并网型风力发电机组的调节控制

合集下载

风力发电并网技术及电能质量控制措施

风力发电并网技术及电能质量控制措施

风力发电并网技术及电能质量控制措施摘要:现阶段,我国各项经济呈现出迅猛发展的形式,人们对日常生活的要求越来越高。

电能已经成为人们必不可少的能源,我国对新能源的关注度越来越高,尤其是“可持续发展战略”提出以来,人们对如何提高风能、水能等新能源的利用率展开了研究。

关键词:风力发电;并网技术;电能质量;控制措施1风力发电并网技术我们所述的风力发电并网技术指的是发电机输出的电压在幅值,频率乃至向位上和电网系统的电压是一致的。

风力发电并网是完成风力发电到电能供应的必要过程,是实现电能输出的必要环节。

并网技术的关键是确保风力发电机组输出,电力能源的电压和被接入电网的电压在扶智相位频率等方面保持一致,能够保证风力发电并网实施后,整体电能供应的稳定性而目前的风力发电并网技术主要有两种,一种是同步风力发电并网技术,另一种是异步风力发电并网技术。

同步风力发电并网技术主要是将风力发电机和同步发电机相结合,在进行同步发电机的运行中能够有效的输出有功功率,并且能保证为发电提供必要的无功功率,促进周波稳定性提升,可以有效的提高电能稳定性。

同步风电发力机具有工作效率高,体积小,结构紧凑,成本的可靠性高,维护量小等优点。

该发电机的转速平稳负载特性强,周波稳定,发电机组发电电能质量高,这导致同步风力发电机在风力发电中的应用十分广泛。

同步风力发电并网技术在整个风力发电技术的应用中占很大的比重。

在同步风力发电并网技术的应用中,风速波动明显会造成转子转距出现较大的波动,容易影响发电机组并网调速的准确性。

为了解决这个问题,可以采用在电网和发电机组之间安装变频器的方法避免电力系统无功震荡和步失,有效的提高并网质量。

异步风力发电并网技术跟同步风力发电并网技术相比,其主要是借助转差率实现对发电机的运行复合的调整目标,在具体的调速精度方面要求并不高。

这种技术能够减少相关同步,设备安装的繁琐,也可以省去整部操作环节,实现转速的适当调整。

但是这种技术也有缺点,他在具体的并网操作中可能会产生冲击电流,如果产生的冲击电流过大,就会导致电网电压水平降低,不利于电网的安全运行。

风力发电机组并网控制与功率协调技术

风力发电机组并网控制与功率协调技术

风力发电机组并网控制与功率协调技术随着资源的匮乏和环境保护的呼声日益高涨,可再生能源成为热门话题。

风力发电作为其中的重要一环,其并网控制与功率协调技术的研究和应用显得尤为重要。

下文将从风力发电机组的并网控制和功率协调两个角度进行论述,展示风力发电的发展现状和未来趋势。

1. 风力发电机组的并网控制技术风力发电机组的并网控制是指将风力发电机组的电能输出与电网进行连接,实现发电功率的传输和利用。

1.1 并网方式及控制策略目前,常见的风力发电并网方式有直驱式和机械变速器式。

直驱式风力发电机组将风轮与发电机直接连接,无需机械传动装置,具有结构简单和可靠性高的优点。

而机械变速器式则通过机械变速装置将风轮的转速与发电机的额定转速匹配,提高发电效率。

在风力发电机组的并网控制中,需考虑风速、电网频率和功率等因素。

根据这些因素的变化,可以采用最大功率点跟踪(PPT)和恒速控制等策略,实现发电机组的最佳工作状态和最大发电功率输出。

1.2 并网保护与电网稳定性风力发电机组并网时,需考虑对电网的保护和稳定性。

并网保护主要包括过流保护、过频保护和过压保护等,通过在风力发电机组并网过程中监测和控制这些保护参数,确保电网运行的安全可靠。

另外,风力发电机组并网还需关注电网稳定性。

由于风力发电机组输出功率的波动性,可能会对电网频率和电压产生影响。

因此,需要通过有功和无功功率的控制,实现风力发电机组与电网的无缝衔接,提高电网的稳定性。

2. 风力发电机组的功率协调技术风力发电机组的功率协调是指通过合理的控制手段,使不同风力发电机组之间的功率输出协调一致,提高整个风电场的发电效率。

2.1 多机组的功率协调在大型风电场中,通常会有多台风力发电机组并列运行。

为了协调多机组之间的功率输出,减小风力发电机组之间的相互影响,可以采用功率控制策略。

这些策略主要包括基于功率参考值的PID控制、模型预测控制(MPC)和群控制等。

2.2 风电场的功率调度风电场的功率调度是指根据电网需求和风力资源情况,合理分配和利用风力发电机组的功率输出。

变速恒频风力发电机空载并网控制

变速恒频风力发电机空载并网控制

变速恒频风力发电机空载并网控制随着环境保护和可持续发展的重要性日益凸显,风力发电作为一种清洁、可再生的能源,得到了广泛应用。

在风力发电机组中,变速恒频风力发电机是一种常见的类型。

本文将重点探讨变速恒频风力发电机空载并网控制的原理、优缺点及应用。

变速恒频风力发电机组是一种通过风轮捕捉风能,并将其转换为电能的技术。

与恒速恒频风力发电机相比,变速恒频风力发电机具有更高的风能利用率和更宽的转速范围。

其工作原理是,通过调整风轮转速,以适应风速的变化,从而保持发电机输出频率的稳定。

空载并网控制是指风力发电机在不带负载的情况下与电网连接。

实现空载并网的关键在于控制风轮转速和发电机电流,以确保发电机与电网的同步。

常见的空载并网控制策略包括以下两种:直接并网法:在风速达到额定值后,风轮直接驱动发电机进入同步状态,然后进行并网。

此种方法简单直接,但并网瞬间会产生较大的冲击电流。

软并网法:通过控制风轮和发电机的转速,缓慢地将发电机接入电网,从而避免冲击电流的产生。

这种方法需要更多的控制环节和算法,但其并网效果较直接并网法更为平稳。

优点: a.由于能够适应风速的变化,所以具有较高的风能利用率; b.通过调整转速,可以减轻风轮和发电机的机械应力,提高设备的寿命;c.与恒速恒频风力发电机相比,其启动和停止更为灵活。

缺点: a.控制系统的设计较为复杂,需要精确的转速和电流控制; b.并网过程中可能产生较大的冲击电流,对电网造成一定的影响; c.需要采取措施来应对电网的波动,以保证系统的稳定运行。

变速恒频风力发电机空载并网控制在现代风力发电场中得到了广泛应用。

例如,根据某风力发电场的数据,采用变速恒频风力发电机空载并网控制后,该风电场的年发电量增加了30%,同时设备维护成本降低了20%。

这充分证明了变速恒频风力发电机空载并网控制在提高发电效率和降低运行成本方面的优势。

变速恒频风力发电机空载并网控制是风力发电技术中的重要一环。

通过控制风轮转速以适应风速的变化,保持发电机输出频率的稳定,可以实现高效的电能转换。

风力发电机并网控制三种方式

风力发电机并网控制三种方式

风力发电机并网控制三种方式
链接:/tech/6262.html
风力发电机并网控制三种方式
风力发电机的并网控制直接影响到风力发电机能否向输电网输送电能以及机组是否受到并网时冲击电流的影响。

并网控制装置有软并网,降压运行和整流逆变三种方式。

软并网装置:
异步发电机直接并网时,其冲击电流达到额定电流的6~8倍时,为了减少直接并网时产生的冲击电流及接触器
的投切频率,在风速持续低于启动风速一段时间后,风力发电才与电网解列,在此期间风力发电机处于电动机运行状态,从电网吸收有功功率。

降压运行装置:
软并网装置只在风力发电机启动时运行,而降压运行装置始终运行,控制方法也比较复杂。

该装置在风速低
于风力发电机的启动风速时将风力发电机与电网切断,避免了风力发电机的电动机运行状态。

整流逆变装置:
整流逆便是一种较好的并网方式,它可以对无功功率进行控制,有利于电力系统的安全稳定运行,缺点是造
价高。

随着风电场规模的不断扩大和大功率电力电子设备价格的降低,将来这种并网装置可能会得到广泛的应用。

风电场接入电力系统的方案主要由风电场的最终装机容量和风电场在电网所处的位置来确定。

原文地址:/tech/6262.html
页面 1 / 1。

风力发电场调度与控制系统设计及性能分析

风力发电场调度与控制系统设计及性能分析

风力发电场调度与控制系统设计及性能分析随着对可再生能源的需求不断增加,风力发电成为了一种受到广泛关注的清洁能源。

在风力发电场中,调度与控制系统的设计和性能分析至关重要,它们直接影响着发电场的效率和可靠性。

本文将探讨风力发电场调度与控制系统的设计原则和性能分析方法。

一、风力发电场调度系统设计1. 目标与约束:风力发电场的调度系统的目标是最大化发电场的发电量并保持稳定运行,同时满足电力系统对电量的需求。

约束则包括风力机的额定功率、最小和最大运行速度、电网电压和频率要求等。

2. 数据采集和监控:调度系统应该能够实时采集风力发电机组和电网的运行数据,包括各个风力机组的功率、风速、温度、振动等参数。

此外,还需要监控电网的负荷情况和电压频率波动等。

3. 预测技术:通过利用历史和实时的风速数据,可以预测未来的风力情况,从而合理地安排发电机组的运行计划。

预测技术可以基于时间序列分析、神经网络、数学模型等方法。

4. 优化和调度算法:为了实现最优的风力发电场调度,需要开发高效的优化和调度算法。

这些算法可以基于模型预测控制、遗传算法、粒子群优化等。

5. 系统集成:调度系统应该能够与发电机组的控制系统、电网的监控系统以及其他相关系统进行数据交流和信息共享,实现整个风力发电场的协调运行。

二、风力发电场控制系统设计1. 风力机组控制:风力机组控制系统是实现风力机组自动化运行的关键。

它应该能够根据风速和功率要求,自动调整转速和叶片角度,保持输出功率在额定功率范围内。

2. 并网控制:并网控制是指将风力发电机组的输出电能与电网进行连接和同步。

并网控制系统应该能够实现无缝切换,保持电网的电压和频率稳定。

3. 预防事故和故障保护:控制系统应该具备故障自检和快速停机等功能。

当发生风力机组故障或电力系统异常时,控制系统应根据预设的保护策略来保护设备和人员安全。

4. 数据通信和远程监控:控制系统应具备远程监控和数据传输功能,可以实时获取风力机组的运行状态和性能参数。

风电场并网运行控制策略及其优化

风电场并网运行控制策略及其优化

风电场并网运行控制策略及其优化随着全球对环保问题的关注日益加深,可再生能源的开发和利用成为了全球能源发展的重要方向。

其中,风能作为一种无污染、不排放温室气体的清洁能源逐渐受到各国政府和企业的青睐。

如今,全球范围内的风电装机容量正在不断增长,风电场的建设和运行控制面临着新的挑战。

因此,对风电场并网运行控制策略及其优化进行深入研究,对于提高风电发电效率和降低风电场的运行成本具有重要意义。

一、风电场并网运行控制策略概述风电场并网运行控制策略主要是指风力发电机组和电网之间的协调控制。

在国内外的风电场建设中,为了适应电网对稳定电压、频率和无功功率等方面的要求,采取了多种并网运行控制策略。

1、半随风启动策略半随风启动策略是指当机组转速达到一定值时,再投入电网并网运行。

这种策略可以降低并网电流的冲击,使风力发电机组较轻松地完成并网过程。

2、恒功率控制策略恒功率控制策略是指将输出功率控制在一个设定值,通过控制电网侧的电压来实现控制目标。

这种策略适用于小型风电场。

但是在大型风电场中,因为电网的容量限制,恒功率控制策略的适用范围有限。

3、最大功率跟踪策略最大功率跟踪策略是指通过控制叶片的角度和转速来实现输出功率最大化。

这种策略适用于风能资源稳定的情况下,但是在不稳定的风能资源条件下,其控制精度会受到较大的影响。

4、双馈风力发电机控制策略双馈风力发电机控制策略是指在风力发电机和电网之间加入一个功率电子装置,将转子电流变成可控制的电流去控制输出功率。

这种策略具有较好地控制性能和经济性。

以上是常见的并网运行控制策略,这些策略在不同的风电场中有不同的应用范围和效果。

为了提高并网运行的效果,需要进行策略的优化研究。

二、风电场并网运行控制策略优化风电场并网运行控制策略的优化主要包括以下方面:1、优化风机控制策略针对不同风能资源的变化,采取不同的控制策略来实现并网运行,通过根据实时表观功率和风速数据,对风机的控制策略进行实时调整,可以最大限度地发挥风力资源的利用效益。

双馈风力发电机并网控制

双馈风力发电机并网控制

双馈风力发电机并网控制摘要:风力是重要的清洁能源,风力所具备的可再生性以及无污染性使得其受到广泛关注和应用,风力发电也是目前我国重点要求的电力能源技术。

而并网控制是将风力发电机稳定地接入到电网系统中的技术。

本文主要研究双馈风力发电机并网控制的方法,以及在实际应用中的难点,以及并网控制过程中存在的其他影响控制,并相应地提出优化建议。

关键词:双馈风力发电机;并网控制;方法;难点一、双馈风力发电机概述当前风力发电机大体可以分为同步电机好异步电机两类,实际应用中可以细分为鼠笼异步发电机、双馈发电机、同步发电机以及永磁同步发电机。

双馈风力发电机是一种绕线式感应发电机,属于异步发电机。

由于双馈异步电动机的定子绕组直接同电网相连接,转子绕组通过变流器和电网连接,并由变频器实现对饶子绕组电源电压、相位以及频率和幅值的自动调控,因而在运行中,机组可以在不同的转速下维持恒频发电。

然而,虽然双馈发电机具备机械承受应力小、运行噪音小、变频器容量小以及启动效率高的特点,但双馈发电机的电气损耗较大,还需配备齿轮箱,造价较为昂贵。

不过相比同步风力发电机,双馈风力发电机能够更好的实现电能稳定输出,实用性较强。

二、双馈发电机的并网控制方法双馈发电机的并网控制方法和异步发电机相似,主要原理是通过滑差率来调节负荷,发电机的转速和输出功率近似成线性关系,所以只要保持发电机的转速和同步转速相接近就能实现并网。

目前,常用的并网方法主要有四种,直接并网控制法、准同期并网法、降压并网控制法以及电子元件软并网控制法。

2.1 直接并网控制法直接并网控制法是指将风力发电机的输出交流电直接并入到风力电网中,在电机转速和同步转速接近时,由测速系统给出并网信号,再通过自动空气开关实现并网,主要适用于风力发电机和电网相序相同的情况,即电网电容量足够大的同时,风力发电机的容量保持在百千瓦以下。

优点:直接并网控制方法能够保证风力速率变动情况下风力发电机也可以维持横频输出,同时能够单独地对有功功率和无功功率进行解耦控制,便于对风力电动机运行中负载消耗的无功功率进行补偿,稳定其他机组的无功负荷,确保风力发电系统电压的稳定。

风力发电系统并网稳定性分析与控制

风力发电系统并网稳定性分析与控制

风力发电系统并网稳定性分析与控制近年来,随着能源危机的加剧和环境保护意识的增强,可再生能源逐渐成为人们关注的焦点。

其中,风能作为一种绿色、清洁的能源源泉,被广泛应用于发电领域。

然而,风力发电系统的并网稳定性一直是制约其发展的重要问题之一。

本文将围绕风力发电系统的并网稳定性展开论述,并探讨其控制方法。

一、风力发电系统的并网稳定性分析1. 风能资源的不稳定性与风力发电系统的并网问题风能作为一种自然资源,具有不稳定性的特点。

风力发电系统的并网稳定性不仅受到外部环境因素(如风速、气象条件等)的影响,还与内部组件(如风机、发电机、变流器等)的性能和控制策略密切相关。

因此,要保证风力发电系统的并网稳定性,需要对其系统结构和工作原理进行深入的分析。

2. 风力发电系统的结构与工作原理风力发电系统主要由风机、发电机、变流器、控制器、电力网等组成。

风机通过转动叶片将风能转化为机械能,经由发电机转化为电能,再通过变流器将直流电转化为交流电,并与电力网进行连接。

这样的系统结构使得风力发电系统具备了一定的灵活性和可调度性,但也给其并网稳定性带来了挑战。

3. 并网稳定性分析的指标与方法并网稳定性指的是风力发电系统在与电力网连接过程中,能够保持电力输出的稳定性和可靠性。

常用的并网稳定性指标包括电压稳定性、频率稳定性和功率稳定性等。

而并网稳定性分析的方法主要包括仿真模拟、实验研究和现场监测等。

通过对这些指标和方法的综合应用,可以有效地评估和提升风力发电系统的并网稳定性。

二、风力发电系统并网稳定性的控制策略1. 运行模式选择与控制策略设计在风力发电系统并网过程中,运行模式的选择对并网稳定性具有重要影响。

常见的运行模式包括直接并网模式、并网型储能模式和独立运行模式等。

针对不同的运行模式,需要设计相应的控制策略,以保证系统的稳定运行。

2. 风机与发电机的控制策略风机和发电机是风力发电系统的核心组件,其控制策略对系统的并网稳定性具有重要影响。

风电机组的控制及并网11.详解

风电机组的控制及并网11.详解


其中给定直流电压Ud*与实际检测到的直流连接环 电压Ud相比较,所得误差信号经比例积分控制器调 节产生有功参考电流iq*,而无功功率外环产生无功 电流id*。电压环外环控制直流电压稳定,可以使逆 变器稳定地向电网传输功率,而无功功率环控制逆 变器输出无功功率,从而满足电网对于无功功率的 要求。电流内环依然采用基于旋转坐标轴的解耦控 制,采用比例积分调节器作为电流环的控制器。


1、由于采用交-直-交变频系统,使发电机 组工作频率与电网频率相互独立,因此不必 担心并网时可能出现的失步问题。发电机可 以运行在不同转速下,最大限度地捕捉风能。 2、采用变频装置进行输出控制,并网时没 有电流冲击,对系统几乎没有影响。

目前在变速恒频发电领域中,直驱永磁同步 发电机组较受欢迎。永磁同步电机结构简单, 没有励磁绕组,节省了电机的用铜量,无电 刷,无滑环,消除了转子损耗,运行可靠。 直驱永磁同步发电机与风力机直接耦合,省 去了变速箱,提高可靠性,减少系统噪声, 降低了维护成本。是未来风电机组发展的一 个重要方向。

近年来,风力发电在技术上日趋成熟,商业 化应用不断提高,同时,风力发电的成本也 在不断降低,这为充分利用风能提供了诸多 有利条件。现就当前流行的几种风电系统的 控制方式和风电机组并网的相关问题做下简 单介绍
二 变速恒频风力发电系统

风力发电技术经历了从恒速恒频风电系统到变速恒 频风电系统的演变过程。早期的风电系统中大多采 用恒速恒频风电系统,恒速恒频风电系统的发电机 转速保持不变,其运行范围比较窄,因此逐步被后 来的变速恒频系统所取代。变速恒频风电系统的发 电机的转速能随风速的变换而变换,能够按照最佳 效率运行,变速恒频发电系统是当今风电系统发展 的一个趋势。

浅谈风力发电并网技术及电能控制

浅谈风力发电并网技术及电能控制

电力科技 浅谈风力发电并网技术及电能控制蔡锐锋(广东能源集团湛江风力发电有限公司,广东 湛江 524043)摘要:随着社会经济的发展,对于能源资源的需求量获得快速增长。

电力资源是社会发展的物质基础,发电路径成为现代电力企业研究的重点内容。

风力资源作为洁净且可再生资源,发电时具有很强的灵活性,所以在进行监管的时候面临着很大的难度。

本文主要探究在当前能源资源供给量下降的背景下,如何提升风力发电并网技术的应用以及控制电能质量。

通过分析风力发电并网技术的基本含义,明确技术发展要点,归纳风力发电并网技术的发展趋势,概述控制发电质量的措施,实现风力发电并网技术的发展与电能控制水平提升。

关键词:风力发电;并网技术;电能控制;措施风能作为一种可再生能源资源,是十分清洁的,当前我国风力发电技术是所有新能源开发技术中最为成熟的一种,并且已经初具规模,成为现代电力资源开发与存储的重要保障。

电力电子技术的快速发展以及成本降低,使得改善风力发电性能时可以组合运用电网接入和电能控制。

风力发电并网技术是未来发展的主流趋势,强化对风力发电并网技术的研究能够为后期的风力发电发展奠定坚实的技术基础。

1 风力发电并网技术分析1.1 同步风力发电机组并网技术从同步风力发电机组并网技术的本质分析,是有机组合同步发电机与风力发电机而成的。

当同步发电机在运行的时候,不仅可以高效率的将有功功率输出,还可以为发电机组提供充足的无功功率,实现周波稳定性增强,从而为显著优化与提升电能质量奠定基础。

通过上述分析可以了解,我国在风力发电以及电力系统建设中,选择与应用同步发电机是常态。

但是如何将同步发电机与风力发电机相结合,是当前学术界和电力企业以及科研人员研究的重点。

在大多数情况下,风速所形成的波动是尤为显著的,风速波动能够导致转子转矩产生波动且幅度大,难以满足发电机组并网调速对于精准度所提出的要求。

若是没有充分考虑融合同步发电机与风力发电机之后的问题,当发生荷载增大问题的时候,将会造成电力系统出现无功振荡和失步现象。

风力发电并网系统的控制和优化策略分析

风力发电并网系统的控制和优化策略分析

风力发电并网系统的控制和优化策略分析摘要:风力发电是一种非常持续环保的新能源创造方式,在生产的过程中不需要使用到任何燃料,也不会对环境产生任何污染。

风力发电并网系统是风力发电管理的基础,本文主要对风力发电并网系统的控制和优化策略进行研究分析,并提出了一些优化策略。

关键词:风力发电;并网系统;控制优化引言:当前我国大力倡导绿色保护环保的理念,在这样的社会背景下,新能源的开发与充分应用更是成为社会关注的重点话题。

作为新能源的一类重要分支,如何有效开发并充分应用风力发电资源便也成为了一个重点关注问题。

并网系统是提高风力发电运行质量的有效措施,在构建或优化并网系统时,则需要基于风力发电的基本要求和运行原理来进行控制优化。

一、风力发电概述空旷的平原和海洋上往往有着丰富的风能,在进行风能开发时,环境中存在的强大气流会以特定的速率推动风轮的转动,在涡轮中增加风速,从而在力矩作用下,发电机中的导线在磁场的作用下产生感应电动势,外部闭合回路会在导线中生成电流,从而将风能转化为电力。

按照现在的风力发电技术,当风力达到每秒3公里时,就能产生电力。

风车是一种集风设备,一般有三个桨叶,其主要功能是将风力转化为转动的机械能,辅助以偏航装置、发电机组、塔架、限速安全装置及能量储存所等装置共同组成风力发电系统。

风盘后方的转向盘又称为尾舵,其作用是通过调节风车的风向来实现风向的变化,从而获得最大的风力。

限速器的功能是通过控制风车的速度,在给定的速度区间内保持相对的稳定性,从而确保风机的高速运转。

塔台是设备的载体和风车的支承装置。

由于天然的风速具有高度的非平稳特性,且具有较大的随机和间断特性,使得风力发电机组的发电效率非常不稳定,峰值和最低点相差很大,因此,风力发电机组的电力不能直接用在电负载上,必须用铅酸电池进行储能。

由于风力发电系统具有非平稳特性,加之其工作特性,导致其输出功率的不稳定,对电力系统的供电品质产生了不利的影响。

目前,风力发电机组一般采用“软并网”模式,但在起动过程中,依然存在着较大的脉冲电流。

风力发电机组并网运行

风力发电机组并网运行

风力发电机组应具备低电压穿越 能力,以保障电力系统的稳定性

风力发电机组应配备相应的控制 系统,以实现频率和电压的稳定
控制。
风力发电机组的控制要求
风力发电机组应配备先进的控 制系统,能够根据风速、功率 等因素进行自动调节。
风力发电机组的控制系统应具 备防止飞车和超速保护功能。
风力发电机组的控制系统应能 对机组进行远程监控和操作。
稳定供电
并网运行能够通过风力发 电机组的调节,满足电力 系统的需求,保持电网的 稳定运行。
降低运营成本
并网运行能够降低对传统 能源的依赖,减少对环境 的影响,从而降低运营成 本。
并网运行的分类
直驱式并网运行
直驱式风力发电机组通过 全功率变频器将风能转化 为电能,实现与电网的同 步并网运行。
齿轮箱式并网运行
风力发电机组并网运 行
2023-11-10
目录
• 风力发电机组并网运行概述 • 风力发电机组并网运行的技术要求 • 风力发电机组并网运行的实现过程 • 风力发电机组并网运行的优化建议 • 风力发电机组并网运行的案例分析 • 风力发电机组并网运行的未来发展趋势
01
风力发电机组并网运行 概述
并网运行的定义
齿轮箱式风力发电机组通 过齿轮箱将风能传递到发 电机,实现与电网的并网 运行。
双馈式并网运行
双馈式风力发电机组通过 变流器将风能转化为电能 ,实现与电网的并网运行 。
02
风力发电机组并网运行 的技术要求
电力系统的稳定性要求
风力发电机组应能在各种运行条 件下稳定运行,包括低风速、高
风速、极端气候条件等。
风力发电机组的保护策略
总结词
制定全面的保护策略有助于预防和解决风力发电机组并网运行中可能遇到的问题

并网型风电机组软并网控制研究

并网型风电机组软并网控制研究

Chenmical Intermediate当代化工研究2016·0619技术应用与研究并网型风电机组软并网控制研究OO赵文武(国华(呼伦贝尔)新能源有限公司OO内蒙古OO021400)摘要:风力发电技术一直是一个比较热门的课题。

因异步发电机的风电机组对并网要求低,控制简单,并网运行稳定受到了研究人员更多的青睐。

但是当异步电机直接并入电网时,冲击电流高达其额定电流的6至8倍,甚至10倍以上,这必然会给电机造成严重冲击,甚至可能影响到其他联网机组的正常运行。

普遍采用软并网控制系统来解决这一问题。

本文将使用目前被广泛采用的结构简单性能可靠的定桨距风力发电机组,从软并网系统结构及主电路结构分析入手,对并网型风电机组中的发电机的软切过程进行仿真分析,展开对并网型风电机组软并网控制系统的研究,并总结给出并网型风电机组软并网系统适用的条件和控制方法。

关键词:冲击电流;软并网控制系统;主电路;可控硅触发;仿真中图分类号:T 文献标识码:AResearch on SOFT CUT-IN Control of Grid-connected Wind Turbine GeneratorZhao Wenwu(Guohua (Hulun Buir) New Energy co., LTD, Mongolia, 021400)Abstract :Wind power generation technology has always been a popular topic. Because the wind turbine generator of asynchronous generatorhas the characteristics of few requirement for grid connection, simple control and stable grid connection operation, it becomes more popular amon g researchers.But when the asynchronous motor is merged directly into power grid,and the surge current up to six to eight times of the rated cu rrent, even more than 10 times, this will inevitably causes serious impact to lectrical machine, even affects the normal operation of other grid-connected unit.SOFT CUT-IN control system is widely used to solve this problem.This article will use the current widely used wind generating set with fixed pitch,simple structure and reliable performance,take analysis of SOFT CUT-IN system structure and main circuit structure, take simulation analysis of the soft cutting process of generator in grid-connected in wind turbine generator,take research on grid-connected wind turbine generator SOFT CUT-IN control system, and make summary of conditions and control methods suitable for grid-connected wind turbine generator SOFT CUT-IN control system.Key words :surge current ;SOFT CUT-IN control system ;main circuit ;SCR trigger ;simulation对于异步风力发电机组,它的软并网控制系统的总体结构包括触发电路、反并联可控硅电路和异步发电机,而失速型风电机组的软并网控制系统的主电路是包括3对两两反并联或双向可控硅及其保护电路六只可控硅SCRI.SCR6将电机和电网链接。

风力发电机的几种功率调节方式

风力发电机的几种功率调节方式

风力发电机的几种功率调节方式作者:佚名发布时间:2009-5-5随着计算机技术与先进的控制技术应用到风电领域,并网运行的风力发电控制技术得到了较快发展,控制方式从基本单一的定桨距失速控制向变桨距和变速恒频控制方向发展,甚至向智能型控制发展。

作为风力资源较为丰富的国家之一,我国加快了风电技术领域的自主开发与研究,兆瓦级变速恒频的风力发电机组国产化已列入国家“863”科技攻关顶目。

本文针对当前并网型风力发电机组的几种功率凋节控制技术进行了介绍。

l 定桨距失速调节型风力发电机组定桨距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。

失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。

为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/小发电机)。

在低风速段运行的,采用小电机使桨叶具有较高的气动效率,提高发电机的运行效率。

失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。

2 变桨距调节型风力发电机组变桨距是指安装在轮载上的叶片通过控制改变其桨距角的大小。

其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“,直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。

随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用OptitiP技术,即根据风速的大风力发电机的几种功率调节方式作者:佚名发布时间:2009-5-5调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。

风力发电并网技术及电能质量控制措施 崔贵明

风力发电并网技术及电能质量控制措施 崔贵明

风力发电并网技术及电能质量控制措施崔贵明发表时间:2019-09-19T09:51:37.720Z 来源:《电力设备》2019年第8期作者:崔贵明[导读] 摘要:风力对我国电能做出了很大贡献,是主要来源之一。

(中广核新能源有限公司内蒙古分公司内蒙古呼和浩特 010010)摘要:风力对我国电能做出了很大贡献,是主要来源之一。

但是风电场的容量也随着时代的推移不断增加,对电网系统产生了一定的影响。

风力发电厂位置区域通常离电网很远,大部分位于人口不多的区域,因此受到的冲击不会很大。

但是,在使用风力发电技术的过程中,可能会出现配电网的闪变或谐波污染等情况,并且在风力发电过程中可能会受到发电随机性的影响。

因此,本文简要介绍了风电并网技术及电能质量因素,主要分析了风电并网对电能质量的影响及控制措施。

关键词:风力发电;并网技术;电能质量引言随着现代社会的发展和进步,能源问题已被普遍重视。

无论是私营企业还是国营企业,都越来越关注节能的发展和稳定的发展。

在目前的能源开发情况下,对社会经济发展最有利的能源是能源利用。

在当今的绿色发展政策中,就发电技术而言,风力发电可能是最干净的能源之一,并且被广泛应用。

但是在应用风力发电的过程中,质量控制仍存在问题,需要加强风力发电并网技术和电力质量控制。

1、风力发电并网技术企业要进行风力发电,必须选择适合企业相关条件的风力发电技术,这直接影响到企业以后的电能质量。

合适的电网技术系统影响相关数据,例如风力发电机组的发电相位、发电机的电压频率和发电机输出的峰值。

发电机组增容对风力发电技术的最直接影响是并网过程中产生的影响。

并网过程中产生的冲击会导致发电机组峰值下降,发电机组的物理部件也会受到损坏,发电机的电机会因阻力而受到摩擦损坏,支撑塔也容易损坏。

由于发电机组的发电系统与每台发电机组的电网相连,对电网的冲击力也会影响到同一电网下的相关机组,系统的稳定性会被破坏,发电机组会被分开。

因此,适合企业的并网发电技术对企业有着重要的影响。

风力发电并网逆变器电压调节技术

风力发电并网逆变器电压调节技术

风力发电并网逆变器电压调节技术风力发电并网逆变器电压调节技术风力发电并网逆变器电压调节技术是一种关键技术,用于确保风力发电机组产生的电能能够与电网稳定地连接和交互。

该技术涉及多个步骤和关键因素,下面将逐步介绍。

第一步是监测电网电压。

为了实现电网与风力发电并网逆变器之间的电能交互,逆变器需要准确地了解电网的电压状态。

因此,在调节逆变器电压之前,我们需要安装电压监测装置,以便实时监测电网电压的变化。

第二步是确定逆变器的工作模式。

风力发电并网逆变器可以采用两种不同的工作模式:电压源模式和电流源模式。

在电压源模式下,逆变器会尽量保持其输出电压恒定,而在电流源模式下,逆变器会尽量保持其输出电流恒定。

根据电网的需求和逆变器的能力,我们需要确定适合的工作模式。

第三步是调节逆变器的输出电压。

一旦确定了逆变器的工作模式,接下来就是通过相应的调节控制策略来调整逆变器的输出电压。

常见的调节控制策略包括电压环控制、频率环控制和功率环控制。

根据电网的要求和逆变器的设计,我们可以选择适合的调节控制策略,并相应地调整逆变器的输出电压。

第四步是保持电网的稳定性。

在调节逆变器输出电压的同时,我们还需要考虑电网的稳定性。

当风力发电机组产生的电能注入电网时,它会对电网的电压和频率产生影响。

为了确保电网的稳定运行,逆变器需要具备一定的响应速度和稳定性,以便及时调整输出电压来保持电网的稳定性。

最后一步是进行实时监测和反馈控制。

为了确保风力发电并网逆变器能够持续地适应电网的需求,我们需要进行实时的监测和反馈控制。

通过监测电网电压和频率的变化,并实时调整逆变器的输出电压,可以确保逆变器与电网之间的电能交互始终保持稳定和可靠。

综上所述,风力发电并网逆变器电压调节技术是一个复杂而关键的过程。

通过监测电网电压、确定逆变器的工作模式、调节输出电压、保持电网稳定性以及进行实时监测和反馈控制,我们可以确保风力发电机组与电网的无缝连接,实现有效的电能交互。

风力发电机组调试

风力发电机组调试
3)完成变桨调试后应将轮毂内清理干净,不得遗留任何 杂物和工具,待所有人员离开轮毂后方可解除叶轮锁定。
4)对变桨系统、变流系统的绝缘水平和接地连接情况进 行检查。
24
2、手动变桨 1)在手动模式下,按照现场调试方案和电气原理图,依
次合上变桨系统各电压等级回路空开,测量各电压等级回路 电压是否正常。
4)触发液压压力传感器信号,检查机组停机过程和故障报 警状态。
5)检查制动块与制动盘之间的间隙是否满足要求。进行机 械刹车测试,观察机组停机过程和故障报警状态。
6)手动操作叶轮刹车,叶轮电磁阀应迅速动作,对刹车回 路建压,松闸后回路立即泄压。
22
3.13 偏航系统 1)检查偏航系统各部件安装是否正常,机舱内作业人员应 注意安全,偏航时严禁靠近偏航齿轮等转动部分。 2)应确定机舱偏航的初始零位置,调节机舱位置传感器与 之对应;调节机舱位置传感器,使其在要求的偏航位置能够 有触发信号。 3)顺时针、逆时针操作偏航,观察偏航速度、角度及方 向、电机转向是否与程序设定一致,偏航过程应平稳、无异 响。 4)测试机组自动对风功能。手动将风机偏离风向一定角 度,进入自动偏航状态,观察风机是否能够自动对风。
2
4) 安全链 safety chain 在机组的整体软、硬件控制系统中,是独立于程序控 制系统之外的一套紧急停机控制回路,属于机组的最后一级 停机保护,一旦触发不允许远程复位,只能在风机就地且排 除故障后复位,包括急停保护、过振动保护、超速保护、变 桨保护、扭缆保护等。 5) 风场电气设备 site electrical facilities 风电机组电网连ห้องสมุดไป่ตู้点与电网间所有相关电气设备。
3
二、风电机组调试应遵循的原则
2.1 一般规定 1)风电场调试应坚持“安全第一、预防为主”方针。

毕业论文(设计)风力发电并网控制系统分析

毕业论文(设计)风力发电并网控制系统分析

风力发电并网控制系统分析摘要:风电工程在我国逐渐兴起,以其清洁、可持续等特性颇受人们青睐。

但风力发电易受环境影响而产生波动,由此带来的风电并网问题也必需得到重视。

本文介绍了一种普适性的发电并网控制系统,提供了一种以微网技术为基础的并网控制策略和方式,从环保性与经济性的角度分析了该风电系统的应用范围,并揭示了风电并网控制领域未来的研究方向。

0 引言以风电为主的新能源发电系统在我国已投入使用,且近年来风电场的数量在不断增加。

中国新能源装机比重逐年上升,截至2013年底,全国风电并网容量为77.16GW,2013年全国风电和光伏发电量达140TW·h,相当于一个中等发达省份的用电量。

根据国家可再生能源发展规划,到2020年全国风电装机容量将达到200GW,届时中国的能源结构将发生重大改变,因此必须提前开展相关研究以支撑新能源的大规模发展。

风电等新能源发电受所处环境影响较大,故其所发电力幅值、频率及相位等特征的变化较传统发电系统更大。

当新能源并网的发电量较小时,这种不稳定性对整个电网带来的影响较小,并网时产生的波动可看作负荷预测误差;但当新能源并网的发电量达到一定程度时,其将对整个电网产生影响,如:增大电网调峰、调频的压力;增加电网运行方式安排以及备用容量配置的难度;影响电网的供电质量;影响系统安全稳定性。

此时,基于传统发电的确定性调度管理方式已不再适用,且目前新能源发电调度受政策影响较大,故需针对新能源运行特点及政策要求,运用的调度技术支持手段,建立新的并网控制系统,使电网运行能充分适应大规模新能源发电的特性,提高电力系统新能源利用率。

[1]1 新能源发电并网控制系统框图分析图1 新能源发电并网控制系统框图如上图所示,新能源发电并网系统的控制分为电网和新能源场站两个部分。

电网部分将新能源场站作为一个整体进行管理;而场站部分以整体形式参与电网调度,对场内风电机组及其他设备进行局部管理,通过两方面协调配合以支撑新能源调度。

并网双馈异步风力发电机运行控制

并网双馈异步风力发电机运行控制
转子侧硬件保护 :电网电压跌落保 DFIG 励磁变频器,常 用的方式就是通过电阻短接转子绕组,旁路 RSC,为转子电 流提供一定的通路。从当前的发电机电阻整体模式上来看, 转子侧的装置控制基本上是相似的,当转子电流和直流母线 电压达到一定的预定阀值时,会触动开关元件,这个时候会 导致直流母线电压泵声震荡幅度较大甚至还会在电网中吸取 大量的功率增加故障和电网的无功负担,所以需要及时投入 和切除控制,对可能引起的电流和电磁转矩冲击,需要借助 LVRT 技术进行深入调研。 3 结束语
[关键词]并网 ;双馈异步风力 ;发电机运行 ;控制 [中图分类号]TM61 [文献标志码]A [文章编号]1001–523X(2021)03–0123–02
Operation Control of Grid Connected Doubly Fed Induction Wind Turbine
另外在直流母线上硬件保护过程中,需要考虑到电网电 压跌落对于 DFIG 定转子绕组所产生的故障电流以及对于直流 母线电容充电所引起的母线电压波动。而电网电压的降低又 减弱了 GSC 对直流母线电压的控制能力,导致母线电压快速, 更是危害了直线电容的安全。对此采用电阻泄放,吸收转子
测多余能量,建立相应的直流装置,来稳定直流母线。电压 的直流 crowbar 电路可以有效的吸收能量,满足高、低压穿越 时的需求应对大量应用的障碍问题。
并网运行过程中针对电网故障条件下,有效控制中的低 电压穿越电网故障,特别是不对称下的不脱网运行控制等进 行相关的研究,以便更好的促使强弱电网条件下的电机组的 并网运行能力能够得到有效的控制和提升。为了有效解决上 述所提出来的 DFIG 风电机需要采取一定的方案和策略,在保 证并网运行的安全性和稳定性的前提下,针对其出现的主要 问题提出以下的解决方案和途径。 2.1 合理选择并网运行方式

并网型风力发电机组的调节控制2

并网型风力发电机组的调节控制2

风机采用异步发电技术,存在 功率流向的不确定性,发电机可能 低于同步转速运行,也可能工作在 同步转速之上。在大小发电机软切 换控制过程中须慎重处理。
3、有风轮转速反馈的桨距调节 风力发电机 为了尽可能提高风力机风能转 换效率和保证风力机输出功率平稳, 风力机将进行桨距调整。在定桨距 风力机的基础上加装桨距调整环节, 称为变桨距风力机组。
机组在叶片设计上采用了变 桨距结构。 其调节方法是:
在起动阶段,通过调节变桨 距系统控制发电机转速,将发电 机转速保持在同步转速附近,寻 找最佳并网时机然后平稳并网;
4、变速恒频这种调节方式 是目前公认的最优化调节方式, 也是未来风电技术发展的主要方 向。
在额定风速以下时,主要调 节发电机反力转矩使转速跟随风 速变化,保持最佳叶尖速比以获 得最大风能;
速度控制和直接桨距控制常用 于风力发电机的起动、停止和紧急 事故处理。因而,变桨距风力机的 起动风速较定桨距风力机低,但对 功率的贡献没有意义;停机时对传 动机械的冲击应力相对缓和。
风机正常工作时,主要采用功 率控制。对于功率调节速度的反映 取决于风机桨距调节系统的灵敏度。 在实际应用中,由于功率与风速的 三次方成正比,风速的较小变化将 造成风能较大变化,风机输出功率 处于不断变化中。
通常系统设计有两个不同功率 不同极对数的异步发电机。大功率 高转速的发电机工作于高风速区, 小功率低转速的发电机工作于低风 速区,由此来调整尖速比λ ,实现追 求Cp最大下的整体运行控制。
定桨矩风机的攻角一般设定在0°。 在不同风频密度的地区可根据具体情况 在安装时予以调整,但须充分考虑到对 于风机失速点的影响。从设计的角度考 虑,叶片的翼形难以做到在失速点之后 功率恒定,通常都有些下降。因其发生 在高风速段,对发电量有一定影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机的输出功率保持在额定功率。随着风电控制技 术的发展,当输出功率小于额定功率状态时,变 桨距风力电机发电机组采用技术,即根据风速的 大小,调整电机发电机转差率,使其尽
量运行在最佳叶尖速比,优化输出功率。变桨距 调节的优点是桨叶受力较小,桨叶做的较为轻巧。 桨距角可以随风速的大小而进行自动调节,因而 能够尽可能多的吸收风能转化为电能
快发展,控制方式从基本单一的定桨距失速控制 向变桨距和变速恒频控制方向发展,甚至向智能 型控制发展。作为风力资源较为丰富的国家之一, 我国加快了风电技术领域的自主开发
与研究,兆瓦级变速恒频的风力电机电机发电机 电机组国产化已列入国家“863”科技攻关顶目。 本文针对当前并网型风力电机发电机组的几种功 率凋节控制技术进行了介绍。
为减化。 2变桨距调节型风力电机发电机组 变桨距是指安装在轮载上的叶片通过控制改变其 桨距角的大小。其调节方法为:当风电机组达到 运行条件时,控制系统命令调节桨
距角调到45”,当转速达到一定时,再调节到 0“,直到风力机达到额定转速并网发电;在运 行过程中,当输出功率小于额定功率时,桨距角 保持在0°位置不变,不作任何调节;
l定桨距失速调节型风力电机发电机组 定桨距是指桨叶与轮载的连接是固定的,桨距角 固定不变,即当风速变化时,桨叶的迎风角度不 能随之变化。失速型是指桨叶翼型本身所具
有的失速特性,当风速高于额定风速69,气流的 攻角增大到失速条件,使桨叶的表面产生涡流, 效率降低,来限制电机发电机的功率输出。为了 提高风电机组在低风速时的效率,通
常采用双速电机发电机。在低风速段运行的,采 用小电机使桨叶具有较高的气动效率,提高电机 发电机的运行效率。失速调节型的优点是失速调 节简单可靠,当风速变化引起的输出功
率的变化只通过桨叶的被动失速调节而控制系统 不作任何控制,使控制系统大为减化。 2变桨距调节型风力电机发电机组 变桨距是指安装在轮载上的叶片通过控制改变其 桨距
63”科技攻关顶目。本文针对当前并网型风力电 机发电机组的几种功率凋节控制技术进行了介绍。 l定桨距失速调节型风力电机发电机组 定桨距是指桨叶与轮载的连接是固
定的,桨距角固定不变,即当风速变化时,桨叶 的迎风角度不能随之变化。失速型是指桨叶翼型 本身所具有的失速特性,当风速高于额定风速69, 气流的攻角增大到失速条件,使桨
系统采用变桨距调节。在低风速肘,将桨叶节距 调节到可获取最大功率位置,桨距角调整优化机 组功率的输出;当风力机发出的功率超过额定功 率后,桨叶节距主动向失速方向调节,
将功率调整在额定值以下,限制机组最大功率输 出,随着风速的不断变化,桨叶仅需要微调维持 失速状态。制动刹车时,调节桨叶相当于气动刹 车,很大程度上减少了机械刹车对传动
叶的表面产生涡流,效率降低,来限制电机发电 机的功率输出。为了提高风电机组在低风速时的 效率,通常采用双速电机发电机。在低风速段运 行的,采用小电机使桨叶具有较高的气
动效率,提高电机发电机的运行效率。失速调节 型的优点是失速调节简单可靠,当风速变化引起 的输出功率的变化只通过桨叶的被动失速调节而 控制系统不作任何控制,使控制系统大
,同时在高风速段保持功率平稳输出。缺点是结 构比较复杂,故障率相对较高。 3主动失速调节型风力电机发电机组
矩使转速跟随风速变化,保持最佳叶尖速比以获 得最大风能;在额定风速以上时,采用变速与桨 叶节距双重调节,通过变桨距系统Байду номын сангаас节限制风力 机获取能量,保证电机发电机功率输出
的稳定性,获取良好的动态特性;而变速调节主 要用来响应快速变化的风速,减轻桨距调节的频 繁动作,提高传动系统的柔性。变速恒频这种调 节方式是目前公认的最优化调节方式,
深圳柴油发电机 东莞康明斯发电机 惠州发电机组 nyads6ki
桨叶做的较为轻巧。桨距角可以随风速的大小而 进行自动调节,因而能够尽可能多的吸收风能转 化为电能,同时在高风速段保持功率平稳输出。 缺点是结构比较复杂,故障率相对较高
。 3主动失速调节型风力电机发电机组 将定桨距失速调节型与变桨距调节型两种风力电 机发电机组相结合,充分吸取了被动失速和桨距 调节的优点,桨叶采用失速特性,调节
当电机发电机输出功率达到额定功率以后,调节 系统根据输出功率的变化调整桨距角的大小,使 电机发电机的输出功率保持在额定功率。随着风 电控制技术的发展,当输出功率小于额
定功率状态时,变桨距风力电机发电机组采用技 术,即根据风速的大小,调整电机发电机转差率, 使其尽量运行在最佳叶尖速比,优化输出功率。 变桨距调节的优点是桨叶受力较小,
角的大小。其调节方法为:当风电机组达到运行 条件时,控制系统命令调节桨距角调到45”,当 转速达到一定时,再调节到0“,直到风力机达 到额定转速并网发电;在运行过程中
,当输出功率小于额定功率时,桨距角保持在 0°位置不变,不作任何调节;当电机发电机输 出功率达到额定功率以后,调节系统根据输出功 率的变化调整桨距角的大小,使电机发电
随着计算机技术与先进的控制技术应用到风电领 域,并网运行的风力发电风力发电控制技术得到 了较快发展,控制方式从基本单一的定桨距失速 控制向变桨距和变速恒频控制方向
发展,甚至向智能型控制发展。作为风力资源较 为丰富的国家之一,我国加快了风电技术领域的 自主开发与研究,兆瓦级变速恒频的风力电机电 机发电机电机组国产化已列入国家“8
系统的冲击。主动失速调节型的优点是其言了定 奖距失速型的特点,并在此基础上进行变桨距调 节,提高了机同频率后并入电网。机组在叶片设 计上采用了变桨距结构。其调节方法是
:在起动阶段,通过调节变桨距系统控制电机发 电机转速,将电机发电机转速保持在同步转速附 近,寻找最佳并网时机然后平稳并网;在额定风 速以下时,主要调节电机发电机反力转
也是未来风电技术发展的主要方向。变速恒频的 优点是大范围内调节运行转速,来适应因风速变 化而引起的风力机功率的变化,可以最大限度的 吸收风能,因而效率较高;控制系统采
取的控制手段可以较好的调节系统的有功功率、 无功功率,但控制系统较为复杂。随着计算机技 术与先进的控制技术应用到风电领域,并网运行 的风力发电风力发电控制技术得到了较
相关文档
最新文档