的具体方法和流程,包括数据源、数据收集表和数据录入规范等2.建立数据质量控制和验证机制,确保数据的准确性和完整性3.对数据进行统计分析和解读,有效评价试验结果的科学性和可靠性4.对试验结果进行汇总和报告,包括试验流程、试验参与者信息和试验结果等5.对数据进行保存和保护,确保数据的可追溯性和安全性五、伦理要求1.遵守伦理委员会的要求,进行试验计划的伦理审查和评估2.严格按照伦理要求进行试验参与者知情同意和保护3.确保试验过程中的机密性和隐私保护4.对试验结果的报告和公开进行伦理评价和道德审查5.针对伦理问题进行及时处理和解决,保证试验的伦理合规性总结:药物临床试验指导原则的制定和执行对于保证试验的科学性和可靠性具有重要意义。
临床指导原则对新药品的要求
临床指导原则对新药品的要求文章标题:临床指导原则对新药品的要求探析一、引言在当今医药领域,新药的研发和上市已经成为了医药公司们的核心竞争力。
然而,新药的上市需要经历严格的临床试验和审核流程,而临床指导原则对新药品的要求便是其中至关重要的一环。
本文将从深度和广度上对临床指导原则对新药品的要求进行全面评估,帮助读者更深入地理解这一重要的主题。
二、临床指导原则的概述临床指导原则是临床试验中必须遵循的准则,其目的是保证临床试验的科学性、合理性、安全性和有效性。
在新药品上市之前,必须进行一系列的临床试验,以验证其安全性和有效性。
在进行临床试验的过程中,临床指导原则对新药品的要求至关重要。
三、临床指导原则对新药品的要求1. 安全性要求- 在临床试验的过程中,首要考虑的是新药品的安全性。
临床指导原则要求,必须对新药品的毒理学特性进行充分评估,并在临床试验中采取相应的措施来保证受试者的安全。
2. 有效性要求- 除了安全性,临床指导原则还要求对新药品的有效性进行全面评估。
这意味着必须进行临床试验,验证新药品在真实患者中的疗效。
3. 剂量选择- 临床指导原则对新药品的要求还包括对剂量的选择。
必须确定新药品的适当剂量,以保证在患者中的安全和有效性。
4. 临床试验设计- 在进行临床试验时,必须遵循临床指导原则的临床试验设计要求。
这包括对试验设计的严谨性、实施的合理性等方面的要求。
5. 数据分析和报告- 临床指导原则要求对临床试验的数据进行严格的分析和报告,以确保数据的真实性和可信度。
6. 遵守伦理规范- 临床指导原则要求在进行临床试验时,必须严格遵守伦理规范,确保受试者的权益和安全。
四、总结与展望在本文中,我们深入探讨了临床指导原则对新药品的要求。
临床指导原则要求对新药品的安全性、有效性、剂量选择、临床试验设计、数据分析和报告以及伦理规范等方面都有严格要求。
只有严格遵循临床指导原则,才能确保新药品的安全有效,并最终获得上市许可。
识别和降低研究用新药在首次人体临床试验中风险的策略指导原则
识别和降低研究用新药在首次人体临床试验中风险的策略指导原则Strategies to identify and mitigate risks for first-in-human clinical trials with investigational medicinal products2007年9月 欧盟EMEA宣布生效2010年3月 药审中心组织翻译辉瑞制药有限公司翻译药审中心最终核准目 录摘要 (3)1. 序言 (3)2. 范围 (4)3. 法律依据 (4)4. 指导原则的主要内容 (4)4.1 风险因素 (5)4.2 质量控制部分 (6)4.3 非临床部分 (7)4.3.1 阐明动物模型相关性 (7)4.3.2 药效学 (8)4.3.3 药代动力学 (9)4.3.4 安全药理学 (9)4.3.5 毒理学 (9)4.3.6 人体初始剂量的估算 (9)4.4 临床部分 (11)4.4.1 总体方面 (11)4.4.2 研究方案的设计 (11)4.4.2.1 首次人体临床试验中的受试者选择 (11)4.4.2.2 给药途径和速率 (12)4.4.2.3 人体初始剂量的估算 (12)4.4.2.4 一个剂量组内研究的注意事项 (12)4.4.2.5 不同剂量组研究的注意事项 (13)4.4.2.6 剂量递增方案 (13)4.4.2.7 停药标准和决策 (13)4.4.2.8 不良事件/反应的监测和通报 (14)4.4.3 研究者的场地设施与人员 (14)识别和降低研究用新药在首次人体临床试验中风险的策略指导原则执行摘要本指导原则旨在药物从非临床进入到早期临床研发时为申办者提供帮助。
它的基本内容包括针对首次人体临床试验的新研究用药物风险影响因素的识别,对质量控制方面、非临床和临床试验策略以及首次人体临床试验设计的考虑。
还提供了减轻和控制风险的策略,包括用于人体的初始剂量、随后的递增剂量的计算以及临床试验的实施。
临床试验技术指导原则
临床试验技术指导原则临床试验是一种通过科学研究方法评估新药、新疗法、新诊断方法的有效性和安全性的方法。
作为现代医学领域的重要研究手段之一,临床试验的设计和实施需要遵循一系列技术指导原则。
本文将探讨一些关键的技术指导原则。
第一,确立明确的研究目标。
在临床试验开始之前,研究人员需要明确研究的目标和假设。
只有通过明确的研究目标,才能准确选择试验对象、设定合理的研究指标,并最终评估新药、新疗法、新诊断方法的疗效。
第二,合理选择研究方法。
临床试验的研究方法包括随机对照试验、队列研究、回顾性研究等。
研究人员需要根据研究对象、研究对象数量和研究时间等因素,选择最适合的研究方法。
例如,对于药物疗效的评估,随机对照试验是最为常用和可靠的方法。
第三,合理确定样本容量。
样本容量的确定与研究目标和研究方法密切相关。
样本容量过小可能导致试验结果不够可靠,样本容量过大又会浪费资源和时间。
因此,在进行临床试验之前,研究人员需要进行样本容量的统计分析,以确保研究结果的可靠性。
第四,进行临床试验前必须进行伦理审查。
临床试验涉及到人体的研究,因此必须受到严格的伦理审查。
研究人员需要向相应的伦理委员会提交申请,并获得其批准后才能进行试验。
伦理审查的核心是保护试验对象的权益和安全,确保试验过程符合道德要求。
第五,研究过程中需要严格控制相关干扰因素。
为了获得准确和可靠的研究结果,研究人员需要尽量控制其他因素对试验结果的干扰。
例如,在药物疗效评估试验中,研究人员需要控制患者的基线特征、伴随用药等因素,以尽量排除其他因素对试验结果的干扰。
第六,收集、记录和分析数据时需要严格遵循规范。
在临床试验中,数据的采集、记录和分析是非常关键的环节。
研究人员需要制定明确的数据采集和记录方案,并确保数据的准确性和完整性。
在数据分析时,研究人员需要使用合适的统计方法,以获得科学可靠的结论。
第七,临床试验的结果要进行客观和全面的解读。
研究人员应当客观地分析试验结果,并结合先前的研究结果和临床实践经验进行综合评价。
EMEA发布药品首次用于人体研究的指导原则
EMEA发布药品首次用于人体研究的指导原则
范鸣
【期刊名称】《药学进展》
【年(卷),期】2008(32)1
【摘要】欧盟医药管理局(EMEA)已于2007年7月公布了旨在指导项目发起
者对具安全性高风险医药产品从临床前研究进入早期临床研究的指导原则。
EMEA 称,在2006年英国的一项灾难性临床试验中健康受试者因使用Tegenero公司开发的抗CD28人源化单克隆抗体产品TGN1412而出现严重不良反应后,它便开
始会同欧盟成员国各主管当局及欧委会着手起草这项指导原则,并在2007年5月23日前广泛征求保健专家和公众对草案的点评,然后召开由保健专家、监督官员、病人代表、学术界及工业界人士参加的会议,讨论反馈意见,最终敲定该指导原则文本。
【总页数】1页(P48)
【作者】范鸣
【作者单位】无
【正文语种】中文
【中图分类】R951
【相关文献】
1.食药监总局发布人体生物等效性试验豁免指导原则 [J],
2.食品药品监管总局发布医疗器械软件注册技术审查指导原则 [J],
3.国家药监局发布生物等效性研究的统计学指导原则和高变异药物生物等效性研究技术指导原则 [J],
4.国家食品药品监督管理总局发布生物类似药研发与评价技术指导原则 [J], 本刊讯
5.国家食品药品监督管理局发布《已上市化学药品变更研究的技术指导原则》 [J],因版权原因,仅展示原文概要,查看原文内容请购买。
《人体安全性试用试验技术指导原则》起草说明
附件12《人体安全性试用试验技术指导原则(征求意见稿)》起草说明为规范开展化妆品安全评价工作,根据《化妆品监督管理条例》《化妆品注册备案管理办法》《化妆品注册备案资料管理规定》及相关法律法规、强制性国家标准和技术规范的要求,中国食品药品检定研究院(以下称中检院)组织起草了《人体试用试验技术指导原则(征求意见稿)》(以下称《技术指导原则(征求意见稿)》)。
现将起草的有关情况说明如下:一、必要性人体试用试验是化妆品安全评价的重要组成部分,其最终目的在于检测化妆品受试物引起人体皮肤不良反应的潜在可能性。
但在化妆品注册和备案过程中发现,部分产品的人体试用试验存在受试物描述不清、产品批号不一致等情况。
因此,有必要对试验相关技术要求进行全面分析,制定专门的技术指导原则。
中检院制定《指导原则(征求意见稿)》,对化妆品人体试用试验设计的关键内容进行阐述,对试验中的重点环节提出技术指导,并增加产品的安全评价原则,为新法规背景下化妆品产业的高质量发展提供技术支撑,以满足化妆品行业发展和监管需求。
二、制定原则(一)依法依规原则。
《指导原则(征求意见稿)》遵循依法依规原则,整合《化妆品安全技术规范》《化妆品注册和备案检验工作规范》等文件中关于人体试用试验的有关要求,并对试验设计的关键内容进行阐述,以方便注册人、备案人、检验机构以及监管部门使用。
(二)落实细化原则。
《指导原则(征求意见稿)》结合具体审评实践,在符合《化妆品安全技术规范》《化妆品注册和备案检验工作规范》等相关规范性文件基础上,进一步明确人体试用试验的具体要求及结果分析与评价原则,以增加可操作性,切实为化妆品申请注册和进行备案提供技术指导,也为技术审评以及监督管理提供依据。
(三)公开透明原则。
《指导原则(征求意见稿)》起草过程中,坚持“公开透明、广泛参与”原则,充分参考国内外相关法规和指导原则,积极征求检验机构、专家、行业协会意见,同时根据意见反馈情况对指导原则予以完善。
具有特定参比制剂的缓释制剂的临床试验——EMEA指导原则节选
发布日期20050412栏目化药药物评价>>临床安全性和有效性评价标题具有特定参比制剂的缓释制剂的临床试验——EMEA指导原则节选作者文宇部门正文内容审评三部文宇摘要:该指南从临床角度阐释了缓释制剂研发以及进行临床试验时考虑的要点及其原理,对缓释制剂国内研发者和评价者不无裨益。
由于篇幅所限,本文仅为节选译文。
1.适宜制成缓释制剂的药物只有在药物活性成份同时具有如下特征时才宜制成缓释制剂:——有效、安全;——在体内和/或每日的给药间期,不需要以高血药浓度产生和维持充分的疗效;——具有剂量-反应相关性,如可以确认不良反应的高发生率源自所使用的常释制剂活性成份含量增加和/或使用较低的缓释制剂剂量可产生满意的临床作用。
如果活性药物具有如下特征,通常更适宜研发成缓释制剂:——具有短的或者相对短的固有消除半衰期和/或作用,——需要长期治疗,降低给药次数可能改善患者的顺应性。
1.1缓释剂型合理性以下资料对于缓释的合理性阐述有帮助:——新制剂的临床益处,——特别是新制剂的治疗学进步的价值,至少或多或少地减少给药次数,简化治疗以及可能具有新适应证,降低不良反应,增加活性并改善患者顺应性,并提供适当证据。
提交的用于支持上市申请的资料必须提供全面的合理性:——剂型的选择,详细说明体外和/或体内行为,——活性成份规格的选择。
1.2 申请的适应证同一活性成份其缓释制剂的适应证与常释制剂可能不同,因此可申请增加一个新适应证(例如,硝酸盐衍生物)或者减少适应证。
其中:——对于需快速和短期起治疗作用时,缓释剂型可能不适用;——不能从一个适应证直接外推到另一个适应证。
2.临床试验的目的人体研究具有双重目的,即:——首先,虽然不能充分说明获得了延长作用,但仍然需要建立新剂型明确的体内缓释特性;——其次,验证该制剂具有延长的治疗作用,同时验证该缓释制剂可能保证治疗的安全有效。
这两个“验证”阶段(生物药剂学的和治疗学的)可分为以下几部分。
EMEA临床试验用生物技术药物病毒安全性评价指导原则(《国家药审中心》)
EMEA临床试验用生物技术药物病毒安全性评价指导原则(《国家药审中心》)--译自欧盟发布的guideline on virus safety evaluation of biotechnogical investigational medicinal products审评五部李敏罗建辉关键词:病毒安全性临床试验临床试验研究用药(IMPs)译稿说明本文系国外指导原则的中文译稿,翻译自2009年2月1日由欧盟颁布执行的“Guideline on virus safety evaluation of biotechnogical investigational medicinal products”,意在向关注国内外同类技术问题评价要求新动向的业界人士提供一个信息,可作为国内研究过程中科学技术相关层面的借鉴,但不代表药审中心出台的生物技术类药品指导原则。
执行概要本文件为临床试验用生物制品病毒安全性提供科学性指导原则,该指导原则包括以下内容:1)临床前及临床试验阶段所应完成病毒安全性评价的标准及其范围。
2)可作为参考内容用于病毒安全性评价的内部经验的范围。
3)安全性评价中应纳入的风险评估。
1、简介确保生物制品的病毒安全性是一个复杂的过程,可靠的IMP病毒安全性评价是非常关键的。
本指导原则为人用生物制品申报临床时应提交的病毒安全性研究数据及资料提供建议。
本原则参考ICH Q5A(见参考文献)制定,ICH Q5A定义了药品上市申请(MAA)时应提供的研究数据。
尽管ICH Q5A并未提供专供临床阶段用生物制品的相关指导原则,但其基本思想是恰当的且适用于本指导原则的。
本指导原则提供了一种经协约认可的IMPs病毒安全性评价方法,同时适用于整个欧盟范围内的药品制造商和监管部门。
本指导原则尤其有益于指导多中心临床研究,包括涉及多个国家参与的国际多中心临床试验。
2、范围本指导原则适用于由按照Q5A要求建立的人源或动物源细胞库经细胞培养制备的人用生物技术类IMPs。
药品上市后临床试验指导原则
药品上市后临床试验指导原则药品上市后临床试验指导原则(草案)一、前言上市后药品临床试验是指药品批准上市后所进行的临床试验,目的是扩大对上市药品有效性的了解,确认该药品在实际使用情况下对广泛人群的安全性。
由于药品上市前临床试验的局限性,致使药品上市后临床试验成为不可或缺的研究研究方法之一。
本指导原则是根据上市后药品临床试验的特点提出,上市后药品临床试验在临床设计中应充分考虑上市后特点,并遵从《临床试验质量管理规范》。
本指导原则旨在使申办者正确理解上市后临床试验,在遵守药品上市后临床试验规范的同时,合理设计并规范操作临床试验,为临床安全合理用药提供科学依据。
本指导原则指导范围包括:IV临床试验、有关管理部门要求开展的有效性或安全性临床试验、申办者发起的科学研究等。
二、上市后药品临床试验设计规范1、临床试验类型和要求上市后药品临床试验分为随机对照试验和大规模单纯试验。
随机对照试验侧重有效性,大规模单纯试验针对安全性。
(1)有效性研究药品上市后的有效性研究应针对广泛使用人群。
药品疗效在上市前的临床试验中已通过严格选择的人群得到评价,但是药品在广泛人群中的疗效仍是未知。
因此,上市前临床试验得出的结论不能直接地推论到一般人群。
上市后临床试验纳入上市前临床试验排除的人群(如老年人等)更能反应临床实际使用情况。
药品上市后的有效性研究应考察与其他治疗方法相比的特点,上市前的临床试验更多关注的是药品的有效性,试验设计有可能与安慰剂做比较,与其他治疗方法相比的特点了解不充分。
因此,药品上市后需要了解与其他各种治疗方法相比的特点和优劣。
药品上市后的有效性研究应针对上市前因样本量小和时间所限未能考察和解决的问题而进行研究,内容可包括药品远期疗效、具体给药方案、合并用药、对生命质量影响、对终点事件的干预程度等。
(2)安全性研究药品上市前临床试验获得的安全性数据是初步的,不是结论,而上市后临床试验为进一步研究药品的安全性提供了理想场所,这是因为上市后研究是在合理的控制和严密的监视下进行的,由此得出的数据比其他任何方法如自发报告系统等途径获得的资料更可靠,尤其是不良反应发生率可以精确地估算出来,这对研究新的严重不良反应尤为重要。
临床试验管理规范指导原则
临床试验管理规范指导原则临床试验管理规指导原则前言临床试验管理规(GCP)是设计、实施、记录和报告设计人类对象参加的试验国际性伦理和科学质量标准。
遵循这一标准为保护对象的权利、安全性和健康,为与源于赫尔辛基宣言的原则保持一致以及临床试验数据的可信性提供了公众保证。
ICH-GCP指导原则的目的是为欧盟、日本和美国提供统一的标准,以促进这些管理当局在其权限相互接受临床数据。
本指导原则的发展考虑了欧盟、日本、美国,以及澳大利亚、加拿大、北欧和世界卫生组织(GCP)的现行GCP。
在产生打算提交给管理当局的临床数据时应当遵循本指导原则。
本指导原则中确立的原则也可应用于可能影响人类对象安全和健康的其他临床研究。
1.术语1.1 药品不良反应(ADR)在一个新的药品或药品的新用途在批准之前的临床实践,尤其是治疗剂量尚未确定前,ADR是指与药物任剂量有关的所有有害的和非意求的反应都应被考虑为药物不良反应。
该术语用于药品是指在药品与不良反应之间的因果关系至少有一个合理的可能性,即不能排除这种关系。
对已上市药品,ADR指人对用于预防、诊断或治疗疾病或改善生理功能的药物在常用剂量出现的有害和非意求反应(参见ICH临床安全性数据管理指导原则:快速报告的定义和标准)。
1.2 不良事件(AE)在用药病人或临床研究对象中发生的任不幸医疗事件,他不一定要与治疗有因果关系。
因此,一个不良事件(AE)可以是与使用(研究)药物在时间上相关的任不利的和非意求的征兆(包括异常的实验室发现)、症状或疾病,而不管其是否与药物有关(参见ICH临床安全性数据管理指导原则:快速报告的定义和标准)。
1.3 修改(试验案)见试验案修改。
1.4 适用的管理要求有关实施试验用药品临床试验的任法律和法规。
1.5批准(机构审评委员会)IRB表示赞成的决定:指对一项临床试验已经进行审评,并可在IRB、研究机构、GCP 和适用管理要求的约束下由研究机构实施。
1.6 稽查对试验相关活动和文件进行系统和独立的监察,以判定试验的实施和数据的记录、分析与报告是否符合试验案、申办者的标准操作程序(SOP)、临床试验管理规(GCP)以及适用的管理要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
European Medicines Agency7 Westferry Circus, Canary Wharf, London, E14 4HB, UK London, 19 July 2007Doc.Ref.EMEA/CHMP/SWP/294648/2007COMMITTEE FOR MEDICINAL PRODUCTS FOR HUMAN USE(CHMP)GUIDELINE ON STRATEGIES TO IDENTIFY AND MITIGATE RISKS FOR FIRST-IN-HUMAN CLINICAL TRIALS WITH INVESTIGATIONAL MEDICINAL PRODUCTSDRAFT AGREED BY CHMP EXPERT GROUP 6 March 2007ADOPTION BY CHMP FOR RELEASE FOR CONSULTATION 22 March 2007END OF CONSULTATION (DEADLINE FOR COMMENTS) 23 May 2007AGREED BY CHMP EXPERT GROUP 4 July 2007ADOPTION BY CHMP 19 July 2007DATE FOR COMING INTO EFFECT 1 September 2007KEYWORDS First-in-human, Phase I clinical trials, identification of risk, non-clinicalrequirements, animal models, MABEL, risk mitigation strategiesGUIDELINE ON STRATEGIES TO IDENTIFY AND MITIGATE RISKS FOR FIRST-IN-HUMAN CLINICAL TRIALS WITH INVESTIGATIONAL MEDICINAL PRODUCTSTABLE OF CONTENTSEXECUTIVE SUMMARY (3)1.INTRODUCTION (3)2.SCOPE (4)3.LEGAL BASIS (4)4.MAIN GUIDELINE TEXT (4)4.1F ACTORS OF RISK (4)4.2Q UALITY ASPECTS (5)4.3N ON-CLINICAL ASPECTS (6)4.3.1Demonstration of relevance of the animal model (6)4.3.2Pharmacodynamics (7)4.3.3Pharmacokinetics (7)4.3.4Safety Pharmacology (7)4.3.5Toxicology (7)4.3.6Estimation of the first dose in human (8)4.4C LINICAL ASPECTS (8)4.4.1General aspects (8)4.4.2Protocol design (9)4.4.2.1Choice of subjects for first-in-human trials (9)4.4.2.2Route and rate of administration (10)4.4.2.3Estimation of the first dose in human (10)4.4.2.4Precautions to apply between doses within a cohort (10)4.4.2.5Precautions to apply between cohorts (10)4.4.2.6Dose escalation scheme (10)4.4.2.7Stopping rules and decision making (10)4.4.2.8Monitoring and communication of adverse events/reactions (11)4.4.3Investigator site facilities and personnel (11)REFERENCES (SCIENTIFIC AND LEGAL) (11)EXECUTIVE SUMMARYThis guideline is intended to assist sponsors in the transition from non-clinical to early clinical development. It identifies factors influencing risk for new investigational medicinal products and considers quality aspects, non-clinical and clinical testing strategies and designs for first-in-human clinical trials. Strategies for mitigating and managing risk are given, including the calculation of the initial dose to be used in humans, the subsequent dose escalation, and the conduct of the clinical trial. 1. INTRODUCTIONThe safety of subjects participating in first in human studies is the paramount consideration as they would not normally be expected to derive any therapeutic benefit.Decisions on strategies for development of a new medicine and the experimental approaches used to assemble information relevant to the safety of first-in-human clinical trials must be science-based, and should be made and justified on a case-by-case basis.Quality aspects should not, in themselves, be a source of risk for first-in-human trials. Nevertheless, special consideration should be given to certain factors which may add to the risk as described in this guideline.The non-clinical testing and experimental approaches for first-in-human studies might identify potential factors influencing risk for investigational medicinal products. The ability of non-clinical studies to predict safety issues in humans may be limited because the nature of the target is more specific to humans or because of other factors.The factors influencing the decision to proceed with the trial in healthy volunteers or patients and how to conduct the trials need to be carefully considered. Attention should be given to the estimation of the initial dose to be used in humans and to the subsequent dose escalations, intervals between doses to different individuals and the management of risk.In defining an appropriate early development programme for an investigational medicinal product information on safety needs to be integrated from many sources and frequently reviewed in an iterative process.This guideline is intended to assist sponsors in the transition from non-clinical to early clinical development by outlining factors influencing risk to be considered in the non-clinical testing strategy and designs of first-in-human clinical trials for investigational medicinal products.Expert scientific advice on this topic may be requested from National Competent Authorities or the EMEA.This guideline should be read in conjunction with the published EU guidelines (see also section references) and in particular the following:Non-clinical aspects:• Non-Clinical Safety Studies For The Conduct Of Human Clinical Trials For Pharmaceuticals (ICH M3), CPMP/ICH/286/95,• Preclinical safety evaluation of biotechnology-derived pharmaceuticals (ICH S6) CPMP/ICH/302/95,• The Non-clinical Evaluation of the Potential for delayed Ventricular Repolarisation (QT Interval Prolongation) by Human Pharmaceuticals (ICH S7B) CPMP/ICH/423/02 • Safety pharmacology studies for human pharmaceuticals (ICH S7A)- CPMP/ICH/539/00• Toxicokinetics: the assessment of systemic exposure in toxicity studies (ICH S3A) - CPMP/ICH/384/95• Position Paper on the non-clinical safety studies to support clinical trials with a single micro dose (CPMP/SWP/2599/02)Clinical aspects• Guideline for Good Clinical Practice (ICH E6), CPMP/ICH/135/95• General Considerations for Clinical Trials, (ICH E8) CPMP/ICH/291/95.• EUDRALEX- Volume 10 – Clinical trials. In particular: Chapter I: Application and Application Form and Chapter II: Monitoring and Pharmacovigilance.2. SCOPEThis guideline applies to all new chemical and biological investigational medicinal products except gene and cell therapy medicinal products. It covers non-clinical issues for consideration prior to the first administration in humans and the design and conduct of trials in the initial phase of single and ascending doses during the clinical development.BASIS3. LEGALThis guideline applies to relevant Clinical Trial Authorisation applications submitted in accordance with Directive 2001/20/EC and should be read in conjunction with Directive 2001/83 as amended and its Annex I. (See references)TEXTGUIDELINE4. MAINFor many new investigational medicinal products, the non-clinical safety pharmacology and toxicology programme provides sufficient safety data for estimating risk prior to first administration in humans. However, for some novel medicinal products this non-clinical safety programme might not be sufficiently predictive of serious adverse reactions in man and the non-clinical testing and the design of the first-in-human study requires special consideration.When planning a first-in-human clinical trial, sponsors and investigators should identify the factors of risk and apply risk mitigation strategies accordingly as laid down in this guideline. In addition to the principles expressed in this guideline, some special populations such as paediatrics may deserve specific considerations.4.1 Factors of riskPredicting the potential severe adverse reactions for the first-in-human use of an investigational medicinal product, involves the identification of the factors of risk. Concerns may be derived from particular knowledge or lack thereof regarding (1) the mode of action, (2) the nature of the target, and/or (3) the relevance of animal models.The Sponsor should discuss the following criteria for all first-in-human trials in their clinical trial authorisation application. These criteria should be taken into account on a case-by-case basis.• Mode of actionWhile a novel mechanism of action might not necessarily add to the risk per se, consideration should be given to the novelty and extent of knowledge of the supposed mode of action. This includes the nature and intensity (extent, amplification, duration, reversibility) of the effect of the medicinal product on the specific target and non-targets and subsequent mechanisms, if applicable. The type and steepness of the dose response as measured in experimental systems, which may be linear within the dose range of interest, or non-linear (e.g. plateau with a maximum effect, over-proportional increase, U-shaped, bell-shaped), is of importance.For example, the following modes of action might require special attention:− A mode of action that involves a target which is connected to multiple signalling pathways (target with pleiotropic effects), e.g. leading to various physiological effects, or targets that are ubiquitously expressed, as often seen in the immune system.− A biological cascade or cytokine release including those leading to an amplification of an effect that might not be sufficiently controlled by a physiologic feedback mechanism (e.g., in the immune system or blood coagulation system). CD3 or CD28 (super-) agonists might serve as an example.When analysing risk factors associated with the mode of action, aspects to be considered may include: − Previous exposure of human to compounds that have related modes of action.− Evidence from animal models (including transgenic, knock-in or knock-out animals) for the potential risk of serious, pharmacologically mediated toxicity− Novelty of the molecular structure of the active substance(s), for example a new type of engineered structural format, such as those with enhanced receptor interaction as compared to the parent compound.• Nature of the targetThe target in human should be discussed in detail. Beyond the mode of action, the nature of the target itself might impact on the risk inherent to a first administration to humans, and sponsors should discuss the following aspects, based on the available data:− the extent of the available knowledge on the structure, tissue distribution (including expression in/on cells of the human immune system), cell specificity, disease specificity, regulation, level of expression, and biological function of the human target including “down-stream” effects, and how it might vary between individuals in different populations of healthy subjects and patients.− If possible a description of polymorphisms of the target in relevant animal species and humans, and the impact of polymorphisms on the pharmacological effects of the medicinal product.• Relevance of animal species and modelsThe Sponsor should compare the available animal species to humans taking into account the target, its structural homology, distribution, signal transduction pathways and the nature of pharmacological effects. (See also 4.3.1)Where available animal species/models or surrogates are perceived to be of questionable relevance for thorough investigation of the pharmacological and toxicological effects of the medicinal product, this should be considered as adding to the risk.aspects4.2 QualityThe requirements are the same for all investigational medicinal products regarding physico-chemical characterisation and, additionally biological characterisation of biological products (see references). Quality attributes should not, in themselves, be a source of risk for first-in-human trials. However, these quality attributes are to be considered in a risk assessment preceding a first-in-human trial. Specific points to be considered are:• Determination of strength and potencyTo determine a safe starting dose, the methods used for determination of the strength and/or the potency of the product need to be relevant, reliable and qualified. As an example, where the dose is based on biological activity and is expressed in arbitrary units, and the assays are not qualified and/or validated to ensure their reliability, the doses used in non-clinical studies may be poorly defined and mislead the interpretation of what is a safe dose. Therefore it is important to have a representative defined reference material from early in the development programme to measure biological activity. For a biological medicinal product, the lack of a bioassay measuring the functional or biological activity should be justified.• Qualification of the material usedThe material used in non-clinical studies should be representative of the material to be used for first-in-human administration. It is important to have an adequate level of quality characterisation even at this early point of development. A characterisation of the product including its heterogeneity, degradation profile and process-related impurities should be performed. Particular attention should be given to impurities that could be pharmacologically active and/or toxic. Special consideration should be given to the suitability and qualification of methods to sufficiently characterise the active substance and drug product.When moving from non-clinical studies to first-in-human administration, there should be sufficient assurance that product differences, should they occur, would not have an adverse impact on clinicalcharacteristics of the product, especially safety. Furthermore, during the early development of a product, significant modifications to the manufacturing process frequently occur. Particularly in the case of complex molecules, these modifications can potentially result in subtle changes to the active substance that may not be detectable in characterisation studies but can affect biological properties and could have clinical consequences.Given the fact that major clinical decisions are based on the non-clinical data it is important to show that these data remain valid.Further non-clinical studies may be needed with the product intended for use in the first-in-human trial in the following situations:o Where there are differences in the product quality attributes of the non-clinical and clinical material and adverse clinical consequences may result from such differences.o Where there are differences in the manufacturing process and the limitations of product characterisation, including biological assays, cannot assure that the material used in non-clinical studies is representative of the material to be used in clinical studies.• Reliability of very small dosesApplicants should demonstrate that the intended formulation of the doses to be administered provides the intended dose. There is a risk of reduced accuracy in cases where the medicinal product needs to be diluted, to prepare very small doses, or the product is provided at very low concentrations as the product could be adsorbed to the wall of the container or infusion system. This might lead to an over-estimation of the safety of the initial clinical doses and non-clinical safety data. Therefore, compatibility of the product with primary packaging materials and administration systems should be investigated, where relevant.aspects4.3 Non-clinical4.3.1 Demonstration of relevance of the animal modelQualitative and quantitative differences may exist in biological responses in animals compared to humans. For example, there might be differences in affinity for molecular targets, tissue distribution of the molecular target, cellular consequences of target binding, cellular regulatory mechanisms, metabolic pathways, or compensatory responses to an initial physiological perturbation.Where there is evidence of species-specificity of action from in vitro studies with human cells compared with cells from a test species, the value of the in vivo response of the test species may be significantly reduced in terms of predicting the in vivo human response. It should be noted that a similar response in human and animal cells in vitro is not necessarily a guarantee that the in vivo response will be similar.In practice this means that animal studies with highly species-specific medicinal products may: • not reproduce the intended pharmacological effect in humans;• give rise to misinterpretation of pharmacokinetic and pharmacodynamic results;• not identify relevant toxic effects.A weight-of-evidence approach should involve integration of information from in vivo,ex vivo and in vitro studies into the decision-making process.High species-specificity of a medicinal product makes the non-clinical evaluation of the risk to humans much more difficult, but does not imply that there is always an increased risk in first-in-human trials.The demonstration of relevance of the animal model(s) may include comparison with humans of: o Target expression, distribution and primary structure. However, a high degree of homology does not necessarily imply comparable effects;o Pharmacodynamics• Binding and occupancy, functional consequences, including cell signalling if relevant.• Data on the functionality of additional functional domains in animals, if applicable,e.g. Fc receptor system for monoclonal antibodies.o Metabolism and other pharmacokinetic aspectso Cross-reactivity studies using human and animal tissues (e.g. monoclonal antibodies).The search for a relevant animal model should be documented and justified in detail.Where no relevant species exists, the use of homologous proteins or the use of relevant transgenic animals expressing the human target may be the only choice. The data gained is more informative when the interaction of the product with the target receptor has similar physiological consequences to those expected in humans. The use of in vitro human cell systems could provide relevant additional information.The relevance and limitations of all models used should be carefully considered and discussed fully in the supporting documentation.4.3.2 PharmacodynamicsPharmacodynamic studies should address the mode of action, and provide knowledge on the biology of the target. These data will help to characterise the pharmacological effects and to identify the most relevant animal models. The primary and secondary pharmacodynamics, should be conducted in in vitro animal and human systems and in vivo in the animal models. These studies should include target interactions preferably linked to functional response, e.g. receptor binding and occupancy, duration of effect and dose-response.A dose/concentration-response curve of the pharmacological effect(s) should be established with sufficient titration steps in order to increase the likelihood to detect significant pharmacological effects with low doses and to identify active substances with U-shaped or bell-shaped dose-response curves. Such significant or even reverse effects have been reported with biological compounds. Since a low dose is to be administered to humans in the first-in-human trial, this is of high importance.Although GLP compliance is not mandatory for pharmacodynamic and pharmacokinetic studies, they should be of high quality and consistent with the principles of GLP.4.3.3 PharmacokineticsStandard pharmacokinetic and toxicokinetic data should be available in all species used for safety studies before going into human (ICH S3, S6, M3).Exposures at pharmacodynamic doses in the relevant animal models should be determined especially when pharmacodynamic effects are suspected to contribute to potential safety concerns.4.3.4 Safety PharmacologyStandard core battery data should be available before the first administration in humans (CHMP/ICH guidelines S7A, S7B, S6, M3).Additional studies to investigate effects in other organ systems should be carried out on a case by case basis. In particular, for medicinal products targeting the immune system, potential unintended effects should be investigated, e.g. using in vitro studies, including human material.4.3.5 ToxicologyThe toxicology programme should be performed in relevant animal species and include toxico-kinetics.When factors influencing risk are identified (see section 4.1), the inclusion of additional endpoints should be considered, on a case-by-case basis.Toxicity studies in non-relevant species may give rise to misinterpretation and are discouraged. The use of homologous products or transgenic model approach or of in vitro human cell systems could provide relevant additional information.It should be noted that human specific proteins are likely to be immunogenic in animal species. Therefore repeat dosing studies in animals may not predict the effects of such substances in humans (e.g. presence of neutralising antibodies).Animal models that are thought to be similar to the human disease may provide further insight in the pharmacological action, the pharmacokinetics, (e.g. disease-related expression of the target) as well as dosing in patients and safety (e.g., evaluation of undesirable promotion of disease progression). Therefore, in certain cases, studies performed in animal models of disease may be used as an acceptable alternative to toxicity studies in normal animals. The scientific justification for the use of these animal models of disease to support safety should be provided.4.3.6 Estimation of the first dose in humanThe estimation of the first dose in human is an important element to safeguard the safety of subjects participating in first-in-human studies. All available information has to be taken in consideration for the dose selection and this has to be made on a case-by-case basis. Different methods can be used.In general, the No Observed Adverse Effect Level (NOAEL) determined in non-clinical safety studies performed in the most sensitive and relevant animal species, adjusted with allometric factors (see references “Other guidelines”) or on the basis of pharmacokinetics gives the most important information. The relevant dose is then reduced/adjusted by appropriate safety factors according to the particular aspects of the molecule and the design of the clinical trials.For investigational medicinal products for which factors influencing risk according to section 4.1 have been identified, an additional approach to dose calculation should be taken. Information about pharmacodynamics can give further guidance for dose selection. The ‘Minimal Anticipated Biological Effect Level’ (MABEL) approach is recommended. The MABEL is the anticipated dose level leading to a minimal biological effect level in humans. When using this approach, potential differences of sensitivity for the mode of action of the investigational medicinal product between humans and animals, need to be taken into consideration e.g. derived from in-vitro studies. A safety factor may be applied for the calculation of the first dose in human from MABEL as discussed below.The calculation of MABEL should utilise all in vitro and in vivo information available from pharmacokinetic/pharmacodynamic (PK/PD) data such as:i) target binding and receptor occupancy studies in vitro in target cells from human and the relevantanimal species;ii) concentration-response curves in vitro in target cells from human and the relevant animal species and dose/exposure-response in vivo in the relevant animal species.iii) exposures at pharmacological doses in the relevant animal species.Wherever possible, the above data should be integrated in a PK/PD modelling approach for the determination of the MABEL.In order to further limit the potential for adverse reactions in humans, a safety factor may be applied in the calculation of the first dose in human from the MABEL. This should take into account criteria of risks such as the novelty of the active substance, its biological potency and its mode of action, the degree of species specificity, and the shape of the dose-response curve and the degree of uncertainty in the calculation of the MABEL. The safety factors used should be justified.When the methods of calculation (e.g. NOAEL, MABEL) give different estimations of the first dose in man, the lowest value should be used, unless justified.Other approaches may also be considered in specific situations, e.g. for studies with conventional cytotoxic IMPs in oncology patients. (See references “Other guidelines”)4.4 Clinical aspects4.4.1 General aspectsThe safety of participants in first-in-human clinical trials can be enhanced by identification and planned mitigation of factors associated with risk. Key aspects of the trial should be designed to mitigate those risk factors, including:• study population;• trial sites;• first dose;• route and rate of administration;• number of subjects per dose increment (cohort);• sequence and interval between dosing of subjects within the same cohort;• dose escalation increments;• transition to next dose cohort;• stopping rules;• allocation of responsibilities for decisions with respect to subject dosing and dose escalation.In general, the higher the potential risk associated with an investigational medicinal product (IMP) and its pharmacological target, the greater the precautionary measures that should be exercised in the design of the first-in-human study. The protocol should describe the strategy for managing risk including a specific plan to monitor for and manage likely adverse events or adverse reactions as well as the procedures and responsibilities for modifying or stopping the trial if necessary. The sponsor should arrange for peer review of the protocol and the associated risk factors and to assure that they have been properly considered and planned for.It is recognised that placebo is often included as part of the design of Phase I studies. The study design including randomisation schemes should take this into account. Any decisions taken with respect to subsequent dosing at the same dose level and or to dose escalation, should take into account the number of subjects that might have received either placebo or the active medicinal product. There should always be rapid access to the treatment allocation codes when relevant.For first-in-human trials where there is uncertainty about the risk it is recommended that a confirmatory pharmacodynamic measure is identified that can show the pharmacological effect and link with the preclinical experience.4.4.2 Protocol design4.4.2.1 Choice of subjects for first-in-human trialsSubjects are not generally expected to derive any therapeutic benefit from a first-in-human trial.The paramount factors should always be the safety, rights and well-being of the volunteers, whether patients or healthy individuals, and the value of what can be learned from the clinical trial.The choice of the study population, i.e. healthy subjects or patients, including special populations, should be fully justified by the sponsor on a case-by-case basis. Several factors should be considered, such as:(a) the risks inherent in the type of medicinal product - it is important that those risks (anduncertainty about them) be quantified and justified;(b) its molecular target,(c) immediate and potential long term toxicity;(d) the lack of a relevant animal model;(e) the relative presence of the target in healthy subjects or in patients; e.g. cancer patients;(f) the possible higher variability in patients;(g) the ability of healthy volunteers to tolerate any potential side effects;(h) the potential pharmacogenomic difference between the targeted patient group and healthysubjects;(i) the patients’ ability to benefit from other products or interventions; and(j) the predicted therapeutic window of the IMP.Where practicable concurrent medication in patients should be avoided as it, together with the disease state may give rise to greater variability in response and interactions, with the possibility for adverse reactions and/or difficulties in the interpretation of results.Healthy subjects or patients should not be included in first-in-human clinical trials if they are in another clinical trial or have participated recently in another clinical trial unless justified. It is important to include clear exclusion criteria to prevent concomitant or immediate consecutive exposure to investigational medicinal products.。