电子仿真实验报告doc
电子电路仿真实验报告
电子电路仿真实验报告
本次实验是一次电子电路的仿真实验,旨在通过使用电路仿真软件进行电路实验的模拟,通过对模拟的数据和仿真结果进行分析和总结,进一步掌握电子电路的实验知识和技能,在理论和实践中加深对电子电路的理解和掌握。
实验一:开关电源
1.实验目的
掌握开关电源基本工作原理,理解电源的稳压和稳流的基本原理,掌握开关电源的设
计和布局方法。
2.实验步骤
(1)根据实验手册,搭建开关电源电路,包括开关电源 IC、滤波电感、电容、稳流
二极管和稳压二极管。
(2)进行仿真实验,记录各个参数数据。
(3)分析实验结果,了解电源电路的工作原理和性能。
3.实验结果分析
(1)开关频率:在实验中,我们通过改变开关频率,观察电路的输出。
结果表明,当开关频率增加时,电路的效果也增强。
(2)输出电压:在实验中,我们对电路的输出电压进行了测量,结果表明,当输入电压较高时,输出电压也较高;当输入电压较低时,输出电压也较低。
4.实验总结
开关电源是一种高效率、小体积、轻量化的电源,广泛应用于电子产品中,是电子领
域不可或缺的核心器件之一。
掌握开关电源的设计和布局方法,对于我们理解和掌握电子
电路的原理和技术具有重要的意义。
通过本次实验,我们加深了对开关电源的理解和掌握,为日后的学习和实践打下了基础。
电力电子电路分析与仿真实验报告
电力电子电路分析与仿真实验报告实验目的:1.理解电力电子电路的基本工作原理;2.熟悉电力电子电路的常用元件,如二极管、晶闸管等;3.学习使用仿真软件进行电力电子电路的模拟分析。
实验仪器与软件:1.电力电子实验箱;2.PC机;3. Multisim仿真软件。
实验步骤:1.搭建一个简单的单相半波整流电路,其中包括一个二极管、一个负载电阻和一个输入交流电源。
2. 打开Multisim仿真软件,选择电力电子电路仿真模块,并导入所搭建的电路图。
3.模拟设置输入交流电源的电压、频率等参数,并运行仿真。
4.观察仿真结果,记录输出直流电压、负载电流及负载电压的波形。
5.更改交流电源的电压、负载电阻的数值,并重新仿真,观察输出波形的变化。
6.搭建一个三相桥式整流电路,其中包括六个二极管和一个负载电阻。
7. 导入三相桥式整流电路图到Multisim仿真软件,并设置相关参数进行仿真。
8.观察输出直流电压、负载电流及负载电压的波形,并记录数据。
9.更改电源电压及负载电阻的数值,重新进行仿真分析。
实验结果与分析:在进行了以上实验步骤后,我们分别得到了单相半波整流电路和三相桥式整流电路的仿真结果。
通过观察输出波形和记录的数据,我们发现以下几个规律:1.在单相半波整流电路中,输出直流电压的平均值较输入交流电压的峰值小,且具有脉动。
负载电流和负载电压的波形与输入交流电压的波形相同,只是幅值减小。
2.在三相桥式整流电路中,输出直流电压的平均值较输入交流电压的峰值小,且同样存在脉动。
负载电流的波形是一个六段的锯齿波,而负载电压的波形是一个脉冲波。
结论:通过本次实验,我们深入了解了电力电子电路的基本工作原理,并熟悉了常用的电力电子元件。
同时,通过使用Multisim仿真软件进行电路仿真分析,我们能够更直观地观察到电路各个参数的变化情况,提高了实验效率和准确性。
实验报告-电力电子仿真实验
电力电子仿真实验实验报告院系:电气与电子工程学院班级:电气1309班学号: 17学生姓名:王睿哲指导教师:姚蜀军成绩:日期:2017年 1月2日目录实验一晶闸管仿真实验........................................ 错误!未定义书签。
实验二三相桥式全控整流电路仿真实验.......................... 错误!未定义书签。
实验三电压型三相SPWM逆变器电路仿真实验..................... 错误!未定义书签。
实验四单相交-直-交变频电路仿真实验.......................... 错误!未定义书签。
实验五 VSC轻型直流输电系统仿真实验.......................... 错误!未定义书签。
实验一晶闸管仿真实验实验目的掌握晶闸管仿真模型模块各参数的含义。
理解晶闸管的特性。
实验设备:MATLAB/Simulink/PSB实验原理晶闸管测试电路如图1-1所示。
u2为电源电压,ud为负载电压,id为负载电流,uVT 为晶闸管阳极与阴极间电压。
图1-1 晶闸管测试电路实验内容启动Matlab,建立如图1-2所示的晶闸管测试电路结构模型图。
图1-2 带电阻性负载的晶闸管仿真测试模型双击各模块,在出现的对话框内设置相应的模型参数,如图1-3、1-4、1-5所示。
图1-3 交流电压源模块参数图1-4 晶闸管模块参数图1-5 脉冲发生器模块参数固定时间间隔脉冲发生器的振幅设置为5V,周期与电源电压一致,为(即频率为50Hz),脉冲宽度为2(即º),初始相位(即控制角)设置为(即45º)。
串联RLC分支模块Series RLC Branch与并联RLC分支模块Parallel RLC Branch的参数设置方法如表1-1所示。
表1-1 RLC分支模块的参数设置元件串联RLC分支并联RLC分支类别电阻数值电感数值电容数值电阻数值电感数值电容数值单个电阻R0inf R inf0单个电感0L inf inf L0单个电容00C inf inf C 在本系统模型中,双击Series RLC Branch模块,设置参数如图1-6所示。
数字电路仿真实训实验报告
课程设计(大作业)报告课程名称:数字电子技术课程设计设计题目:多功能数字时钟的设计、仿真院系:信息技术学院班级:二班设计者:张三学号:79523指导教师:张延设计时间:2011年12月19日至12月23日信息技术学院昆明学院课程设计(大作业)任务书一、设计目的为了熟悉数字电路课程,学习proteus软件的使用,能够熟练用它进行数字电路的仿真设计,以及锻炼我们平时独立思考、善于动手操作的能力,培养应对问题的实战能力,提高实验技能,熟悉复杂数字电路的安装、测试方法,掌握关于多功能数字时钟的工作原理,掌握基本逻辑们电路、译码器、数据分配器、数据选择器、数值比较器、触发器、计数器、锁存器、555定时器等方面已经学过的知识,并能够将这些熟练应用于实际问题中,我认真的动手学习了数字时钟的基本原理,从实际中再次熟悉了关于本学期数字电路课程中学习的知识,更重要的是熟练掌握了关于proteus软件的使用,收获颇多,增强了自己的工程实践能力。
另外,数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。
数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
因此,我们此次设计数字钟就是为了了解数字钟的原理,从而学会制作数字钟。
而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法。
且由于数字钟包括组合逻辑电路和时叙电路。
通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法。
二、设计要求和设计指标设计一个数字时钟,具有“秒”、“分”、“时”计时和显示功能。
小时以24小时计时制计时;具有校时功能,能够对“分”、“时”进行调整;能够进行整点报时,报时规则为:在59Min51s后隔秒发出500Hz的低音报时信号,在59min59s时发出1kHz的高音报时信号,声响持续1s。
电路电子软件仿真实验报告
电路电子软件仿真实验报告学号:XXXXXXX姓名:XXXX实验报告纲要1:电路电子基本知识小结一、常用电阻、电容、电感二、常用仪器的认识三、测量概念的初步认识2:Multisim的认识3:实验6-2-----6-54:常用电器的分析5:常用电器的部分电路的仿真与故障排除6:实验的反思与体会一、电阻器的基本知识(一)电阻器的作用电阻器主要用来控制电压和电流,即起降压、分压、限流、分流、隔离、信号幅度调节等作用。
(二)电阻器的电路图形符号电阻器在电路中以R表示,常用的电路符号如下(三)电阻器的种类电阻器有多种分类方法,以下是几种常用的分类方法:1、按用途的不同分类,电阻器可以分为通用电阻器、高阻电阻器、高压电阻器、高频电阻器和精密电阻器等。
2、按制作材料的不同,电阻器可分为线绕型电阻器和非线绕型电阻器。
其中线绕型电阻器又可以分为普通线绕型电阻器、被釉型线绕电阻器、陶瓷绝缘线绕型电阻器等;非线绕型电阻器又可以分为合成式线绕电阻器和膜式电阻器。
3、按结构形式不同,电阻器可为分圆柱型电阻器、管型电阻器、圆盘型电阻器和平面状电阻器(贴片式电阻器)。
4、按引线的不同,电阻可分为轴向引线型电阻器、径向引线型电阻器、无引线电阻器等。
5、按电阻器的特性,通常可分为固定电阻器、可变电阻器、敏感电阻器、熔断电阻器和电阻排等几大类。
其中,固定电阻器可分为碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、合成碳膜电阻器、有机实心电阻器、无机实心电阻器、金属玻璃釉电阻器、线绕电阻器、片式电阻器等;敏感电阻器可分为热敏电阻器、压敏电阻器、光敏电阻器、湿敏电阻器、磁敏电阻器、气敏电阻器、力敏电阻器等电容器的基本知识(一)电容器的结构特性与作用电容器是由两个相互靠近的金属电极中间夹一层绝缘介质构成的,具有通交流、隔直流的特性。
电容器广泛应用于各种高、低频及电源等电路中,起退耦、耦合、滤波、旁路、谐振等作用。
(二)电容器的电路图形符号电容器在电路中用字母“C”表示,常用的图形符号如下:(三)电容器的分类电容器有多种分类方法,以下是几种常用的分类方法:1、按电容量是否可调,电容器可以分为固定电容器和可变电容器。
器件仿真实验报告
器件仿真实验报告电力电子仿真仿真实验报告目录实验一:常用电力电子器件特性测试................................................................................... 3 (一)实验目的:................................................................................................ .. (3)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性; (3)掌握各器件的参数设置方法,以及对触发信号的要求。
(3)(二)实验原理.................................................................................................... (3)(三)实验内容.................................................................................................... (3)(四)实验过程与结果分析 (3)1.仿真系统.................................................................................................... (3)2.仿真参数.................................................................................................... .. (4)3.仿真波形与分析.................................................................................................... .. (4)4.结论.................................................................................................... .. (10)实验二:可控整流电路.................................................................................................... .. (11)(一)实验目的.................................................................................................... . (11)(二)实验原理.................................................................................................... . (11)(三)实验内容.................................................................................................... . (11)(四)实验过程与结果分析 (12)1.单相桥式全控整流电路仿真系统,下面先以触发角为0度,负载为纯电阻负载为例.................................................................................................... .. (12)2.仿真参数.................................................................................................... (12)3.仿真波形与分析.................................................................................................... (14)实验三:交流-交流变换电路................................................................................................19(一)实验目的.................................................................................................... . (19)(三)实验过程与结果分析 (19)1)晶闸管单相交流调压电路 (19)实验四:逆变电路.................................................................................................... . (26)(一)实验目的.................................................................................................... . (26)(二)实验内容.................................................................................................... . (26)实验五:单相有源功率校正电路 (38)(一)实验目的.................................................................................................... . (38)(二)实验内容.................................................................................................... . (38)个性化作业:................................................................................................ . (40)(一)实验目的:................................................................................................ . (40)(二)实验原理:................................................................................................ . (40)(三)实验内容.................................................................................................... . (40)(四)结果分析:................................................................................................ . (44)(五)实验总结:................................................................................................ . (45)实验一:常用电力电子器件特性测试(一)实验目的:掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;掌握各器件的参数设置方法,以及对触发信号的要求。
模电仿真报告
模拟电子技术基础Multisim 仿真实验报告课题:交流负反馈对放大倍数稳定性的影响班级:自1203班姓名:张凯(41251083)张晨光(41251084)李顶立(41251085)一、题目负反馈对电压串联负反馈放大电路电压放大倍数稳定性的影响。
二、仿真电路仿真电路采用虚拟集成运放,运放U1、U2分别引入了局部电压并联负反馈,其闭环电压放大倍数分别为RR A11f 1uf -≈,RR A22f 2uf ≈,可以认为该负反馈放大电路中基本放大电路的放大倍数AA Au u 2f 1f ≈整个电路引入了急件电压串联负反馈,闭环电压放大倍数FA A A A Au u u u u 2f 1f 2f 1f f1+≈,RRR Ff+=,三、仿真内容分别测量 Ω=k R f 1002和 Ωk 10 时的 A u f 。
从示波器可读出输出电压的幅值,得到放大倍数电压的变化。
四、仿真结果1、张凯的结果(1)实验截图图1 负反馈放大倍数(张凯)(2)实验数据表图2 实验数据表(张凯)(1)实验截图图3 负反馈放大倍数(张晨光)(2)实验数据表图4 实验数据表(张晨光)(1)实验截图图5 负反馈放大倍数(李顶立)(2)实验数据表图6 实验数据表(李顶立)五、实验数据分析1、比较第1组数据与第2组数据可知,当反馈电阻减小时,运放的闭环电压放大倍数减小。
2、不接反馈电阻时的开环电压放大倍数与接上反馈电阻时的闭环电压放大倍数具有明显的差异,表明负反馈具有提高放大倍数稳定性的作用。
六、实验结论1、由 图4 可知,当R 2f 从100k Ω 变为10k Ω时,电路的开环电压放大倍数变化量Δ9.0101010443)(=-=A A ,闭环电压放大倍数变化量Δ()148.01.1.95-0.811ff-≈=AA u u ,AA AA uf∆<<∆uf。
由此说明负反馈放大倍数的稳定性。
2、根据 图四 可知R 2f 从100k Ω 变为10k Ω时,开环电压放大倍数A 从104变为103,闭环电压放大倍数A uf 分别为99和90.9,与仿真结果近似。
电子电路multisim仿真实验报告
电子电路multisim仿真实
验报告
班级:XXX
姓名:XXX
学号:XXX
班内序号:XXX
一:实验目的
1:熟悉Multisim软件的使用方法。
2:掌握放大器静态工作点的仿真方法及其对放大器性能的影响。
3:掌握放大电路频率特性的仿真方法。
二:虚拟实验仪器及器材
基本电路元件(电阻,电容,三极管)双踪示波器波特图示仪直流电源
三:仿真结果
(1)电路图
其中探针分别为:
探针一探针二
(2)直流工作点分析。
(3)输入输出波形
A通道为输入波形B通道为输出波形
四:实验流程图
开始
选取实验所需电路元件
及测量工具
合理摆放元件位置并连
接电路图
直流特性分析
结束
五:仿真结果分析
(1)直流工作点
电流仿真结果中,基极电流Ib为7.13u,远小于发射极和集电极,而发射极和集电极电流Ie和Ic近似相等,与理论结果相吻合。
电压仿真结果中,基极与发射极的电位差Vbe经过计算约为0.625V,符合三极管的实际阈值电压,而Vce约为5.65V。
以上数据均满足放大电路的需求,所以电路工作在放大区。
(2)示波器图像分析
示波器显示图像中,A路与B路反相,与共射放大电路符合。
六:总结与心得
这次的仿真花费了大量时间,主要是模块的建立。
经过本次的电子电路仿真实验,使我对计算机在电路实验中的应用有了更为深刻的认识,对计算机仿真的好处有了进一步的了解。
仿真可以大大的减轻实验人员的工作负担,同时更可以极大的提升工作效率,事半功倍,所以对仿真的学习是极为必要的。
电力电子仿真实验报告
电力电子仿真实验报告电力电子仿真实验报告概述:电力电子是现代电力系统中的重要组成部分,其在电能转换、调节和控制方面发挥着关键作用。
为了更好地理解电力电子的工作原理和性能特点,本次实验通过电力电子仿真实验平台进行了一系列电路的仿真实验,以探索电力电子在电力系统中的应用。
实验一:单相半桥逆变器单相半桥逆变器是一种常见的电力电子设备,可以将直流电压转换为交流电压。
本实验中,通过仿真平台搭建了一个单相半桥逆变器电路,并进行了性能测试。
通过改变输入直流电压和负载电阻,观察逆变器的输出波形和效率变化。
实验结果表明,逆变器的输出波形呈现出交流正弦波,并且随着输入电压和负载电阻的变化,逆变器的效率也相应变化。
实验二:三相全桥整流器三相全桥整流器是一种常用的电力电子设备,可以将三相交流电转换为直流电。
本实验中,通过仿真平台搭建了一个三相全桥整流器电路,并进行了性能测试。
通过改变输入交流电压的幅值和频率,观察整流器的输出直流电压和纹波变化。
实验结果表明,整流器的输出直流电压稳定,纹波较小,且随着输入电压的增加,输出直流电压也相应增加。
实验三:PWM调制技术PWM调制技术是电力电子中常用的调节技术,通过改变脉冲宽度来实现对输出电压的调节。
本实验中,通过仿真平台搭建了一个PWM调制电路,并进行了性能测试。
通过改变调制信号的频率和占空比,观察PWM调制电路的输出波形和频谱变化。
实验结果表明,PWM调制电路能够产生稳定的输出波形,并且通过调节占空比可以实现对输出电压的精确调节。
实验四:电力电子应用案例电力电子在现代电力系统中有着广泛的应用,例如变频器、充电器、逆变器等。
本实验中,选择了一个典型的电力电子应用案例进行仿真实验。
通过搭建相应的电路和参数设置,观察电力电子设备在实际应用中的性能表现。
实验结果表明,电力电子设备能够实现电能的高效转换和精确控制,为现代电力系统的稳定运行提供了重要支持。
结论:通过电力电子仿真实验,我们深入了解了电力电子的工作原理和性能特点。
电路实验(仿真).doc-重庆邮电大学主页
实验一RLC电路的阶跃响应一.实验目的1.观察并分析RLC二阶串联电路对阶跃信号的响应波形。
2.了解电路参数RLC数值的改变会产生过阻尼、临界阻尼和欠阻尼3种响应情况。
3.从欠阻尼情况的响应波形,读取振荡周期和幅值衰减系数。
二.原理及说明1.跟一阶RC电路实验相同,我们仍用占空率为1/2的周期性矩形脉冲波输入图1-1的RLC串联电路。
当这脉冲的持续时间和间隔时间很长的时候,就可认为脉冲上升沿是一个上升阶跃,而下降沿是一个下降阶跃。
由于阶跃是周期性重复现的,所以在示波器上能观察到清晰、稳定的响应波形。
图1-1 RLC串联电路2.三种阻尼状态的上升阶跃的响应和下降阶跃的响应如下表:表1-11.从表1-1中可见,电路在欠阻尼态时,电容电压对上升阶跃的响应公式是)]sin(1[0φωωωα+-=-t e A u tc , 对下降阶跃的响应公式是 )sin(0φωωωα+=-t e A u t c 。
所以我们可知阶跃响应的波形大致如图1-2所示。
为了判别这种幅值衰减振荡的衰减速度,我们看两个相邻的同向的振幅之比 值,它等于 T T tt e Ke Ke ααα=+--)(/ (1-1)这比率称为幅值衰减率,对其取对数,有T e Tαα=ln (1-2)ln 1ln 1Te T T ==αα(相邻幅值之比) (1-3)这里α称为幅值衰减系数。
图1-2 衰减的正弦振荡曲线三.实验设备安装有Multisim 软件的电脑一台四.实验内容及步骤1.运行Multisim 软件2.计算元件参数,其中R为5KΏ的可调电阻,添加电子元件、脉冲信号源以及接地符号。
3.修改脉冲信号源占空比50%,频率为10KHz,幅高A=2V。
3.连接电路并加入虚拟双通道示波器,虚拟双通道示波器分别接输入信号和输出信号Uc ,修改输出信号线颜色。
4. 调整可调电阻 R>2CL,让电路处于过阻尼状态,进行仿真,通过示波器观察电容上电压Uc 的阶跃响应波形,并记录上、下阶跃的响应曲线。
模拟电子技术实验报告
模拟电子技术基础实验实验报告目录一、共射放大电路二、集成运算放大器三、RC正弦波振荡器四、方波发生器五、多级负反馈放大电路六、有源滤波器七、复合信号发生器一、共射放大电路1.实验目的(1)掌握用Multisim 13仿真软件分析单极放大电路主要性能指标的方法。
(2)熟悉常用电子仪器的使用方法,熟悉基本电子元器件的作用。
(3)学会并熟悉“先静态后动态”的电子线路的基本调试方法。
(4)分析静态工作点对放大器性能的影响,学会调试放大器的静态工作点。
(5)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
(6)测量放大电路的频率特性。
2.实验器材(1)双路直流稳压电源一台;(2)函数信号发生器一台;(3)示波器一台;(4)毫伏表一台;(5)万用表一台;(6)三极管一个;(7)电阻电位器;(8)模拟电路实验箱;3.实验原理及电路实验电路如下图所示,采用基极固定分压式偏置电路。
电路在接通直流电源Vcc而未加入输入信号(Vi=0)时,三极管三个极电压和电流称为静态工作点。
根据XSC1的显示,按如下方法进行操作:现象出现截止失真出现饱和失真操作减小R7 增大R7当滑动变阻器R7设置为11%时,有最大不失真电压。
静态工作点测量将交流电源置零,用万用表测量静态工作点。
理论估算值实际测量值BQ U CQ U EQ U CEQ UCQ I BQ U CQ U EQ U CEQUCQ I3.98V 6.03V 3.28V 2.75V 2.98m A 3.904V6.253V3.186V3.067V2.873m A1. Q 点过低——信号进入截止区2. Q 点过高——信号进入饱和区二、集成运算放大器1.实验目的(1)加深对集成运算放大器的基本应用电路和性能参数的理解。
(2)了解集成运算放大器的特点,掌握集成运算放大器的正确使用方法和基本应用电路。
(3) 掌握由运算放大器组成的比例、加法、减法、积分和微分等基本运算电路的功能。
电路仿真实验实验报告
电路仿真实验实验报告电路仿真实验实验报告一、引言电路仿真实验是电子工程领域中重要的实践环节,通过计算机软件模拟电路的运行情况,可以帮助学生深入理解电路原理和设计方法。
本次实验旨在通过使用电路仿真软件,验证并分析不同电路的性能和特点。
二、实验目的1. 掌握电路仿真软件的基本操作方法;2. 理解并验证基本电路的性能和特点;3. 分析电路中各元件的作用和参数对电路性能的影响。
三、实验内容1. 简单电路的仿真通过电路仿真软件,搭建并仿真简单电路,如电阻、电容、电感等基本元件的串并联组合电路。
观察电路中电流、电压的变化情况,分析电路中各元件的作用。
2. 放大电路的仿真搭建并仿真放大电路,如共射放大电路、共集放大电路等。
通过改变输入信号的幅值和频率,观察输出信号的变化情况,分析放大电路的增益和频率响应。
3. 滤波电路的仿真搭建并仿真滤波电路,如低通滤波器、高通滤波器等。
通过改变输入信号的频率,观察输出信号的变化情况,分析滤波电路的截止频率和滤波特性。
四、实验步骤1. 下载并安装电路仿真软件,如Multisim、PSPICE等;2. 学习软件的基本操作方法,包括搭建电路、设置元件参数、设置输入信号等;3. 根据实验要求,搭建并仿真所需的电路;4. 运行仿真,观察电路中各元件的电流、电压变化情况;5. 改变输入信号的参数,如幅值、频率等,观察输出信号的变化情况;6. 记录实验数据和观察结果。
五、实验结果与分析1. 简单电路的仿真结果通过搭建并仿真电路,观察到电路中电流、电压的变化情况。
例如,在串联电路中,电压随着电阻值的增大而增大,电流保持不变;在并联电路中,电流随着电阻值的增大而减小,电压保持不变。
这说明了电阻对电流和电压的影响。
2. 放大电路的仿真结果通过搭建并仿真放大电路,观察到输入信号的幅值和频率对输出信号的影响。
例如,在共射放大电路中,输入信号的幅值增大时,输出信号的幅值也相应增大,但频率不变;在共集放大电路中,输入信号的频率增大时,输出信号的幅值减小,但频率不变。
模电实验报告
模电实验报告引言:模拟电子技术是电子工程中的重要分支,通过对电压、电流、电子元器件等进行模拟仿真,实现电子系统的设计、分析和测试。
本实验旨在通过实际操作,加深对模拟电子技术的理解和掌握,以及培养实验能力和动手能力。
一、实验目的本实验的主要目的是通过以下几个方面的实验,掌握模拟电子技术的基本原理和实际应用:1. 学习并掌握放大器的工作原理及其电路结构;2. 理解并掌握放大器的特性参数,如增益、带宽等;3. 了解并掌握反馈电路对放大器性能的影响;4. 学习并掌握滤波器的工作原理和电路结构;5. 理解并掌握滤波器的频率响应和滤波特性。
二、实验内容本实验分为两个部分,第一部分为放大器实验,第二部分为滤波器实验。
1. 放大器实验1.1 非反馈放大器实验通过搭建非反馈放大器电路,测量并计算其电压增益,并对其频率响应进行分析。
1.2 反馈放大器实验通过搭建反馈放大器电路,测量并计算其电压增益,并对其频率响应进行分析。
2. 滤波器实验通过搭建低通滤波器和高通滤波器电路,测量并计算其频率响应,并分析其滤波特性。
三、实验步骤以下为放大器实验和滤波器实验的基本步骤,具体实验步骤请参考实验手册。
1. 放大器实验1.1 非反馈放大器实验步骤:a) 搭建非反馈放大器电路;b) 连接信号源和示波器,调节信号源输出频率和幅度;c) 测量输入信号和输出信号的电压,并计算电压增益;d) 分析电路的频率响应。
1.2 反馈放大器实验步骤:a) 搭建反馈放大器电路;b) 连接信号源和示波器,调节信号源输出频率和幅度;c) 测量输入信号和输出信号的电压,并计算电压增益;d) 分析电路的频率响应。
2. 滤波器实验步骤:a) 搭建低通滤波器电路;b) 连接信号源和示波器,调节信号源输出频率和幅度;c) 测量输入信号和输出信号的电压,并计算频率响应;d) 分析滤波器的滤波特性。
四、实验结果与分析根据实验步骤所得的测量数据,进行数据处理和分析。
计算放大器的电压增益、带宽等参数,并绘制频率响应曲线和滤波特性曲线。
电力电子实验报告仿真
电力电子实验报告仿真电力电子是关于电力系统中的电力变换和控制的一门学科,它主要应用于电力系统中的功率调节、电能质量控制和电能传输等方面。
在电力电子实验中,我们通过仿真软件对电力电子器件和系统进行建模、仿真和分析。
下面是一份关于电力电子实验仿真的报告,旨在介绍电力电子的基本原理、实验内容和结果分析。
实验名称:电力电子的仿真实验实验目的:通过仿真软件对电力电子器件和系统进行建模、仿真和分析,学习电力电子的基本原理和应用。
实验装置和器件:电力电子仿真软件、开关管、二极管、滤波电容、电源、负载等。
实验原理:电力电子是利用电子器件来对电能进行变换和控制的学科,其主要包括开关电源、直流调速、电能质量控制等方面。
在本实验中,我们将模拟建立电力电子器件和系统的模型,并通过仿真软件进行仿真和分析。
实验步骤:1.模拟建立电力电子器件和系统的模型。
根据实验要求,选择适当的电力电子器件和系统,建立相应的电路模型。
2.进行仿真实验。
在模拟建立模型后,通过仿真软件对电路进行仿真实验,记录下相关的参数和波形。
3.分析实验结果。
根据仿真结果,分析电路的性能和特点,探讨电力电子器件和系统的优化方案。
实验结果和分析:在本次实验中,我们选择了一个开关电源电路进行仿真实验。
通过调节电源和负载的参数,我们得到了不同工作状态下的电压、电流和功率波形。
根据仿真结果,我们可以看到开关电源具有宽的输入电压范围,输出电压稳定,响应速度快等特点。
同时,我们还发现,在输入电压变化较大时,开关电源的输出电压仍能保持稳定,表明开关电源具有良好的稳压性能。
结论:通过本次仿真实验,我们进一步了解了电力电子的基本原理和应用,学会了使用仿真软件进行电力电子器件和系统的建模、仿真和分析。
同时,通过对开关电源电路的仿真实验,我们验证了开关电源具有宽输入电压范围、稳压性好的优点。
实验心得:电力电子实验是电力专业中重要的实践环节,通过仿真实验,我们更深入地理解了电力电子的工作原理和特点。
模电仿真实验报告
模拟电路仿真实验报告一、实验目的本次模拟电路仿真实验旨在通过使用专业仿真软件,掌握模拟电路的基本原理和设计方法,提高分析和解决问题的能力。
二、实验原理模拟电路是用于模拟真实世界中的各种信号的电子电路。
它能够复制或放大这些信号,以便更好地进行研究和分析。
模拟电路通常由电阻、电容、电感、二极管、三极管等元件组成。
三、实验步骤1. 打开仿真软件,创建一个新的模拟电路设计。
2. 根据实验要求,添加所需的电子元件和电源。
3. 连接各元件,构成完整的模拟电路。
4. 调整电源和各元件的参数,观察并记录电路的输出结果。
5. 根据实验要求,对电路进行测试和调整,直到达到预期效果。
6. 记录实验数据和结果,分析电路的工作原理。
7. 完成实验报告,总结实验过程和结果。
四、实验结果与分析1. 实验结果:在本次模拟电路仿真实验中,我们设计了一个简单的RC振荡电路。
通过调整电阻和电容的值,我们观察到了不同频率的振荡波形。
实验结果表明,该电路能够有效地产生振荡信号,并且可以通过改变电阻和电容的值来调整振荡频率。
2. 结果分析:本次实验中,我们使用了RC振荡电路来模拟一个简单的振荡器。
当电流通过电阻和电容时,会产生一个随时间变化的电压。
该电压在电容两端累积,直到达到某个阈值,才会发生振荡。
通过调整电阻和电容的值,我们可以改变电压累积的速度和阈值,从而调整振荡频率。
此外,我们还发现,当改变电阻或电容的值时,振荡波形也会发生变化。
这表明该电路具有较好的频率特性和波形质量。
五、实验总结与建议本次模拟电路仿真实验让我们深入了解了模拟电路的基本原理和设计方法。
通过使用仿真软件,我们能够方便地进行电路设计和测试,并且可以随时调整元件参数来优化电路性能。
建议在今后的实验中,可以尝试设计更加复杂的模拟电路,以进一步提高我们的实验技能和解决问题的能力。
同时,也需要注意遵守实验规则和安全操作规程,确保实验过程的安全性。
电脑模拟电路实验报告(3篇)
第1篇一、实验目的1. 理解电脑模拟电路的基本原理和组成;2. 掌握电脑模拟电路的仿真方法和技巧;3. 分析电脑模拟电路的性能指标,提高电路设计能力。
二、实验原理电脑模拟电路是指使用计算机软件对实际电路进行模拟和分析的一种方法。
通过搭建电路模型,可以预测电路的性能,优化电路设计。
实验中主要使用到的软件是Multisim。
三、实验内容及步骤1. 电路搭建以一个简单的RC低通滤波器为例,搭建电路模型。
首先,在Multisim软件中创建一个新的电路,然后按照电路图添加电阻、电容和电源等元件。
将电阻和电容的参数设置为实验所需的值。
2. 仿真设置在仿真设置中,选择合适的仿真类型。
本实验选择瞬态分析,观察电路在时间域内的响应。
设置仿真时间,本实验设置时间为0-100ms。
设置仿真步长,本实验设置步长为1μs。
3. 仿真运行点击运行按钮,观察仿真结果。
在Multisim软件的波形窗口中,可以看到电路的输入信号和输出信号随时间变化的曲线。
4. 数据分析分析仿真结果,观察电路的频率响应、幅度响应和相位响应。
本实验中,观察RC 低通滤波器的截止频率、通带增益和阻带衰减等性能指标。
5. 结果优化根据仿真结果,对电路参数进行调整,优化电路性能。
例如,可以通过调整电容值来改变截止频率,通过调整电阻值来改变通带增益。
四、实验结果与分析1. 频率响应通过仿真结果可以看出,RC低通滤波器的截止频率约为3.18kHz。
在截止频率以下,电路具有良好的滤波效果;在截止频率以上,电路的幅度衰减明显。
2. 幅度响应在通带内,RC低通滤波器的增益约为-20dB。
在阻带内,增益约为-40dB。
3. 相位响应在截止频率以下,电路的相位变化约为-90°;在截止频率以上,相位变化约为-180°。
五、实验结论1. 通过本实验,加深了对电脑模拟电路基本原理的理解;2. 掌握了Multisim软件在电路仿真中的应用;3. 分析了电路性能指标,提高了电路设计能力。
电子电路仿真实验报告
电子电路仿真实验报告一、实验目的1. 学习电子电路仿真实验的基本操作和方法。
2. 熟悉电子元器件如何实现电路中的各种功能。
3. 掌握几种基本电路的设计和仿真方法。
二、实验仪器和材料1. 电脑2. 软件:Multisim仿真软件3. 元器件:电阻、电容、二极管、三极管等。
三、实验原理在电子电路中,各种元器件按照一定的连接方式组成各种电路,实现信号的放大、变换、滤波等功能。
而在实验中,我们可以通过仿真软件来进行计算分析、虚拟实验等操作,为电路的设计和实现提供帮助。
本次实验将重点介绍三种基本电路的仿真方法和设计思路,包括放大电路、滤波电路和振荡电路。
每种电路都有自己的设计方法和指标,需要结合实际情况进行仿真和测试。
四、实验内容1. 放大电路仿真实验(1)单管共射放大电路单管共射放大电路是一种常见的放大器电路,可以实现信号放大和变换的功能。
在该电路中,输入信号经过电容和限流电阻进入基极,当输入信号变化时,导致基极电位的变化,进而影响集电极电位的变化,使得输出信号的幅值发生变化。
为了使单管工作稳定,需要额外加上一个偏置电路,保证输入信号不会进入截止区或饱和区。
该偏置电路通常由一个电阻和电源构成,根据实际需要可以调整电阻的取值来改变工作点。
如图所示,是一个单管共射放大电路的仿真电路图:其中Q1为NPN型三极管,Rb1为偏置电阻,Rb2为信号电阻,Re为发射极电阻,Rc为集电极电阻,C1为输入信号电容,C2为输出信号电容。
在仿真软件中,可以通过正弦信号源模拟输入信号,通过示波器实时监测输入信号和输出信号的变化。
为了得到高质量的输出信号,需要考虑以下几个因素:1)偏置电阻的取值应该适当,可以通过调整偏置电源来达到调节偏置电压的目的。
2)输入信号的电容取值应该适当,可以通过调节电容的容值来改变输入信号频率的响应情况。
3)集电极电阻和发射极电阻的取值应该适当,以达到适当的放大倍数和输出功率。
如图所示,是仿真软件中单管共射放大电路的实验效果:通过设置输入信号的频率,可以在示波器上观察到输出信号的变化,同时可以计算出输出信号的功率和放大倍数等重要指标。
电子仿真实验报告
竭诚为您提供优质文档/双击可除电子仿真实验报告篇一:模拟电子技术基础课后仿真实验报告模电课后仿真分析报告学院____班级___________姓名___________________学号指导老师______二极管静态和动态电压的测试仿真数据结论(1)比较直流电源在1V和4V两种情况下二极管直流管降压可知,二极管的直流电流越大,管压降越大,直流管压降不是常数。
(2)比较直流电源在1V和4V两种情况下二极管直流管降压可知,二极管的直流电流越大,其交流管压降越小,说明随着静态电流的增大,动态电阻将越小;两种情况下电阻的交流压降均接近输入交流电压值,说明二极管的动态电阻很小。
共源放大电路测试仿真数据结论(1)由2n7000的转移特性可得ugs(th)=2V,IDo=199.182mA。
由于ugs变化时iD变化较快,因此用电子仪器测量时,应特别注意不能超过场效应管的最大功耗,以免烧坏。
(2)当电阻Rg2增大时,ugsQ减小,IDQ减小,uDsQ增大,|Au|减小。
由此说明,在Rd和RL不变的?情况下,调整电路参数增大IDQ是提高电路电压放大能力的有效方法。
需要注意的是,调节Rg2时,要始终保证效应管工作在恒流区,保证电路不是真。
(3)由ugs(th)=2V,IDo=199.182mA和公式gm?2ugs(th)IDo?IDQ,分别计算Rg2等于6?和6.1?时的gm分别为13.7ms和10.4ms,因此电压放大倍数Au??gm(Rd//RL)??13.7?5??68?Au??gm(Rd//RL)??10.5?5??52?两级直接耦合放大电路的测试静态工作点调试电压放大倍数测试共模放大倍数的测试篇二:电路仿真实验报告格式模拟电子技术课程电路仿真实验报告一、本仿真实验的目的查阅教材第八章内容可以知道,本实验中三个运放运放一和运放三作为电压比较器,另一个运放的输出电压与Rc电路充放电有关。
因此预计运放一和运放三输出波形为方波,运放二输出与运放一输出波形频率相同的。
虚拟仿真实验报告
电子技术虚拟仿真实验报告专业:班级:姓名:学号:实验一、单级阻容耦合放大电路仿真实验一、实验目的1、进一步熟悉multisim10软件的使用方法。
2、学会用multisim10软件分析单管放大电路的主要性能指标。
3、了解仿真分析法中的直流工作点分析法。
4、掌握测量放大器的电压放大倍数。
5、掌握静态工作点变化对放大器输出波形的影响。
6、了解不同的负载对放大倍数的影响。
7、学会测量放大器输入、输出电阻的方法。
二、实验内容及步骤1.静态工作点的测试(1)在电子仿真软件Multisim 10基本界面的电子平台上组建如图1所示的仿真电路。
双击电位器图标,将弹出的对话框的“Valve”选项卡的“Increment”R”。
栏改成“1”,将“Label”选项卡的“RefDes”栏改成“P图1单级阻容耦合放大电路仿真电路图R大约在35%左右时,利用直流工作点分析方法分析直流工作点(2)调节P的值。
直流工作点分析(DC Operating Point Analysis)是用来分析和计算电路静态工作点的,进行分析时,Multisim 10自动将电路分析条件设为电感、交流电压源短路,电容断开。
单击Multisim 10菜单“Simulate/Analyses/DC operating Point…”,在弹出的对话框中选择待分析的电路节点,如2图所示。
单击Simulate 按钮进行直流工作点分析。
分析结果如图3所示。
列出了单级阻容耦合放大电路各节点对地电压数据,根据各节点对地电压数据,可容易计算出直流工作点的值,依据分析结果,将测试结果填入表1中,比较理论估算与仿真分析结果。
图2 直流工作点分析选项对话框图3 直流工作点分析结果2. 电压放大倍数测试(1)关闭仿真开关,从电子仿真软件Multisim 10基本界面虚拟仪器工具条中,调出虚拟函数信号发生器和虚拟双踪示波器,将虚拟函数信号发生器接到电路输入端,将虚拟示波器两个通道分别接到电路的输入端和输出端,如图4所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子仿真实验报告篇一:电路仿真实验报告实验一电路仿真一、实验目的通过几个电路分析中常用定理和两个典型的电路模块,对Multisim的主窗口、菜单栏、工具栏、元器件栏、仪器仪表和一些基本操作进行学习。
二、实验内容1.叠加定理:在任何由线性元件、线性受控源及独立源组成的线性电路中,每一支路的响应都可以看成是各个独立电源单独作用时,在该支路中产生响应的代数和;2.戴维南定理:一个含独立源、线性受控源、线性电阻的二端电路N,对其两个端子来说都可以等效为一个理想电压源串联内阻的模型。
其理想电压源的数值为有源二端电路N的两个端子间的开路电压uoc,串联的内阻为N内部所有独立源等于零,受控源保留时两端子间的等效电阻Req,常记为R0;3.互易定理:对一个仅含线性电阻的二端口,其中,一个端口夹激励源,一个端口做响应端口。
在只有一个激励源的情况下,当激励与响应互换位置时,同一激励所产生的响应相同;4.暂态响应:在正弦电路中,电量的频率、幅值、相位都处于稳定的数值,电路的这种状态称为稳定状态。
电路从一种稳态向另一种稳态转换的过程称为过渡过程,由于过渡过程一般都很短暂,因此也称为暂态过程,简称暂态;5.串联谐振:该电路是一个由电阻、电容和电感串联组成,当激励源的频率达到谐振频率时,输出信号的幅值达到最大。
三、实验结果及分析1.叠加定理:①两个独立源共同作用时:②电压源单独作用时:③电流源单独作用时:2.戴维南定理:所以,根据戴维南定理可知,该电路的戴维南等效电阻Req=10.033/(781.609*10-6) =12.8 kΩ3.互易定理:当激励源与响应互换位置之后,该激励源所产生的响应不变。
4.暂态响应:①当电容C=4.7uF时,②当电容C=1uF时,对比①、②所对应的输出响应的波形图可以得知:电容容量减小之后,暂态过程所经历的时间变短了,波形上升沿河下降沿变陡了。
5.串联谐振:串联谐振电路的幅频特性曲线相频特性曲线四、问题与总结通过本次仿真实验,对电路课本上叠加定理、戴维南定理、互易定理以及暂态响应和串联谐振电路进行了相应的论证,同时对这几个简单的定理进行了相应的回顾与复习。
另外对Multisim的主窗口、菜单栏、工具栏、元器件栏、仪器仪表有了一定的了解,对Multisim这个仿真软件有了初步的认识。
篇二:电子通原仿真实验报告通信原理仿真实验报告电子 124XX 孙世林实验二数字基带传输系统仿真实验一、实验题目本实验主要研究的是通信系统中基带系统的传输特性,通过眼图,展示噪声和信道特性不理想对基带信号传输造成的影响。
二、实验原理数字基带传输系统是把数字基带信号直接送往信道,不经调制直接传输的系统,数字基带系统的基本结构可以由图 1 的模型表示:1) 信号发生器信号发生器产生固定码速率的二进制单、双极性不归零信号2) 发送/接收滤波器发送滤波器和接收滤波器都是升余弦平方根特性 1 由于发送滤波器的输入信号是不归零信号而不是冲激信号, 因此在滤波器的输入端采取了均衡措施, 使其输出的波形为标准的升余弦脉冲 1 另外由于升余弦滤波器是非因果滤波器,滤波器当前的输出依赖于未来时刻的输入, 为解决这一问题, 在滤波器中人为地增加了时间延迟, 延迟的时间是码速率的整数倍3) 传输信道信道引入加性高斯白噪声, 理论上, 高斯白噪声的功率谱是无限宽的, 但是在系统中只要噪声带宽远大于系统的最高带宽就可以满足要求, 因此在信道中引入的是限带高斯白噪声噪声源用相关时间比系统最短时间常数小得多的高斯分布随机序列发生器来模拟。
三、程序源代码function[f,sf]=T2F(t,st)dt=t(2)-t(1);T=t(end);df=1/T;N=length(st);f=-N/2*df:df:N/2*df-df;sf=fft(st);sf=T/N*fftshift(sf);end%在把序列d插入到序列M中,得到一个新序列function [out]=sigexpand(d,M)N=length(d);out=zeros(M,N);out(1,:)=d;out=reshape(out,1,M*N);%数字基带信号的功率谱密度clear all;close all;Ts=1;%每个码元的长度N_sample=8;%每个码元的抽样点数dt=Ts/N_sample;%抽样时间间隔N=1000;%码元数t=0:dt:(N*N_sample-1)*dt;%1x8000T=t(end);gt1=ones(1,N_sample);%1x8gt2=ones(1,N_sample/2); % 1x4?1x8?gt2=[gt2 zeros(1,N_sample/2)];%1x8mt3=sinc((t-5)/Ts);% 1x8000 sin(pi*t/Ts)/(pi*t/Ts)波形gt3=mt3(1:10*N_sample);%截段取10个码元d=(sign(randn(1,N))+1)/2;%1x1000 d=??data=sigexpand(d,N_sample);%插入N_sample-1个0gt4=ones(1,N_sample);gt5=ones(1,N_sample/2);gt5=[gt5 zeros(1,N_sample/2)];st1=conv(data,gt1);%调用Matlab的卷积函数conv st2=conv(data,gt2);d=2*d-1; % 变成双极性序列data=sigexpand(d,N_sample);st3=conv(data,gt3);st4=conv(data,gt4);st5=conv(data,gt5);[f,st1f]=T2F(t,[st1(1:length(t))]);[f,st2f]=T2F(t,[st2(1:length(t))]);[f,st3f]=T2F(t,[st3(1:length(t))]);[f,st4f]=T2F(t,[st4(1:length(t))]);[f,st5f]=T2F(t,[st5(1:length(t))]);%------------------产生单极性RZ波形与频谱------------------figure(1)subplot(321)plot(t,[st1(1:length(t))]);axis([0 20 -1.5 1.5]);xlabel('单极性NRZ波形');gridsubplot(322);plot(f,10*log10(abs(st1f).^2/T));gridaxis([-5 5 -40 10]);xlabel('单极性NRZ功率谱密度(dB/Hz)');subplot(323)plot(t,[st2(1:length(t))]);gridaxis([0 20 -1.5 1.5]);xlabel('单极性RZ波形');subplot(324);plot(f,10*log10(abs(st2f).^2/T));gridaxis([-5 5 -40 10]);xlabel('单极性RZ功率谱密度(dB/Hz)');subplot(325)plot(t-5,[st3(1:length(t))]);gridaxis([0 20 -2 2]);ylabel('双极性sinc波形');xlabel('t/Ts');subplot(326);plot(f,10*log10(abs(st3f).^2/T));gridaxis([-5 5 -40 10]);ylabel('sinc波形功率谱密度(dB/Hz)');xlabel('f*Ts');%------------------双极性NRZ波形与频谱---------------------figure(2)subplot(221)plot(t,[st4(1:length(t))]);axis([0 20 -1.5 1.5]);xlabel('双极性NRZ波形');gridsubplot(222);plot(f,10*log10(abs(st4f).^2/T));gridaxis([-5 5 -40 10]);xlabel('双极性NRZ功率谱密度(dB/Hz)');subplot(223)plot(t,[st5(1:length(t))]);gridaxis([0 20 -1.5 1.5]);xlabel('双极性NRZ波形');subplot(224);plot(f,10*log10(abs(st5f).^2/T));gridaxis([-5 5 -40 10]);xlabel('双极性NRZ功率谱密度(dB/Hz)');%------------------ 升余弦滚降系统仿真代码--------------------- Ts=1;N_sample=17;dt=Ts/N_sample;df=1.0/(20.0*Ts);t=-10*Ts:dt:10*Ts;f=-2/Ts:df:2/Ts;alpha=[0,0.75,1];for n=1:length(alpha)for k=1:length(f)if abs(f(k))>0.5*(1+alpha(n))/TsXf(n,k)=0;elseif abs(f(k)) Xf(n,k)=Ts;elseXf(n,k)=0.5*Ts*(1+cos(pi*Ts/(alpha(n)+eps)*(abs(f(k))-0.5*(1-alpha(n))/Ts)));endendxt(n,:)=sinc(t/Ts).*(cos(alpha(n)*pi*t/Ts))./(1-4*a lpha(n)^2*t.^2/Ts^2+eps);endfigure(1)plot(f,Xf);axis([-1 1 0 1.2]);xlabel('f/Ts');ylabel('升余弦滚降频谱');figure(2)plot(t,xt);axis([-10 10 -0.5 1.1]);xlabel('t');ylabel('升余弦滚降波形');Ts=1;N_sample=17;dt=Ts/N_sample;df=1.0/(20.0*Ts);t=-10*Ts:dt:10*Ts;f=-2/Ts:df:2/Ts;alpha=[0,0.5,1];for n=1:length(alpha)for k=1:length(f)if abs(f(k))>0.5*(1+alpha(n))/TsXf(n,k)=0;elseif abs(f(k)) Xf(n,k)=Ts;elseXf(n,k)=0.5*Ts*(1+cos(pi*Ts/(alpha(n)+eps)*(abs(f(k ))-0.5*(1-alpha(n))/Ts)));endendxt(n,:)=sinc(t/Ts).*(cos(alpha(n)*pi*t/Ts))./(1-4*a lpha(n)^2*t.^2/Ts^2+eps);end篇三:电子仿真线路实验报告大连理工大学本科实验报告课程名称:电子系统仿真实验学院(系):专业:班级:学号:姓名:XX 年月日一、实验目的和要求设计一个负反馈放大电路,输入信号为1kHZ的振幅为10mV的正弦波,其放大倍数为20倍左右,同频带为4MHZ左右。