电力电子技术课程设计题目20090228
电力电子技术课程设计报告
课程设计说明书设计题目:单相交流调压技术专业班级: 2009级电气工程及其自动化姓名:王昊学号:指导教师:褚晓锐2011年12月23日(提交报告时间)一.课程设计题目:单项交流调压技术的工程应用二.课程设计日期: 2011年12月19日三.课程设计目的:“电力电子技术”课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。
因此,要求学生能综合应用所学知识,设计出具有电压可调功能的直流电源系统,能够较全面地巩固和应用本课程中所学的基本理论和基本方法,并初步掌整流电路设计的基本方法。
培养学生独立思考、独立收集资料、独立设计的能力;培养分析、总结及撰写技术报告的能力。
四.课程设计要求::按课程设计指导书提供的课题,根据第下表给出的基本要求及参数独立完成设计,课程设计说明书应包括以下内容:1、方案的经济技术论证。
2、主电路设计。
3、通过计算选择整流器件的具体型号。
4、确定变压器变比及容量。
5、确定平波电抗器。
7、触发电路设计或选择。
8、课程设计总结。
9、完成4000字左右说明书,有系统电气原理图,内容完整、字迹工整、图表整齐规范、数据详实。
1五.课程设计内容:设计方案图及论证将一种交流电能转换为另一种交流电能的过程称为交流-交流变换过程,凡能实现这种变换的电路为交流变换电路。
对单相交流电的电压进行调节的电路。
用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。
与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。
结构原理简单。
该方案是由变压器、触发电路、整流器、以及一些电路构成的,为一台电阻炉提供电源。
输入的电压为单相交流220V,经电路变换后,为连续可调的交流电。
各部分电路作用220V交流输入部分作用:为电路提供电源,主要是市电输入。
调压环节的作用:将交流220V电源经过变压器、整流器等电路转换为连续可调的交流电输出。
触发电路部分作用:为主电路提供触发信号。
电力电子技术课程设计报告书
《电力电子技术》课程设计专业:电气工程及其自动化班级:2010级电气班学生姓名:***学号:****:**时间:2012年12 月28 日----2013年1 月9 日题目:小功率晶闸管整流电路设计一设计的目的和要求电力电子技术的课程设计是《电力电子技术》课程的一个重要的实践教学环节。
它与理论教学和实践教学相配合,可加深理解和全面掌握《电力电子技术》课程的基本内容,可使学生在理论联系实际、综合分析、理论计算、归纳整理和实验研究等方面得到综合训练和提高,从而培养学生具有独立解决实际问题和从事科学研究的初步能力。
因此,通过电力电子计术的课程设计达到以下几个目的:1)加深理解和掌握《电力电子技术》课程的基础知识,提高学生综合运用所学知识的能力;2)培养学生根据课程设题的需要,查阅资料和独立解决工程实际问题的能力;3)账务仪器的正常使用方法,和调试过程;4)培养分析、总结及撰写技术报告的能力。
设计技术数据及要求:1、V380交流供电电源;2、电路输出的直流电压和电流的技术指标满足系统要求。
3、电路应具有一定的稳压功能,同时还具有较高的防治过电压和过电流的抗干扰能力。
触发电路输出满足系统要求。
4、负载为并励直流电动机,型号为,电机参数为:一、课程设计方案的选择与确定电力电子技术课程设计报告1.系统总设计框图保护电路电源触发电路整流电路负载电路2.整流电路方案一:单相半波整流电路特点及优缺点:对于晶闸管整流装置在整流器功率较小时,用单相整流电路。
在单相电路中,半波电路比全波电路脉动成分高,滤波没有全波电路容易。
双半波整流电路由于使用的整流器件少,在电压不高的小功率电路中也可被采用。
方案二:单相桥式全控整流电路- 3 -特点及优缺点:此电路对每个导电回路进行控制,与单相桥式半控整流电路相比,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。
变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。
电力电子技术课程设计题目
《电力电子技术课程设计》题目一、课程设计的性质和目的性质:是电气信息专业的必修实践性环节。
目的:1、培养学生综合运用知识解决问题的能力与实际动手能力;2、加深理解《电力电子技术》课程的基本理论;3、初步掌握电力电子电路的设计方法。
二、课程设计的题目:(一单相双半波晶闸管整流电路的设计(纯电阻负载设计条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~180º(二单相双半波晶闸管整流电路的设计(阻感负载设计条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~90º(三单相双半波晶闸管整流电路的设计(反电势、电阻负载设计条件:1、电源电压:交流100V/50Hz2、输出功率:500kW3、移相范围30º~150º4、反电势:E=70V(四单相全控桥式晶闸管整流电路的设计(纯电阻负载设计条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~180º(五单相全控桥式晶闸管整流电路的设计(阻感负载设计条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~90º(六单相全控桥式晶闸管整流电路的设计(反电势、电阻负载设计条件:1、电源电压:交流100V/50Hz2、输出功率:500kW3、移相范围30º~150º4、反电势:E=70V(七单相半控桥式晶闸管整流电路的设计(阻感负载设计条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~180º(八单相半控桥式晶闸管整流电路的设计(反电势、电阻负载设计条件:1、电源电压:交流100V/50Hz2、输出功率:500kW3、移相范围30º~150º4、反电势:E=70V(九单相半控桥式晶闸管整流电路的设计(带续流二极管(阻感负载设计条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~180º(十单相半控桥式晶闸管整流电路的设计(带续流二极管(反电势、电阻负载设计条件:1、电源电压:交流100V/50Hz2、输出功率:500kW3、移相范围30º~150º4、反电势:E=70V(十一MOSFET降压斩波电路设计(纯电阻负载设计条件:1、输入直流电压:Ud=100V2、输出功率:300W3、开关频率5kHz4、占空比10%~90%5、输出电压脉率:小于10%(十二IGBT降压斩波电路设计(纯电阻负载设计条件:1、输入直流电压:Ud=100V2、输出功率:300W3、开关频率5kHz4、占空比10%~90%5、输出电压脉率:小于10%(十三MOSFET升压斩波电路设计(纯电阻负载设计条件:1、输入直流电压:Ud=50V2、输出功率:300W3、开关频率5kHz4、占空比10%~50%5、输出电压脉率:小于10%(十四IGBT升压斩波电路设计(纯电阻负载设计条件:1、输入直流电压:Ud=50V2、输出功率:300W3、开关频率5kHz4、占空比10%~50%5、输出电压脉率:小于10%(十五MOSFET单相桥式无源逆变电路设计(纯电阻负载设计条件:1、输入直流电压:Ud=100V2、输出功率:300W3、输出电压波形:1kHz方波(十六IGBT单相桥式无源逆变电路设计(纯电阻负载设计条件:1、输入直流电压:Ud=100V2、输出功率:300W3、输出电压波形:1kHz方波(十七MOSFET单相半桥无源逆变电路设计(纯电阻负载设计条件:1、输入直流电压:Ud=100V2、输出功率:300W3、输出电压波形:1kHz方波(十八IGBT单相半桥无源逆变电路设计(纯电阻负载设计条件:1、输入直流电压:Ud=100V2、输出功率:300W3、输出电压波形:1kHz方波(十九单相交流调压电路(反并联设计(纯电阻负载设计条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~180º(二十单相交流调压电路(混合反并联设计(纯电阻负载设计条件:1、电源电压:交流100V/50Hz2、输出功率:500W3、移相范围0º~180º(二十一单相桥式晶闸管有源逆变电路设计(反电势阻感负载设计条件:1、电源电压:交流50V/50Hz2、逆变功率:200W3、反电势:E=70V4、逆变角:β=35º。
电力电子技术课程设计
《电力电子技术》课程设计报告题目:晶闸管10KW直流电动机调速系统设计院(系):机电与自动化学院专业班级:电气自动化技术1002学生姓名:曹畅学号:20102822054指导教师:刘政亷2012年6月25日至2012年7月6日华中科技大学武昌分校《电力电子技术》课程设计任务书目录1. 课程设计题目及要求 (1)1.1 题目 (1)1.2 控制要求 (1)1.3 系统总体方案设计 (2)2. 三相全控桥主电路设计 (3)2.1 电路及原理 (3)2.2 整流变压器参数计算 (4)2.3 晶闸管参数计算 (6)3. 触发电路设计 (7)3.1 KC04芯片引脚介绍 (7)3.2 KC04芯片原理图 (7)3.3 触发电路及原理 (8)4. 反馈电路参数的选择与计算 (11)4.1 测速发电机的选择 (11)4.2 电流截止反馈环节的选择 (11)4.3 调速静态精度的计算 (12)4.4 给定环节的选择 (14)4.5 电机负载变化转速恒定原理 (14)5.设计总结 (15)6.参考文献 (16)7.附录1 (17)附录2 (18)1. 课程设计题目及要求1.1 题目晶闸管10KW直流电动机调速系统设计1.2 控制要求工业生产中常常要求电动机具有宽的调速范围和调速精度,例如连续式轧钢机. 造纸机. 电梯等。
为此利用调节直流电机电枢电压获得良好的调速性能,而晶闸管三相桥全控整流电路可以根据伩号Ug(直流)的大小変化方便地改变直流输出电压的大小。
本课题要求设计一个由晶闸管整流桥、直流电动机、PI调节器(运放)组成的调速控制系统,完成完整电路原理图设计和绘制。
具体设计内容如下:1、晶闸管三相桥式全控整流电路旳基本工作原理(1)晶闸管型号規格选择(2)晶闸管保护设计(3)整流变压器设计(求U2)2、整流变压器设计3、三相脉冲触发器设计刺按下启动按钮,可选择工频/变频控制,手动控制(自动转换4、测速电路设计和PI调节器设计原始数据如下:(1)直流电动机:Z3-71 Pn = 10KW Un = 220V In = 55A Nn = 1000r/min 电枢电阻Ra = 0.5 Ω电枢电忎Ld = 7mH励磁电压UL = 220V 励磁电流IL = 1.6A(2)直流测速发电机:55CY61 Nn = 2000r/min Un = 110V(3)霍尓电流传感器:LA50(4)最小整流角α= 20度 Cos20 = 0.941.3系统总体方案设计图1—3由于电机容量较大,且要求电流脉动小,故选用三相全控桥式整流电路的供电方案。
电力电子技术课程设计教案
一、一、 教学课题学课题: : 电力电子技术课程设计电力电子技术课程设计 二、教学目的和任务二、教学目的和任务 电力电子技术是研究利用电力电子器件、电力电子技术是研究利用电力电子器件、电路理论和控制技术,电路理论和控制技术,电路理论和控制技术,实现对电能的控制、实现对电能的控制、变换和传输的科学,其在电力、工业、交通、通信、航空航天等很多领域具有广泛的应用。
电力电子技术不但本身是一项高新技术,力电子技术不但本身是一项高新技术,而且还是其它多项高新技术发展的基础。
而且还是其它多项高新技术发展的基础。
而且还是其它多项高新技术发展的基础。
因此,因此,提高学生的电力电子领域综合设计和综合应用能力是教学计划中必不可少的重要一环。
通过电通过电力电子技术的课程设计达到以下几个目的:力电子技术的课程设计达到以下几个目的:1、培养学生文献检索的能力,特别是如何利用Intel 网检索需要的文献资料。
网检索需要的文献资料。
2、培养学生综合分析问题、发现问题和解决问题的能力。
、培养学生综合分析问题、发现问题和解决问题的能力。
3、培养学生运用知识的能力和工程设计的能力。
、培养学生运用知识的能力和工程设计的能力。
4、提高学生的电力电子装置分析和设计能力。
、提高学生的电力电子装置分析和设计能力。
5、提高学生课程设计报告撰写水平。
、提高学生课程设计报告撰写水平。
三、课程设计的基本要求三、课程设计的基本要求1. 教师确定方向,在教师的指导下,学生自立题目教师确定方向,在教师的指导下,学生自立题目注意事项:注意事项: ① 所立题目必须是某一电力电子装置或电路的设计,题目难度和工作量要适应在一周内完成,题目要结合工程实际。
学生也可以选择规定题目方向外的其他电力电子装置设计,如开关电源、调光灯、镇流器、如开关电源、调光灯、镇流器、UPS UPS 电源等,但不允许选择其他班题目方向的内容设计(复合变换除外)。
② 通过图书馆和Intel 网广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计题目。
电力电子技术课程设计
课程设计说明书N O.1课程设计题目:三相半波整流电路的设计一、课程设计的目的《电力电子技术》课程是一门学科必修课,电力电子技术课程设计是电力电子技术课程理论教学之后的一个实践教学环节。
其目的是训练学生综合运用学过的交流电路原理的基础知识,独立完成查找资料、选择方案、设计电路、撰写报告的能力。
通过设计能够使学生巩固、加深对交流电路基本原理的理解,提高学生运用电路基本理论分析和处理实际问题的能力,培养学生的创新精神和创新能力,为今后的学习和工作打下坚实的基础。
二、主电路的选择与设计方案设计思路:主电路采用三相半波可控整流电路;采用正弦波同步触发三个晶闸管,实现AC变DC,通过改变触发电路的相角可以调整DC电压.;三相半波可控整流电路的主要缺点在于其变压器二次电流中含有直流分量,因此其应用较少。
但其所用元件较少,所以采用三相半波可控整流电路为主电路。
主电路的设计:1、当电路带电阻负载时的工作情况(1)原理说明三相半波可控整流电路为得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波电流流人电网。
三个晶闸管分别接入a、b、c三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。
假设将电路中的晶闸管换作二极管,并用VD表示,该电路就成为三相半波不可控整流电路,以下首先分析其工作情况。
此时,三个二极管对应的相电压中哪一个的值最大,则是该相所对应的。
二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压,在一个周期中,器件工作情况如下:在ωt1~ωt2期间,α 相电压最高,VD1导通,ud= ua;在ωt2~ωt3期间,b 相电压最高,VD2导通,ud= ub;在ωt3~ωt4期间,c 相电压最高,沈 阳 大 学课程设计说明书 N O.2VD3导通,ud= uc。
此后,在下一周期相当于ωt1的位置即ωt4时刻,VD1又导通,重复前一周期的工作情况。
电力电子技术课程设计题目
设计任务书1 舞台灯光控制电路的设计与分析√一、设计任务设计一个舞台灯光控制系统,通过给定电位器可以实现灯光亮度的连续可调。
灯泡为白炽灯,可视为纯电阻性负载,灯光亮度与灯泡两端电压(交流有效值或直流平均值)的平方成正比。
二、设计条件与指标1.单相交流电源,额定电压220V;2.灯泡:额定功率2kW,额定电压220V;3.灯光亮度调节范围(10~100)%;4.尽量提高功率因数,并减小谐波污染;三、设计要求1.分析题目要求,提出2~3种实现方案,比较并确定主电路结构和控制方案;2.设计主电路原理图和触发电路的原理框图;3.参数计算,选择主电路元件参数;4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化;5.典型工况下的谐波分析与功率因数计算;6.撰写课程设计报告。
四、参考文献1.王兆安,《电力电子技术》,机械工业出版社;2.陈国呈译,《电力电子电路》,日本电气学会编,科学出版社。
设计任务书2 永磁直流伺服电机调速系统的设计√一、设计任务设计一个永磁直流伺服电机的调速控制系统,通过电位器可以调节电机的转速和转向。
电机为反电势负载,在恒转矩的稳态情况下,电机转速基本与电枢电压成正比,电机的转向与电枢电压的极性有关。
电机的电枢绕组可视为反电势与电枢电阻及电感的串联。
二、设计条件与指标1.单相交流电源,额定电压220V;2.电机:额定功率500W,额定电压220V dc,额定转速1000rpm,Ra=2Ω,La=10mH;3.电机速度调节范围±(10~100)%;4.尽量减小电机的电磁转矩脉动;三、设计要求1.分析题目要求,提出2~3种实现方案,比较确定主电路结构和控制方案;2.设计主电路原理图、触发电路的原理框图,并设置必要的保护电路;3.参数计算,选择主电路元件参数分析主电路工作原理;4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化;5.撰写课程设计报告。
四、参考文献1.王兆安,《电力电子技术》,机械工业出版社;2.陈国呈译,《电力电子电路》,日本电气学会编,科学出版社;3.余永权,《单片机在控制系统中的应用》,电子工业出版社;设计任务书3 PWM开关型功率放大器的设计√一、设计任务常用的功率放大器为线性功放,功率管工作于线性放大区域,性能好,但功耗大。
电力电子课程设计题目
(一)课题一单相半波整流电路的设计输入电压:单相交流220v,50HZ,输出功率:1KW;用集成电路组成触发电路负载性质:电阻,电阻电感对电路进行主设计、计算与说明。
计算所用元器件型号参数(二)课题二单相桥式可控整流电路的设计输入电压:单相交流220v,50HZ,输出功率:1KW;用集成电路组成触发电路负载性质:电阻,电阻电感对电路进行主设计、计算与说明。
计算所用元器件型号参数(三)课题三三相半波整流电路的设计输入电压:三相交流380v,50HZ,输出功率:2KW;用集成电路组成触发电路负载性质:电阻,电阻电感对电路进行主设计、计算与说明。
计算所用元器件型号参数(四)课题四三相桥式可控整流电路的研究输入电压:三相交流380v,50HZ,输出功率:2KW;用集成电路组成触发电路负载性质:电阻,电阻电感对电路进行主设计、计算与说明。
计算所用元器件型号参数(五)课题五直流流斩波电路的设计输入电压:单相交流220v,50HZ,输出功率:0.51KW;用集成电路组成触发电路负载性质:电阻对电路进行主设计、计算与说明。
计算所用元器件型号参数(六)课题六单相交流调压电路的设计输入电压:单相交流220v,50HZ,输出功率:0.5KW;用集成电路组成触发电路负载性质:电阻对电路进行主设计、计算与说明。
计算所用元器件型号参数(七)课题七直流电机调速电路的设计输入电压:单相交流220v,50HZ,输出电流:1~20A用集成电路组成触发电路负载性质:直流电机移相电压:0~10V.移相范围:大于等于170调速比:20:1对电路进行主设计、计算说明。
计算所用元器件型号参数(八)课题八晶闸管触发组件的设计输入电压:单相交流220v,50HZ,交流同步电压:30v用集成电路组成触发电路负载性质:直流电机移相电压:0~10V.移相范围:大于等于170对电路进行主设计、计算说明。
计算所用元器件型号参数(九)课题九晶闸管触发电路的设计输入电压:单相交流220v,50HZ,交流同步电压:20v移相电压:0~10V.移相范围:大于等于170对电路进行主设计、计算说明。
电力电子技术课程设计
电力电子技术课程设计一、教学目标本课程旨在让学生掌握电力电子技术的基本概念、原理和应用,培养学生分析和解决电力电子技术问题的能力。
具体目标如下:1.知识目标:–了解电力电子技术的基本原理和特性;–掌握电力电子器件的工作原理和选用方法;–熟悉电力电子电路的分析和设计方法。
2.技能目标:–能够分析简单的电力电子电路;–能够选用合适的电力电子器件进行电路设计;–能够进行电力电子设备的安装、调试和维护。
3.情感态度价值观目标:–培养学生的创新意识和团队合作精神;–增强学生对电力电子技术领域的兴趣和自信心;–培养学生对电力电子技术应用的的责任感和使命感。
二、教学内容本课程的教学内容主要包括电力电子技术的基本原理、电力电子器件、电力电子电路的分析与设计以及电力电子技术的应用。
具体安排如下:1.电力电子技术的基本原理:–电力电子器件的工作原理;–电力电子电路的特性与分类。
2.电力电子器件:–晶闸管及其驱动电路;–整流器、逆变器及其控制电路。
3.电力电子电路的分析与设计:–电力电子电路的基本分析方法;–电力电子电路的设计原则与步骤。
4.电力电子技术的应用:–电力电子设备的功能与结构;–电力电子技术的应用领域。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性。
主要包括:1.讲授法:通过教师的讲解,让学生掌握电力电子技术的基本概念和原理;2.讨论法:通过小组讨论,培养学生分析问题和解决问题的能力;3.案例分析法:通过分析实际案例,让学生了解电力电子技术的应用;4.实验法:通过实验操作,让学生熟悉电力电子器件和电路的工作原理。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备。
教材选用《电力电子技术》一书,参考书包括《电力电子器件》和《电力电子电路设计》。
多媒体资料包括教学PPT、视频动画等。
实验设备包括晶闸管、整流器、逆变器等实验装置。
这些资源能够支持教学内容和教学方法的实施,丰富学生的学习体验。
《电力电子技术》课程设计
电力电子技术课程设计一、课程设计的目的1. 掌握电力电子电路的设计方法,具体包含功率器件、电感、电容等选取原则和设计依据。
2. 掌握控制器的设计方法,尤其针对不同对象和采样时间PID控制参数的选用。
3. 掌握现代仿真工具的使用,针对仿真过程中出现的问题,能够独立或通过查找文献、小组讨论等方式分析问题产生的原因,寻找解决方案。
4. 撰写符合规范的课程设计报告。
二、基于Boost电路APFC原理及设计2.1题目要求设计基于Boost变换器的有源功率因数校正电路,额定功率为1kW,峰值功率为1.5kW,负载为电阻性负载。
其输入交流电电压范围在190-240V/50Hz,其输出电压恒定在400V,在输入电压20%波动工况下,系统动态调整时间在0.5s内。
功率器件工作频率:20kHz,输出电压波纹5%,电流波纹10%。
2.2BOOST电路及工作原理图1 BOOST 电路原理图假设其中断电感、电容的值都极大,当IGBT 导通时,电感通过电源进行充电,此时充电电流恒定,令其电流大小恒为I 1,且此时,电容两端的电压向负载供电,由于电容的阻值很大,故输出电压为恒值,记为U 0。
令IGBT 的开通的时间为t on ,在此阶段中电感上积蓄的能量为E on ;当IGBT 关断时,电源和电感共同向电容充电并向负载R 进行供电。
设IGBT 的关断时间为t off ,则此期间电感L 释放能量为:E off =(U 0−E)I 1t off543QDLC ZV du ci Ci o Boost电路图i LQDLC ZV du ci Ci oi LQDLC ZV du ci C i oi LQDLC ZV du ci C i oi LbQ导通Q关断Q关断时电感电流为零adci L I Lmax I LminI i i LI LmaxI Lmin I Lmin I Lmaxi Q i D i Cu c ΔU Cttt tt ttt t tttI LmaxI LmaxI Lmaxi Cu ca 电感连流连续b 电感电流断续00000000000I it ont offTt onTt ’off-I OI max -I OV GE V GE-I OI max -I O又当其处于稳态时,在一个周期内电感L上吸收和释放的能量相等,故:(U0−E)I1t off=EI1t on由上述公式整理可得:U0=t on+t offt offE=Tt offE由于该电路的输出电压U0高于电源电压E,故又称为:升压斩波电路,也就是BOOST电路,又α=t onT,其中α为导通占空比。
《电力电子技术课程设计》选题
《电力电子技术课程设计》任务书选题姓名姓名 学号学号 选题选题题目1: 三相全控桥式晶闸管三相全控桥式晶闸管三相全控桥式晶闸管--电动机系统设计电动机系统设计 1. 初始条件:1).直流电动机额定参数: P N =10KW, U N =220V, IN =50A,nN =1000r/min,电枢电阻Ra=0.5Ω,电流过载倍数λ=1.5,电枢电感LD =7mH,励磁电压UL=220V 励磁电流IL=1.6A. 2).进线交流电源:三相380V3).性能指标:直流输出电压0-220V ,最大输出电流75A ,保证电流连续的最小电流为5A 。
使用三相可控整流电路,电动机负载,工作于电动状态。
2.要求完成的主要任务:1). 三相全控桥式主电路设计(包括整流变压器参数计算,整流元件定额的选择,平波电抗器电感量的计算等),讨论晶闸管电路对电网及系统功率因数的影响。
2).触发电路设计。
触发电路选型(可使用集成触发器),同步信号的定相等。
3).晶闸管的过电压保护与过电流保护电路设计。
4).提供系统电路图纸不少于一张。
5). 利用仿真软件分析电路的工作过程。
题目2:不可逆调速系统的可控直流电源设计1.直流电机原始数据:PN =7.5kW,UN=220V,IN=40.8A,nN=1480r/min,电枢电阻Ra=0.25Ω,电枢电感LM=14mH,电机过载倍数λ=1.5。
2. 设计内容及要求:1) 设计整流电路主电路。
2) 设计变压器参数:U1,I1,U2,I2。
要求考虑最小控制角αmin、电网电压波动、晶闸管管压降和变压器漏抗等因素计算变压器二次相电压值,附主要计算步骤。
3) 整流元件参数的计算及选择:依据参数计算,正确选择器件型号,并附主要参数。
4) 触发电路设计及主要参数的计算,同步电压的选择。
5) 设计保护电路:正确选择电压、过流保护电路,简要说明选择依据,计算保护元件参数并选择保护元件型号。
6) 利用仿真软件分析电路的工作过程。
电力电子技术课程设计
电力电子技术课程设计一、课程目标知识目标:1. 让学生掌握电力电子器件的基本原理、分类及功能,理解不同器件在电力转换中的应用。
2. 使学生了解电力电子电路的基本拓扑结构,掌握常见电力电子电路的原理及分析方法。
3. 帮助学生掌握电力电子装置的控制策略,了解电力电子技术在节能、环保等方面的应用。
技能目标:1. 培养学生运用所学知识分析、设计简单电力电子电路的能力。
2. 提高学生动手实践能力,能正确搭建、调试和优化电力电子实验装置。
3. 培养学生运用电力电子技术解决实际问题的思维方法和创新能力。
情感态度价值观目标:1. 激发学生对电力电子技术学科的兴趣,培养其探索精神和求知欲。
2. 培养学生具备良好的团队合作意识,学会在团队中沟通交流,共同解决问题。
3. 增强学生的节能环保意识,使其认识到电力电子技术在未来可持续发展中的重要性。
课程性质:本课程为专业核心课程,旨在让学生掌握电力电子技术的基本理论和实践技能,培养学生具备分析和解决实际问题的能力。
学生特点:学生具备一定的电子技术基础,具有较强的学习能力和实践操作能力,对新技术和新事物充满好奇心。
教学要求:注重理论与实践相结合,强调学生的主体地位,鼓励学生主动参与、积极思考,提高其分析问题和解决问题的能力。
通过课程学习,使学生达到预定的学习成果,为后续相关课程的学习和实际工作打下坚实基础。
二、教学内容1. 电力电子器件原理及分类:包括半导体器件、二极管、晶体管、晶闸管等基本原理、特性及应用。
教材章节:第一章《电力电子器件》2. 电力电子电路拓扑结构:分析常见电力电子电路如整流电路、斩波电路、逆变电路的原理及性能。
教材章节:第二章《电力电子电路拓扑》3. 电力电子装置控制策略:学习PID控制、PWM控制等在电力电子装置中的应用。
教材章节:第三章《电力电子装置的控制》4. 电力电子技术应用:介绍电力电子技术在工业、家电、新能源等领域的应用案例。
教材章节:第四章《电力电子技术的应用》5. 实践教学:组织学生进行电力电子电路搭建、调试和优化实验,提高学生动手能力。
《电力电子技术》课程设计
《电力电子技术》课程设计目录一.课程设计的目标 1二. 基于BOOST电路APFC原理及设计错误!未定义书签。
2.0设计任务与要求 (1)2.1BOOST电路及工作原理 .......................... 错误!未定义书签。
2.2电路参数设计.................................. 错误!未定义书签。
2.3APFC工作原理及控制系统设计 ................... 错误!未定义书签。
2.3.1 基于SPWM控制的双闭环控制系统............. 错误!未定义书签。
2.3.2 基于电流跟踪控制的双闭环控制系统.......... 错误!未定义书签。
2.4仿真结果及分析................................ 错误!未定义书签。
三.H桥逆变器电路原理及设计错误!未定义书签。
3.0设计任务与要求 (11)3.1H桥电路及工作原理 ............................ 错误!未定义书签。
3.2电路参数设计.................................. 错误!未定义书签。
3.3SPWM控制原理及设计 ........................... 错误!未定义书签。
3.3.1 单极性SPWM控制原理....................... 错误!未定义书签。
3.3.2 双极性SPWM控制原理....................... 错误!未定义书签。
3.4仿真结果与分析................................ 错误!未定义书签。
一.课程设计的目标1. 养成实事求是、积极探索和认真细致的治学态度;培养精益求精的大国工匠精神。
根据设计任务要求,主动学习相关知识,独立构建电力电子系统,撰写课程设计报告。
2. 掌握电力电子电路的设计方法,功率器件、电感、电容等参数选取原则,根据要求,设计出满足工作需求的电力电子电路。
电力电子技术课程设计
电力电子技术 课程设计一、课程目标知识目标:1. 让学生掌握电力电子技术的基本概念、分类及其在电力系统中的应用。
2. 使学生了解各种电力电子器件的工作原理、特性及选型方法。
3. 帮助学生掌握电力电子变换器的主电路拓扑、控制策略及其在电力系统中的应用。
技能目标:1. 培养学生运用电力电子器件和变换器解决实际问题的能力。
2. 提高学生分析、设计和调试电力电子电路的能力。
3. 培养学生运用相关软件(如PSPICE、MATLAB等)进行电力电子电路仿真分析的能力。
情感态度价值观目标:1. 培养学生对电力电子技术学科的兴趣,激发学生主动学习的积极性。
2. 培养学生严谨的科学态度,注重实践与创新能力的培养。
3. 增强学生的团队合作意识,培养学生的沟通与协作能力。
课程性质分析:本课程为专业核心课程,具有较强的理论性和实践性,旨在培养学生的电力电子技术基础知识和应用能力。
学生特点分析:学生为高中年级学生,具备一定的物理、数学基础,对电力电子技术有一定了解,但尚未系统学习。
教学要求:结合学生特点和课程性质,采用理论教学与实践教学相结合的方法,注重启发式教学,引导学生主动探究,培养实际操作能力。
1. 掌握电力电子技术的基本概念、分类和应用。
2. 熟悉各种电力电子器件的工作原理、特性和选型方法。
3. 学会分析、设计和调试电力电子电路。
4. 提高运用软件进行电力电子电路仿真分析的能力。
5. 增强团队合作意识,提高沟通与协作能力。
二、教学内容1. 电力电子技术基本概念:介绍电力电子技术的定义、分类及其在电力系统中的应用。
教材章节:第一章 电力电子技术概述内容:电力电子器件、电力电子装置、电力电子变换器等。
2. 电力电子器件:讲解各种电力电子器件的工作原理、特性及选型方法。
教材章节:第二章 电力电子器件内容:二极管、晶闸管、MOSFET、IGBT等器件的工作原理、特性参数及应用。
3. 电力电子变换器:分析电力电子变换器的主电路拓扑、控制策略及其在电力系统中的应用。
电力电子技术课程设计
电力电子技术课程设计题目:单相全控桥式整流电路的设计(反电势,电阻负载)院系名称:电气工程学院专业班级:电气F1202学生姓名:周旭东学号:201223910903指导教师:臧义目录前言 (2)1.题目要求 (3)1.1设计条件 (3)1.2主要任务 (3)2.主电路设计 (3)2.1主电路原理图 (3)2.2主电路工作原理 (4)2.3整流参数计算 (4)2.4晶闸管元件的选取 (5)3.驱动电路设计 (7)3.1TCA785芯片介绍 (7)3.2相控触发工作原理及电路原理图 (11)4.保护电路设计 (12)4.1过电压保护电路设计 (12)4.2过电流保护电路设计 (12)4.3电流上升率、电压上升率的抑制保护 (13)5.MATLAB 仿真 (14)5.1系统建模与参数设置 (14)5.2仿真结果 (18)设计心得 (23)参考文献 (23)附图 (24)前言电力电子学,又称功率电子学(Power Electronics)。
它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。
它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新学科。
电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。
本次课程设计主要是对单相全控桥式晶闸管整流电路的研究。
首先是对单相全控桥式晶闸管整流电路的整体设计,包括主电路,触发电路,保护电路。
主电路中包括电路参数的计算,器件的选型;触发电路中包括器件的选择,参数设计;保护电路包括过电压保护,过电流保护,电压上升率抑制,电流上升率抑制。
之后对整体电路进行Matlab仿真,最后对仿真结果进行分析与总结。
1.题目要求1.1设计条件:1)电源电压:交流100V/50Hz2)输出功率:500W3)移相范围30°~ 150°4)反电势:E=70V1.2主要任务:1)主电路设计(包括整理元件定额的选择和计算等),讨论晶闸管电路对电网及系统功率因数的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电力电子技术课程设计》题目
所立题目必须是某一电力电子装置或电路的设计,题目难度和工作量要适应在两周内完成,题目要结合工程实际。
学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS 电源等。
题目一
三相桥式全控整流电路
一 设计任务书
1.将三相380V 交流电源通过三相桥式全控整流电路变成可调的直流电压
2.进行方案比较,并选定设计方案
3.完成主电路设计,各主要元器件的选择
4.驱动电路和保护电路设计,各主要器件的选择
5.绘制控制角度为30 60度时电路中主要节点电压和电流波形
6.负载为阻感负载三相星型连接 300,500L mH R ==Ω
二 格式目录
1.设计任务书
2.设计方案
3.主电路图
4.驱动电路和保护电路图
5.电路参数计算及元器件选择清单
6.主电路和驱动电路工作原理分析
7主要节点电压和电流波形
8.参考文献
题目二
题目:10KW 直流电动机不可逆调速系统整流系统
技术数据:
直流电动机:Z3-71 额定功率10KW 额定电压220V 额定电流55A 转速1000r/min 极数2P=4 电区电阻RN=8.5欧 电区电感LD=7MH 励磁电压UL=220V 励磁电流IL=1.6
要求: 调速范围D=10 电流脉动系数Si≤10%
设计类容: 1,切定总体调速方案 2,选择主电路并进行参数计算
3,励磁电路切定及参数计算 4,触发电路选择与分析
5,绘制系统接线图. 6,编写设计说明书
(2):主电路选择与参数计算
(1)主电路选择原则:一般整流器功率在4KW以下采用单向整流电路,4KW以上采用三相整流。
(2)参数计算包括:
整流变压器的参数计算
整流晶闸管的型号选择
保护电路的说明,参数计算与元件选择
平波电抗器电感量计算
※晶闸管保护环节的说明:
1 过电压保护
(1)交流侧过电压保护
1)阻容保护:在变压器二次侧并入电阻R
和电容C
2)非线性电阻保护(电阻值可变)—压敏电阻
一般情况下,为使系统更加精确,往往在交流侧采用双重保护,即阻容保护和非线性保护同时使用。
过电流保护
1)快速熔断器(保险丝)
2)过电流继电器:当电流超过某一给定值时,继电器衔铁动作,触点断开或闭合。
没有特别要求可不使用。
3 晶闸管两端du/dt和di/dt的抑制保护
(1)du/dt 抑制
晶闸管两端并联RC电路,利用电容充电以及对电压的抑制作用实现保护,故也称缓冲电路。
实际上在过电压保护的同时就实现了电压变化的抑制。
(2) di/dt抑制
在阻容保护中选择适当的电阻可抑制电流的变化,另外比较有效直观的方法就是在每个桥臂上串联一个小电感,一般约几到几十微亨,利用电感对电流的抑制作用实现保护。
励磁电路设计重点说明
(1)励磁电路选择原则:本系统采用调压调速,励磁电流应保持不变,故采用三相不可控桥式整流电路供电,电源可从主变压器二次侧引入。
(2)励磁电路设计时要遵循先加励磁后加电枢电压的原则,同时要设有弱磁保护。
(3)参数计算包括:
整流二极管的参数计算
弱磁保护元件参数计算与选择
触发电路设计重点说明
①为使线路简单,工作可靠,装置体积小,要求选用KJ004组成的六脉冲集成触发电路。
②设计说明包括:
芯片引脚的作用及外围电路基本工作原理
同步电压及其同步变压器的联结组别
KJ041输入输出脉冲关系图
触发电路输出端与主电路晶闸管联接图
系统接线图要求:
(1)要求用正规图纸绘图。
(2)绘图规范,清晰明了,采用protel,手绘均可。
(3)布图要合理完整,避免头重脚轻,接线过乱。
保护电路
1 过电压保护
(1)过电压产生的主要原因:
a 外因过电压
1)雷击过电压
2)操作过电压:由电路开关分闸,合闸操作所引起的过电压。
电路合闸接通电源的瞬间,高压电源电压通过变压器一次,二次绕组之间的分布电容直接加到电力电子变换器的开关器件上。
电路分闸断开变压器时,变压器一次侧电流突然被切断所引起的过电压感应到二次侧,使电力电子开关器件承受过电压
题目三:单相桥式整流电路
1.设计任务书
1.1设计任务和要求:
(1)、设计任务:
1、进行设计方案的比较,并选定设计方案;
2、完成单元电路的设计和主要元器件说明;
3、完成主电路的原理分析,各主要元器件的选择;
4、驱动电路的设计,保护电路的设计;
(2)、设计要求:
1、单相桥式相控整流的设计要求为:
1).负载为感性负载,L=700mH,R=500欧姆.
2、技术要求:
(1). 电网供电电压为单相220V;
(2). 电网电压波动为 5%--10%;
(3). 输出电压为0~100V.
2.方案的选择
单相相控整流电路可分为单相半波、单相全波和单相桥式相控流电路,它们所连接的负载性质不同就会有不同的特点。
下面分析各种单相相控整流电路在带电阻性负载、电感性负载和反电动势负载时的工作情况。
单相半控整流电路的优点是:线路简单、调整方便。
弱点是:输出电压脉动冲大,负载电流脉冲大(电阻性负载时),,且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。
而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。
单相全控式整流电路其输出平均电压是半波整流电路2倍,在相同的负载下流过晶闸管的平均电流减小一半;且功率因数提高了一半。
根据以上的比较分析因此选择的方案为单相全控桥式整流电路(负载为阻感性负载)。
3.原理说明
当负载由电阻和电感组成时称为阻感性负载。
例如各种电机的励磁绕组,整流输出端接有平波电抗器的负载等等。
单相桥式整流电路带阻感性负载的电路如图3.1所示。
由于电感储能,而且储能不能突变因此电感中的电流不能突变,即电感具有阻碍电流变化的作用。
当流过电感中的电流变化时,在电感两端将产生感应电动势,引起电压降UL。
目录目录
1.设计任务书
2. 方案的选择
3.原理说明
4.电路参数计算和元件选取
5.性能指标分析
6. 保护电路工作原理
7.参考文献
题目四
将三相380V交流市电转换为恒压恒频的三相380V交流电,为重要负荷供电。
设计的主要任务包括:
1、方案的经济技术论证。
2、主电路设计。
3、通过计算选择主电路器件的具体型号。
4、确定变压器变比及容量。
5、滤波电路设计。
6、保护电路设计。
1、输入380V三相交流电。
2、恒频恒压380V交流输出。
3、输出视在容量10KV A
题目五
任务 设计稳压电源
设计并制作一个DC-DC变换器(15V->5V)
二、要求
(1)输出电压Uo:5V;
(2)最大输出电流Iomax:1A;
(3)输入电压从12V变到18V时,电压调整率Su<=2%(Io=1A);
(4)Io从0变到1A时,负载调整率Si<=5%(U2=15V);
(5)DC-DC变换器的效率η>=70%;
三、说明
(1)DC-DC变换器不允许使用成品模块,但可使用开关电源控制芯片。
(2)本题中电压调整率Su指U2在指定范围变化时,输出电压Uo的变化率;DC-DC变换器效率η=Po/Pin,其中Po=UoIo,Pin=UinIin。
(3)电源在最大输出功率下应能连续安全工作足够长的时间(测试时间,不能出现过热等故障)。
(4)设计报告正文中应包括系统总体框图、核心电路原理图、主要流程图、主要的测试结 题目七
AC/AC变频电源:
1、输出电压:AC三相四线正弦波
2、输入电压:AC三相380V±10%
3、输入电压频率:50±5HZ
4、负载功率因数:COSφ=0.7~1.0 滞后(60HZ)
COSφ=0.8~1.0 滞后(500HZ)
5、负载短时过载倍数: 150%
二、设计者选题
输出频率60HZ 输出频率500HZ 输出功率
KV A 输出电压
115/200V 输出电压
230/400V
输出电压
115/200V
输出电压
230/400V
5
10
15
20
30
题目八
AC/DC开关电源:
1、输出电压:直流,纹波电压(峰峰值)小于额定电压的0.5%
2、输入电压:AC三相380V±10%
3、输入电压频率:50±5HZ
4、负载短时过载倍数: 200%
5、瞬态特性:较好
二、设计者选题
输出直流电压(V)
输出电流
(A) 10~12~14 22~24~26 34~36~38 46~48~50
20
50
80
110
140 ╳。