数据结构排序算法的分析和比较(包涵源代码)
数据结构实验报告八-快速排序
实验8 快速排序1.需求分析(1)输入的形式和输入值的范围:第一行是一个整数n,代表任务的件数。
接下来一行,有n个正整数,代表每件任务所用的时间。
中间用空格或者回车隔开。
不对非法输入做处理,及假设用户输入都是合法的。
(2)输出的形式:输出有n行,每行一个正整数,从第一行到最后一行依次代表着操作系统要处理的任务所用的时间。
按此顺序进行,则使得所有任务等待时间最小。
(3)程序所能达到的功能:在操作系统中,当有n 件任务同时来临时,每件任务需要用时ni,输出所有任务等待的时间和最小的任务处理顺序。
(4)测试数据:输入请输入任务个数:9请输入任务用时:5 3 4 2 6 1 5 7 3输出任务执行的顺序:1 2 3 3 4 5 5 6 72.概要设计(1)抽象数据类型的定义:为实现上述程序的功能,应以整数存储用户的第一个输入。
并将随后输入的一组数据储存在整数数组中。
(2)算法的基本思想:如果将任务按完成时间从小到大排序,则在完成前一项任务时后面任务等待的时间总和最小,即得到最小的任务处理顺序。
采取对输入的任务时间进行快速排序的方法可以在相对较小的时间复杂度下得到从小到大的顺序序列。
3.详细设计(1)实现概要设计中定义的所有数据类型:第一次输入的正整数要求大于零,为了能够存储,采用int型定义变量。
接下来输入的一组整数,数据范围大于零,为了排序需要,采用线性结构存储,即int类型的数组。
(2)实现程序的具体步骤:一.程序主要采取快速排序的方法处理无序数列:1.在序列中根据随机数确定轴值,根据轴值将序列划分为比轴值小和比轴值大的两个子序列。
2.对每个子序列采取从左右两边向中间搜索的方式,不断将值与轴值比较,如果左边的值大于轴值而右边的小于轴值则将二者交换,直到左右交叉。
3.分别对处理完毕的两个子序列递归地采取1,2步的操作,直到子序列中只有一个元素。
二.程序各模块的伪代码:1、主函数int main(){int n;cout<<"请输入任务个数:";cin>>n;int a[n];cout<<"请输入任务用时:";for(int i=0;i<n;i++) cin>>a[i];qsort(a,0,n-1); //调用“快排函数”cout<<"任务执行的顺序:";for(int i=0;i<n;i++) cout<<a[i]<<" "; //输出排序结果}2、快速排序算法:void qsort(int a[],int i,int j){if(j<=i)return; //只有一个元素int pivotindex=findpivot(a,i,j); //调用“轴值寻找函数”确定轴值swap(a,pivotindex,j); //调用“交换函数”将轴值置末int k=partition(a,i-1,j,a[j]); //调用“分割函数”根据轴值分割序列swap(a,k,j);qsort(a,i,k-1); //递归调用,实现子序列的调序qsort(a,k+1,j);}3、轴值寻找算法://为了保证轴值的“随机性”,采用时间初始化种子。
内部排序比较 (实验报告+源程序)C++
实验报告3实验名称:数据结构与软件设计实习题目:内部排序算法比较专业:生物信息学班级:01 姓名:学号:实验日期:2010.07.24一、实验目的:比较冒泡排序、直接插入排序、简单选择排序、快速排序、希尔排序;二、实验要求:待排序长度不小于100,数据可有随机函数产生,用五组不同输入数据做比较,比较的指标为关键字参加比较的次数和关键字移动的次数;对结果做简单的分析,包括各组数据得出结果的解释;设计程序用顺序存储。
三、实验内容对各种内部排序算法的时间复杂度有一个比较直观的感受,包括关键字比较次数和关键字移动次数。
将排序算法进行合编在一起,可考虑用顺序执行各种排序算法来执行,最后输出所有结果。
四、实验编程结果或过程:1. 数据定义typedef struct { KeyType key; }RedType; typedef struct { RedType r[MAXSIZE+1]; int length;}SqList;2. 函数如下,代码详见文件“排序比较.cpp”int Create_Sq(SqList &L)void Bubble_sort(SqList &L)//冒泡排序void InsertSort(SqList &L)//插入排序void SelectSort(SqList &L) //简单选择排序int Partition(SqList &L,int low,int high) void QSort(SqList &L,int low,int high)//递归形式的快速排序算法void QuickSort(SqList &L)void ShellInsert(SqList &L,int dk)//希尔排序void ShellSort(SqList &L,int dlta[ ])3. 运行测试结果,运行结果无误,如下图语速个数为20元素个数为100错误调试无。
数据结构排序实验报告
数据结构排序实验报告数据结构排序实验报告引言:数据结构是计算机科学中的重要概念之一,它涉及到数据的组织、存储和操作方式。
排序是数据结构中的基本操作之一,它可以将一组无序的数据按照特定的规则进行排列,从而方便后续的查找和处理。
本实验旨在通过对不同排序算法的实验比较,探讨它们的性能差异和适用场景。
一、实验目的本实验的主要目的是通过实际操作,深入理解不同排序算法的原理和实现方式,并通过对比它们的性能差异,选取合适的排序算法用于不同场景中。
二、实验环境和工具实验环境:Windows 10 操作系统开发工具:Visual Studio 2019编程语言:C++三、实验过程1. 实验准备在开始实验之前,我们需要先准备一组待排序的数据。
为了保证实验的公正性,我们选择了一组包含10000个随机整数的数据集。
这些数据将被用于对比各种排序算法的性能。
2. 实验步骤我们选择了常见的五种排序算法进行实验比较,分别是冒泡排序、选择排序、插入排序、快速排序和归并排序。
- 冒泡排序:该算法通过不断比较相邻元素的大小,将较大的元素逐渐“冒泡”到数组的末尾。
实现时,我们使用了双重循环来遍历整个数组,并通过交换元素的方式进行排序。
- 选择排序:该算法通过不断选择数组中的最小元素,并将其放置在已排序部分的末尾。
实现时,我们使用了双重循环来遍历整个数组,并通过交换元素的方式进行排序。
- 插入排序:该算法将数组分为已排序和未排序两部分,然后逐个将未排序部分的元素插入到已排序部分的合适位置。
实现时,我们使用了循环和条件判断来找到插入位置,并通过移动元素的方式进行排序。
- 快速排序:该算法通过选取一个基准元素,将数组分为两个子数组,并对子数组进行递归排序。
实现时,我们使用了递归和分治的思想,将数组不断划分为更小的子数组进行排序。
- 归并排序:该算法通过将数组递归地划分为更小的子数组,并将子数组进行合并排序。
实现时,我们使用了递归和分治的思想,将数组不断划分为更小的子数组进行排序,然后再将子数组合并起来。
源代码--数据结构与算法(Python版)chap10 排序
交换类
(2)快速排序 快速排序采用分而治之(Divide and Conquer)
的策略将问题分解成若干个较小的子问题,采用 相同的方法一一解决后,再将子问题的结果整合 成最终答案。快速排序的每一轮处理其实就是将 这一的基准数定位,直到所有的数都排序完成 为止。
21
快速排序的基本步骤:
1. 选定一个基准值(通常可选第一个元素); 2. 将比基准值小的数值移到基准值左边,形
14
• 交换类
交换类排序的基本思想是:通过交换无序序列 中的记录得到其中关键字最小或最大的记录,并将 其加入到有序子序列中,最终形成有序序列。交换 类排序可分为冒泡排序和快速排序等。
15
交换类
(1)冒泡排序 两两比较待排序记录的关键字,发现两
个记录的次序相反时即进行交换,直到没有 反序的记录为止。因为元素会经由交换慢慢 浮到序列顶端,故称之为冒泡排序。
3. 最后对这个组进行插入排序。步长的选法 一般为 d1 约为 n/2,d2 为 d1 /2, d3 为 d2/2 ,…, di = 1。
11
【例】给定序列(11,9,84,32,92,26,58,91,35, 27,46,28,75,29,37,12 ),步长设为d1 =5、d2 =3、 d3 =1,希尔排序过程如下:
for i in range(1,len(alist)):
#外循环n-1
for j in range(i,0,-1):
#内循环
if alist[j]<alist[j-1]:
alist[j],alist[j-1]=alist[j-1],alist[j] #交换
li=[59,12,77,64,72,69,46,89,31,9] print('before: ',li) insert_sort(li) print('after: ',li)
C语言八大排序算法
C语⾔⼋⼤排序算法C语⾔⼋⼤排序算法,附动图和详细代码解释!来源:C语⾔与程序设计、⽵⾬听闲等⼀前⾔如果说各种编程语⾔是程序员的招式,那么数据结构和算法就相当于程序员的内功。
想写出精炼、优秀的代码,不通过不断的锤炼,是很难做到的。
⼆⼋⼤排序算法排序算法作为数据结构的重要部分,系统地学习⼀下是很有必要的。
1、排序的概念排序是计算机内经常进⾏的⼀种操作,其⽬的是将⼀组“⽆序”的记录序列调整为“有序”的记录序列。
排序分为内部排序和外部排序。
若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。
反之,若参加排序的记录数量很⼤,整个序列的排序过程不可能在内存中完成,则称此类排序问题为外部排序。
2、排序分类⼋⼤排序算法均属于内部排序。
如果按照策略来分类,⼤致可分为:交换排序、插⼊排序、选择排序、归并排序和基数排序。
如下图所⽰:3、算法分析1.插⼊排序*直接插⼊排序*希尔排序2.选择排序*简单选择排序*堆排序3.交换排序*冒泡排序*快速排序4.归并排序5.基数排序不稳定排序:简单选择排序,快速排序,希尔排序,堆排序稳定排序:冒泡排序,直接插⼊排序,归并排序,奇数排序1、插⼊排序将第⼀个和第⼆个元素排好序,然后将第3个元素插⼊到已经排好序的元素中,依次类推(插⼊排序最好的情况就是数组已经有序了)因为插⼊排序每次只能操作⼀个元素,效率低。
元素个数N,取奇数k=N/2,将下标差值为k的数分为⼀组(⼀组元素个数看总元素个数决定),在组内构成有序序列,再取k=k/2,将下标差值为k的数分为⼀组,构成有序序列,直到k=1,然后再进⾏直接插⼊排序。
3、简单选择排序选出最⼩的数和第⼀个数交换,再在剩余的数中⼜选择最⼩的和第⼆个数交换,依次类推4、堆排序以升序排序为例,利⽤⼩根堆的性质(堆顶元素最⼩)不断输出最⼩元素,直到堆中没有元素1.构建⼩根堆2.输出堆顶元素3.将堆低元素放⼀个到堆顶,再重新构造成⼩根堆,再输出堆顶元素,以此类推5、冒泡排序改进1:如果某次冒泡不存在数据交换,则说明已经排序好了,可以直接退出排序改进2:头尾进⾏冒泡,每次把最⼤的沉底,最⼩的浮上去,两边往中间靠16、快速排序选择⼀个基准元素,⽐基准元素⼩的放基准元素的前⾯,⽐基准元素⼤的放基准元素的后⾯,这种动作叫分区,每次分区都把⼀个数列分成了两部分,每次分区都使得⼀个数字有序,然后将基准元素前⾯部分和后⾯部分继续分区,⼀直分区直到分区的区间中只有⼀个元素的时候,⼀个元素的序列肯定是有序的嘛,所以最后⼀个升序的序列就完成啦。
数据结构课程设报告—各种排序算法的比较
数据结构课程设计报告几种排序算法的演示1、需求分析:运行环境:Microsoft Visual Studio 20052、程序实现功能:3、通过用户键入的数据, 经过程序进行排序, 最后给予数据由小到大的输出。
排序的方式包含教材中所介绍的几种常用的排序方式:直接插入排序、折半插入排序、冒泡排序、快速排序、选择排序、堆排序、归并排序。
每种排序过程中均显示每一趟排序的细节。
程序的输入:输入所需排序方式的序号。
输入排序的数据的个数。
输入具体的数据元素。
程序的输出:输出排序每一趟的结果, 及最后排序结果1、设计说明:算法设计思想:a交换排序(冒泡排序、快速排序)交换排序的基本思想是: 对排序表中的数据元素按关键字进行两两比较, 如果发生逆序(即排列顺序与排序后的次序正好相反), 则两者交换位置, 直到所有数据元素都排好序为止。
b插入排序(直接插入排序、折半插入排序)插入排序的基本思想是: 每一次设法把一个数据元素插入到已经排序的部分序列的合适位置, 使得插入后的序列仍然是有序的。
开始时建立一个初始的有序序列, 它只包含一个数据元素。
然后, 从这个初始序列出发不断插入数据元素, 直到最后一个数据元素插到有序序列后, 整个排序工作就完成了。
c选择排序(简单选择排序、堆排序)选择排序的基本思想是: 第一趟在有n个数据元素的排序表中选出关键字最小的数据元素, 然后在剩下的n-1个数据元素中再选出关键字最小(整个数据表中次小)的数据元素, 依次重复, 每一趟(例如第i趟, i=1, …, n-1)总是在当前剩下的n-i+1个待排序数据元素中选出关键字最小的数据元素, 作为有序数据元素序列的第i个数据元素。
等到第n-1趟选择结束, 待排序数据元素仅剩下一个时就不用再选了, 按选出的先后次序所得到的数据元素序列即为有序序列, 排序即告完成。
d归并排序(两路归并排序)1、两路归并排序的基本思想是: 假设初始排序表有n个数据元素, 首先把它看成是长度为1的首尾相接的n个有序子表(以后称它们为归并项), 先做两两归并, 得n/2上取整个长度为2的归并项(如果n为奇数, 则最后一个归并项的长度为1);再做两两归并, ……, 如此重复, 最后得到一个长度为n的有序序列。
数据结构课程设计实践报告
数据结构实验报告本文是范文,仅供参考写作,禁止抄袭本文内容上传提交,违者取消写作资格,成绩不合格!实验名称:排序算法比较提交文档学生姓名:提交文档学生学号:同组成员名单:指导教师姓名:排序算法比较一、实验目的和要求1、设计目的1.掌握各种排序的基本思想。
2.掌握各种排序方法的算法实现。
3.掌握各种排序方法的优劣分析及花费的时间的计算。
4.掌握各种排序方法所适应的不同场合。
2、设计内容和要求利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、堆排序、归并排序等排序方法进行排序,并统计每一种排序上机所花费的时间二、运行环境(软、硬件环境)软件环境:Vc6.0编程软件运行平台: Win32硬件:普通个人pc机三、算法设计的思想1、冒泡排序:bubbleSort()基本思想: 设待排序的文件为r[1..n]第1趟(遍):从r[1]开始,依次比较两个相邻记录的关键字r[i].key和r[i+1].key,若r[i].key>r[i+1].key,则交换记录r[i]和r[i+1]的位置;否则,不交换。
(i=1,2,...n-1)第1趟之后,n个关键字中最大的记录移到了r[n]的位置上。
第2趟:从r[1]开始,依次比较两个相邻记录的关键字r[i].key和r[i+1].key,若r[i].key>r[i+1].key,则交换记录r[i]和r[i+1]的位置;否则,不交换。
(i=1,2,...n-2)第2趟之后,前n-1个关键字中最大的记录移到了r[n-1]的位置上,作完n-1趟,或者不需再交换记录时为止。
2、选择排序:selSort()每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
选择排序不像冒泡排序算法那样先并不急于调换位置,第一轮(k=1)先从array[k]开始逐个检查,看哪个数最小就记下该数所在的位置于minlIndex中,等一轮扫描完毕,如果找到比array[k-1]更小的元素,则把array[minlIndex]和a[k-1]对调,这时array[k]到最后一个元素中最小的元素就换到了array[k-1]的位置。
数据结构之的拓扑排序算法拓扑排序算法的实现和性能分析
数据结构之的拓扑排序算法拓扑排序算法的实现和性能分析数据结构之拓扑排序算法拓扑排序算法的实现和性能分析拓扑排序是一种常用的图算法,用于对有向无环图(DAG)进行排序。
拓扑排序的主要应用包括任务调度、编译顺序、依赖关系管理等方面。
本文将介绍拓扑排序算法的实现及其性能分析。
一、拓扑排序算法的实现拓扑排序算法一般采用深度优先搜索(DFS)或广度优先搜索(BFS)来实现。
下面将以DFS实现为例进行介绍。
1. 创建图数据结构在进行拓扑排序之前,首先需要创建图的数据结构。
可以使用邻接表或邻接矩阵来表示图。
以邻接表为例,可以使用一个字典来表示每个节点和其相邻节点的关系。
2. 初始化标记数组为了保证每个节点只被访问一次,需要使用一个标记数组来记录节点的访问状态。
可以使用布尔数组或整数数组来表示,将未访问的节点标记为false或0,已访问的节点标记为true或1。
3. 实现拓扑排序函数拓扑排序函数的主要功能是对图进行遍历,并将节点按照拓扑排序的顺序输出。
拓扑排序函数通常使用递归的方式实现。
4. 输出排序结果拓扑排序算法完成后,可以将排序的结果输出。
按照拓扑排序的定义,输出的结果应该是一个拓扑有序的节点列表。
二、拓扑排序算法的性能分析拓扑排序算法的性能取决于图的规模和结构。
下面将从时间复杂度和空间复杂度两个方面进行性能分析。
1. 时间复杂度分析拓扑排序算法的时间复杂度主要取决于图的节点数和边数。
在最坏情况下,每个节点都需要遍历一次,而每个节点的边数是有限的,所以拓扑排序的时间复杂度为O(V+E),其中V表示节点数,E表示边数。
2. 空间复杂度分析拓扑排序算法的空间复杂度主要取决于存储图和标记数组的空间。
在使用邻接表表示图时,需要额外的空间来存储每个节点及其相邻节点的关系。
同时,需要使用标记数组来记录节点的访问状态。
所以拓扑排序的空间复杂度为O(V+E+V),即O(V+E),其中V表示节点数,E表示边数。
三、总结拓扑排序是一种常用的图算法,可以对有向无环图进行排序。
内部排序比较 (实验报告+源程序)C++
实验报告3实验名称:数据结构与软件设计实习题目:内部排序算法比较专业:生物信息学班级:01 姓名:学号:实验日期:2010.07.24一、实验目的:比较冒泡排序、直接插入排序、简单选择排序、快速排序、希尔排序;二、实验要求:待排序长度不小于100,数据可有随机函数产生,用五组不同输入数据做比较,比较的指标为关键字参加比较的次数和关键字移动的次数;对结果做简单的分析,包括各组数据得出结果的解释;设计程序用顺序存储。
三、实验内容对各种内部排序算法的时间复杂度有一个比较直观的感受,包括关键字比较次数和关键字移动次数。
将排序算法进行合编在一起,可考虑用顺序执行各种排序算法来执行,最后输出所有结果。
四、实验编程结果或过程:1. 数据定义typedef struct { KeyType key; }RedType; typedef struct { RedType r[MAXSIZE+1]; int length;}SqList;2. 函数如下,代码详见文件“排序比较.cpp”int Create_Sq(SqList &L)void Bubble_sort(SqList &L)//冒泡排序void InsertSort(SqList &L)//插入排序void SelectSort(SqList &L) //简单选择排序int Partition(SqList &L,int low,int high) void QSort(SqList &L,int low,int high)//递归形式的快速排序算法void QuickSort(SqList &L)void ShellInsert(SqList &L,int dk)//希尔排序void ShellSort(SqList &L,int dlta[ ])3. 运行测试结果,运行结果无误,如下图语速个数为20元素个数为100错误调试无。
排序算法分析和比较
一、设计思想排序是数据处理中使用频率很高的一种操作,是数据查询之前需要进行的一项基础操作。
它是将任意序列的数据元素(或记录)按关键字有序(升序或降序)重新排列的过程。
排序的过程中有两种基本操作:一是比较两个关键字的值;二是根据比较结果移动记录位置。
排序的算法有很多种,这里仅对插入排序、选择排序、希尔排序、归并排序和快速排序作了比较。
直接插入排序算法基本思路:直接插入排序时将一个元素插入已排好的有序数组中,从而得到一个元素个数增加1的新的有序数组。
其具体实现过程是,将第i个元素与已经排好序的i-1个元素依次进行比较,再将所有大于第i个元素的元素后移一个位置,直到遇到小于或等于第i个元素,此时该元素的后面一个位置为空,将i元素插入此空位即可。
选择排序算法基本思路:定义两个数组sela[]和temp[],sela[]用来存放待排序数组,temp[]用来存放排好序的数组。
第一趟,将sela[]数组中n个元素进行比较,找出其中最小的元素放入temp[]的第一个位置,同时将sela[]中将该元素位置设置为无穷大。
第二趟,将sela[]数组中n个元素进行比较,找出其中最小的元素放入temp[]的第二个位置,同时将sela[]中将该元素位置设置为无穷大。
以此类推,n趟后将sela[]中所有元素都已排好序放入temp[]数组中。
希尔排序算法基本思路:希尔排序又称为变长步径排序,它也是一种基于插入排序的思想。
其基本思路是,定义一个步长数组gaps[1,5,13,43……],先选取合适的大步长gap将整个待排序的元素按步长gap分成若干子序列,第一个子序列的元素为a[0]、a[0+gap]、a[0+2gap]……a[0+k*gap];第二列为a[1]、a[1+gap]、a[1+2gap]……a[1+k*gap];……。
然后,对这些子序列分别进行插入排序,然后将gap按gaps[]数组中的步长缩小,按缩小后的步长再进行子序列划分排序,再减小步长直到步长为1为止。
数据结构(C语言版)实验报告 (内部排序算法比较)
《数据结构与算法》实验报告一、需求分析问题描述:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间。
试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。
基本要求:(l)对以下6种常用的内部排序算法进行比较:起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序。
(2)待排序表的表长不小于100000;其中的数据要用伪随机数程序产生;至少要用5组不同的输入数据作比较;比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换计为3次移动)。
(3)最后要对结果作简单分析,包括对各组数据得出结果波动大小的解释。
数据测试:二.概要设计1.程序所需的抽象数据类型的定义:typedef int BOOL; //说明BOOL是int的别名typedef struct StudentData { int num; //存放关键字}Data; typedef struct LinkList { int Length; //数组长度Data Record[MAXSIZE]; //用数组存放所有的随机数} LinkList int RandArray[MAXSIZE]; //定义长度为MAXSIZE的随机数组void RandomNum() //随机生成函数void InitLinkList(LinkList* L) //初始化链表BOOL LT(int i, int j,int* CmpNum) //比较i和j 的大小void Display(LinkList* L) //显示输出函数void ShellSort(LinkList* L, int dlta[], int t,int* CmpNum, int* ChgNum) //希尔排序void QuickSort (LinkList* L, int* CmpNum, int* ChgNum) //快速排序void HeapSort (LinkList* L, int* CmpNum, int* ChgNum) //堆排序void BubbleSort(LinkList* L, int* CmpNum, int* ChgNum) //冒泡排序void SelSort(LinkList* L, int* CmpNum, int* ChgNum) //选择排序void Compare(LinkList* L,int* CmpNum, int* ChgNum) //比较所有排序2 .各程序模块之间的层次(调用)关系:二、详细设计typedef int BOOL; //定义标识符关键字BOOL别名为int typedef struct StudentData //记录数据类型{int num; //定义关键字类型}Data; //排序的记录数据类型定义typedef struct LinkList //记录线性表{int Length; //定义表长Data Record[MAXSIZE]; //表长记录最大值}LinkList; //排序的记录线性表类型定义int RandArray[MAXSIZE]; //定义随机数组类型及最大值/******************随机生成函数********************/void RandomNum(){int i; srand((int)time(NULL)); //用伪随机数程序产生伪随机数for(i=0; i小于MAXSIZE; i++) RandArray[i]<=(int)rand(); 返回;}/*****************初始化链表**********************/void InitLinkList(LinkList* L) //初始化链表{int i;memset(L,0,sizeof(LinkList));RandomNum();for(i=0; i小于<MAXSIZE; i++)L->Record[i].num<=RandArray[i]; L->Length<=i;}BOOL LT(int i, int j,int* CmpNum){(*CmpNum)++; 若i<j) 则返回TRUE; 否则返回FALSE;}void Display(LinkList* L){FILE* f; //定义一个文件指针f int i;若打开文件的指令不为空则//通过文件指针f打开文件为条件判断{ //是否应该打开文件输出“can't open file”;exit(0); }for (i=0; i小于L->Length; i++)fprintf(f,"%d\n",L->Record[i].num);通过文件指针f关闭文件;三、调试分析1.调试过程中遇到的问题及经验体会:在本次程序的编写和调试过程中,我曾多次修改代码,并根据调试显示的界面一次次调整代码。
数据结构与算法实验源代码
数据结构与算法实验源代码数据结构与算法实验源代码一、实验目的本实验旨在通过编写数据结构与算法的实验源代码,加深对数据结构与算法的理解,并提高编程能力。
二、实验环境本实验使用以下环境进行开发和测试:- 操作系统:Windows 10- 开发工具:IDEA(集成开发环境)- 编程语言:Java三、实验内容本实验包括以下章节:3.1 链表在本章节中,我们将实现链表数据结构,并实现基本的链表操作,包括插入节点、删除节点、查找节点等。
3.2 栈和队列在本章节中,我们将实现栈和队列数据结构,并实现栈和队列的基本操作,包括入栈、出栈、入队、出队等。
3.3 树在本章节中,我们将实现二叉树数据结构,并实现二叉树的基本操作,包括遍历树、搜索节点等。
3.4 图在本章节中,我们将实现图数据结构,并实现图的基本操作,包括广度优先搜索、深度优先搜索等。
3.5 排序算法在本章节中,我们将实现各种排序算法,包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。
3.6 搜索算法在本章节中,我们将实现各种搜索算法,包括线性搜索、二分搜索、广度优先搜索、深度优先搜索等。
四、附件本文档附带实验源代码,包括实现数据结构和算法的Java源文件。
五、法律名词及注释5.1 数据结构(Data Structure):是指数据对象中数据元素之间的关系。
包括线性结构、树形结构、图形结构等。
5.2 算法(Algorithm):是指解决问题的一系列步骤或操作。
算法应满足正确性、可读性、健壮性、高效性等特点。
5.3 链表(Linked List):是一种常见的数据结构,由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。
5.4 栈(Stack):是一种遵循后进先出(LIFO)原则的有序集合,用于存储和获取数据。
5.5 队列(Queue):是一种遵循先进先出(FIFO)原则的有序集合,用于存储和获取数据。
5.6 树(Tree):是由节点组成的层级结构,其中一种节点作为根节点,其他节点按照父子关系连接。
排序算法分析实验报告
一、实验目的1. 了解常见的排序算法的基本原理。
2. 分析不同排序算法的时间复杂度和空间复杂度。
3. 通过实验比较不同排序算法的性能。
4. 培养编程实践能力和数据结构分析能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 开发工具:PyCharm三、实验内容本次实验主要对以下几种排序算法进行分析和比较:1. 冒泡排序(Bubble Sort)2. 选择排序(Selection Sort)3. 插入排序(Insertion Sort)4. 快速排序(Quick Sort)5. 归并排序(Merge Sort)6. 堆排序(Heap Sort)四、实验步骤1. 编写每个排序算法的Python代码。
2. 创建一个随机整数数组作为测试数据。
3. 分别使用不同的排序算法对测试数据进行排序。
4. 记录每种排序算法的执行时间。
5. 分析不同排序算法的性能。
五、实验结果与分析1. 冒泡排序```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]```执行时间:约0.001秒冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
由于比较次数较多,效率较低。
2. 选择排序```pythondef selection_sort(arr):n = len(arr)for i in range(n):min_idx = ifor j in range(i+1, n):if arr[min_idx] > arr[j]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]```执行时间:约0.002秒选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
数据结构内部排序算法比较
内部排序算法比较第一章问题描述排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。
比较的结果用一个直方图表示。
第二章系统分析界面的设计如图所示:|******************************||-------欢迎使用---------||-----(1)随机取数-------||-----(2)自行输入-------||-----(0)退出使用-------||******************************|请选择操作方式:如上图所示该系统的功能有:(1):选择 1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并打印出结果。
(2)选择 2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。
(3)选择0 打印“谢谢使用!!”退出系统的使用!!第三章系统设计(I)友好的人机界面设计:(如图3.1所示)|******************************||-------欢迎使用---------||-----(1)随机取数-------||-----(2)自行输入-------||-----(0)退出使用-------||******************************|(3.1)(II)方便快捷的操作:用户只需要根据不同的需要在界面上输入系统提醒的操作形式直接进行相应的操作方式即可!如图(3.2所示)|******************************||-------欢迎使用---------||-----(1)随机取数-------||-----(2)自行输入-------||-----(0)退出使用-------||******************************|请选择操作方式:(用户在此输入操作方式)(3.2)(III)系统采用定义结构体数组来存储数据。
数据结构实验报告排序
数据结构实验报告排序数据结构实验报告:排序引言:排序是计算机科学中常见的算法问题之一,它的目标是将一组无序的数据按照特定的规则进行排列,以便于后续的查找、统计和分析。
在本次实验中,我们将学习和实现几种常见的排序算法,并对它们的性能进行比较和分析。
一、冒泡排序冒泡排序是最简单的排序算法之一,它通过不断交换相邻的元素,将较大(或较小)的元素逐渐“冒泡”到数组的一端。
具体实现时,我们可以使用两层循环来比较和交换元素,直到整个数组有序。
二、插入排序插入排序的思想是将数组分为两个部分:已排序部分和未排序部分。
每次从未排序部分中取出一个元素,插入到已排序部分的适当位置,以保持已排序部分的有序性。
插入排序的实现可以使用一层循环和适当的元素交换。
三、选择排序选择排序每次从未排序部分中选择最小(或最大)的元素,与未排序部分的第一个元素进行交换。
通过不断选择最小(或最大)的元素,将其放置到已排序部分的末尾,从而逐渐形成有序序列。
四、快速排序快速排序是一种分治的排序算法,它通过选择一个基准元素,将数组划分为两个子数组,其中一个子数组的所有元素都小于等于基准元素,另一个子数组的所有元素都大于基准元素。
然后对两个子数组分别递归地进行快速排序,最终将整个数组排序。
五、归并排序归并排序也是一种分治的排序算法,它将数组划分为多个子数组,对每个子数组进行排序,然后再将排好序的子数组合并成一个有序的数组。
归并排序的实现可以使用递归或迭代的方式。
六、性能比较与分析在本次实验中,我们对以上几种排序算法进行了实现,并通过对不同规模的随机数组进行排序,比较了它们的性能。
我们使用了计算排序时间的方式,并记录了每种算法在不同规模下的运行时间。
通过对比实验结果,我们可以得出以下结论:1. 冒泡排序和插入排序在处理小规模数据时表现较好,但在处理大规模数据时性能较差,因为它们的时间复杂度为O(n^2)。
2. 选择排序的时间复杂度也为O(n^2),与冒泡排序和插入排序相似,但相对而言,选择排序的性能稍好一些。
数据结构与算法-排序
假定待排序文件由 n 条记录组成,记录依次存储在 r[1]~r[n]中。使用简单冒泡排
序算法对待排序文件中的记录进行排序,具体处理流程如下。
(1)遍历待排序文件 r[1]~r[n],每访问一条记录 r[j]时,比较所访问记录排序关
键字与所访问记录后一记录排序关键字的大小,核对所访问记录 r[j]与所访问记录后一
则,此排序算法是不稳定的。例如, 给定待排序文件 A={1,2,3,1,4}和B={1,3,1,2,4},假定某
一排序算法对文件 A 和B 的排序结果分别为{1,1,2,3,4}和{1,1,2,3,4},由于文件 B 中存在多
项同为 1 的记录,且排序后同为 1 的记录相对位置发生了改变,因此,此算法是不稳定
排序
目
CONTENTS
录
01
排序的概述
02
插入排序算法
03
交换排序算法
04
选择排序算法
05
归并排序算法
06
分配排序算法
07
各种排序技术比较
08
本章小结
01
PART
排序的概述
排序是以某一数据项(称为排序关键字)为依据,将一组无序记录调整成一组有序
记录,形成有序表的过程。排序问题可以定义为以下形式。
件排序时,记录分组以及每趟排序结果如右
图所示。
插入排序算法
2.3希尔排序算法
第一趟排序时,增量 h=4,因此,以
h=4 为记录间隔,将待排序文件中的记录分
为 4 组:{r[1],r[5],r[9]}、{r[2],r[6]}、{r[3],r[7]}
和{r[4],r[8]},并分别对 4 组记录进行直接插入
数据结构中内部排序算法的分析
3 ・ 8
Co u e a No 6 201 mp t r Er . 0
数据结构 中 内部排序算 法的分析
吴红芝 ,郭麦 成 ,吴 浩 ( 长江 大学计算 机科 学 学院研 究生院 ,湖北 荆 州 442) 303
摘 要 :排序是计算机程序设计 中经常遇到的一个重要 内容 , 它的功能是将一个数据集合 , 关键 字重新排 列成一个有 按
序 的序 列。然而, 由于排 序算法程 序须考虑设计路 线、 时间复杂度及稳定性 等因素 , 学者在理解上存在较大的 困难 , 初 文
章针对这些具体 问题 , 提供一些行之有 效的解决方法。
关键词 :排序 ;算法;稳定性 ;时间复杂度
Anayss f I t r l So tng Al ort l i o n e na r i g ihm i Da a t uc ur n t S r t e
从排序 的稳 定性 来看 , 稳定 的排序有 : 直接插入排序 、 折半
与其他算法 相比 , 序也是数 据结构 中的一种算法 , 排 只不 插入排序 、 冒泡排 序和归并排序 , 稳定的排序有 : 尔排 序 、 不 希 快 速排序 、 简单选 择排 序和堆排 序 ; 从排序算法 的时间复杂度 它也涉及到一种算 法的设计思想 、 参数 的引用及 时间复杂度等 来看 , 直接插入排序 、 半插入排序 、 折 冒泡排 序 、 简单选择排序
d t i ms no n re e sq e c b k y r . Ho v r b cus o h fco s whih aa t e it a o d rd e u n e y e wo d we e, e a e f te a tr c mu t e o sd r d n otn po rm , s b c n iee i s rig rg a
数据结构排序实验报告
引言概述:数据结构排序实验是计算机科学与技术专业中一项重要的实践课程。
通过实验,可以深入理解和掌握不同排序算法的原理、特点和性能表现。
本文将针对数据结构排序实验进行详细的阐述和总结,包括实验目的、实验内容、实验结果分析和总结。
一、实验目的1. 加深对数据结构排序算法的理解:通过实验,掌握不同排序算法的工作原理和实现方式。
2. 分析和比较不同排序算法的性能:对比不同排序算法在不同数据规模下的时间复杂度和空间复杂度,理解它们的优劣势。
3. 提高编程和算法设计能力:通过实验的编写,提升对排序算法的实现能力和代码质量。
二、实验内容1. 选择排序算法:选择排序是一种简单直观的排序算法,将序列分为有序和无序两部分,每次从无序部分选择最小(最大)元素,放到有序部分的末尾(开头)。
- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析2. 插入排序算法:插入排序逐步构建有序序列,对于未排序的元素,在已排序序列中从后向前扫描,找到对应位置插入。
- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析3. 快速排序算法:快速排序利用分治的思想,将序列分为左右两部分,选取基准元素,将小于基准的放在左边,大于基准的放在右边,递归地对左右部分进行排序。
- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析4. 归并排序算法:归并排序是一种稳定的排序算法,通过将序列分为若干子序列,分别进行排序,然后再将排好序的子序列合并成整体有序序列。
- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析5. 堆排序算法:堆是一种特殊的树状数据结构,堆排序利用堆的性质进行排序,通过构建大顶堆或小顶堆,并逐个将堆顶元素移出形成有序序列。
- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析三、实验结果分析1. 比较不同排序算法的执行时间:根据实验数据和分析,对比不同排序算法在不同数据规模下的执行时间,并针对其时间复杂度进行验证和分析。
数据结构课程设计排序算法总结
排序算法:(1) 直接插入排序 (2) 折半插入排序(3) 冒泡排序 (4) 简单选择排序 (5) 快速排序(6) 堆排序 (7) 归并排序【算法分析】(1)直接插入排序;它是一种最简单的排序方法,它的基本操作是将一个记录插入到已排好的序的有序表中,从而得到一个新的、记录数增加1的有序表。
(2)折半插入排序:插入排序的基本操作是在一个有序表中进行查找和插入,我们知道这个查找操作可以利用折半查找来实现,由此进行的插入排序称之为折半插入排序。
折半插入排序所需附加存储空间和直接插入相同,从时间上比较,折半插入排序仅减少了关键字间的比较次数,而记录的移动次数不变。
(3)冒泡排序:比较相邻关键字,若为逆序(非递增),则交换,最终将最大的记录放到最后一个记录的位置上,此为第一趟冒泡排序;对前n-1记录重复上操作,确定倒数第二个位置记录;……以此类推,直至的到一个递增的表。
(4)简单选择排序:通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之。
(5)快速排序:它是对冒泡排序的一种改进,基本思想是,通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
(6)堆排序: 使记录序列按关键字非递减有序排列,在堆排序的算法中先建一个“大顶堆”,即先选得一个关键字为最大的记录并与序列中最后一个记录交换,然后对序列中前n-1记录进行筛选,重新将它调整为一个“大顶堆”,如此反复直至排序结束。
(7)归并排序:归并的含义是将两个或两个以上的有序表组合成一个新的有序表。
假设初始序列含有n个记录,则可看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到n/2个长度为2或1的有序子序列;再两两归并,……,如此重复,直至得到一个长度为n的有序序列为止,这种排序称为2-路归并排序。
数据结构排序实验报告
数据结构排序实验报告一、实验目的本次数据结构排序实验的主要目的是深入理解和掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序和归并排序,并通过实际编程和实验分析,比较它们在不同规模数据下的性能表现,从而为实际应用中选择合适的排序算法提供依据。
二、实验环境本次实验使用的编程语言为 Python 3x,开发环境为 PyCharm。
实验中使用的操作系统为 Windows 10。
三、实验原理1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。
它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。
2、插入排序(Insertion Sort)插入排序是一种简单直观的排序算法。
它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个数组有序。
3、选择排序(Selection Sort)首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
以此类推,直到所有元素均排序完毕。
4、快速排序(Quick Sort)通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
5、归并排序(Merge Sort)归并排序是建立在归并操作上的一种有效、稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
四、实验步骤1、算法实现使用 Python 语言分别实现上述五种排序算法。
为每个算法编写独立的函数,函数输入为待排序的列表,输出为排序后的列表。
2、生成测试数据生成不同规模(例如 100、500、1000、5000、10000 个元素)的随机整数列表作为测试数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排序算法的分析比较学生姓名:学号:专业:班级:一、题目概述排序的方法很多,但是就其全面性能而言,很难提出一种被认为是最好的方法,每一种方法都有各自的优缺点,适合在不同的环境下使用。
如果排序中依据的不同原则对内部排序方法进行分类,则大致可分为直接插入排序、直接选择排序、起泡排序、Shell排序、快速排序、堆排序等六类排序算法。
本文是对直接插入排序、直接选择排序、起泡排序、Shell排序、快速排序、堆排序这几种内部排序算法进行比较,用不同的测试数据做测试比较。
比较的指标为关键字的比较次数和关键字的移动次数。
最后用图表数据汇总,以便对这些内部排序算法进行性能分析。
二、数据定义输入数据:由于大多数排序算法的时间开销主要是关键字之间的比较和记录的移动,算法的执行时间不仅依赖于问题的规模,还取决于输入实例中数据的状态。
所以对于输入数据,我们采用由用户输入记录的个数(以关键字的数目分别为20,100,500为例),测试数据由随机数产生器生成。
输出数据:产生的随机数分别用直接插入排序;直接选择排序;起泡排序;Shell排序;快速排序;堆排序这些排序方法进行排序,输出关键字的比较次数和移动次数。
各种排序的基本原理及时间复杂度分析1、直接插入排序(InsertSort)1.1、基本原理:假设待排序的n个记录{R0,R1,…,Rn}顺序存放在数组中,直接插入法在插入记录Ri(i=1,2,…,n-1)时,记录被划分为两个区间[R0,Ri-1]和[Ri+1,Rn-1],其中,前一个子区间已经排好序,后一个子区间是当前未排序的部分,将关键码Ki与Ki-1Ki-2,…,K0依次比较,找出应该插入的位置,将记录Ri插,然后将剩下的i-1个元素按关键词大小依次插入该有序序列,没插入一个元素后依然保持该序列有序,经过i-1趟排序后即成为有序序列。
每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子文件中的适当位置,直到全部记录插入完成为止。
1.2、时间复杂度分析:直接插入排序算法必须进行n-1趟。
最好情况下,即初始序列有序,执行n-1趟,但每一趟只比较一次,移动元素两次,总的比较次数是(n-1),移动元素次数是2(n-1)。
因此最好情况下的时间复杂度就是O(n)。
最坏情况(非递增)下,最多比较i次,因此需要的比较次数是:所以,时间复杂度为O(n2)。
2、直接选择排序(SelectSort)2.1、基本原理:待排序的一组数据元素中,选出最小的一个数据元素与第一个位置的数据元素交换;然后在剩下的数据元素当中再找最小的与第二个位置的数据元素交换,循环到只剩下最后一个数据元素为止,依次类推直到所有记录。
第一趟第n个记录中找出关键码最小的记录与第n个记录交换;第二趟,从第二个记录开始的,2 -1个记录中再选出关键码最小的记录与第二个记录交换;如此,第i趟,则从第i个记录开始的n - i + l个记录中选出关键码最小的记录与第i个记录交换,直到所有记录排好序。
2.2、时间复杂度分析:该算法运行时间与元素的初始排列无关。
不论初始排列如何,该算法都必须执行n-1趟,每趟执行n-i-1次关键字的比较,这样总的比较次数为:所以,简单选择排序的最好、最坏和平均情况的时间复杂度都为O(n2)。
3、冒泡排序(BubbleSort)3.1、基本原理在每一趟冒泡排序中,依次比较相邻的两个关键字大小,若为反序咋交换。
经过一趟起泡后,关键词大的必须移到最后。
按照这种方式进行第一趟在序列(I[0]~I[n-1])中从前往后进行两个相邻元素的比较,若后者小,则交换,比较n-1次;第一趟排序结束,最大元素被交换到I[n-1]中,下一趟只需在子序列(I[0]~I[n-2])中进行;如果在某一趟排序中未交换元素,则不再进行下一趟排序。
将被排序的记录数组J[1 …n]垂直排列,每个记录J[i]看作是重量为J[i].key的气泡。
根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R:凡扫描到违反本原则的轻气泡,就使其向上"飘浮"。
如此反复进行,直到最后任何两个气泡都是轻者在上,重者在下为止,最后可完成。
3.2、时间复杂度分析当原始数据正向有序时,冒泡排序出现最好情况。
此时,只需进行一趟排序,作n-1次关键字比较,因此最好情况下的时间复杂度是O(n)。
当原始数据反向有序时,冒泡排序出现最坏情况。
此时,需进行n-1趟排序,第i趟作(n-i)次关键字间的比较,并且需执行(n-i)次元素交换,所以,比较次数为:因此,最坏情况下的时间复杂度为O(n2)4、Shell排序(ShellSort)4.1、基本原理Shell排序又称缩小增量排序,Shell排序法是以创建者Donald Shell的名字命名的.Shell排序法是对相邻指定距离(称为间隔)的元素进行比较,已知到使用当前间隔进行比较的元素都按顺序排序为止.Shell把间隔缩小一半,然后继续处理,当间隔最终变为1,并且不再出现变化时,Shell排序也就完成了其处理过程.先取一个整数d1<n,把全部记录分成d1个组,所有距离为d1倍数的记录放在一组中,先在各组内排序;然后去d2<d1重复上诉分组和排序工作;直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有记录放在同一组中进行直接插入,直到dt=1,即所有记录放在一组中为止。
4.2、时间复杂度分析希尔排序是按照不同步长对元素进行插入排序,当刚开始元素很无序的时候,步长最大,所以插入排序的元素个数很少,速度很快;当元素基本有序了,步长很小,插入排序对于有序的序列效率很高。
所以,希尔排序的时间复杂度会比o(n2)好一些。
由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。
所以希尔排序是不稳定的,其时间复杂度为o(n2)。
5、快速排序(QuickSort)5.1基本原理首先我们选择一个中间值middle (程序中我们可使用数组中间值),把比中问值小的放在其左边,比中问值大的放在其右边。
由于这个排序算法较复杂,我们先给出其进行一次排序的程序框架。
在待排序的个记录中任意取一个记录(通常取第一个记录)为区分标准,把所有小于该排序的记录移到左边,把所有大于该排序码的记录移到右边,中级放所选记录,为一趟快速排序。
然后对前后两个子序列分别重新上述过程,直到所有记录都排好序。
对任意给定的序列中某个元素,经过一趟排序后,将原序列分割成两个子序列(Rp(0),Rp(1),…,Rp(s-1))和(Rp(s+1),Rp(s+2),…,Rp(n-1)),其中前一个子序列中的所有元素的关键词均小于或等于该元素的关键词值Kp(s),后一个子序列中元素的关键词均大于或等于Kp(s)。
称该元素Rp(s)为分割元素,子序列(Rp(0),Rp(1),…,Rp(s-1))为其低端序列,(Rp(0),Rp(1),…,Rp(s-1))为其高端序列。
很明显,以后只需对低端和高端序列分别进行快速排序,直到子序列为空或只有一个元素时结束,最后得到有序序列。
总之,每趟使表的第一个元素放在适当位置,将表两分,再对子表进行同样的递归划分,直至划分的子表长度为1。
5.2、时间复杂度分析如果每一次分划操作后,左、右两个子序列的长度基本相等,则快速排序的效率最高,其最好情况时间复杂度为O(nlog2n);反之,如果每次分划操作所产生的两个子序列,其中之一为空序列,此时,快速排序效率最低,其最坏情况时间复杂度为O(n2)。
如果选择左边第一个元素为主元,则快速排序的最坏情况发生在原始序列正向有序或反向有序时。
快速排序的平均情况时间复杂度为O(nlog2n)。
6、堆排序(Heapsort)6.1、基本原理堆排序思想很简单,就是每次把关键词调整为堆,取出堆顶元素与堆中最后一个元素交换,同时令堆的大小减一,把剩余的一些元素重新调整为堆,重复此过程,知道堆中只剩下一个元素,n个关键字序列K1,K2,K3, ………称为堆,当且仅当该序列满足如下性质(简称为堆性质):(1)Ki<=K2i且Ki<=K2i+1或(2)Ki<=K2i且Ki>=K2i+1.。
若将此序列所存储的向量R[1…n]看作是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中非叶子结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。
根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆。
根结点(亦称为堆顶)的关键字是堆里所有结点关键字中的最大者,称为大根堆。
注意:堆中任一子树亦是堆。
以上讨论的实际上是二叉堆,类似的可以定义K叉堆6.2时间复杂度分析堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。
堆排序的最坏时间复杂度为O(nlogn)。
堆排序的平均性能较接近于最坏性能。
由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。
堆排序是不稳定的,算法时间复杂度O(nlogn)。
四、程序流程图五、程序源代码#include<stdio.h>#include<stdlib.h>typedefstruct{int key; /*关键字*/}RecordNode; /*排序节点的类型*/typedefstruct{RecordNode *record;int n; /*排序对象的大小*/}SortObject; /*排序节点的类型*/voidInsertSort(SortObject *p,unsigned long *compare,unsigned long *exchange) {inti,j;RecordNode temp;SortObject *pvector;if((pvector=(SortObject *)malloc(sizeof(SortObject)))==NULL){printf("OverFollow!");getchar();exit(1);}for(i=0;i<p->n;i++)/* 复制数组*/pvector->record[i]=p->record[i];pvector->n=p->n;*compare=0;*exchange=0;for(i=1;i<pvector->n;i++){ temp=pvector->record[i];(*exchange)++;j=i-1;while((temp.key<pvector->record[j].key)&&(j>=0)){ (*compare)++;(*exchange)++;pvector->record[j+1]=pvector->record[j];j--;}if(j!=(i-1)){ pvector->record[j+1]=temp;(*exchange)++;}}free(pvector);}voidSelectSort(SortObject *p,unsigned long *compare,unsigned long *exchange) { inti,j,k;RecordNode temp;SortObject *pvector;if((pvector=(SortObject *)malloc(sizeof(SortObject)))==NULL){printf("OverFollow!");getchar();exit(1);}for(i=0;i<p->n;i++)/*复制数组*/pvector->record[i]=p->record[i];pvector->n=p->n;*compare=0;*exchange=0;for(i=0;i<pvector->n-1;i++){ k=i;for(j=i+1;j<pvector->n;j++){ (*compare)++;if(pvector->record[j].key<pvector->record[k].key)k=j;}if(k!=i){ temp=pvector->record[i];pvector->record[i]=pvector->record[k];pvector->record[k]=temp;( *exchange)+=3;}}free(pvector);}voidBubbleSort(SortObject *p,unsigned long *compare,unsigned long *exchange) { inti,j,noswap;RecordNode temp;SortObject *pvector;if((pvector=(SortObject *)malloc(sizeof(SortObject)))==NULL){ printf("OverFollow!");getchar();exit(1);}for(i=0;i<p->n;i++)/* 复制数组*/pvector->record[i]=p->record[i];pvector->n=p->n;*compare=0;*exchange=0;for(i=0;i<pvector->n-1;i++){ noswap=1;for(j=0;j<pvector->n-i-1;j++){ (*compare)++;if(pvector->record[j+1].key<pvector->record[j].key){ temp=pvector->record[j];pvector->record[j]=pvector->record[j+1];pvector->record[j+1]=temp;(*exchange)+=3;noswap=0;}}if(noswap) break;free(pvector);}voidShellSort(SortObject *p,intd,unsigned long *compare,unsigned long *exchange){ inti,j,increment;RecordNode temp;SortObject *pvector;if((pvector=(SortObject*)malloc(sizeof(SortObject)))==NULL){ printf("OverFollow!");getchar();exit(1);}for(i=0;i<p->n;i++)/* 复制数组*/pvector->record[i]=p->record[i];pvector->n=p->n;*compare=0;*exchange=0;for(increment=d;increment>0;increment/=2){for(i=increment;i<pvector->n;i++){ temp=pvector->record[i];(*exchange)++;j=i-increment;while(j>=0&&temp.key<pvector->record[j].key){ (*compare)++;pvector->record[j+increment]=pvector->record[j];(*exchange)++;j-=increment;}pvector->record[j+increment]=temp;(*exchange)++;}}free(pvector);}Void SiftHeap(SortObject *pvector,intsize,intp,unsigned long *compare,unsigned long *exchange) {RecordNode temp;inti,child;temp=pvector->record[p];(*exchange)++;i=p;child=2*i+1;while(child<size)if(child<size-1&&pvector->record[child].key<pvector->record[child+1].key){(*compare) ++;child++;}if(temp.key<pvector->record[child].key){(*compare)++;pvector->record[i]=pvector->record[child];(*exchange)++;i=child;child=2*i+1;}else break;}pvector->record[i]=temp;(*exchange)++;}voidHeapSort(SortObject *p,unsigned long *compare,unsigned long *exchange) { inti,n;RecordNode temp;SortObject *pvector;if((pvector=(SortObject *)malloc(sizeof(SortObject)))==NULL){ printf("OverFollow!");getchar();exit(1);}for(i=0;i<p->n;i++)pvector->record[i]=p->record[i];pvector->n=p->n;*compare=0;*exchange=0;n=pvector->n;for(i=n/2-1;i>=0;i--)SiftHeap(pvector,n,i,compare,exchange);{ temp=pvector->record[0];pvector->record[0]=pvector->record[i];pvector->record[i]=temp;(*exchange)+=3;SiftHeap(pvector,i,0,compare,exchange);free(pvector);}voidQuickSort(SortObject *pvector,intleft,intright,unsigned long*compare,unsigned long *exchange){ inti,j;RecordNode temp;if(left>=right)return;i=left;j=right;temp=pvector->record[i];(*exchange)++;while(i!=j){ while((pvector->record[j].key>=temp.key)&&(j>i)){ (*compare)++;j--;}if(i<j){pvector->record[i++]=pvector->record[j];(*exchange)++;}while((pvector->record[i].key<=temp.key)&&(j>i)){(*compare)++;i++;}if(i<j){pvector->record[j--]=pvector->record[i];(*exchange)++;}}pvector->record[i]=temp;(*exchange)++;QuickSort(pvector,left,i-1,compare,exchange);QuickSort(pvector,i+1,right,compare,exchange);}voidSortMethod(void){ inti,j;unsigned long num[3][12]={0};SortObject *pvector=(SortObject *)malloc(sizeof(SortObject));int random;randomize();for(j=0;j<3;j++){ for(i=0;i<MAXSORTNUM[j];i++)pvector->record[i].key=random(5000);pvector->n=MAXSORTNUM[j];InsertSort(pvector,&num[j][0],&num[j][1]);SelectSort(pvector,&num[j][2],&num[j][3]);BubbleSort(pvector,&num[j][4],&num[j][5]);ShellSort(pvector,4,&num[j][6],&num[j][7]);Heapsort(pvector,&num[j][8],&num[j][9]);QuickSort(pvector,0,MAXSORTNUM[j]-1,&num[j][10],&num[j][11]);}printf("\nSort Method Compare As Follows:");for(j=0;j<3;j++){printf("\n\nWhen The max num is %d,the result is:\n",MAXSORTNUM[j]);printf("1.InsertSort Method:Compared-->%-7ld Exchanged-->%-7ld\n",num[j][0],num[j][1]); printf("2.SelectSort Method:Compared-->%-7ld Exchanged-->%-7ld\n",num[j][2],num[j][3]); printf("3.BubbleSort Method:Compared-->%-7ld Exchanged-->%-7ld\n",num[j][4],num[j][5]); printf("4.ShellSort Method:Compared-->%-7ld Exchanged-->%-7ld\n",num[j][6],num[j][7]); printf("5.HeapSort Method:Compared-->%-7ld Exchanged-->%-7ld\n",num[j][8],num[j][9]); printf("6.QuickSortMethod:Compared-->%-7ld Exchanged-->%-7ld\n",num[j][10],num[j][11]);if(j!=2)printf("Press Enter to continue...\n");sgetchar();}}void main(){SortMethod();}六、程序运行与测试图6.1 数据长度为20时算法运行界面图6.2 数据长度为100时的运行界面图6.3 数据长度为500时的运行界面通过不同数据长度排序比较我们可以清楚地知道,当数据规模不断增加时,各种排序算法之间的差别是很大的。