立体几何典型例题

合集下载

专题07 立体几何小题常考全归类(精讲精练)(原卷版)

专题07 立体几何小题常考全归类(精讲精练)(原卷版)

专题07 立体几何小题常考全归类【命题规律】高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.【核心考点目录】核心考点一:球与截面面积问题核心考点二:体积、面积、周长、角度、距离定值问题 核心考点三:体积、面积、周长、距离最值与范围问题 核心考点四:立体几何中的交线问题核心考点五:空间线段以及线段之和最值问题 核心考点六:空间角问题 核心考点七:轨迹问题核心考点八:以立体几何为载体的情境题 核心考点九:翻折问题【真题回归】1.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34π B .πC .2πD .3π2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C 中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 5BCC 1B 1的交线长为________.【方法技巧与总结】1、几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补. 2、几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆 锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.4、球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模θαβ=cos cos cos (θ为平面的斜线与平面内任意一条直线l 所成的角,α为该斜线与该平面所成的角,β为该斜线在平面上的射影与直线l 所成的角).7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.9、以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等; (2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等; (3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.10、以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【核心考点】核心考点一:球与截面面积问题 【规律方法】 球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d . 【典型例题】例1.(2022·全国·高三阶段练习)已知四棱锥P -ABCD 的底面ABCD 是矩形,且该四棱锥的所有顶点都在球O 的球面上,P A ⊥平面ABCD , 22,PA AB BC === ,点E 在棱PB 上,且2EB PE =, 过E 作球O 的截面,则所得截面面积的最小值是____________. 例2.(2022·湖北省红安县第一中学高三阶段练习)球体在工业领域有广泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC -体积的最大值是___________. 例3.(2022·江西·高三阶段练习(理))如图,正方体1111ABCD A B C D -的棱长为6,11113C E CD =,点F 是CD 的中点,则过1B ,E ,F 三点的平面α截该正方体所得截面的面积为_________.例4.(2022·北京市十一学校高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是棱1111,A B A D 的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形; ②直线11B D 到平面CMN 2; ③存在点P ,使得1190B PD ∠=; ④1PDD △45. 其中所有正确结论的序号是__________.核心考点二:体积、面积、周长、角度、距离定值问题 【规律方法】几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥, 有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉【典型例题】例5.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例6.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π例7.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ②四边形1BFD E 有可能是正方形;③平面1BFD E 有可能垂直于平面1BB D ;④设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ⑤四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2B .3C .4D .5核心考点三:体积、面积、周长、距离最值与范围问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例8.(2022·全国·高三专题练习)如图,正方形EFGH 的中心为正方形ABCD 的中心,22AB =P EFGH -(A ,B ,C ,D 四点重合于点P ),则此四棱锥的体积的最大值为( )A 1286B 1285C .43D 15例9.(2022·江西南昌·三模(理))已知长方体1111ABCD A B C D -中,2AB =,22BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( ) A 2 B .321C 2D 32例10.(2022·浙江·高三阶段练习)如图,在四棱锥Q EFGH -中,底面是边长为22方形,4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12 B .13C .14D .15例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关核心考点四:立体几何中的交线问题 【规律方法】 几何法 【典型例题】例12.(2022·浙江宁波·一模)在棱长均相等的四面体ABCD 中,P 为棱AD (不含端点)上的动点,过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,则m ,n 所成角的正弦值的最大值为__________.例13.(2022·全国·高三专题练习)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.例14.(2022·福建福州·三模)已知正方体1111ABCD A B C D -31A 为球心,半径为2的球面与底面ABCD 的交线的长度为___________.例15.(2022·陕西·武功县普集高级中学高三阶段练习(理))如图,在四面体ABCD 中,DA ,DB ,DC 两两垂直,2DA DB DC ===D 为球心,1为半径作球,则该球的球面与四面体ABCD 各面交线的长度和为___.核心考点五:空间线段以及线段之和最值问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例16.(2022·全国·高三专题练习)已知正三棱锥S ABC -2,外接球表面积为3π,2SA <点M ,N 分别是线段AB ,AC 的中点,点P ,Q 分别是线段SN 和平面SCM 上的动点,则AP PQ +的最小值为( ) A 262-B 62+C 32D 2例17.(2022·全国·高三专题练习)在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则1A F EF +的最小值为( )A 29B .6C 41D .7例18.(2022·全国·高三专题练习)如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13+D .3核心考点六:空间角问题 【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D -中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11A C 所成的角为θ,则cos θ的取值范围为( )A .3⎡⎢⎣⎦B .3⎡⎤⎢⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C --的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤D .11A BC A DC θ∠+∠≥例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,3BC =D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①3tan βα,②γβ≤,③γα>. A .①B .①②C .②③D .①③例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥例23.(2022·全国·高三专题练习)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角是γ则三个角α,β,γ中最小的角是( ) A .αB .βC .γD .不能确定核心考点七:轨迹问题 【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例24.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D -的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为25 ④点M 5. 其中正确的命题个数为( ) A .1B .2C .3D .4例25.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( ) A 2B .2C 2D .1例26.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD -所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆例27.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P --的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线例28.(2022·全国·高三专题练习)如图,正方体ABCD A B C D -''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧核心考点八:以立体几何为载体的情境题 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例29.(2022·宁夏·平罗中学高三阶段练习(理))设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π-∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>例30.(2022·广东·广州市从化区第三中学高三阶段练习)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ-⨯=,故其总曲率为4π.给出下列三个结论:①正方体在每个顶点的曲率均为2π; ②任意四棱锥的总曲率均为4π;③若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F -+=,则该类多面体的总曲率是常数.其中,所有正确结论的序号是( ) A .①②B .①③C .②③D .①②③例31.(2022·辽宁·沈阳二十中三模)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即2311122323V R R R R R πππ=⋅-⋅=球.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .32πB .24πC .18πD .16π例32.(2022·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒核心考点九:翻折问题 【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例33.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 3例34.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得ABCE ,则x 的取值范围是( )A .03x <≤B .02x <≤C .01x <≤D .06x ≤<例35.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面 B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交 D .三棱锥B ADC -的体积为定值例36.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则( )A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【新题速递】1.(2022·安徽·高三阶段练习)如图,在棱长为a 的正四面体ABCD 中,点111,,B C D 分别在棱,,AB AC AD 上,且平面111B C D 平面1,BCD A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,关于函数()V f x =,下列说法正确的是( )A .12220,,,133x x ⎛⎫⎛⎫∀∈∃∈ ⎪ ⎪⎝⎭⎝⎭,使得()()21f x f x =B .函数()f x 在1,12⎛⎫⎪⎝⎭上是减函数C .函数()f x 的图象关于直线12x =对称 D .()00,1x ∃∈,使得()016A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积)2.(2022·重庆市长寿中学校高三阶段练习)如图所示,在直角梯形BCEF 中,90,CBF BCE A ∠∠==、D 分别是BF 、CE 上的点,//AD BC ,且22AB DE BC AF ===(如图1).将四边形ADEF 沿AD 折起,连接BE BF CE 、、(如图2).在折起的过程中,下列说法中错误的个数是( )①AC //平面BEF ; ②B C E F 、、、四点不可能共面;③若EF CF ⊥,则平面ADEF ⊥平面ABCD ; ④平面BCE 与平面BEF 可能垂直. A .1B .2C .3D .43.(2022·四川·成都市第二十中学校一模(理))如图, 在棱长为 2 的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点, 则下列结论正确的有( )①棱 AB 上一定存在点Q , 使得1QC D Q ⊥ ②三棱锥F EPH -的外接球的表面积为8π③过点 E F G ,,作正方体的截面, 则截面面积为33④设点 M 在平面11BB C C 内, 且1//A M 平面AGH , 则1A M 与AB 所成角的余弦值的最大22A .1 个B .2 个C .3 个D .4 个4.(2022·四川·成都市锦江区嘉祥外国语高级中学有限责任公司模拟预测(文))在棱长为2的正方体1111ABCD A B C D -中,N 为11B C 的中点,点P 在正方体各棱及表面上运动且满足AP CN ⊥,则点P 轨迹所围成图形的面积为( )A .25B .42C .23D .45.(2022·上海市实验学校高三阶段练习)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是( )A .425425⎡-+⎢⎣⎦B .222,222⎡⎤⎣⎦C .322322⎡-+⎢⎣⎦D .322,322⎡⎤⎣⎦6.(2022·湖南·模拟预测)正三棱柱111ABC A B C 的底面边长是4,侧棱长是6,M ,N 分别为1BB ,1CC 的中点,若点P 是三棱柱内(含棱柱的表面)的动点,MP ∥平面1AB N ,则动点P 的轨迹面积为( ) A .53B .5C 39D 267.(2022·山西·高三阶段练习)已知正方体1111ABCD A B C D -的顶点都在表面积为12π的球面上,过球心O 的平面截正方体所得的截面为一菱形,记该菱形截面为S ,点P 是正方体表面上一点,则以截面S 为底面,以点P 为顶点的四棱锥的体积的最大值为( ) A .83B .73C .2D .538.(2022·浙江·高三阶段练习)在OAB △中,OA AB =,120OAB ∠=︒.若空间点P 满足1=2PABOABSS ,则直线OP 与平面OAB 所成角的正切的最大值是( )A .13B .12C 3D .19.(多选题)(2022·云南曲靖·高三阶段练习)已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BCC B 内一点,则( )A .当1113C P C B =时,异面直线CP 与AD 所成角的正切值为2B .当11(01)C P C B λλ=<<时,四面体1D ACP 的体积为定值C .当点P 到平面ABCD 的距离等于到直线11A B 的距离时,点P 的轨迹为拋物线的一部分 D .当1112C P C B =时,四面体BCDP 的外接球的表面积为3π10.(多选题)(2022·辽宁·本溪高中高三阶段练习)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2AD DE ==,G 为线段AE 上的动点,则( )A .AE CF ⊥B .多面体ABCDEF 的体积为83C .若G 为线段AE 的中点,则GB //平面CEFD .点M ,N 分别为线段AF ,AC 上的动点,点T 在平面BCF 内,则MT NT +43 11.(多选题)(2022·广东·东涌中学高三期中)如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为AB ,AD ,1BB 的中点,点P 在11A C 上,//AP 平面EFG ,则以下说法正确的是( )A .点P 为11A C 的中点B .三棱锥P EFG -的体积为148C .直线1BB 与平面EFG 3D .过点E 、F 、G 作正方体的截面,所得截面的面积是3312.(多选题)(2022·安徽·阜阳师范大学附属中学高三阶段练习)已知ABC 为等腰直角三角形,AB AC =,其高3AD =,E 为线段BD 的中点,将ABC 沿AD 折成大小为32ππθθ⎛⎫< ⎪⎝⎭的二面角,连接BC ,形成四面体A BCD -,动点P 在ACD 内(含边界),且//PE 平面ABC ,则在θ变化的过程中( )A .AD BC ⊥B .E 点到平面ADC 的距离的最大值为322C .点P 在ADC △2D .当BP AC ⊥时,BP 与平面ADC 所成角的正切值的取值范围为)22,⎡+∞⎣13.(多选题)(2022·江苏省泰兴中学高三阶段练习)棱长为1的正方体1111ABCD A B C D -内部有一圆柱12O O ,此圆柱恰好以直线1AC 为轴,且圆柱上下底面分别与正方体中以1A C ,为公共点的3个面都有一个公共点,以下命题正确的是( )A .在正方体1111ABCD ABCD -内作与圆柱12O O 3B .无论点1O 在线段1AC 上如何移动,都有11BO B C ⊥C .圆柱12O O 的母线与正方体1111ABCD A B C D -所有的棱所成的角都相等D .圆柱12O O 外接球体积的最小值为π6 14.(多选题)(2022·江苏盐城·高三阶段练习)已知正四面体ABCD 的棱长为2球的球心为O .点E 满足(01)AE AB λλ=<<,(01)CF CD μμ=<<,过点E 作平面α平行于AC 和BD ,平面α分别与该正四面体的棱BC ,CD ,AD 相交于点M ,G ,H ,则( )A .四边形EMGH 的周长为是变化的B .四棱锥A EMGH -的体积的最大值为6481 C .当14λ=时,平面α截球O 47 D .当12λμ==时,将正四面体ABCD 绕EF 旋转90︒后与原四面体的公共部分体积为43 15.(2022·安徽·石室中学高三阶段练习)已知三棱锥V ABC -的高为3D E F ,,,分别为VC VA VB ,,的中点,若平面ABD ,平面BCE ,平面ACF 相交于O 点,则O 到平面ABC 的距离h 为___________.16.(2022·北京八十中高三期末)如图,在正方体ABCD —1111D C B A 中,E 为棱11B C 的中点.动点P 沿着棱DC 从点D 向点C 移动,对于下列四个结论:。

高中空间立体几何典型例题

高中空间立体几何典型例题

1 如图所示,正方体ABCD—A1B1C1D1 中,侧面对角线AB1,BC1 上分别C1F.有两点E,F,且B1E=求证:EF∥平面A B C D.证明方法一分别过E,F 作EM⊥AB于M,FN⊥BC于N,连接M N.∵BB1⊥平面ABCD,∴BB1⊥AB,BB1⊥BC,∴EM∥BB1,FN∥BB1,∴EM∥FN.又∵BF,∴EM=FN,1E=C1故四边形MNFE是平行四边形,∴EF∥M N.又MN 平面ABCD,EF 平面ABCD,所以EF∥平面A B C D.方法二过E作EG∥AB交BB1 于G,连接GF,则B E B G1 ,1B A B B1 1∵B1E= C1F,B1A= C1B,∴C E B G1 ,∴FG∥B1C1∥BC,1C B B B1 1又EG∩F G=G,AB∩B C=B,∴平面EFG∥平面ABCD,而EF 平面EFG,∴EF∥平面A B C D.2 已知P为△ABC所在平面外一点,G1、G2、G3分别是△PAB、△PCB、△PAC的重心.(1)求证:平面 G 1G 2G 3∥平面 ABC ;(2)求 S △G∶ S △ABC . 1G GG ∶ S △ ABC .2 3(1)证明 如图所示,连接P G 1、PG 2、PG 3 并延长分别与边A B 、BC 、AC 交于点 D 、E 、F ,连接D E 、EF 、FD ,则有P G 1∶ PD=2∶ 3, PG 2∶ PE=2∶ 3,∴G 1G 2∥DE. 又 G 1G 2 不在平面 ABC 内,∴G 1G 2∥平面 ABC. 同理 G 2G 3∥平面 ABC. 又因为 G 1G 2∩G 2G 3=G2,∴平面 G 1G 2G 3∥平面 ABC.(2)解 由(1)知 P G 1PG 2= PDPE2 ,∴G1G 2=1G 2=32 DE.3又 DE=1 AC ,∴G1G 2=1G 2=21 AC.3同理 G 2G 3= 1 AB ,G1G 3=1G 3=31 BC. 3 ∴△G 1G 2G 3∽△CAB ,其相似比为 1∶ 3, ∴S△G∶ S △ ABC =1∶ 9. 1G GG ∶ S △ ABC =1∶ 9.2 33 如图所示,已知 S 是正三角形 ABC 所在平面外的一点, 且 SA=SB=SC , SG 为△SAB 上的高,D 、E 、F 分别是 AC 、BC 、SC 的中点,试判断SG 与平面 DEF 的位置关系,并给予证明.解SG∥平面DEF,证明如下:方法一连接C G交DE于点H,如图所示.∵DE是△ABC的中位线,∴DE∥AB.在△ACG中,D是AC的中点,且DH∥A G.∴H为CG的中点.∴FH是△SCG的中位线,∴FH∥SG.又SG 平面DEF,FH 平面DEF,∴SG∥平面DEF.方法二∵EF为△SBC的中位线,∴EF∥SB.∵EF 平面SAB,SB 平面SAB,∴EF∥平面SAB.同理可证,DF∥平面SAB,EF∩DF=F,∴平面SAB∥平面DEF,又SG 平面SAB,∴SG∥平面DEF.5 如图所示,在正方体ABCD—A1B1C1D1 中,E、F、G、H分别是BC、CC1、C1D1、A1A的中点. 求证:(1)BF∥HD1;(2)EG∥平面BB1D1D;(3)平面BDF∥平面B1D1H.证明(1)如图所示,取BB1的中点M,易证四边形HMC1D1 是平行四边形,∴HD1∥MC1.又∵MC1∥BF,∴BF∥HD1.(2)取BD的中点O,连接EO,D1O,则OE 1DC,2又D1G 1 DC,∴OE D1G,1G,2∴四边形OEGD1 是平行四边形,∴GE∥D1O.又D1O 平面BB1D1D,∴EG∥平面BB1D1D.(3)由(1)知D1H∥BF,又BD∥B1D1,B1D1、HD1 平面HB1D1,BF、BD 平面BDF,且B1D1∩HD1=D1,DB∩B F=B,∴平面BDF∥平面B1D1H.6 如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH,CD∥平面E F G H.(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.(1)证明∵四边形EFGH为平行四边形,∴EF∥H G.∵HG 平面ABD,∴EF∥平面ABD.∵EF 平面ABC,平面ABD∩平面ABC=AB,∴EF∥AB. ∴AB∥平面EFGH.同理可证, CD ∥平面 E F G H .(2) 解 设 EF=x (0<x <4),由于四边形 EFGH 为平行四边形,∴C F x.CB 4则FG = 6 BF = BCB C =1- CF BCx .4从而 FG=6-x3.2∴四边形 EFGH 的周长 l =2( x+6-x3)=12- x.2又 0<x <4, 则有 8<l <12,∴四边形 EFGH 周长的取值范围是( 8,12).7 如图所示,在正方体 ABCD —A 1B 1C 1D 1 中,O 为底面 ABCD 的中心,P 是 DD 1 的中点,设 Q 是 CC 1 上的点,问:当点 Q 在什么位置时,平 面 D 1BQ ∥平面 PAO ? 解 当 Q 为 CC1 的中点时, 平面 D 1BQ ∥平面 P A O .∵Q 为 CC 1 的中点,P 为 DD 1 的中点,∴ QB ∥PA. ∵P 、O 为 DD 1、DB 的中点,∴ D 1B ∥PO . 又 PO ∩P A =P ,D 1B ∩QB=B , D 1B ∥平面 PAO ,QB ∥平面 PAO , ∴平面 D 1BQ ∥平面 P A O .8 正方形 ABCD 与正方形 ABEF 所在平面 相交于 AB ,在 AE 、BD 上各有一点 P 、Q , 且 A P =D Q .求证:PQ∥平面BC E.证明方法一如图所示,作PM∥AB交BE于M,作QN∥AB交BC 于N,连接M N.∵正方形ABCD和正方形ABEF有公共边AB,∴AE=BD.又∵AP=DQ,∴PE=QB,又∵PM∥AB∥QN,∴P M ,PEAB AE Q N BQ ,DC BDP M QN ,∴PM QN,AB DC∴四边形PMNQ为平行四边形,∴PQ∥M N.又MN 平面BCE,PQ 平面BCE,∴PQ∥平面BC E.方法二如图所示,连接AQ,并延长交BC于K,连接EK,∵AE=BD,AP=DQ,∴PE=BQ,∴AP =PE DQ BQ①又∵AD∥BK,∴DQ = BQAQQK②由①②得AP =PE AQ ,∴PQ∥EK. QK又PQ 平面BCE,EK 平面BCE,∴PQ∥平面BC E.方法三如图所示,在平面ABEF 内,过点P作PM∥BE,交AB于点M,连接Q M.∵PM∥BE,PM 平面BCE,即PM∥平面BCE,∴AP =PE A M ①MB又∵AP=DQ,∴PE=BQ,∴AP =PE D Q ②BQ由①②得AM =MB DQ ,∴MQ∥AD,BQ∴MQ∥BC,又∵MQ 平面BCE,∴MQ∥平面BCE.又∵PM∩M Q=M,∴平面PMQ∥平面BCE,PQ 平面PMQ,∴PQ∥平面BC E.8 如下的三个图中, 上面的是一个长方体截去一个角所得多面体的直观图, 它的正视图和左视图在下面画出( 单位:cm).(1) 在正视图下面, 按照画三视图的要求画出该多面体的俯视图;(2) 按照给出的尺寸, 求该多面体的体积;(3) 在所给直观图中连接B C′, 证明: BC′∥平面EFG.(1) 解如图(1) 所示.图(1)(2) 解所求多面体体积V=V长方体- V正三棱锥=4×4×6- 1 ×(3 1×2×2) ×2=2284 (cm3).3).3(3) 证明如图(2), 在长方体ABCD—A′B′C′D′中,连接A D′,则A D′∥BC′.因为E, G分别为AA′, A′D′的中点,所以AD′∥E G,从而EG∥BC′.又BC′平面EFG, 图(2)所以BC′∥面EFG.9. 如图所示,正四棱锥P—ABCD的各棱长均为13,M,N分别为PA,BD上的点,且PM∶MA=BN∶ND=5∶8.(1)求证:直线MN∥平面PBC;(2)求线段M N的长.(1)证明连接A N并延长交B C于Q,连接P Q,如图所示.∵AD∥BQ,∴△AND∽△QNB,∴AN = NQDN = NB AD = BQ8 , 5又∵PM = MABN = ND5 , 8∴AM = MP AN = NQ 8 ,∴MN ∥PQ , 5又∵PQ 平面 PBC ,MN 平面 PBC , ∴MN ∥平面 PBC .(2)解 在等边△ PBC 中,∠ PBC=60°, 在△PBQ 中由余弦定理知 PQ2=P B 2+BQ 2-2 PB · BQcos ∠PBQ=132+2+265-2 ×13×865 ×81 = 28281,64∴PQ= 91,8∵MN ∥PQ ,MN ∶ PQ=8∶ 13,∴M N = 91 × 88 =7.1310 在四棱锥P -ABCD 中,底面 ABCD 是平行四边形, M ,N 分别是 AB ,PC 的中点,求证:M N ∥平面 PAD .证明:方法一,取 PD 中点 E ,连接A E ,NE . ∵底面 ABCD 是平行四边形, M ,N 分别是 AB ,PC 的中点,1∴MA ∥CD ,.MACD 2 ∵E 是 PD 的中点, 1∴NE ∥CD ,. NECD 2∴MA∥NE,且MA=NE,∴AENM是平行四边形,∴MN∥AE.又AE 平面PAD,MN 平面PAD,∴MN∥平面PAD.方法二取CD中点F,连接MF,NF.∵MF∥AD,NF∥PD,∴平面MNF∥平面PAD,∴MN∥平面PAD.11 在直三棱柱ABC-A1B1C1 中,AA1=AC,AB⊥AC,求证:A1C⊥BC1.【分析】要证明“线线垂直”,可通过“线面垂直”进行转化,因此设法证明A1C垂直于经过BC1 的平面即可.证明:连接AC1.∵ABC-A1B1C1 是直三棱柱,∴AA1⊥平面ABC,∴AB⊥AA1.又AB⊥AC,∴AB⊥平面A1ACC1,∴A1C⊥A B.①又AA1=AC,∴侧面A1ACC1 是正方形,∴A1C⊥AC1.②由①,②得A1C⊥平面ABC1,∴A1C⊥BC1.12 在三棱锥P-ABC中,平面PAB⊥平面ABC,AB⊥BC,AP⊥PB,求证:平面PAC⊥平面PBC.【分析】要证明“面面垂直”,可通过“线面垂直”进行转化,而“线面垂直”又可以通过“线线垂直”进行转化.证明:∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,且AB⊥BC,∴BC⊥平面PAB,∴AP⊥BC.又AP⊥PB,∴AP⊥平面PBC,又AP平面PAC,∴平面PAC⊥平面PBC.13如图,在斜三棱柱ABC-A1B1C1中,侧面A1ABB1是菱形,且垂直于底面ABC,∠A1AB=60°,E,F分别是AB1,BC的中点.(Ⅰ)求证:直线EF∥平面A1ACC1;(Ⅱ)在线段AB上确定一点G,使平面EFG⊥平面ABC,并给出证明.证明:(Ⅰ)连接A1C,A1E.∵侧面A1ABB1是菱形,E是AB1的中点,∴E也是A1B的中点,又F是BC的中点,∴EF∥A1C.∵A1C平面A1ACC1,EF平面A1ACC1,∴直线EF∥平面A1ACC1.(2)解:当B GGA13时,平面EFG⊥平面ABC,证明如下:连接EG,FG.∵侧面A1ABB1是菱形,且∠A1AB=60°,∴△A1AB是等边三角形.∵E是A1B的中点,B GGA13,∴EG⊥AB.∵平面A1ABB1⊥平面ABC,且平面A1ABB1∩平面ABC=AB,∴EG⊥平面ABC.又EG平面EFG,∴平面EFG⊥平面ABC.14如图,正三棱柱ABC-A1B1C1中,E是AC的中点.(Ⅰ)求证:平面BEC1⊥平面ACC1A1;(Ⅱ)求证:AB1∥平面BEC1.证明:(Ⅰ)∵ABC-A1B1C1是正三棱柱,∴AA1⊥平面ABC,∴BE⊥AA1.∵△ABC是正三角形,E是AC的中点,∴BE⊥AC,∴BE⊥平面ACC1A1,又BE平面BEC1,∴平面BEC1⊥平面ACC1A1.(Ⅱ)证明:连接B1C,设BC1∩B1C=D.∵BCC1B1是矩形,D是B1C的中点,∴DE∥AB1.又DE平面BEC1,AB1平面BEC1,∴AB1∥平面BEC1.15在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB2DC45.(Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD;(Ⅱ)求四棱锥P-ABCD的体积.证明:(Ⅰ)在△ABD中,由于AD=4,BD=8,AB45,22 2 所以AD+BD=AB.故AD⊥BD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD平面ABCD,所以BD⊥平面PAD,又BD平面MBD,故平面MBD⊥平面PAD.(Ⅱ)解:过P作PO⊥AD交AD于O,由于平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因此PO为四棱锥P-ABCD的高,3又△PAD是边长为4的等边三角形.因此42 3.PO2在底面四边形ABCD中,AB∥DC,AB=2DC,所以四边形ABCD是梯形,在Rt△ADB中,斜边AB边上的高为4485855,即为梯形ABCD的高,254585所以四边形ABCD的面积为24.S故25VP ABCD13242316 3.16.如图,三棱锥P-ABC的三个侧面均为边长是1的等边三角形,M,N分别为PA,BC的中点.(Ⅰ)求MN的长;(Ⅱ)求证:PA⊥BC.(Ⅰ)解:连接MB,MC.∵三棱锥P-ABC的三个侧面均为边长是1的等边三角形,3∴MB MC,且底面△ABC也是边长为1的等边三角形.2∵N为BC的中点,∴MN⊥BC.在Rt△MNB 中,MN MB2BN222(Ⅱ)证明:∵M是PA的中点,∴PA⊥MB,同理PA⊥MC.∵MB∩MC=M,∴PA⊥平面MBC,又BC平面MBC,∴PA⊥BC.17.如图,在四面体ABCD中,CB=CD,AD⊥BD,且E、F 分别是AB、BD的中点.求证:( Ⅰ) 直线EF∥平面ACD;( Ⅱ) 平面EFC⊥平面BCD..证明:( Ⅰ) ∵E、F 分别是AB、BD的中点,∴EF是△ABD的中位线,∴EF∥AD.又EF 平面ACD,AD 平面ACD,∴直线EF∥平面ACD.( Ⅱ) ∵EF∥AD,AD⊥BD,∴EF⊥BD.∵CB=CD,F 是BD的中点,∴CF⊥BD.∵CF∩EF=F,∴BD⊥平面CEF.∵BD 平面BCD,∴平面EFC⊥平面BCD.18 如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=1 1 ∠FAB=90°,BC∥AD,BC AD,BE // AF, BE AF2 2 FD的中点.,G,H分别为FA,( Ⅰ) 证明:四边形BCHG是平行四边形;( Ⅱ) C,D,F,E四点是否共面?为什么?1(Ⅰ)由题意知,FG=GA,FH=HD,∴GH∥AD,,GH AD21又BC∥AD,BC AD,∴GH∥BC,GH=BC,2∴四边形BCHG是平行四边形.(Ⅱ)C,D,F,E四点共面.理由如下:1由BE∥AF,BF AF,G是FA的中点,2得BE∥FG,且BE=FG.∴EF∥BG.由(Ⅰ)知BG∥CH,∴EF∥CH,故EC,FH共面,又点D在直线FH上,所以C,D,F,E四点共面.。

高中立体几何典型题及解析

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题)51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。

求:AM 及CN 所成的角的余弦值;解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。

∵N 为AD 的中点, NE∥AM 省 ∴NE=21AM 且E 为MD 的中点。

设正四面体的棱长为1, 则NC=21·23= 43且ME=21MD=43 在Rt△MEC 中,CE 2=ME 2+CM 2=163+41=167∴cos ∠CNE=3243432167)43()43(222222-=⋅⋅-+=⋅⋅-+NECN CE NE CN ,又∵∠CNE ∈(0, 2π)∴异面直线AM 及CN 所成角的余弦值为32.注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。

2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。

最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 。

求异面直线AB 及CD 所成的角。

解析:在BD 上取一点G ,使得,连结EG 、FG 在ΔBCD 中,,故EG//CD ,并且, 所以,EG=5;类似地,可证FG//AB ,且, 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠FGE=215327532222222-=⋅⋅-+=⋅⋅-+GF EG EF GF EG ,故∠FGE=120°。

另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。

高中空间立体几何经典例题精选全文完整版

高中空间立体几何经典例题精选全文完整版

可编辑修改精选全文完整版立体几何一、选择题1.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D2 2.(20XX 年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C 【答案】A3 3.(20XX 年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 4.(20XX 年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B .2C .2-12D .2+12【答案】C5.(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面是边长为3.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A.512πB .3πC.4πD.6π【答案】B6.(20XX年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C7.(20XX年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为,m n,那么m n+=()A.8 B.9 C.10 D.11【答案】A二、填空题8.(20XX年高考北京卷(理))如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为__________.1D1BPD1CCEBA1A【答案】2559.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2410.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-11.(20XX 年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π12.(20XX 年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______AB C1A D EF1B 1C【答案】3π三、解答题13.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB14.(20XX 年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,113tan 6233BC CC BC C =⋅∠==从而2333ABC S BC ∆==因此该三棱柱的体积为1336183ABC V S AA ∆=⋅==15.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))B 1 A 1C 1ACB如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点 ∵E.F 分别是SA.SB 的中点 ∴EF ∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF ∥平面ABC 同理:FG ∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC ∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SAB AF ⊥SB∴AF ⊥平面SBC 又∵BC ⊆平面SBC ∴AF ⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC ⊥平面SAB 又∵SA ⊆平面SAB ∴BC ⊥SA16.(20XX 年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.C 11A【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=而1AD C ∆中,11AC DC AD ==故132AD C S ∆= AB CSGFE所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.17.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD=由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故2OH =,从而2A H '== 所以cos OH A HO A H '∠=='所以二面角ACD B '--向量法:以O 点为原点,建立空间直角坐标系O -.CO BDEA CDOBE'A图1图2C DO BE'AH则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,1,n =- 由(Ⅰ)知,(OA '=为平面CDB 的一个法向量,所以3cos ,3n OA n OA n OA'⋅'===',即二面角A CD B '--的平面角的余弦值为5.18.(20XX年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为2, 求线段AM的长.6【答案】19.(20XX年高考陕西卷(理))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,12AB AA==(Ⅰ) 证明: A1C⊥平面BB1D1D;(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.1A【答案】解:(Ⅰ) BDOAABCDBDABCDOA⊥∴⊂⊥11,,面且面;又因为,在正方形AB CD 中,BDCAACACAACABDAACOABDAC⊥⊂⊥=⋂⊥11111,,故面且面所以;且.在正方形AB CD中,AO = 1 . .111=∆OAOAART中,在OECAOCEAEDB1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又OOBDDDBBODDBBBD=⋂⊂⊂111111E.E,DDBBCA111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O为原点,以OC为X轴正方向,以OB为Y轴正方向.则)1,0,1()1,1,1(),10(),1(,0,1,0111-=⇒CABACB,,,,)(.由(Ⅰ)知, 平面BB1D1D的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OCOBCAn设平面OCB1的法向量为,则0,0,2122=⋅=⋅OCnOBnn).1-,1,0(法向量2=n为解得其中一个21221||||||,cos|cos212111=⋅=⋅=><=nnnnnnθ.所以,平面OCB1与平面BB1D1D的夹角θ为3π1A。

高考数学复习—立体几何:(二)空间直线平面关系判断与证明—平行与垂直关系证明(试题版)

高考数学复习—立体几何:(二)空间直线平面关系判断与证明—平行与垂直关系证明(试题版)

【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP .►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC . ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF .[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG .►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H .【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH .3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F .题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE .►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离.【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB. (1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC.[例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a ⊂α,b ⊂α,且l ⊥a ,l ⊥b ,则l ⊥αD.若a ⊥α,a ∥β,则α⊥β 6.(2015·山东二模)设m ,n 是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是( ) A.当n ⊥α时,“n ⊥β”是“α∥β”的充要条件B.当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件C.当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件D.当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件 7.(2016·浙江)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m ∥α,n ⊥β,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n 8.(2013北京)如图,四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD .E 和F 分别是CD 和PC 的中点.求证: (1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .9.[2014·山东文]如图,四棱锥P -ABCD 中,AP ⊥平面PCD , AD ∥BC ,AB =BC=12AD ,E ,F 分别为线段AD ,PC 的中点. (1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面P AC .10.(2013全国Ⅱ文)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.11.(2013·辽宁)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点. (1)求证:BC ⊥平面P AC ; (2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .12.[2014·课标Ⅱ文]如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P - ABD 的体积V =34,求A到平面PBC 的距离.13.(2015江苏)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.14.(2015广东文)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3. (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.15.(2015课标Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD 中,AD ∥B C,∠BAD =π2, AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图2中△A 1BE 的位置,得到四棱锥A 1﹣BCDE . (Ⅰ)证明:CD ⊥平面A 1OC ;(Ⅱ)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1﹣BCDE 的体积为362,求a 的值.17.(2016·课标Ⅱ文)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置. (1)证明:AC ⊥HD ′(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′­ABCFE 的体积.18.(2016·课标Ⅲ文)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求四面体N -BCM 的体积.19.[2017全国I 文]如图,在四棱锥P-ABCD 中,AB//CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,∠ADP =90°,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.20.[2017全国II 文]如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 面积为27,求四棱锥P-ABCD 的体积.21.[2017全国III 文]在正方体ABCD-A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A.A 1E ⊥DC 1B.A 1E ⊥BDC.A 1E ⊥BC 1D.A 1E ⊥AC22.[2017全国III 文]如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.。

(精选试题附答案)高中数学第八章立体几何初步典型例题

(精选试题附答案)高中数学第八章立体几何初步典型例题

(名师选题)(精选试题附答案)高中数学第八章立体几何初步典型例题单选题1、下列说法正确的有()①两个面平行且相似,其余各面都是梯形的多面体是棱台;②经过球面上不同的两点只能作一个大圆;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A.1个B.2个C.3个D.4个答案:A解析:根据棱台、球、正方体、圆锥的几何性质,分析判断,即可得答案.①中若两个底面平行且相似,其余各面都是梯形,并不能保证侧棱延长线会交于一点,所以①不正确;②中若球面上不同的两点恰为球的某条直径的两个端点,则过此两点的大圆有无数个,所以②不正确;③中底面不一定是正方形,所以③不正确;④中圆锥的母线长相等,所以轴截面是等腰三角形,所以④是正确的.故选:A2、某正方体被截去部分后得到的空间几何体的三视图如图所示,则该空间几何体的体积为()A .132B .223C .152D .233答案:C分析:根据几何体的三视图,可知该几何体是棱长为2的正方体截去两个小三棱锥,根据三棱锥的体积公式即可求解.解:根据几何体的三视图,该空间几何体是棱长为2的正方体截去两个小三棱锥,由图示可知,该空间几何体体积为V =23−(13×12×12×1+13×12×12×2)=152,故选:C.3、下列命题中,正确的是( )A .三点确定一个平面B .垂直于同一直线的两条直线平行C .若直线l 与平面α上的无数条直线都垂直,则l ⊥αD .若a 、b 、c 是三条直线,a ∥b 且与c 都相交,则直线a 、b 、c 在同一平面上答案:D分析:利用空间点、线、面位置关系直接判断.A.不共线的三点确定一个平面,故A 错误;B.由墙角模型,显然B错误;C.根据线面垂直的判定定理,若直线l与平面α内的两条相交直线垂直,则直线l与平面α垂直,若直线l与平面α内的无数条平行直线垂直,则直线l与平面α不一定垂直,故C错误;D.因为a//b,所以a、b确定唯一一个平面,又c与a、b都相交,故直线a、b、c共面,故D正确;故选:D.4、已知三棱锥P−ABC,其中PA⊥平面ABC,∠BAC=120°,PA=AB=AC=2,则该三棱锥外接球的表面积为()A.12πB.16πC.20πD.24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC的外心为G,O为球心,所以OG⊥平面ABC,因为PA⊥平面ABC,所以OG//PA,设D是PA中点,因为OP=OA,所以DO⊥PA,因为PA⊥平面ABC,AG⊂平面ABC,所以AG⊥PA,因此OD//AG,PA=1,因此四边形ODAG是平行四边形,故OG=AD=12由余弦定理,得)=2√3,BC=√AB2+AC2−2AB⋅AC⋅cos120°=√4+4−2×2×2×(−12⇒AG=2,由正弦定理,得2AG=√3√32所以该外接球的半径R满足R2=(OG)2+(AG)2=5⇒S=4πR2=20π,故选:C.小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.5、如图,已知正方体的棱长为a ,沿图1中对角面将它分割成两个部分,拼成如图2的四棱柱,则该四棱柱的全面积为( )A .(8+2√2)a 2B .(2+4√2)a 2C .(4+2√2)a 2D .(6−4√2)a 2答案:C分析:拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,据此变化,进行求解. 由题意,拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,由于截面为矩形,长为√2a ,宽为a ,所以面积为√2a 2,所以拼成的几何体的表面积为4a 2+2√2a 2=(4+2√2)a 2.故选:C.6、下图是一个圆台的侧面展开图,若两个半圆的半径分别是1和2,则该圆台的体积是( )A .7√2π24B .7√3π24C .7√2π12D .7√3π12答案:B分析:先计算出上下底面的半径和面积,再求出圆台的高,按照圆台体积公式计算即可.如图,设上底面的半径为r ,下底面的半径为R ,高为ℎ,母线长为l ,则2πr =π⋅1,2πR =π⋅2,解得r =12,R =1,l =2−1=1,ℎ=√l 2−(R −r )2=√12−(12)2=√32, 设上底面面积为S ′=π⋅(12)2=π4,下底面面积为S =π⋅12=π,则体积为13(S +S ′+√SS ′)ℎ=13(π+π4+π2)⋅√32=7√3π24. 故选:B.7、如图所示,在三棱柱ABC −A 1B 1C 1中,侧棱AA 1⊥底面A 1B 1C 1,∠BAC =90°,AB =AA 1=1,D 是棱CC 1的中点,P 是AD 的延长线与A 1C 1的延长线的交点,若点Q 在线段B 1P 上,则下列结论中正确的是( ).A .当点Q 为线段B 1P 的中点时,DQ ⊥平面A 1BDB .当点Q 为线段B 1P 的三等分点时,DQ ⊥平面A 1BDC .在线段B 1P 的延长线上,存在一点Q ,使得DQ ⊥平面A 1BDD .不存在DQ 与平面A 1BD 垂直答案:D分析:依据线面垂直性质定理,利用反证法即可否定选项ABC ;按照点Q 为线段B 1P 的中点和点Q 不为线段B 1P的中点两种情况利用反证法证明选项D判断正确.连接AB1,交A1B于H在三棱柱ABC−A1B1C1中,侧棱AA1⊥底面A1B1C1,AB=AA1=1,则四边形A1B1BA为正方形,则AB1⊥A1B又∠BAC=90°,即AB⊥AC,又AA1⊥AC,AB∩AA1=A,AA1⊂面A1B1BA,AB⊂面A1B1BA则AC⊥面A1B1BA,则AC⊥A1B又AB1⊥A1B,AB1∩AC=A,AB1⊂面AB1C,AC⊂面AB1C则A1B⊥面AB1C,选项A:当点Q为线段B1P的中点时,又D是棱CC1的中点,则DQ//AB1若DQ⊥平面A1BD,则AB1⊥平面A1BD又A1B⊥面AB1C,则面AB1C//平面A1BD,这与AB1∩A1B=H矛盾,故假设不成立,即当点Q为线段B1P的中点时,DQ⊥平面A1BD不正确;选项B:当点Q为线段B1P的三等分点时,又D是棱CC1的中点,则DQ//AB1不成立,即DQ与AB1为相交直线,若DQ⊥平面A1BD,则DQ⊥A1B又AB1⊥A1B,DQ与AB1为相交直线,AB1⊂面AB1P,DQ⊂面AB1P则A1B⊥面AB1P,又A1B⊥面AB1C,则面AB1P//面AB1C这与面AB1P∩面AB1C=AB1矛盾,故假设不成立,即当点Q为线段B1P的点三等分时,DQ⊥平面A1BD,不正确;选项C:在线段B1P的延长线上一点Q,又D是棱CC1的中点,则DQ//AB1不成立,即DQ与AB1为相交直线,若DQ⊥平面A1BD,则DQ⊥A1B又AB1⊥A1B,DQ与AB1为相交直线,AB1⊂面AB1P,DQ⊂面AB1P则A1B⊥面AB1P,又A1B⊥面AB1C,则面AB1P//面AB1C这与面AB1P∩面AB1C=AB1矛盾,故假设不成立,即在线段B1P的延长线上,存在一点Q,使得DQ⊥平面A1BD不正确;选项D:由选项A可知,点Q为线段B1P的中点时,DQ⊥平面A1BD不成立;假设点Q在线段B1P上,且不是中点,又D是棱CC1的中点,则DQ//AB1不成立,即DQ与AB1为相交直线,若DQ⊥平面A1BD,则DQ⊥A1B又AB1⊥A1B,DQ与AB1为相交直线,AB1⊂面AB1P,DQ⊂面AB1P则A1B⊥面AB1P,又A1B⊥面AB1C,则面AB1P//面AB1C这与面AB1P∩面AB1C=AB1矛盾,故假设不成立,即点Q在线段B1P上,且不是中点时,DQ⊥平面A1BD不正确;故不存在DQ与平面A1BD垂直.判断正确.故选:D8、设α,β为两个不同的平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α,β垂直于同一平面C.α,β平行于同一条直线D.α内的任何直线都与β平行答案:D分析:根据面面平行、相交的知识确定正确选项.A选项,α内有无数条直线与β平行,α与β可能相交,A选项错误.B选项,α,β垂直于同一平面,α与β可能相交,B选项错误.C选项,α,β平行于同一条直线,α与β可能相交,C选项错误.D选项,α内的任何直线都与β平行,则α//β,D选项正确.故选:D9、在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P−ABCD为阳马,侧棱PA⊥底面ABCD,且PA=2√2,AB=BC=2,则该阳马的外接球的表面积为()A.4πB.8πC.16πD.32π答案:C分析:补全该阳马所得到的长方体,则该长方体的体对角线即为该阳马外接球的直径,求出外接球半径,即可得出答案.解:因为四棱锥P−ABCD为阳马,侧棱PA⊥底面ABCD,如图,补全该阳马所得到的长方体,则该长方体的体对角线即为该阳马外接球的直径,设外接球半径为R,则(2R)2=AB2+BC2+PA2=4+4+8=16,所以R=2,所以该阳马的外接球的表面积为4πR2=16π.故选:C.10、球面上两点之间的最短连线的长度,就是经过这两个点的大圆在这两点间的一段劣弧的长度(大圆就是经过球心的平面截球面所得的圆),我们把这个弧长叫做两点的球面距离.已知正△ABC 的项点都在半径为2的球面上,球心到△ABC 所在平面距离为2√63,则A 、B 两点间的球面距离为( ) A .πB .π2C .2π3D .3π4答案:C分析:设球心为点O ,计算出∠AOB ,利用扇形弧长公式可求得结果.设球心为点O ,平面ABC 截球O 所得截面圆的半径为r =√22−(2√63)2=2√33,由正弦定理可得4√33=AB sin∠ACB ,∴AB =4√33sin π3=2,又∵OA =OB =2,所以,△AOB 为等边三角形,则∠AOB =π3,因此,A 、B 两点间的球面距离为2×π3=2π3. 故选:C.小提示:思路点睛:求球面距离,关键就是要求出球面上两点与球心所形成的角,结合扇形的弧长公式求解,同时在计算球的截面圆半径时,利用公式r =√R 2−d 2(其中r 为截面圆的半径,R 为球的半径,d 为球心到截面的距离)来计算.填空题11、词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体PABC ,其中PA ⊥平面ABC ,PA =AC =2,BC =2√2,则四面体PABC 的外接球的表面积为______.答案:16π分析:确定外接球球心求得球半径后可得表面积.由于PA⊥平面ABC,因此PA与底面上的直线AC,AB,BC都垂直,从而AC与AB不可能垂直,否则△PBC是锐角三角形,由于AC<BC,因此有AC⊥BC,而PA与AC是平面PAC内两相交直线,则BC⊥平面PAC,PC⊂平面PAC,所以BC⊥PC,所以PB的中点O到P,A,B,C四个点的距离相等,即为四面体PABC的外接球球心.PB2=PA2+AB2=PA2+AC2+BC2=22+22+(2√2)2=16,PB=4,)2=4π×22=16π.所以所求表面积为S=4π×(PB2所以答案是:16π.12、已知一个圆锥的侧面积是底面面积的2倍,则该圆锥的母线与其底面所成的角的大小为______.答案:π32πrl=2⋅π⋅分析:设圆锥的母线长为l,底面半径为r,圆锥的母线与其底面所成的角为θ,根据面积关系可得12r2,即可得到答案;设圆锥的母线长为l,底面半径为r,圆锥的母线与其底面所成的角为θ,则122πrl=2⋅π⋅r2⇒rl=12,∴cosθ=12⇒θ=60°,所以答案是:π313、如图所示,过三棱台上底面的一边A1C1,作一个平行于棱BB1的截面,与下底面的交线为DE.若D、E分别是AB、BC的中点,则V A1B1C1−DBEV A1B1C1−ABC=______.答案:37分析:证得S△A1B1C1=14S△ABC,然后结合棱台与棱柱的体积公式即可求出结果.因为BB1//平面DEC1A1,且平面BB1C1C∩平面DEC1A1=C1E,所以BB1//C1E,又因为B1C1//BE,所以四边形BB1C1E为平行四边形,所以B1C1=BE,且E分别是BC的中点,所以B1C1=1 2BC,同理A1B1=12AB,因此S△A1B1C1=14S△ABC,设上底面的面积为S,高为ℎ,则下底面的面积为4S,所以V A1B1C1−DBEV A1B1C1−ABC =13(S+√S⋅4S+4S)ℎ=37,所以答案是:37.14、如图,已知平面四边形ABCD中,△ABD是边长为2的正三角形,BC⊥CD,以BD为棱折成直二面角A−BD−C,若折叠后A,B,C,D四点在同一球面上,则该球的体积为___________.答案:32√327π分析:如图,折叠后,取BD的中点H,连接CH,AH,由面面垂直的性质可得AH⊥平面BCD,由BC⊥CD,可得球心O在AH上,设球半径为R,求得半径R,再根据球的体积公式即可得出答案.解:如图,折叠后,取BD的中点H,连接CH,AH,因为△ABD是边长为2的正三角形,所以AH⊥BD,又二面角A−BD−C为直二面角,平面ABD⊥平面BCD,所以AH⊥平面BCD,则AH=√3,HC=1,又BC⊥CD,所以球心O在AH上,设球半径为R,则OA=OB=R,OH=√3−R,所以R2=(√3−R)2+1,解得R=2√33,所以球的体积为V=43π(2√33)3=32√327π.所以答案是:32√327π.15、如图,四棱锥S-ABCD的底面ABCD为正方形,SD⊥底面ABCD,则下列结论中正确的有______个.①AC⊥SB;②AB∥平面SCD;③SA与平面ABCD所成的角是∠SAD;④AB与SC所成的角等于DC与SC所成的角.答案:4分析:利用线面垂直的判定定理AC⊥平面SBD,进而可判定①正确.根据AB∥CD,利用线面平行的判定定理可证②正确.根据线面所成角的定义可判定③正确.根据AB∥CD,由异面直线所成角的定义可判定④正确.因为SD⊥底面ABCD,所以AC⊥SD.因为四边形ABCD是正方形,所以AC⊥BD.又BD∩SD=D,所以AC⊥平面SBD,所以AC⊥SB,故①正确.因为AB∥CD,AB⊄平面SCD,CD⊂平面SCD,所以AB∥平面SCD,故②正确.因为AD是SA在平面ABCD内的射影,所以SA与平面ABCD所成的角是∠SAD.故③正确.因为AB∥CD,所以AB 与SC所成的角等于DC与SC所成的角,故④正确.所以答案是:4.解答题16、如图所示,在四棱锥P−ABCD中,底面ABCD为正方形,E为侧棱PC的中点.(1)求证:经过A、B、E三点的截面平分侧棱PD;(2)若PA⊥底面ABCD,且PA=AD=2,求四面体ABEP的体积..答案:(1)证明见解析;(2)23分析:(1)设截面ABE与侧棱PD交于点F,连结EF,AF,证明CD//EF.即得F为PD的中点,即截面ABE平分侧棱PD;(2)取PB中点H,连EH,证明EH⊥平面PAB,即得解.(1)证明:设截面ABE与侧棱PD交于点F,连结EF,AF.因为底面ABCD为矩形,所以AB//CD.又AB⊄平面PCD,且CD⊂平面PCD,所以AB//平面PCD.又AB⊂平面ABE,且平面ABE∩平面PCD=EF,所以AB//EF.又因为AB//CD,所以CD//EF.因为E为PC的中点,所以F为PD的中点,即截面ABE平分侧棱PD. (2)∵PA⊥平面ABCD,BC⊆平面ABCD,∴BC⊥PA,又BC⊥AB,∴BC⊥平面PAB.取PB中点H,连EH,∵E是PC中点,∴EH//BC,即EH=1且EH⊥平面PAB,又Rt△PAB的面积S=12PA⋅AB=2.∴四面体ABEP的体积V=V E−PAB=13⋅S⋅EH=23.小提示:方法点睛:求几何体的体积常用的方法有:(1)规则的公式法;(2)不规则的割补法;(3)等体积法. 要根据已知条件灵活选择方法求解.17、长方体ABCD−A1B1C1D1中,E,F分别为棱AA1,CC1的中点.(1)求证:D1E//BF;(2)求证:∠B1BF=∠A1ED1.答案:(1)证明见解析;(2)证明见解析.分析:(1)先证明四边形EMC1D1为平行四边形,可得D1E//MC1,再证明四边形MBFC1为平行四边形,得BF//MC1,从而得D1E//BF;(2)根据等角定理证明即可.证明:(1)如图,取BB1的中点M,连接EM,C1M.在矩形ABB1A1中,易得EM//A1B1,EM=A1B1因为A1B1//C1D1,A1B1=C1D1,所以EM//C1D1,EM=C1D1所以四边形EMC1D1为平行四边形,所以D1E//MC1.在矩形BCC1B1中,易得MB//C1F,MB=C1F.所以四边形MBFC1为平行四边形,所以BF//MC1,所以D1E//BF.(2)因为D1E//BF,BB1//EA1,又∠B1BF与∠A1ED1的对应边方向相同,所以∠B1BF=∠A1ED1.18、如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P−ABCD的体积.答案:(1)证明见解析;(2)√2.3分析:(1)由PD⊥底面ABCD可得PD⊥AM,又PB⊥AM,由线面垂直的判定定理可得AM⊥平面PBD,再根据面面垂直的判定定理即可证出平面PAM⊥平面PBD;(2)由(1)可知,AM⊥BD,由平面知识可知,△DAB~△ABM,由相似比可求出AD,再根据四棱锥P−ABCD的体积公式即可求出.(1)因为PD⊥底面ABCD,AM⊂平面ABCD,所以PD⊥AM,又PB⊥AM,PB∩PD=P,所以AM⊥平面PBD,而AM⊂平面PAM,所以平面PAM⊥平面PBD.(2)[方法一]:相似三角形法由(1)可知AM⊥BD.于是△ABD∽△BMA,故ADAB =ABBM.因为BM=12BC,AD=BC,AB=1,所以12BC2=1,即BC=√2.故四棱锥P−ABCD的体积V=13AB⋅BC⋅PD=√23.[方法二]:平面直角坐标系垂直垂直法由(2)知AM⊥DB,所以k AM⋅k BD=−1.建立如图所示的平面直角坐标系,设BC=2a(a>0).因为DC=1,所以A(0,0),B(1,0),D(0,2a),M(1,a).从而k AM⋅k BD=a−01−0×2a−00−1=a×(−2a)=−2a2=−1.所以a=√22,即DA=√2.下同方法一.[方法三]【最优解】:空间直角坐标系法建立如图所示的空间直角坐标系D−xyz,设|DA|=t,所以D(0,0,0),C(0,1,0),P(0,0,1),A(t,0,0),B(t,1,0).所以M(t2,1,0),PB⃑⃑⃑⃑⃑ =(t,1,−1),AM⃑⃑⃑⃑⃑⃑ =(−t2,1,0).所以PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =t ⋅(−t 2)+1×1+0×(−1)=−t 22+1=0. 所以t =√2,即|DA|=√2.下同方法一.[方法四]:空间向量法由PB ⊥AM ,得PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以(PD ⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ )⋅AM ⃑⃑⃑⃑⃑⃑ =0.即PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.又PD ⊥底面ABCD ,AM 在平面ABCD 内,因此PD ⊥AM ,所以PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0,由于四边形ABCD 是矩形,根据数量积的几何意义,得−12|DA ⃑⃑⃑⃑⃑ |2+|AB ⃑⃑⃑⃑⃑ |2=0,即−12|BC ⃑⃑⃑⃑⃑ |2+1=0. 所以|BC⃑⃑⃑⃑⃑ |=√2,即BC =√2.下同方法一. 【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积;方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.19、如图,在四棱锥P -ABCD 中,四边形ABCD 为矩形,AB ⊥BP ,M ,N 分别为AC ,PD 的中点.(1)求证:MN ∥平面ABP ;(2)若BP ⊥PC ,求证:平面ABP ⊥平面APC .答案:(1)证明见解析;(2)证明见解析.分析:(1)要证明线面平行,需证明线线平行,即连结BD,证明MN//BP;(2)要证明面面垂直,需证明线面垂直,利用垂直关系转化,证明PC⊥平面ABP. 证明:(1)连结BD,由已知,M为AC和BD的中点,又∵N为PD的中点,∴MN∥BP.∵MN⊄平面ABP,BP⊂平面ABP,∴MN∥平面ABP.(2)∵AB⊥BP,AB⊥BC,BP∩BC=B,∴AB⊥平面BPC.∵PC⊂平面BPC,∴AB⊥PC.∵BP⊥PC,AB∩BP=B,∴PC⊥平面ABP.∵PC⊂平面APC,∴平面ABP⊥平面APC.。

立体几何直线与直线之间的关系典型例题有答案

立体几何直线与直线之间的关系典型例题有答案

立体几何的典型例题精炼一、直线与直线的位置关系两直线的位置关系有哪些?什么是异面直线?什么是异面直线所成角?求异面直线所成角时要注意哪些问题?三垂线定理?证明三垂线定理。

平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

[例1]在正方体ABCD-A B C D中,O是底面ABCD的中心,M、N分别是棱DD、D C的中点,则直线OM( ).A .是AC和MN的公垂线.B .垂直于AC但不垂直于MN.C .垂直于MN,但不垂直于AC.D .与AC、MN都不垂直.错解:B.错因:学生观察能力较差,找不出三垂线定理中的射影.正解:A.1111111[例2]如图,已知在空间四边形ABCD 中,E,F 分别是AB,AD 的中点,G,H 分别是BC,CD 上的点,且,求证:直线EG,FH,AC 相交于一点.解:证明:、F 分别是AB,AD 的中点, ∥BD,EF=BD,又,GH ∥BD,GH=BD,四边形EFGH 是梯形,设两腰EG,FH 相交于一点T,平面ABC,FH 平面ACD,T 面ABC,且T 面ACD,又平面ABC 平面ACD=AC,,直线EG,FH,AC 相交于一点T.[例3]判断:若a,b 是两条异面直线,P 为空间任意一点,则过P 点有且仅有一个平面与a,b 都平行.错解:认为正确.错因:空间想像力不够.忽略P 在其中一条线上,或a 与P 确定平面恰好与b 平行,此时就不能过P 作平面与a 平行.正解:假命题.[例4] 如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线(在同一条直线上).分析:先确定一个平面,然后证明相关直线在这个平面内,最后证明四点共线.证明 ∵ AB//CD , AB ,CD 确定一个平面β.又∵AB ∩α=E ,AB β, E α,E β,即 E 为平面α与β的一个公共点.同理可证F ,G ,H 均为平面α与β的公共点.∵ 两个平面有公共点,它们有且只有一条通过公共点的公共直线,∴ E,F ,G ,H 四点必定共线.点 评:在立体几何的问题中,证明若干点共线时,先证明这些点都是某两平面的公共点,而后得出这些点都在二平面的交线上的结论.2==HC DH GC BG E EF ∴212==HC DH GC BG∴31∴⊂EG ⊂∴∈∈ AC T ∈∴∴∴∈∈[例5] 已知:在直角三角形ABC中,A为直角,PA⊥平面ABC,BD⊥PC,垂足为D,求证:AD⊥PC证明:∵PA ⊥平面ABC∴PA⊥BA又∵BA⊥AC ∴BA⊥平面PAC∴AD是BD在平面PAC内的射影又∵BD⊥PC∴AD⊥PC.(三垂线定理的逆定理)。

立体几何典型例题精选(含答案)

立体几何典型例题精选(含答案)

FEDCBA 立体几何专题复习热点一:直线与平面所成的角例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD , 1EF =,,90FB FC BFC ︒=∠=,3AE =.(1)求证:AB ⊥平面BCF ;(2)求直线AE 与平面BDE 所成角的正切值.变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC ===2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,︒如右图.(1)求证:AE ⊥平面;BDC(2)求直线AC 与平面ABD 所成角的余弦值.变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.热点二:二面角例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC 于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D -AF -E的余弦值.变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2,DE=BE=1,AC= 2.(1)证明:DE⊥平面ACD;(2)求二面角B -AD -E的大小.变式4:[2014·全国19] 如图1-1所示,三棱柱ABC -A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.热点三:无棱二面角例3.如图三角形BCD 与三角形MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,23AB =.(1)求点A 到平面MBC 的距离;(2)求平面ACM 与平面BCD 所成二面角的正弦值.变式5:在正方体1111ABCD A B C D -中,1K BB ∈,1M CC ∈,且114BK BB =,134CM CC =. 求:平面AKM 与ABCD 所成角的余弦值.变式6:如图1111ABCD A B C D -是长方体,AB =2,11AA AD ==,求二平面1AB C 与1111A B C D 所成二面角的正切值.高考试题精选1.[2014·四川,18] 三棱锥A-BCD及其侧视图、俯视图如图1-4所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A -NP -M的余弦值.2.[2014·湖南卷] 如图所示,四棱柱ABCD -A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1­OB1­D的余弦值.3.[2014·江西19] 如图1-6,四棱锥P -ABCD中,ABCD为矩形,平面P AD⊥平面ABCD.(1)求证:AB⊥PD. (2)若∠BPC=90°,PB=2,PC=2,问AB为何值时,四棱锥P -ABCD 的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.M OH FED C B A 立体几何专题复习 答案例1.(2014,广二模)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt △BFC 中,2224FB FC BC +==,又FB FC =,得FB =∴EM =……………3分在△AME中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =,∴EF ∥OH ,且EF OH =.∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EOBD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分 在Rt △AOE中,tan AOAEO EO∠== ……………13分 ∴直线AE 与平面BDE……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点O 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH ==. ……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴, 建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -. ∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ, 则sin θ=cos ,n AE⋅=n AE nAE=. ……………11分∴cos θ==,sin tan cos θθθ== ……………13分 ∴直线AE 与平面BDE……………14分变式1:(2013湖北8校联考)(1)取BD 中点F ,连结,EF AF ,则11,,60,2AF EF AFE ==∠=……………2分由余弦定理知22222113121cos 60,222AE AF EF AE AE EF ⎛⎫+-⋅⋅=+=∴⊥ ⎪⎝⎭………4分又BD ⊥平面AEF ,,BD AE AE ∴⊥⊥平面BDC ………6分 (2)以E 为原点建立如图示的空间直角坐标系,则31),(1,,0)2A C -,11(1,,0),(1,,0)22B D --- ………8分设平面ABD 的法向量为n (,,)x y z =,由00n DB n DA ⎧⋅=⎪⎨⋅=⎪⎩得201302x x y =⎧⎪⎨+=⎪⎩,取3z =,则3,(0,3)y =-∴=-n . 136(1,,),cos ,224||||AC AC AC AC =--∴<>==-n n n ……11分故直线AC 与平面ABD 10. …………12分变式2:(2014福建卷)解:(1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD . …………3分 又CD ⊂平面BCD ,∴AB ⊥CD . …………4分 (2)过点B 在平面BCD 内作BE ⊥BD .由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD ,∴AB ⊥BE ,AB ⊥BD . ……6分以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图所示).依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M ⎝⎛⎭⎫0,12,12. 则BC →=(1,1,0),BM →=⎝⎛⎭⎫0,12,12,AD →=(0,1,-1).…………7分 设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). …………9分设直线AD 与平面MBC 所成角为θ,则sin θ=||cos 〈n ,AD →〉=|n ·AD →||n |·|AD →|=63. …………11分 即直线AD 与平面MBC 所成角的正弦值为63. …………12分例2.(2014,广东卷):(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则00,CD 2,30,130,==1,21324,,,,,22333EG .,423EHG D AF E DPC CDF CF CD DECF CP EF DC DEDF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴⋅=====⋅∴====为二面角的平面角设从而∥还易求得EF=从而易得故cos GH EHG EH ∴∠===12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431,0),ADF CP (3,1,0),22AEF (x DP DC DA x y z DC A CF CP F DF CF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,419||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为变式3:(2014浙江卷)解:(1)证明:在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2, 由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC . …………2分 又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE ,所以AC ⊥DE .又DE ⊥DC ,从而DE ⊥平面ACD . …………4分 (2)方法一:过B 作BF ⊥AD ,与AD 交于点F ,过点F 作FG ∥DE ,与AE 交于点G ,连接BG . 由(1)知DE ⊥AD ,则FG ⊥AD .所以∠BFG 是二面角B - AD - E 的平面角.…………6分在直角梯形BCDE 中,由CD 2=BC 2+BD 2,得BD ⊥BC .又平面ABC ⊥平面BCDE ,得BD ⊥平面ABC ,从而BD ⊥AB .由AC ⊥平面BCDE ,得AC ⊥CD . 在Rt △ACD 中,由DC =2,AC =2,得AD = 6.在Rt △AED 中,由ED =1,AD =6,得AE =7.…………7分在Rt △ABD 中,由BD =2,AB =2,AD =6,得BF =2 33,AF =23AD .从而GF =23ED =23. …………9分在△ABE ,△ABG 中,利用余弦定理分别可得cos ∠BAE =5 714,BG =23. …………11分在△BFG 中,cos ∠BFG =GF 2+BF 2-BG 22BF ·GF=32. …………13分所以,∠BFG =π6,即二面角B - AD - E 的大小是π6.…………14分方法二:以D 为原点,分别以射线DE ,DC 为x ,y 轴的正半轴, 建立空间直角坐标系D - xyz ,如图所示.由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0),A (0,2,2),B (1,1,0).设平面ADE 的法向量为m =(x 1,y 1,z 1),平面ABD 的法向量为n =(x 2,y 2,z 2).可算得AD =(0,-2,-2),AE =(1,-2,-2),DB →=(1,1,0).…………7分由⎩⎨⎧m ·AD =0,m ·AE →=0,即⎩⎨⎧-2y 1-2z 1=0,x 1-2y 1-2z 1=0,可取m =(0,1,-2).…………9分由⎩⎪⎨⎪⎧n ·AD →=0,n ·DB →=0,即⎩⎨⎧-2y 2-2z 2=0,x 2+y 2=0, 可取n =(1,-1,2).…………11分于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33×2=32. …………13分由题意可知,所求二面角是锐角,故二面角B - AD - E 的大小是π6.变式4:(2014全国卷)19.解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C AA 1C 1C ⊥平面ABC . 又BC ⊥AC ,所以BC ⊥平面AA 1C 1C . …………2分连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C .由三垂线定理得AC 1⊥A 1B . ……4分(注意:这个定理我们不能用) (2) BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1,故平面AA 1C 1C ⊥平面BCC 1B 1.作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1. …………6分又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,即A 1E = 3. 因为A 1C 为∠ACC 1的平分线,所以A 1D =A 1E = 3. …………8分 作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1 ­ AB ­ C 的平面角.…………10分由AD =AA 21-A 1D 2=1,得D 为AC 中点,DF =55,tan ∠A 1FD =A 1DDF=15,……12分 所以cos ∠A 1FD =14. …………13分所以二面角A 1 ­ AB ­ C 的大小为arccos 14. …………14分方法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C - xyz .由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内.(1)证明:设A 1(a ,0,c ).由题设有a ≤2,A (2,0,0),B (0,1,0),则AB →=(-2,1,0),AC →=(-2,0,0),AA 1→=(a -2,0,c ),AC 1→=AC →+AA 1→=(a -4,0,c ),BA 1→=(a ,-1,c ).由|AA 1→|=2,得(a -2)2+c 2=2,即a 2-4a +c 2=0.①又AC 1→·BA 1→=a 2-4a +c 2=0,所以AC 1⊥A 1B . …………4分(2)设平面BCC 1B 1的法向量m =(x ,y ,z ),则m ⊥CB →,m ⊥BB 1→,即m ·CB →=0,m ·BB 1→=0.因为CB →=(0,1,0),BB 1→=AA 1→=(a -2,0,c ),所以y =0且(a -2)x +cz =0.令x =c ,则z =2-a ,所以m =(c ,0,2-a ),故点A 到平面BCC 1B 1的距离为 |CA →|·|cos 〈m ,CA →〉|=|CA →·m ||m |=2c c 2+(2-a )2=c . …………6分又依题设,A 到平面BCC 1B 1的距离为3,所以c =3,代入①,解得a =3(舍去)或a =1, 于是AA 1→=(-1,0,3). …………8分 设平面ABA 1的法向量n =(p ,q ,r ), 则n ⊥AA 1→,n ⊥AB →,即n ·AA 1→=0,n ·AB →=0,-p +3r =0,且-2p +q =0.令p =3,则q =2 3,r =1,所以n =(3,2 3,1).…………10分 又p =(0,0,1)为平面ABC 的法向量,…………11分 故 cos 〈n ,p 〉=n ·p |n ||p |=14. …………13分所以二面角A 1 ­ AB ­ C 的大小为arccos 14. …………14分例3. 无棱二面角(2010年江西卷)解法一:(1)取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD .又平面MCD ⊥平面BCD ,则MO ⊥平面BCD ,所以MO ∥AB ,A 、B 、O 、M 共面.延长AM 、BO 相交于E ,则∠AEB 就是AM 与平面BCD 所成的角.OB =MO 3,MO ∥AB ,MO//面ABC ,M 、O 到平面ABC 的距离相等,作OH ⊥BC 于H ,连MH ,则MH ⊥BC ,求得:OH=OCsin600,利用体积相等得:A MBC M ABC V V d --=⇒=5分 (2)CE 是平面ACM 与平面BCD 的交线.由(1)知,O 是BE 的中点,则BCED 是菱形.作BF ⊥EC 于F ,连AF ,则AF ⊥EC ,∠AFB 就是二面角A -EC -B 的平面角,设为θ. ……7分因为∠BCE =120°,所以∠BCF =60°.sin 603BF BC =⋅=9分tan 2ABBFθ==,sin θ=…………11分所以,所求二面角的正弦值是5. …………12分 解法二:取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD ,又平面MCD ⊥平面BCD ,则MO ⊥平面BCD .以O 为原点,直线OC 、BO 、OM 为x 轴,y 轴,z 轴,建立空间直角坐标系如图. OB =OM ,则各点坐标分别为O (0,0,0),C (1,0,0),M (0,0,B (0,,0),A (0,,3),(1)设(,,)n xy z =是平面MBC 的法向量,则BC=(1,3,0),BM =,由n BC⊥得0x +=;由n BM ⊥得0+=;取(3,1,1),(0,0,n BA =-=,则距离2155BA n d n⋅==…………5分 (2)(CM =-,(1,CA =-.设平面ACM 的法向量为1(,,)n x yz =,由11n CM n CA⎧⊥⎪⎨⊥⎪⎩得0x x ⎧-+=⎪⎨-+=⎪⎩.解得x =,y z =,取1(3,1,1)n =.又平面BCD 的法向量为(0,0,1)n =,则1111cos ,5nn n n n n⋅<>==⋅ 设所求二面角为θ,则sin θ==.…………12分BA变式5:解析:由于BCMK 是梯形,则MK 与CB 相交于E .A 、E 确定的直线为m ,过C 作CF ⊥m 于F ,连结MF ,因为MC ⊥平面ABCD ,CF ⊥m ,故MF ⊥m .∠MFC 是二面角M -m -C 的平面角.设正方体棱长为a ,则34CM a =,14BK a =.在△ECM 中,由BK ∥CM 可得12EB a =,CF =,故tan 4MFC ∠=.因此所求角的余弦值为cos 21MFC ∠=. 变式6:解析:∵平面ABCD ∥平面1111A B C D ,∴平面1AB C 与平面1111A B C D 的交线m 为过点1B 且平行于AC 的直线.直线m 就是二平面1AB C 与1111A B C D 所成二面角的棱.又平面1AB C 与平面1AA ⊥平面1111A B C D ,过1A 作AH ⊥m 于H ,连结AH .则1AHA ∠为二面角1A m A --的平面角.可求得1tan AHA ∠=.高考试题精选1.(2014 四川卷)解:(1)如图所示,取BD 的中点O ,连接AO ,CO .由侧视图及俯视图知,△ABD ,△BCD 为正三角形,所以AO ⊥BD ,OC ⊥BD .因为AO ,OC ⊂平面AOC ,且AO ∩OC =O , 所以BD ⊥平面AOC .又因为AC ⊂平面AOC ,所以BD ⊥AC . 取BO 的中点H ,连接NH ,PH .又M ,N ,H 分别为线段AD ,AB ,BO 的中点,所以MN ∥BD ,NH ∥AO , 因为AO ⊥BD ,所以NH ⊥BD . 因为MN ⊥NP ,所以NP ⊥BD .因为NH ,NP ⊂平面NHP ,且NH ∩NP =N ,所以BD ⊥平面NHP .又因为HP ⊂平面NHP ,所以BD ⊥HP .又OC ⊥BD ,HP ⊂平面BCD ,OC ⊂平面BCD ,所以HP ∥OC . 因为H 为BO 的中点,所以P 为BC 的中点.…………5分 (2)方法一:如图所示,作NQ ⊥AC 于Q ,连接MQ .由(1)知,NP ∥AC ,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A - NP - M 的一个平面角.由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC = 6. 作BR ⊥AC 于R因为在△ABC 中,AB =BC ,所以R 为AC 的中点,所以BR =AB 2-⎝⎛⎭⎫AC 22=102.因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC , 所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点, 所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中, cos ∠MNQ =MN 2NQ =BD 4NQ =105.…………13分故二面角A - NP - M 的余弦值是105. …………14分 方法二:由俯视图及(1)可知,AO ⊥平面BCD .因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB .又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.…………6分如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝⎛⎭⎫-12,0,32,N ⎝⎛⎭⎫12,0,32,P ⎝⎛⎭⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN =(1,0,0),NP =⎝⎛⎭⎫0,32,-32.…………7分 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0,从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). …………9分 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0,即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎫0,32,-32=0,从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0. 取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1). …………11分 设二面角A - NP - M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105.…13分故二面角A -NP -M 的余弦值是105.…………14分2.(2014 湖南卷)解:(1)如图(a),因为四边形ACC 1A 1为矩形,所以CC 1⊥AC .同理DD 1⊥BD . 因为CC 1∥DD 1,所以CC 1⊥BD .而AC ∩BD =O ,因此CC 1⊥底面ABCD .由题设知,O 1O ∥C 1C .故O 1O ⊥底面ABCD . …………4分 (2)方法一: 如图(a),过O 1作O 1H ⊥OB 1于H ,连接HC 1.由(1)知,O 1O ⊥底面ABCD ,所以O 1O ⊥底面A 1B 1C 1D 1,于是O 1O ⊥A 1C 1又因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形A 1B 1C 1D 是菱形,因此A 1C 1⊥B 1D 1,从而A 1C 1⊥平面BDD 1B 1,所以A 1C 1⊥OB 1,于是OB 1⊥平面O 1HC 1.进而OB 1⊥C 1H .故∠C 1HO 1是二面角C 1­OB 1­D 的平面角.不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7.在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2=1+127=197. 故cos ∠C 1HO 1=O 1HC 1H =237197=25719.即二面角C 1­OB 1­D 的余弦值为25719.方法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直.如图,以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O ­xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0) ,B 1(3,0,2),C 1(0,1,2). 易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量.设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则⎩⎪⎨⎪⎧n 2·OB →1=0,n 2·OC →1=0,即⎩⎨⎧3x +2z =0,y +2z =0.取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1­OB 1­D 的大小为θ,易知θ是锐角,于是cos θ=|cos 〈,〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=2319=25719.故二面角C 1­OB 1­D 的余弦值为25719.3.(2014 江西卷)19.解:(1)证明:因为ABCD 为矩形,所以AB ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以AB ⊥平面P AD ,故AB ⊥PD .(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG .故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG .在Rt △BPC 中,PG =2 33,GC =2 63,BG =63.设AB =m ,则OP =PG 2-OG 2=43-m 2,故四棱锥P - ABCD 的体积为V =13×6·m ·43-m 2=m38-6m 2. 因为m 8-6m 2=8m 2-6m 4=-6⎝⎛⎭⎫m 2-232+83, 所以当m =63,即AB =63时,四棱锥P - ABCD 的体积最大.此时,建立如图所示的空间直角坐标系,各点的坐标分别为 O (0,0,0),B ⎝⎛⎭⎫63,-63,0,C⎝⎛⎭⎫63,263,0,D ⎝⎛⎭⎫0,263,0,P ⎝⎛⎭⎫0,0,63,故PC →=⎝⎛⎭⎫63,263,-63,BC →=(0,6,0),CD =⎝⎛⎭⎫-63,0,0. 设平面BPC 的一个法向量为n 1=(x ,y ,1),则由n 1⊥PC →,n 1⊥BC →,得⎩⎪⎨⎪⎧63x +2 63y -63=0,6y =0,解得x =1,y =0,则n 1=(1,0,1).同理可求出平面DPC 的一个法向量为n 2=⎝⎛⎭⎫0,12,1. 设平面BPC 与平面DPC 的夹角为θ,则cos θ=|n 1·n 2||n 1||n 2|=12·14+1=105.。

高考数学立体几何部分典型例题

高考数学立体几何部分典型例题

(一)1.某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为( ).A.92+14π B.82+14πC.92+24π D.82+24π命题意图:考察空间几何体的三视图,三视图为载体考察面积易错点:(1)三视图很难还原成直观图(2)公式及数据计算错误解析由三视图可知:原几何体为一个长方体上面放着半个圆柱,其中长方体的长宽高分别为5,4,4,圆柱的底面半径为2,高为5,所以该几何体的表面积为:2+1S=5×4+2×4×4+2×5×4+π× 2 2π×2×5×2=92+14π.答案 A2.(本小题满分12 分)命题人:贺文宁如图所示,平面ABCD⊥平面BCEF,且四边形ABCD 为矩形,四边形BCEF 为直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.(12 分)(1)求证:AF∥平面CDE;(2)求平面ADE 与平面BCEF 所成锐二面角的余弦值;(3)求直线EF 与平面ADE 所成角的余弦值.命题意图:线面平行的位置关系,线面角、二面角的求法易错点:(1)直接建系,不去证明三条线两两垂直(2)数据解错(3)线面角求成正弦值(1)证明法一取CE 的中点为G,连接D G,FG.∵BF∥CG 且BF=CG,∴四边形BFGC 为平行四边形,则B C∥FG,且BC=FG.∵四边形ABCD 为矩形,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..1 分∴BC∥AD 且BC=AD,∴FG∥AD 且FG=AD,∴四边形AFGD 为平行四边形,则A F∥DG.∵DG? 平面CDE,AF?平面CDE,∴AF∥平面CDE. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..3 分(2)解∵四边形ABCD 为矩形,∴BC⊥CD,又∵平面ABCD⊥平面BCEF,且平面ABCD∩平面BCEF=BC,BC⊥CE,∴DC⊥平面BCEF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.4 分为y 轴,CD 所在直线为z为x 轴,CE 所在直线以C 为原点,CB 所在直线,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.5 分轴建立如图所示的空间直角坐标系根据题意我们可得以下点的坐标:→=(-2,0,0), A(2,0,4),B(2,0,0),C(0,0,0),D (0,0,4),E(0,4,0),F(2,2,0),则AD→=(0,4,-4). DE设平面ADE 的一个法向量为n1=(x1,y1,z1),则→AD·n1=0,→DE·n1=0,∴-2x=0,4y1-4z1=0,取z1=1,得n1=(0,1,1).∵DC⊥平面BCEF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分→∴平面BCEF 的一个法向量为C D=(0,0,4).设平面ADE 与平面BCEF 所成锐二面角的大小为α,则cosα=→CD·n1→|CD | |·n1|4==4× 22,2因此,平面ADE 与平面BCEF 所成锐二面角的余弦值为22 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.9 分(3)解根据(2)知平面ADE 的一个法向量为→=(2,-2,0),n1=(0,1,1),∵EF∴cos 〈E→F,n1〉=1〉=→EF·n1-2 1=,⋯⋯⋯⋯⋯⋯⋯⋯⋯.10 分=-→ 22 2× 2|EF | |·n1|设直线E F 与平面ADE 所成的角为θ,→则cos θ=|sin 〈EF,n1〉|=3 ,2因此,直线E F 与平面ADE 所成角的余弦值为32 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.12分(二)2.某几何体三视图如图所示,则该几何体的体积为( ).ππA.8-2πB.8-πC.8-2 D.8-4命题意图:考察空间几何体的三视图,三视图为载体考察体积易错点:(1)三视图很难还原成直观图(2)公式及数据计算错误解析这是一个正方体切掉两个1圆柱后得到的几何体,且该几何体的高为2,V 4=2 ×π×1×2=8-π,故选B.3-12答案 B3.(本小题满分12 分)命题人:贺文宁如图所示,四边形ABCD 是边长为 1 的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段A N 上是否存在点S,使得ES⊥平面AMN?若存在,求线段A S的长;若不存在,请说明理由.命题意图:异面直线所成角;利用空间向量解决探索性问题易错点:(1)异面直线所成角容易找错(2)异面直线所成角的范围搞不清(3)利用空间向量解决探索性问题,找不到突破口解(1)如图以D为坐标原点,建立空间直角坐标系D-xyz.依题意得 D (0,0,0),A(1,0,0),M(0,0,1),C(0,1,0),1B(1,1,0),N(1,1,1),E( ,1,0),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1 分2→1所以NE=(-,0,-1),2→AM=(-1,0,1).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.2 分设直线N E 与AM 所成角为θ,→→则c osθ=|cos〈N E,AM 〉|⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.3 分1 →→=|N E ·A M |=→→|N E||·A M |25× 22=1010 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.5 分10所以异面直线N E 与AM 所成角的余弦值为10 .(2)如图,假设在线段AN 上存在点S,使得ES⊥平面AMN,连接A E.→→→因为A N=(0,1,1),可设AS=λAN=(0,λ,λ),→1又EA=( ,-1,0),2→→→1所以ES=EA+AS=( ,λ-1,λ).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.7 分2由ES⊥平面AMN,得→→E S·A M=0,→→E S·A N=0,即12-+λ=0,λ-1 +λ=0,→→1 1 1故λ=,此时AS=(0,,2),| A S|=2 222 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.10 分经检验,当A S=2时,ES⊥平面AMN. 2在线段A N 上存在点S,使得ES⊥平面AMN,此时A S=22 .⋯⋯⋯⋯⋯⋯12 分(三)1.一个多面体的三视图如图所示,则该多面体的体积为( ).23 47A. 6 C.6 D.73 B.命题意图:考察空间几何体的三视图,三视图为载体考察体积易错点:(1)三视图很难还原成直观图(2)公式及数据计算错误解析如图,由三视图可知,该几何体是由棱长为2 的正方体右后和左下分别截去一个小三棱锥得到的,其体积为1 1 23V=2×2×2-2××1×1×1=× 3 . 32答案 A4.(本小题满分12 分)命题人:贺文宁如图,矩形ABCD 所在的平面和平面ABEF 互相垂直,等腰梯形ABEF 中,AB ∥EF,AB=2,AD=AF=1,∠BAF=60°,O,P 分别为A B,CB 的中点,M 为底面△OBF 的重心.(1)求证:平面ADF⊥平面CBF;(2)求证:PM∥平面AFC;(3)求多面体CD-AFEB 的体积V.命题意图:面面垂直,线面平行的判定,空间几何体的体积易错点:(1)判定时条件罗列不到位失分(2)求体积时不会分割(1)证明∵矩形ABCD 所在的平面和平面ABEF 互相垂直,且CB⊥AB,∴CB⊥平面ABEF,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1 分又AF? 平面ABEF,所以CB⊥AF,又AB=2,AF=1,∠BAF=60°,由余弦定理知BF=3,2 2 2∴AF +BF =AB ,得AF⊥BF,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.2 分BF∩CB=B,∴AF⊥平面CFB,又∵AF? 平面ADF;∴平面ADF⊥平面CBF . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.4 分(2)证明连接O M 延长交B F 于H,则H为B F 的中点,又P为C B 的中点,∴PH∥CF,又∵CF? 平面AFC,PH ?平面AFC,∴PH∥平面AFC,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.6 分P O,则P O∥AC,连接又∵AC? 平面AFC,PO?平面AFC,PO∥平面AFC,PO∩PH=P,∴平面POH∥平面AFC,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.7 分又∵PM? 平面POH,∴PM∥平面AFC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.8 分(3)解多面体CD-AFEB 的体积可分成三棱锥C-BEF 与四棱锥F-ABCD 的体积之和在等腰梯形ABEF 中,计算得EF=1,两底间的距离E E1=3 2 .1 1 1所以V C △BEF×CB=-BEF=×1×3S×3 23×1=23,121 V F-ABCD=3S1矩形ABCD×EE1=×2×1×33=23,⋯⋯⋯⋯⋯⋯⋯10 分35 3所以V=V C-BEF+V F-ABCD=12 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.12 分(四)5.一个几何体的三视图如图所示,则该几何体的体积为________.命题意图:考察空间几何体的三视图,三视图为载体考察体积解析由题意可得,几何体相当于一个棱长为2的正方体切去一个角,角的相邻2 22三条棱长分别是1,2,2,所以几何体的体积为8- 3 .=3答案22 36.(本小题满分12 分)命题人:贺文宁在平行四边形ABCD 中,AB=6,AD=10,BD=8,E 是线段A D 的中点.如图所示,沿直线BD 将△BCD 翻折成△BC′D,使得平面BC′D⊥平面ABD.(1)求证:C′D⊥平面ABD;(2)求直线BD 与平面BEC′所成角的正弦值.命题意图:空间几何体的“翻折”问题,考察学生空间想象能力和知识迁移能力易错点:把平面图形转化为空间几何体,数据错误,垂直平行关系错误(1)证明平行四边形ABCD 中,AB=6,AD=10,BD=8,沿直线BD 将△BCD翻折成△BC′D,可知C′D=CD=6,BC′=BC=10,BD=8,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分即BC′2=C′D2+BD2∴C′D⊥BD.又∵平面BC′D⊥平面ABD,平面BC′D∩平面ABD=BD,C′D? 平面BC′D,∴C′D⊥平面ABD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)解由(1)知C′D⊥平面ABD,且CD⊥BD,如图,以D为原点,建立空间直角坐标系D-xyz.则D(0,0,0),A(8,6,0),B(8,0,0),C′(0,0,6).⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵E 是线段A D 的中点,→∴E(4,3,0),BD=(-8,0,0).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分→→在平面BEC′中,BE=(-4,3,0),BC′=(-8,0,6),设平面BEC′法向量为n=(x,y,z),→∴B E·n=0,→BC′·n=0,即-4x+3y=0,-8x+6z=0,令x=3,得y=4,z=4,故n=(3,4,4).⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分设直线BD 与平面BEC′所成角为θ,则→sin θ=|cos 〈n,BD〉|=→|n·B D|→=3 4141 .|n||BD |3 41∴直线B D 与平面BEC′所成角的正弦值为41 .⋯⋯⋯⋯⋯⋯12 分。

立体几何经典大题(各个类型的典型题目)

立体几何经典大题(各个类型的典型题目)

1.如图,已知△A B C是正三角形,E A,C D都垂直于平面A B C,且E A=A B=2a,D C=a,F是B E 的中点.(1)F D∥平面A B C;(2)A F⊥平面E D B.2.已知线段P A⊥矩形A B C D所在平面,M、N分别是A B、P C的中点。

(1)求证:MN//平面P A D;(2)当∠P D A=45°时,求证:MN⊥平面P C D;3.如图,在四面体A B C D中,C B=C D,,点E,F分别是A B,B D的中点.求证:(1)直线E F//面A C D;(2)平面面B C D.4.在斜三棱柱A1B1C1—A B C中,底面是等腰三角形,A B=A C,侧面B B1C1C⊥底面A B C (1)若D是B C的中点,求证A D⊥C C1;(2)过侧面B B1C1C的对角线B C1的平面交侧棱于M,若A M=MA1,求证截面MB C1⊥侧面B B1C1C;(3)A M=MA1是截面MB C1⊥平面B B1C1C的充要条件吗?请你叙述判断理由]ABC DE F5.如图,在正方体A B C D —A 1B 1C 1D 1中,M、N 、G分别是A 1A ,D 1C ,A D的中点.求证:(1)MN //平面A B CD ;(2)MN ⊥平面B 1B G .6.如图,在正方体A BCD -A 1B 1C 1D 1中,E 、F 为棱A D 、A B 的中点.(1)求证:E F ∥平面C B 1D 1;(2)求证:平面C A A 1C 1⊥平面C B 1D 1._G _M _D _1_C _1_B _1_A _1_N _D _C _B _A ABCDA 1B 1C 1D 1E F7、如图,在直四棱柱A B C D -A 1B 1C 1D 1中,底面A B C D为等腰梯形,A B ∥C D ,A B =4,B C =C D =2,A A 1=2,E 、E 1分别是棱A D 、A A 1的中点(1)设F 是棱A B的中点,证明:直线E E 1∥面F C C 1;(2)证明:平面D 1A C ⊥面B B 1C 1C 。

第14讲 立体几何知多少(含解析)-【高中数学】一题多解拔尖训练

第14讲 立体几何知多少(含解析)-【高中数学】一题多解拔尖训练

一题多解第14讲立体几何知多少,位置关系空间角典型例题【例1】如图141 ,在矩形ABCD 中,E 为边AB 的中点,将ADE 沿直线DE 翻转成1A DE ,若M 为线段1A C 的中点,则在ADE 的翻转过程中,正确的命题是________.(1)BM 是定值;(2)点M 在球面上运动;(3)一定存在某个位置,使1DE A C ;(4)一定存在某个位置,使MB ∥平面1A DE .【例2】如图145 ,在Rt ABC中,4,3,,2AB AC A ,AP mPB AQ nQC (,0)m n ,且满足111,2M m n 是BC 的中点,对任意的,QP QM R 的最小值记为 f m ,则对任意的0,m f m 的最大值为________.【例3】如图147 ,在四棱锥P ABCD 中,E 为AD 上一点,PE 平面,,,2,ABCD AD BC AD CD BC ED AE F ∥为PC 上一点,且2CF FP (I)求证:PA ∥平面;BEF (证明略)(II)若PE ,求二面角F BE C 的平面角的大小.【例4】已知,a b 是异面直线,,,,,,A B a C D b AC b BD b ,且2,1AB CD ,则异面直线,a b 所成的角等于________.【例5】已知三棱锥P ABC 满足60APB BPC CPA ,三个侧面,,APB BPC CPA 的面积分别为,2,12,则这个三棱锥的体积是________.【例6】已知在四棱柱1111ABCD A B C D 中,侧棱1AA 底面1,2ABCD AA ,底面ABCD 的边长均大于2,且45DAB,点P 在底面ABCD 内运动且在,AB AD 上的射影分别为,M N ,若2PA ,则三棱锥1P D MN 体积的最大值为________.强化训练1.在四棱锥S ABCD 中,底面ABCD 是平行四边形,,M N 分别是,SA BD 上的点.有下列命题:(1)若SM DN MA NB,则MN ∥平面SCD ;(2)若SM DN MA NB ,则MN ∥平面SCB ;(3)若平面SDA 平面ABCD ,且平面SDB 平面ABCD ,则SD 平面ABCD .其中正确命题的序号为________.2.如图1426 ,在四棱锥P ABCD 中,E 为AD 上一点,PE 平面,ABCD //,AD BC AD ,CD 22,BC ED AE 3,EB F 为PC 上一点,且2CF FP .(I)求证://PA 平面BEF ;(II)若二面角F BE C 的平面角的大小为60,求直线PB 与平面ABCD 所成角的大小.3.如图1427 ,在三棱锥A BCD 中,3,2,AB AC BD CD AD BC M 是AD的中点,则异面直线,CM AB 所成角的大小为________.4.已知三棱锥P ABC 的体积为16,点,D E 分别在侧棱,PB PC 上,且2,PD DB 3PE EC ,则三棱锥P ADE 的体积为________.5.过凸四边形ABCD 的对角线交点O 作该四边形所在平面的垂线段SO ,使SO 3 ,若22,S AOD S BOC V a V b ,当S ABCD V 最小时,ABCD 的形状为________.一题多解第14讲立体几何知多少,位置关系空间角典型例题【例1】如图141 ,在矩形ABCD 中,E 为边AB 的中点,将ADE 沿直线DE 翻转成1A DE ,若M 为线段1A C 的中点,则在ADE 的翻转过程中,正确的命题是________.(1)BM 是定值;(2)点M 在球面上运动;(3)一定存在某个位置,使1DE A C ;(4)一定存在某个位置,使MB ∥平面1A DE .【解析】【解法1】设CD 中点为S ,则111=2MS A D MS A D ,∥,且MS 为定值,又因为,,DS BE DS BE ∥,所以四边形DSBE 是平行四边形,所以BS DE ∥且BS 为定值.由余弦定理可得2222212cos 2cos MB MS SB MS SB MSB MS SB MS SB A DE ,所以MB 是定值,(1)正确.因为B 是定点,所以点M 是在以B 为圆心,MB 为半径的球面上,所以(2)正确.若当DE EC 时,如图14-2:1110DE A C DE A E EC DE A E DE EC ,(3)错误因为1,SB DE MS A D ∥∥,又因为1,SB SM S DE A D D ∩∩,所以平面MSB ∥平面1A ED ,所以MB ∥平面1A ED ,(4)正确.【点拨】利用向量数量积判定线线的垂直关系.【解法2】如图 143,1 正确,由余弦定理可知MB 为定值,同【解法1】;(2)正确,同【解法1】;(3)错误,若2AB AD ,则DE EC .若1DE A C ,又因为1A C 在平面ABCD 的射影在AC 上,所以.DE AC 由题意知AC 与DE 不垂直,所以(3)不正确.(4)正确,取DC 中点F ,则11,,,FB DE MF A D FB MF F A D DE D ∩∩∥∥,所以平面//MFB 平面1A ED ,所以MB ∥平面1A ED .【点拨】先利用假设反证法证明不垂直再利用面面平行证明线段平行.【解法3】如图144 ,(1)正确,延长DE 交CB 的延长线于点N ,连结,AN DAN 绕着DN旋转,因为1A N 为定值,所以MB 为定值;(2)正确,点M 在以B 为圆心,MB 为半径的球面上运动;(3)错误,同【解法2】;(4)正确,取EC 中点P ,可以类似【解法2】证明平面MPB ∥平面1A ND ,所以MB ∥平面1.A ED 【点拨】从不同角度构造辅助线.【赏析】本题涉及立体几何的考点比较多,如线面平行、面面平行、线面垂直、面面垂直.熟练掌握线面、面面平行及垂直的判定和性质定理、线面角、二面角的定义及求法是解立体几何题的关键.【例2】如图145 ,在Rt ABC中,4,3,,2AB AC A ,AP mPB AQ nQC (,0)m n ,且满足111,2M m n 是BC 的中点,对任意的,QP QM R 的最小值记为 f m ,则对任意的0,m f m 的最大值为________.【解析】【解法1】设 ,0,0,P a Q b ,以A 为坐标原点,,AB AC 所在直线分别为x 轴,y 轴建立如图146 所示的平面直角坐标系.则 4,,3,a m a AP mPB b n b AQ nQC因为1112m n ,所以4312a b a b ,所以86551a b,所以直线PQ 过点86,55N ,结合向量模长的几何意义可知QP QM 可等价视为点0430,22M ,即32,2M与直线PQ 上点连线的距离,所以最大值 f m 就是点M 到直线PQ 的距离的最大值,当MN PQ 时,M 到直线PQ 距离最大.所以max 1()2f m MN.【点拨】依据题意建立平面直角坐标系,使向量坐标化,从而实现数量化运算.【解法2】由,AP mPB AQ nQC 可知1111AP AB m AQ AC n,取点N 使得45AN AM ,所以2121211555AP AQ AB AC AN m n ,因为21212111215552m n,所以,,P Q N 三点共线,下同【解法1】,可知max 11()52f m MN AM .【点拨】利用向量运算,添加必要的辅助线实现向量的转化.【赏析】本题考查向量坐标形式的运算及点到直线距离公式,【解法1】利用向量坐标运算,【解法2】添加必要的辅助线实现向量的转化,【解法1】是常用的基本方法,易上手好操作.【解法2】巧妙构造,要求对重要结论熟练掌握并能灵活运用.【例3】如图147 ,在四棱锥P ABCD 中,E 为AD 上一点,PE 平面,,,2,ABCD AD BC AD CD BC ED AE F ∥为PC 上一点,且2CF FP (I)求证:PA ∥平面;BEF (证明略)(II)若PE ,求二面角F BE C 的平面角的大小.【解析】【解法1】连结CE ,在平面PCE 内,过点F 作FH CE 于点H .因为FH PE ∥,所以FH 平面ABCD .过点H 作HM BE 于点M ,连结FM .由三垂线定理得FM BE ,所以FMH 为二面角F BE C 的平面角.因为FH 平面ABCD ,PE 平面ABCD ,所以FH PE ∥,所以23FH CF PE CP ,所以22333FH PE AE ,同理1233MH BC AE ,所以在Rt FHM 中,tan 3FH FMH HM所以3FMH ,即二面角F BE C 的平面角为3.【点拨】在平面内的一条直线如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直,当点F 在一个半平面上时,通常用三垂线定理法求二面角的大小.【解法2】排除多余信息,若我们只考虑二面角F BE C ,我们很快发现,直四棱锥P EBCD 可以补成长方体,如图149所示.连结EC ,在平面PEC 内,过点F 作FO EC 于点O ,过点O 作OM BE 于点M ,连结FM ,如图1410 .因为PE 平面EBCD ,PE 平面PEC ,所以平面PEC 平面EBCD ,且平面PEC 平面EBCD EC .因为FO 平面,PEC FO ED ,所以FO 平面EBCD ,所以FMO 是二面角F BE C 的平面角,设AE a,则2,(0)ED a PE a,因为PE 平面ACD ,FO 平面ACD ,所以PE FO ∥,所以23FO CO CF PE CE CP ,所以233FO a ,又因为OM BC ∥,所以13OM EO BC CE ,得23OM a ,所以3tan 23FO FMO OM a 所以3FMH ,所以二面角F BE C 的平面角为3.【点拨】利用图形的特征,采用补形方法解决问题.【解法3】如图1411 ,连结CE ,在平面PCE 内过点F 作FH CE 于点H .因为PE 平面ABCD ,CE 平面ABCD ,所以FH PE ∥,所以FH 平面ABCD .过点H 作HM BE 于点M ,连结FM .由三垂线定理得FMBE ,所以FMH 为二面角F BE C 的平面角.设(0)AE a a ,则2,BC ED a PE ,所以24,.33MH a FM a (同【解法2】)由射影面积法得Δ112cos ,1232HEB FEBBE MH S FMH FMH S BE FM 所以二面角F BE C 的平面角为3.【点拨】利用射影面积法求解.【解法4】延展平面BEF 为平面BEMF ,如图1412 所示,则平面BEF ∩平面PAD EM ,在平面PAD 中,作MO 平面ABCD 于点O ,如图1413.因为PE 平面ABCD ,所以MO PE ∥,所以MO 与PE 共面,因为M 平面PAD ,所以.O AD 则OE BE ,由三垂线定理知MEBE ,所以MEO 是所求二面角的平面角.由(I )可知//ME PA ,所以2DM DE MP EA,又因为MO PE ∥,所以23MO DO DM PE ED PD ,不妨设(0)AE a a ,则2,ED a PE,因此得2,,tan 3a MO MO OE MEO OE 3MEO ,所以二面角F BE C 的平面角为3.【点拨】延展平面BEF 为平面BEMF ,将过点F 作平面EBCD 垂线的间题转化为过点M 作平面EBCD 垂线的问题.如图1414 ,延长CB 至点M ,使得2MB BC ,所以,,MB BC AE MB AE MB AE ED∥,所以AEMB 是平行四边形.因为,AM EB AM ∥平面EFB ,EB 平面EFB ,所以AM ∥平面EFB .由 I 得PA ∥平面,EFB AM PA A ,所以平面PAM ∥平面FEB ,则二面角P AM C 的平面角即为二面角F EB C 的平面角,因为PE 平面,EBCD EA AM ,所以PAE 是二面角P AM C 的平面角.不妨设(0)AE a a ,由三垂线定理得PA AM ,则,tan PE PE PAE AE.所以二面角P AM C 的平面角是3,即二面角F EB C 的平面角是3.【点拨】寻找二面角的平面角较困难,根据平面平移不改变与另一个平面构成的角的大小的原理,如果能把二面角中的一个平面平移,找出辅助平面与另一个平面的交线,就可以作出二面角的平面角.【解法6】以E 为坐标原点,分别以,,EA EB EP 所在直线为x 轴、y 轴、z 轴,建立如图14-15所示的空间直角坐标系.不妨设(0),EA a a EB b ,则22,BC ED AE a PE易知0,0,0,,0,,0E P B b ,设平面ABCD 的法向量 1111,,n x y z ,因为2CF FP所以 223223,,,,,,0,,0,333333b b F a a EF a a EB b因为2200EF EB n n,即222220,3330,b ax y az by 令21z,则2x ,可得平面EBF的一个法向量2 n .设二面角F BE C 的平面角为 ,所以12121211cos cos ,22 n n n n n n ,所以3.所以二面角F BE C 的平面角为3.【点拨】设12,n n 分别是二面角l 的面, 的法向量,则向量12,n n 的夹角,即为l 的平面角或其补角(需要根据具体情况判断相等或互补).【赏析】本题主要考查与二面角有关的立体几何综合知识.推荐【解法5】为最佳解答.求二面角的平面角的常用方法有定义法、三垂线定理法、射影面积法、平移平面法、补形法、空间向量的坐标法等,以下对各个解法进行分析.【解法1】应用三垂线定理法解题.联系到PE 平面ABCD ,有的同学大胆猜想(像一个魔术师,下子从帽子里变出一只兔子),得出了正确的结论;相应地,还有很大一部分同学被复杂的空间图形吓退,找不到二面角的确切位置,无从下手.【解法2】应用构造补形法解题,联系到长方体,比【解法1】更易得出.FO EBCD 平面【解法3】应用射影面积法解题,联系到点F 在底面EBCD 的射影,依据射影公式求二面角.【解法4】应用垂线平移法解题,联系【解法3】,过F 点作垂线,那么垂足落在哪里?有很多同学是含糊不清、模棱两可的,那么我们为什么不换一个点呢?将过点F 作平面EBCD 垂线的问题转化为过点M 作平面EBCD 垂线的问题.【解法5】应用平面平移法解题,将求二面角F BE C 的平面角的问题转化为求二面角P AM C 的平面角的问题.【解法6】应用空间向量求解法,是一种十分简捷且传统的解法.当题目条件中垂直关系明显时,利用空间坐标系不失为一种更有效的方法.【例4】已知,a b 是异面直线,,,,,,A B a C D b AC b BD b ,且2,1AB CD ,则异面直线,a b 所成的角等于________.【解析】【解法1】如图1416 ,在长方体中,因为//BE CD ,所以ABE 就是异面直线,a b 所成的角,又因为,,,,A B a C D b BD b ,所以,,CE b AC b AC CE C ,所以b 平面ACE ,所以b AE ,所以BE AE ,所以ABE 是直角三角形.又因为2,1AB CD ,所以1BE ,所以1cos 2BE ABE AB ,所以60.ABE 【点拨】构造长方体求解.【解法2】如图1417 所示,过点A 作AE CD ∥,=AE CD ,连结BE ,则EAB 是异面直线,a b 所成的角,由题意知ACDE 是矩形,所以,AE DE AE BD ,因为DE BD D ,所以AE平面BED ,所以AE BE .所以ABE 是直角三角形,又因为2,1AB CD ,所以1cos 2EAB ,所以60EAB.【点拨】利用平移法把异面直线平移为相交直线.【解法3】以A 为坐标原点,分别以,,AC AE CD 方向为x 轴,y 轴,z 轴正方向,建立如图1418 所示的空间直角坐标系,所以 0,0,0,,0,0,0A C a a ,则,0,1,D a B ,所以,0,0,1AB CD ,所以1cos 2AB CD AB CD 又因为 0,90,所以异面直线,a b 所成的角为60.【点拨】在构造长方体的基础上建立空间直角坐标系解决问题.【赏析】本题是一道典型的异面直线成角间题,与常见问题不同的是,本题中的异面直线不是直接出现在立体几何图形中.【解法1】和【解法3】都是将两条异面直线放置在长方体中求解.【解法1】将直线CD 平移到BE 处,从而易解.【解法3】则借助空间向量的方法求解.【解法2】利用异面直线所成角的概念,将CD 平移至AE 处后,在Rt BAE 中求解.在求两条异面直线所成角的大小时,要注意异面直线所成角的范围是0,2.利用中位线或平行四边形来添加辅助线的方法,有时也可对空间图形使用.【例5】已知三棱锥P ABC 满足60APB BPC CPA ,三个侧面,,APB BPC CPA 的面积分别为3,2,12,则这个三棱锥的体积是________.【解析】【解法1】由各侧面的面积可得13sin6022APB S PA PB ,所以2PA PB ,同理8343,33PB PC PA PC ,所以833PA PB PC ,构造三棱锥P A B C ,使得60A PB A PC B PC ,2,PA PB PC 所以13P A B C V ,因为P ABC P A B C V PA PB PC V PA PB PC,所以269P ABC P A B C PA PB PC V V PA PB PC【点拨】由三角形面积公式求得三棱锥的侧棱长,构造一个特殊的三棱锥,利用体积关系解决问题.【解法2】由题意得1sin60242APB S PA PB PA PB (1),1sin60224BPC S PC PB PB PC (2)13sin60124CAP S PA PC PA PC (3)由(1)(2)(3)联立解得431,2,3PA PB PC.如图1420 ,过点B 作BD 平面APC 于点D ,作DE PA 于点E ,连结BE ,易证AP 平面BDE ,所以AP BE ,在Rt BPE 中,2,60PB BPA,所以1PE .因为60APB APC BPC,所以点D 在APC 的平分线上,即30APD CPD,所以在Rt PDE 中,易得233PD ,同理,3BD ,所以111114332626sin601332323239P ABC APC V S BD PA PC BD .【点拨】求出三条棱长,过某一顶点作高,直接法求解体积.【解法3】设,,PA PB PC 的长度分别为,,a b c ,同【解法2】,则易得431,2,3a b c .如图1421 ,设点A 在平面BPC 上的射影为点O ,因为60APB APC BPC,所以30BPO CPO,所以3cos 3 ,所以26sin 1cos 3,所以点A 到平面PBC 的距离6sin 3AO PA,所以11161626sin602.3323339P ABC PBC V S AO PB PB 【点拨】作出点A 在平面PBC 上的投影,利用三余弦定理解题.注:三余弦定理证明:如图14-22,在三棱锥A BCD 中,AO 平面BCD ,过点O 作OE BC 交BC 于点E ,连结AE ,易得BC 平面AOE ,所以BEAE .在Rt AOB 中,cos OB ABO AB ,在Rt ABE 中,cos BE ABE AB,在Rt BOE 中,cos BE OBE BO,所以cos cos cos BE OB BE OBE ABO ABE BO AB AB,所以cos cos cos .ABE OBE ABO 【赏析】【解法1】巧妙地补形成一个特殊的三棱锥,利用一个平面 截三棱锥P ABC ,分别交三棱锥的棱,,PA PB PC 于点,,D E F ,则.P ABC P DEF V PA PB PC V PD PE PF解法23、实质相同,都是求底面和高,【解法3】利用三余弦定理求出三棱锥的高.【例6】已知在四棱柱1111ABCD A B C D 中,侧棱1AA 底面1,2ABCD AA ,底面ABCD 的边长均大于2,且45DAB,点P 在底面ABCD 内运动且在,AB AD 上的射影分别为,M N ,若2PA ,则三棱锥1P D MN 体积的最大值为________.【解析】【解法1】如图1423 ,设AP ,0,45N ,所以sin 2sin ,sin 452sin 45PN PA PM PA ,所以1sin135sin 45,2PMN S PM PN111212sin 45sin 245333P D MN D PMN V V ,所以当22.5 时,1P D MN V 取得最大值1.3【点拨】引入角度为变量﹐建立体积的三角函数式,利用三角函数法求最值.【解法2】因为2PA ,知点P 在以点A 为圆心,半径为2的圆弧上,因为45,90,90,DAB PMA PNA所以,,,A M P N 四点在以AP 为直径的圆F 上,如图14-24,所以1190,2122MFN FM FN AP ,所以MN在PMN 中,2222||||2cos135MN PM PN PM PN 因为22||2PM PN PM PN ,当且仅当222PM PN 时取等号,所以22PN PM PN所以2PM PN 所以1112121223323D PMN PMN V S .所以1D PMN V 的最大值为213.【点拨】利用平面几何法求得MN 的值,进而可利用均值不等式法求得PMN 面积的最大值,最后求得体积的最大值.【解法3】1112233P D MN D PMN PMN PMN V V S S 如图1425 所示,设,BAP DAP ,122sin 2sin sin135cos cos 22PMN Scos 12222,当且仅当22.5 时取等号,所以1P D MN V 的最大值为13.【点拨】引入两个角度,建立体积的代数表达式,结合积化和差公式可由两角和与差的余弦公式解决问题.【赏析】本题依托立体几何背景﹐涉及线面垂直﹑线线垂直和棱锥体积的求法.如何求解PMN 的面积的最大值是本题的关键.【解法1】从角度出发,将各边长转为为三角函数形式,利用三角函数值的有界性解答.【解法2】从平面几何的角度出发,利用基本不等式取得最值.这两种方法都是处理解三角形问题的基本方法.【解法3】从两角的关系出发,使用积化和差公式,实质是利用角的变换,和【解法1】有异曲同工之妙.强化训练1.在四棱锥S ABCD 中,底面ABCD 是平行四边形,,M N 分别是,SA BD 上的点.有下列命题:(1)若SM DN MA NB,则MN ∥平面SCD ;(2)若SM DN MA NB ,则MN ∥平面SCB ;(3)若平面SDA 平面ABCD ,且平面SDB 平面ABCD ,则SD 平面ABCD .其中正确命题的序号为________.【解析】答案:①③2.如图1426 ,在四棱锥P ABCD 中,E 为AD 上一点,PE 平面,ABCD //,AD BC AD ,CD 22,BC ED AE 3,EB F 为PC 上一点,且2CF FP .(I)求证://PA 平面BEF ;(II)若二面角F BE C 的平面角的大小为60,求直线PB 与平面ABCD 所成角的大小.【解析】(Ⅰ)证明:连结AC 交BE 于点M ,连结FM .因为//EM CD ,所以12AM AE PF MC ED FC,所以//FM AP ,又因为FM 平面,BEF PA 平面BEF ,所以//PA 平面BEF(Ⅱ)解:以E 为坐标原点,EB ,EA ,EP 所在直线分別为x 轴,y 轴,z 轴建立空间直角坐标系,如答图141 所示.设点(0,0,)P t ,因为PE 平面ABCD ,则向量(0,0,PE ,t )即为平面BEC 的法向量.因为//,,22,3AD BC AD CD BC ED AE EB ,所以四边形BCDE 为矩形,(3,0,0),(3,2,0)B C ,因为F 为PC 上一点,且2CF FP ,则有22221,,,1,,,(3,0,0)3333F t EF t EB设平面BEF 的法向量(,,)n x y z ,则n EF ,即有n .0EF ,即22033x y zt ,又0EB n ,即30x ,所以10,1,n t.因为二面角F BE C 的平面角大小为60,则PE 与n 的夹角为120 ,所以21cos1202||||11n PE n PE t t ,解得t 33),933P PB .因为PE 平面ABCD ,所以PBE 即为直线PB 与平面ABCD 所成的角.在Rt PBE 中,3cos 223BE PBE PBE PB 6,所以直线PB 与平面ABCD 所成角为6.3.如图1427 ,在三棱锥A BCD 中,3,2,AB AC BD CD AD BC M 是AD的中点,则异面直线,CM AB所成角的大小为________.【解析】取BD 中点N ,连结MN ,CN ,如答图14-2因为3,2,AB AC BD CD AD BC M 是AD 的中点,所以//MN AB ,且1322MN AB ,所以(CMN 或其补角)是异面直线CM ,AB 所成的角.因为CM 2227cos 29BD CD BC BDC BD CD 所以222172cos 4CN DN CD DN CD BDC .所以2222cos 22MN CM CN CMN MN CM .所以4CMN .所以异面直线CM ,AB 所成角的大小为4.4.已知三棱锥P ABC 的体积为16,点,D E 分别在侧棱,PB PC 上,且2,PD DB 3PE EC ,则三棱锥P ADE 的体积为________.【解析】由答图143 可知:P ABC P ADE V PA PB V PA PD .34223PC PE ,所以8P ADE V .5.过凸四边形ABCD 的对角线交点O 作该四边形所在平面的垂线段SO ,使SO 3 ,若22,S AOD S BOC V a V b ,当S ABCD V 最小时,ABCD 的形状为________.【解析】由已知,易得22,AOD DOC S a S b .设,AOB COD S x S y ,则22.S ABCD V a b x y 因为22AOD COD AOB DOC S S a DO y x S OB S b,所以22xy a b .而2(x y xy ab 设0,0a b ),于是222()a b x y a b ,当且仅当x y ab 时取等号,这时2.AOD DOC S AO a a OC S y b 同理,DO a OB b ,所以AO OC DO OB,所以//AD BC .另一方面:当x y ab 时,2,AOD DOC S AO a a BO OC S y b OD 2DOC DOC S b b S y a(1)当a b b a ,即22,AOD COD a b S S 时,AO BO OC OD,所以//AB CD .此时,四边形ABCD 是平行四边形.(2)当a bb a,即22,AOD Da b S S时,AO BOOC OD,所以AB与CD不平行.此时,四边形ABCD是梯形.。

立体几何知识归纳+典型例题+方法总结

立体几何知识归纳+典型例题+方法总结

立体几何知识归纳+典型例题+方法总结一、知识归纳1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题.(1)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上.(2)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线.(3)证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合.2. 空间直线(1)空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点(2)平行公理:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图).(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[οο∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3)两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)3. 直线与平面平行、直线与平面垂直(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. 若PA⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相PO A a交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上.4. 平面平行与平面垂直(1)空间两个平面的位置关系:相交、平行.(2)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面内的任一直线平行于另一平面.(3)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行⇒线线平行”)(4两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)注:如果两个二面角的平面分别对应互相垂直,则两个二面角没有什么关系.(5)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.简证:如图,在平面内过O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.所以结论成立 b.最小角定理的应用(∠PBN 为最小角) 简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.5. 棱柱. 棱锥(1)棱柱a.①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.b.{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱PαβθM A B O柱}⊃{正方体}.{直四棱柱}I {平行六面体}={直平行六面体}.c.棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各.个侧面都是矩形.......;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.d.平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则 1cos cos cos 222=++γβα.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα. (2)棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个三棱锥四个面可以都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V S h V ==. a.①正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正三角形,侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α) 附:以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别求多个三角形面积和的方法). b.棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.c.特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心. ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面l abc多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.(3)球:a.球的截面是一个圆面.①球的表面积公式:24R S π=.②球的体积公式:334R V π=. b.纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度.附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥体体积:Sh V 31=(S 为底面积,h 为高)(1). ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧,得R a R a a a ⋅⋅+⋅=⋅2224331433643a a a R 46342334/42=⋅==⇒. 注:球内切于四面体:h S R S 313R S 31V 底底侧ACD B ⋅=⋅+⋅⋅⋅=-. ②外接球:球外接于正四面体,可如图建立关系式.6. 空间向量(1)a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.b.共线向量定理:对空间任意两个向量)0(≠a , ∥的充要条件是存在实数λ(具有唯一性),使b a λ=.c.共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作∥α.d.①共面向量定理:如果两个向量b a ,不共线,则向量与向量b a ,共面的充要条件是存在实数对x 、y 使y x +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是PABC 四点共面的充要条件. (简证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)注:①②是证明四点共面的常用方法.(2)空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 z y x ++=(这里隐含x+y+z≠1). O BDO R注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心, 则向量)(31c b a AQ ++=用MQ AM AQ +=即证.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++u u u r u u u r u u u r u u u r , 则四点P 、A 、B 、C 是共面⇔1x y z ++=(3)a.空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵坐标),z 轴是竖轴(对应为竖坐标). ①令=(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a b a ±±±=+,))(,,(321R a a a a ∈=λλλλλ,332211b a b a b a b a ++=⋅ ,a ∥)(,,332211Rb a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a .222321a a a ++==(向量模与向量之间的转化:a a =⇒•=空间两个向量的夹角公式232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅•>=<ρρρρρρ(a =123(,,)a a a ,b =123(,,)b b b ). ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.b.法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量.c.向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α||n . ②异面直线间的距离d = (12,l l 是两异面直线,其公垂向量为n r ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).③直线AB 与平面所成角的正弦值sin ||||AB m AB m β⋅=u u u r u r u u u r u r (m u r 为平面α的法向量). ④利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n 反方,则为其夹角).d.证直线和平面平行定理:已知直线⊄a 平面α,α∈∈D C a B A ,,,,且C 、D 、E 三点不共线,则a ∥α的充要条件是存在有序实数对μλ,使μλ+=.(常设μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).AB二、经典例题考点一 空间向量及其运算1. 已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++u u u r u u u r u u u r u u u r , 试判断:点P 与,,A B C 是否一定共面?解析:要判断点P 与,,A B C 是否一定共面,即是要判断是否存在有序实数对,x y 使AP xAB y AC =+u u u r u u u r u u u r 或对空间任一点O ,有OP OA x AB y AC =++u u u r u u u r u u u r u u u r .答案:由题意:522OP OA OB OC =++u u u r u u u r u u u r u u u r ,∴()2()2()OP OA OB OP OC OP -=-+-u u u r u u u r u u u r u u u r u u u r u u u r ,∴22AP PB PC =+u u u r u u u r u u u r ,即22PA PB PC =--u u u r u u u r u u u r ,所以,点P 与,,A B C 共面.点评:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.2.如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且13BM BD =,13AN AE =.求证://MN 平面CDE .解析:要证明//MN 平面CDE ,只要证明向量NM u u u u r 可以用平面CDE 内的两个不共线的向量DE u u u r 和DC u u u r 线性表示. 答案:证明:如图,因为M 在BD 上,且13BM BD =, 所以111333MB DB DA AB ==+u u u r u u u r u u u r u u u r .同理1133AN AD DE =+u u u r u u u r u u u r , 又CD BA AB ==-u u u r u u u r u u u r ,所以MN MB BA AN =++u u u u r u u u r u u u r u u u r 1111()()3333DA AB BA AD DE =++++u u u r u u u r u u u r u u u r u u u r 2133BA DE =+u u u r u u u r 2133CD DE =+u u u r u u u r . 又CD uuu r 与DE u u u r 不共线,根据共面向量定理,可知MN u u u u r ,CD uuu r ,DE u u u r 共面.由于MN 不在平面CDE 内,所以//MN 平面CDE .点评:空间任意的两向量都是共面的.与空间的任两条直线不一定共面要区别开.考点二 证明空间线面平行与垂直3. 如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点, (I )求证:AC ⊥BC 1; (II )求证:AC 1//平面CDB 1;解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行. 答案:解法一:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4AB =5,∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1; (II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC 1的中点,∴ DE//AC 1,∵ DE ⊂平面C D B 1,AC 1⊄平面C D B 1,∴ AC 1//平面C D B 1;解法二:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直,如图,以C 为坐标原点,直线CA 、CB 、C 1C 分别为x 轴、y轴、z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (23,2,0) (1)∵AC =(-3,0,0),1BC =(0,-4,0),∴AC •1BC =0,∴AC ⊥BC 1. (2)设CB 1与C 1B 的交战为E ,则E (0,2,2).∵DE =(-23,0,2),1AC =(-3,0,4),∴121AC DE =,∴DE ∥AC 1.A B C A B C E x yz4. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ;(3)求直线PC 与平面PBD 所成角的正弦.解析:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力.答案:(1)ΘM 是PC 的中点,取PD 的中点E ,则 ME CD 21,又AB CD 21 ∴四边形ABME 为平行四边形∴BM ∥EA ,PAD BM 平面⊄,PAD EA 平面⊂∴BM ∥PAD 平面(2)以A 为原点,以AB 、AD 、AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则())0,0,1B ,()0,2,2C ,()0,2,0D ,()2,0,0P ,()1,1,1M ,()1,1,0E在平面PAD 内设()z y N ,,0,()1,1,1---=→--z y MN ,()2,0,1-=→--PB ,()0,2,1-=→--DB 由→--→--⊥PB MN ∴0221=+--=⋅→--→--z PB MN ∴21=z由→--→--⊥DB MN ∴0221=+--=⋅→--→--y DB MN ∴21=y∴⎪⎭⎫ ⎝⎛21,21,0N ∴N 是AE 的中点,此时BD MN P 平面⊥(3)设直线PC 与平面PBD 所成的角为θ()2,2,2-=→--PC ,⎪⎭⎫ ⎝⎛---=→--21,21,1MN ,设→--→--MN PC ,为α 3226322cos -=⋅-=⋅=→--→--→--→--MN PC MNPC α 32cos sin =-=αθ 故直线PC 与平面PBD 所成角的正弦为32解法二: (1)ΘM 是PC 的中点,取PD 的中点E ,则ME CD 21,又AB CD 21 ∴四边形ABME 为平行四边形∴BM ∥EA ,PAD BM 平面⊄PAD EA 平面⊂∴BM ∥PAD 平面(2)由(1)知ABME 为平行四边形ABCD PA 底面⊥∴AB PA ⊥,又AD AB ⊥∴PAD AB 平面⊥ 同理PAD CD 平面⊥,PAD 平面⊂AE∴A E A B ⊥ ∴AB ME 为矩形 CD ∥ME ,PD CD ⊥,又A E PD ⊥ ∴PD ⊥ME ∴ABME 平面⊥PD PBD PD 平面⊂∴ABME PBD 平面平面⊥ 作EB ⊥MF 故PBD 平面⊥MFMF 交AE 于N ,在矩形ABME 内,1==ME AB ,2=AE∴32=MF ,22=NE N 为AE 的中点 ∴当点N 为AE 的中点时,BD MN P 平面⊥(3)由(2)知MF 为点M 到平面PBD 的距离,MPF ∠为直线PC 与平面PBD 所成的角,设为θ,32sin ==MP MF θ ∴直线PC 与平面PBD 所成的角的正弦值为32点评:(1)证明线面平行只需证明直线与平面内一条直线平行即可;(2)求斜线与平面所成的角只需在斜线上找一点作已知平面的垂线,斜线和射影所成的角,即为所求角;(3)证明线面垂直只需证此直线与平面内两条相交直线垂直变可.这些从证法中都能十分明显地体现出来考点三 求空间图形中的角与距离根据定义找出或作出所求的角与距离,然后通过解三角形等方法求值,注意“作、证、算”的有机统一.解题时注意各种角的范围:异面直线所成角的范围是0°<θ≤90°,其方法是平移法和补形法;直线与平面所成角的范围是0°≤θ≤90°,其解法是作垂线、找射影;二面角0°≤θ≤180°,其方法是:①定义法;②三垂线定理及其逆定理;③垂面法 另外也可借助空间向量求这三种角的大小.5. 如图,四棱锥P ABCD -中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ADC ∠=o 的菱形,M 为PB 的中点.(Ⅰ)求PA 与底面ABCD 所成角的大小;(Ⅱ)求证:PA ⊥平面CDM ;(Ⅲ)求二面角D MC B --的余弦值.解析:求线面角关键是作垂线,找射影,求异面直线所成的角采用平 移法 求二面角的大小也可应用面积射影法,比较好的方法是向量法答案:(I)取DC 的中点O ,由ΔPDC 是正三角形,有PO ⊥DC . 又∵平面PDC ⊥底面ABCD ,∴PO ⊥平面ABCD 于O .连结OA ,则OA 是PA 在底面上的射影.∴∠PAO 就是PA 与底面所成角.∵∠ADC =60°,由已知ΔPCD 和ΔACD 是全等的正三角形,从而求得OA =OP =3∴∠PAO =45°.∴PA 与底面ABCD 可成角的大小为45°.(II)由底面ABCD 为菱形且∠ADC =60°,DC =2,DO =1,有OA ⊥DC . 建立空间直角坐标系如图, 则(3,0,0),(0,0,3),(0,1,0)A P D -, (3,2,0),(0,1,0)B C .由M 为PB 中点,∴33(1,M . ∴33((3,0,3),DM PA ==u u u u r u u u r (0,2,0)DC =u u u r . ∴333203)0PA DM ⋅=⨯-=u u u r u u u u r ,03200(3)0PA DC ⋅=⨯+⨯-=u u u r u u u r .∴PA ⊥DM ,PA ⊥DC . ∴PA ⊥平面DMC .(III)33(),(3,1,0)CM CB ==u u u u r u u u r .令平面BMC 的法向量(,,)n x y z =r , 则0n CM ⋅=u u u u r r ,从而x +z =0; ……①, 0n CB ⋅=u u u r r 30x y +=. ……②由①、②,取x =−1,则3,1y z =. ∴可取(3,1)n=-r . 由(II)知平面CDM 的法向量可取(3,0,3)PA =u u u r , ∴2310cos ,||||56n PA n PA n PA ⋅-<>=⋅u u u r r u u u r r u u u r r 10法二:(Ⅰ)方法同上(Ⅱ)取AP 的中点N ,连接MN ,由(Ⅰ)知,在菱形ABCD 中,由于60ADC ∠=o ,则AO CD ⊥,又PO CD ⊥,则CD APO ⊥平面,即CD PA ⊥,又在PAB ∆中,中位线//MN 12AB ,1//2CO AB ,则//MN CO , 则四边形OCMN 为Y ,所以//MC ON ,在APO ∆中,AO PO =,则ON AP ⊥,故AP MC ⊥而MC CD C =I ,则PA MCD ⊥平面(Ⅲ)由(Ⅱ)知MC PAB ⊥平面,则NMB ∠为二面角D MC B --的平面角, 在Rt PAB ∆中,易得PA=PB ===,cos AB PBA PB ∠===,cos cos()5NMB PBA π∠=-∠=-故,所求二面角的余弦值为5-点评:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强 用平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角,是常用的方法.6. 如图,在长方体1111ABCD A B C D -中,11,2,AD AA AB ===点E 在线段AB 上. (Ⅰ)求异面直线1D E 与1A D 所成的角;(Ⅱ)若二面角1D EC D --的大小为45︒,求点B 到平面1D EC 的距离.解析:本题涉及立体几何线面关系的有关知识, 本题实质上求角度和距离,在求此类问题中,要将这些量归结到三角形中,最好是直角三角形,这样有利1D A B CD E 1A 1B 1C于问题的解决,此外用向量也是一种比较好的方法.答案:解法一:(Ⅰ)连结1AD .由已知,11AA D D 是正方形,有11AD A D ⊥.∵AB ⊥平面11AA D D ,∴1AD 是1D E 在平面11AA D D 内的射影.根据三垂线定理,11AD D E ⊥得,则异面直线1D E 与1A D 所成的角为90︒. 作DF CE ⊥,垂足为F ,连结1D F ,则1CE D F ⊥所以1DFD ∠为二面角1D EC D --的平面角,145DFD ∠=︒.于是111,DF DD D F ==易得Rt Rt BCE CDF ∆≅∆,所以2CE CD ==,又1BC =,所以BE =. 设点B 到平面1D EC 的距离为h .∵1,B CED D BCE V V --=即1111113232CE D F h BE BC DD ⋅⋅⋅=⋅⋅⋅,∴11CE D F h BE BC DD ⋅⋅=⋅⋅,即=,∴4h =.故点B 到平面1D EC 解法二:分别以1,,DA DB DD 为x 轴、y 轴、z 轴,建立空间直角坐标系.(Ⅰ)由1(1,0,1)A ,得1(1,0,1)DA =u u u u r设(1,,0)E a ,又1(0,0,1)D ,则1(1,,1)D E a =-u u u u r .∵111010DA D E ⋅=+-=u u u u r u u u u r ∴11DA D E ⊥u u u u r u u u u r则异面直线1D E 与1A D 所成的角为90︒.(Ⅱ)(0,0,1)=m 为面DEC 的法向量,设(,,)x y z =n 为面1CED 的法向量,则(,,)x y z =n|||cos ,|cos 45||||2⋅<>===︒=m n m n m n ∴222z x y =+. ①由(0,2,0)C ,得1(0,2,1)DC =-u u u u r ,则1D C ⊥u u u u r n ,即10DC ⋅=u u u u r n ∴20y z -= ② 由①、②,可取(3,1,2)=n 又(1,0,0)CB =u u u r ,所以点B 到平面1D EC 的距离||36422CB d ⋅===u u u r n |n |. 点评:立体几何的内容就是空间的判断、推理、证明、角度和距离、面积与体积的计算,这是立体几何的重点内容,本题实质上求角度和距离,在求此类问题中,尽量要将这些量归结于三角形中,最好是直角三角形,这样计算起来,比较简单,此外用向量也是一种比较好的方法,不过建系一定要恰当,这样坐标才比较容易写出来.考点四 探索性问题7. 如图所示:边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂直且DE=2,ED//AF 且∠DAF =90°.(1)求BD 和面BEF 所成的角的余弦;(2)线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值;若不存在,说明理由.解析:1.先假设存在,再去推理,下结论: 2.运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算. 答案:(1)因为AC 、AD 、AB 两两垂直,建立如图坐标系,则B (2,0,0),D (0,0,2),E (1,1,2),F (2,2,0), 则)0,2,0(),2,1,1(),0,0,2(=-==BF BE DB设平面BEF 的法向量x z y x n -=则),,,(0,02==++y z y ,则可取)0,1,2(=n ,∴向量)1,0,2(=n DB 和所成角的余弦为1010)2(21220222222=-++-+⋅. 即BD 和面BEF 所成的角的余弦1010. (2)假设线段EF 上存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,不妨设EP 与PF 的比值为m ,则P 点坐标为),12,121,121(m m m m m +++++ 则向量=),12,121,121(m m m m m +++++,向量=CP ),12,11,121(mm m m ++-++ 所以21,012)2(12101212==+-++++++m m m m m m 所以. 点评:本题考查了线线关系,线面关系及其相关计算,本题采用探索式、开放式设问方式,对学生灵活运用知识解题提出了较高要求.8. 如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(I )求证:平面VAB ⊥平面VCD ;(II )试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6. 解析:本例可利用综合法证明求解,也可用向量法求解.答案:解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点,CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 依题意π6CBH ∠=,所以在CHD Rt △中,sin 2CH a θ=; 在BHC Rt △中,πsin 62a CH a ==,sin θ=∴. π02θ<<∵,π4θ=∴. 故当π4θ=时,直线BC 与平面VAB 所成的角为π6.解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V a θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a a VD θ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,022a a CD ⎛⎫= ⎪⎝⎭u u u r ,,,(0)AB a a =-u u u r ,,. 从而2211(0)0002222a a ABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭u u u r u u u r ,,,,··,即AB CD ⊥.同理2211(0)tan 02222a a AB VD a a a a θ⎛⎫=-=-++ ⎪ ⎪⎝⎭u u u r u u u r ,,,,··即AB VD ⊥.又CD VD D =I ,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==u u u r,··nn .得0tan 0222ax ay a a x y θ-+=⎧⎪⎨+-=⎪⎩,.可取(11)θ=n ,又(00)BC a =-u u u r,,,于是πsin 62BC BC θ===u u u r u u u r n n ··,即sin 2θ=π02θ<<∵,π4θ∴=. 故交π4θ=时,直线BC 与平面VAB 所成的角为π6.解法3:(Ⅰ)以点D 为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则(000)000000222D A a B a C a ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,0tan 22V a θ⎛⎫- ⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,002DC ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,(00)AB =u u u r ,.从而(00)AB DC =u u u r u u u r ,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 0AB DV θ⎛⎫== ⎪ ⎪⎝⎭u u u r u u u r ,,·,即AB DV ⊥. 又DC DV D =I , AB ⊥∴平面VCD . 又AB ⊂平面VAB , ∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==u u u r u u u r ,··n n ,得2022tan 022ay ax az θ⎧=⎪⎨-+=⎪⎩,. 可取(tan 01)n θ=,,,又220BC a a ⎛⎫=-- ⎪ ⎪⎝⎭u u u r ,,, 于是22tan π22sin sin 61tan a BC BC a θθθ===+u u u r u u u r n n ···, 即πππsin 0224θθθ=<<,,∵∴=. 故角π4θ=时, 即直线BC 与平面VAB 所成角为π6.点评:证明两平面垂直一般用面面垂直的判定定理,求线面角一是找线在平面上的射影在直角三角形中求解,但运用更多的是建空间直角坐标系,利用向量法求解考点五 折叠、展开问题9.已知正方形ABCD E 、F 分别是AB 、CD 的中点,将ADE V 沿DE 折起,如图所示,记二面角A DE C --的大小为(0)θθπ<<(I) 证明//BF 平面ADE ;(II)若ACD V 为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值分析:充分发挥空间想像能力,重点抓住不变的位置和数量关系,借助模型图形得出结论,并给出证明.解: (I)证明:EF 分别为正方形ABCD 得边AB 、CD 的中点,ADBCVxyAEB CF DG∴EB//FD,且EB=FD,∴四边形EBFD 为平行四边形∴BF//ED.,EF AED BF AED ⊂⊄Q 平面而平面,∴//BF 平面ADE(II)如右图,点A 在平面BCDE 内的射影G 在直线EF 上,过点A 作AG 垂直于平面BCDE,垂足为G,连结GC,GDQ ∆ACD 为正三角形,∴AC=AD. ∴CG=GD. Q G在CD 的垂直平分线上, ∴点A 在平面BCDE 内的射影G 在直线EF 上,过G 作GH 垂直于ED 于H,连结AH,则AH DE ⊥,所以AHD ∠为二面角A-DE-C 的平面角 即G AH θ∠=.设原正方体的边长为2a,连结AF,在折后图的∆AEF中,EF=2AE=2a,即∆AEF 为直角三角形, AG EF AE AF ⋅=⋅.2AG a ∴=在Rt ∆ADE 中, AH DE AE AD ⋅=⋅AH ∴=.GH ∴=,1cos 4GH AH θ== 点评:在平面图形翻折成空间图形的这类折叠问题中,一般来说,位于同一平面内的几何元素相对位置和数量关系不变:位于两个不同平面内的元素,位置和数量关系要发生变化,翻折问题常用的添辅助线的方法是作棱的垂线.关键要抓不变的量.考点六 球体与多面体的组合问题10.设棱锥M-ABCD 的底面是正方形,且MA =MD ,MA ⊥AB ,如果ΔAMD 的面积为1,试求能够放入这个棱锥的最大球的半径.分析:关键是找出球心所在的三角形,求出内切圆半径. 解: ∵AB ⊥AD ,AB ⊥MA , ∴AB ⊥平面MAD ,由此,面MAD ⊥面AC.记E 是AD 的中点,从而ME ⊥AD. ∴ME ⊥平面AC ,ME ⊥EF.设球O 是与平面MAD 、平面AC 、平面MBC 都相切的球. 不妨设O ∈平面MEF ,于是O 是ΔMEF 的内心. 设球O 的半径为r ,则r =MFEM EF S MEF++△2设AD =EF =a,∵S ΔAMD =1. ∴ME =a 2.MF =22)2(aa +, r =22)2(22aa a a +++≤2222+=2-1. 当且仅当a =a2,即a =2时,等号成立.∴当AD =ME =2时,满足条件的球最大半径为2-1.点评:涉及球与棱柱、棱锥的切接问题时一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.注意多边形内切圆半径与面积和周长间的关系;多面体内切球半径与体积和表面积间的关系. 三、方法总结1.位置关系:(1)两条异面直线相互垂直证明方法:○1证明两条异面直线所成角为90º;○2证明两条异面直线的方向量相互垂直.(2)直线和平面相互平行证明方法:○1证明直线和这个平面内的一条直线相互平行;○2证明这条直线的方向向量和这个平面内的一个向量相互平行;○3证明这条直线的方向向量和这个平面的法向量相互垂直.(3)直线和平面垂直证明方法:○1证明直线和平面内两条相交直线都垂直,○2证明直线的方向量与这个平面内不共线的两个向量都垂直;○3证明直线的方向量与这个平面的法向量相互平行.(4)平面和平面相互垂直证明方法:○1证明这两个平面所成二面角的平面角为90º;○2证明一个平面内的一条直线垂直于另外一个平面;○3证明两个平面的法向量相互垂直.2.求距离:求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离.(1)两条异面直线的距离。

立体几何典型例题(垂直)

立体几何典型例题(垂直)

立体几何第二讲:(平行与垂直问题)例1在四棱锥P-ABCD中,底面ABCD是平行四边形,M,N分别是AB,PC的中点,求证:MN∥平面P AD.例2在直三棱柱ABC-A1B1C1中,AA1=AC,AB⊥AC,求证:A1C⊥BC1.例3在三棱锥P-ABC中,平面P AB⊥平面ABC,AB⊥BC,AP⊥PB,求证:平面P AC⊥平面PBC.例4如图,在斜三棱柱ABC-A1B1C1中,侧面A1ABB1是菱形,且垂直于底面ABC,∠A1AB=60°,E,F分别是AB1,BC的中点.(Ⅰ)求证:直线EF∥平面A1ACC1;(Ⅱ)在线段AB上确定一点G,使平面EFG⊥平面ABC,并给出证明.例题5.,在四面体ABC P -中,已知6==BC PA ,342,8,10====PB AC AB PC .F 是线段PB 上一点,341715=CF ,点E 在线段AB 上,且PB EF ⊥. (Ⅰ)证明:CEF PB 平面⊥;(Ⅱ)求二面角F CE B --的大小.例题6如图,在锥体P ﹣ABCD 中,ABCD 是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2, E ,F 分别是BC ,PC 的中点 ( 1)证明:AD ⊥平面DEF(2)求二面角P ﹣AD ﹣B 的余弦值.AC B PF E 图3例题解答:例题1【分析】要证明“线面平行”,可通过“线线平行”或“面面平行”进行转化;题目中出现了中点的条件,因此可考虑构造(添加)中位线辅助证明.证明:方法一,取PD 中点E ,连接AE ,NE .∵底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,∴MA ∥CD ,.21CD MA = ∵E 是PD 的中点, ∴NE ∥CD ,.21CD NE =∴MA ∥NE ,且MA =NE , ∴AENM 是平行四边形, ∴MN ∥AE .又AE ⊂平面P AD ,MN ⊄平面P AD , ∴MN ∥平面P AD .方法二取CD 中点F ,连接MF ,NF . ∵MF ∥AD ,NF ∥PD , ∴平面MNF ∥平面P AD , ∴MN ∥平面P AD .例2 【分析】要证明“线线垂直”,可通过“线面垂直”进行转化,因此设法证明A 1C 垂直于经过BC 1的平面即可.证明:连接AC 1.∵ABC -A 1B 1C 1是直三棱柱, ∴AA 1⊥平面ABC , ∴AB ⊥AA 1. 又AB ⊥AC ,∴AB ⊥平面A 1ACC 1, ∴A 1C ⊥A B .① 又AA 1=AC ,∴侧面A 1ACC 1是正方形, ∴A 1C ⊥AC 1.②由①,②得A 1C ⊥平面ABC 1, ∴A 1C ⊥BC 1.例3 【分析】要证明“面面垂直”,可通过“线面垂直”进行转化,而“线面垂直”又 可以通过“线线垂直”进行转化.证明:∵平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,且AB ⊥BC , ∴BC ⊥平面P AB , ∴AP ⊥BC . 又AP ⊥PB ,∴AP ⊥平面PBC , 又AP ⊂平面P AC ,∴平面P AC ⊥平面PBC .例4 如图,在斜三棱柱ABC -A 1B 1C 1中,侧面A 1ABB 1是菱形,且垂直于底面ABC ,∠A 1AB =60°,E ,F 分别是AB 1,BC 的中点.(Ⅰ)求证:直线EF ∥平面A 1ACC 1;(Ⅱ)在线段AB 上确定一点G ,使平面EFG ⊥平面ABC ,并给出证明. 证明:(Ⅰ)连接A 1C ,A 1E .∵侧面A 1ABB 1是菱形, E 是AB 1的中点, ∴E 也是A 1B 的中点,又F 是BC 的中点,∴EF ∥A 1C .∵A 1C ⊂平面A 1ACC 1,EF ⊄平面A 1ACC 1, ∴直线EF ∥平面A 1ACC 1. (2)解:当31=GA BG 时,平面EFG ⊥平面ABC ,证明如下: 连接EG ,FG .∵侧面A 1ABB 1是菱形,且∠A 1AB =60°,∴△A 1AB 是等边三角形. ∵E 是A 1B 的中点,31=GA BG ,∴EG ⊥AB . ∵平面A 1ABB 1⊥平面ABC ,且平面A 1ABB 1∩平面ABC =AB , ∴EG ⊥平面ABC .又EG ⊂平面EFG ,∴平面EFG ⊥平面ABC . 例题5.,【答案】 (Ⅰ)证明:在ABC ∆中, ∵,6,10,8===BC AB AC∴,222AB BC AC =+∴△PAC 是以∠PAC 为直角的直角三角形, 同理可证,△PAB 是以∠PAB 为直角的直角三角形,△PCB 是以∠PCB 为直角的直角三角形. 在PCB Rt ∆中,∵,341715,342,6,10====CF PB BC PC ∴,CF PB BC PC ⋅=⋅ ∴,CF PB ⊥又∵,,F CF EF PB EF =⊥ ∴.CEF PB 平面⊥ (II )解法一:由(I )知PB ⊥CE ,PA ⊥平面ABC∴AB 是PB 在平面ABC 上的射影,故AB ⊥CE ∴CE ⊥平面PAB ,而EF ⊂平面PAB , ∴EF ⊥EC ,故∠FEB 是二面角B —CE —F 的平面角,∵EFB PAB ∆∆~∴35610cot tan ===∠=∠AP AB PBA FEB , ∴二面角B —CE —F 的大小为35arctan.例6如图,在锥体P ﹣ABCD 中,ABCD 是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E,F分别是BC,PC的中点(1)证明:AD⊥平面DEF(2)求二面角P﹣AD﹣B的余弦值.解:(1)取AD的中点G,连接PG,BG,在△ABG中,根据余弦定理可以算出BG=,发现AG2+BG2=AB2,可以得出AD⊥BG,又DE∥BG∴DE⊥AD,又PA=PD,可以得出AD⊥PG,而PG∩BG=G,∴AD⊥平面PBG,而PB⊂平面PBG,∴AD⊥PB,又PB∥EF,∴AD⊥EF.又EF∩DE=E,∴AD⊥平面DEF.(2)由(1)知,AD⊥平面PBG,所以∠PGB为二面角P﹣AD﹣B的平面角,在△PBG中,PG=,BG=,PB=2,由余弦定理得cos∠PGB=,因此二面角P﹣AD﹣B的余弦值为.点评:本题考查立体几何中基本的线面关系,考查线面垂直的判定方法,考查二面角的求法,训练了学生基本的空间想象能力,考查学生的转化与化归思想,解三角形的基本知识和学生的运算能力,属于基本的立体几何题.练习一、选择题:1.已知m ,n 是两条不同直线,α ,β ,γ 是三个不同平面,下列命题中正确的是( ) (A)若m ∥α ,n ∥α ,则m ∥n (B)若m ⊥α ,n ⊥α ,则m ∥n (C)若α ⊥γ ,β ⊥γ ,则α ∥β (D)若m ∥α ,m ∥β ,则α ∥β 2.已知直线m ,n 和平面α ,β ,且m ⊥n ,m ⊥α ,α ⊥β ,则( ) (A)n ⊥β (B)n ∥β ,或n ⊂β (C)n ⊥α (D)n ∥α ,或n ⊂α3.设a ,b 是两条直线,α 、β 是两个平面,则a ⊥b 的一个充分条件是( ) (A)a ⊥α ,b ∥β ,α ⊥β (B)a ⊥α ,b ⊥β ,α ∥β (C)a ⊂α ,b ⊥β ,α ∥β (D)a ⊂α ,b ∥β ,α ⊥β 4.设直线m 与平面α 相交但不垂直,则下列说法中正确的是( ) (A)在平面α 内有且只有一条直线与直线m 垂直 (B)过直线m 有且只有一个平面与平面α 垂直 (C)与直线m 垂直的直线不可能与平面α 平行 (D)与直线m 平行的平面不可能与平面α 垂直 二、填空题:5.在三棱锥P -ABC 中,6==PB PA ,平面P AB ⊥平面ABC ,P A ⊥PB ,AB ⊥BC ,∠BAC =30°,则PC =______.6.在直四棱柱ABCD -A 1B 1C 1D 1中,当底面ABCD 满足条件______时,有A 1C ⊥B 1D 1.(只要求写出一种条件即可)7.设α ,β 是两个不同的平面,m ,n 是平面α ,β 之外的两条不同直线,给出四个论断: ①m ⊥n ②α ⊥β ③n ⊥β ④m ⊥α以其中三个论断作为条件,余下的一个论断作为结论,写出正确的一个命题______.8.已知平面α ⊥平面β ,α ∩β =l ,点A ∈α ,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α ,m ∥β ,给出下列四种位置:①AB ∥m ;②AC ⊥m ;③AB ∥β ;④AC ⊥β , 上述四种位置关系中,不一定成立的结论的序号是______. 三、解答题:9.如图,三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,M ,N 分别为P A ,BC 的中点.(Ⅰ)求MN 的长; (Ⅱ)求证:P A ⊥BC .10.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点.求证:(Ⅰ)直线EF ∥平面ACD ; (Ⅱ)平面EFC ⊥平面BCD .11.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC ∥AD ,AF BE AF BE AD BC 21,//,21==,G ,H 分别为F A ,FD 的中点.(Ⅰ)证明:四边形BCHG 是平行四边形;(Ⅱ)C ,D ,F ,E 四点是否共面?为什么?(Ⅲ)设AB =BE ,证明:平面ADE ⊥平面CDE .例2 如图,正三棱柱ABC -A 1B 1C 1中,E 是AC 的中点.(Ⅰ)求证:平面BEC 1⊥平面ACC 1A 1;(Ⅱ)求证:AB 1∥平面BEC 1.【分析】本题给出的三棱柱不是直立形式的直观图,这种情况下对空间想象能力提出了更高的要求,可以根据几何体自身的性质,适当添加辅助线帮助思考.证明:(Ⅰ)∵ABC -A 1B 1C 1是正三棱柱,∴AA 1⊥平面ABC , ∴BE ⊥AA 1.∵△ABC 是正三角形,E 是AC 的中点,∴BE ⊥AC ,∴BE ⊥平面ACC 1A 1,又BE ⊂平面BEC 1, ∴平面BEC 1⊥平面ACC 1A 1.(Ⅱ)证明:连接B 1C ,设BC 1∩B 1C =D .∵BCC 1B 1是矩形,D 是B 1C 的中点, ∴DE ∥AB 1. 又DE ⊂平面BEC 1,AB 1⊄平面BEC 1, ∴AB 1∥平面BEC 1.例3 【分析】本题中的数量关系较多,可考虑从“算”的角度入手分析,如从M 是PC 上的动点分析知,MB ,MD 随点M 的变动而运动,因此可考虑平面MBD 内“不动”的直线BD 是否垂直平面P AD .证明:(Ⅰ)在△ABD 中,由于AD =4,BD =8,54=AB ,所以AD 2+BD 2=AB 2. 故AD ⊥BD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,BD ⊂平面ABCD , 所以BD ⊥平面P AD ,又BD ⊂平面MBD ,故平面MBD ⊥平面P AD . (Ⅱ)解:过P 作PO ⊥AD 交AD 于O ,由于平面P AD ⊥平面ABCD ,所以PO ⊥平面ABCD . 因此PO 为四棱锥P -ABCD 的高,又△P AD 是边长为4的等边三角形.因此.32423=⨯=PO 在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,所以四边形ABCD 是梯形,在Rt △ADB 中,斜边AB 边上的高为5585484=⨯,即为梯形ABCD 的高, 所以四边形ABCD 的面积为.2455825452=⨯+=S 故.316322431=⨯⨯=-ABCD P V立体几何参考答案练习7-1一、选择题:1.B 2.D 3.C 4.B 二、填空题:5.10 6.AC ⊥BD (或能得出此结论的其他条件)7.②、③、④⇒①;或①、③、④⇒② 8.④ 三、解答题:9.(Ⅰ)解:连接MB ,MC .∵三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,∴23==MC MB ,且底面△ABC 也是边长为1的等边三角形. ∵N 为BC 的中点,∴MN ⊥BC . 在Rt △MNB 中,⋅=-=2222BN MB MN (Ⅱ)证明:∵M 是P A 的中点,∴P A ⊥MB ,同理P A ⊥MC .∵MB ∩MC =M ,∴P A ⊥平面MBC , 又BC ⊂平面MBC ,∴P A ⊥BC .10.证明:(Ⅰ)∵E 、F 分别是AB 、BD 的中点,∴EF 是△ABD 的中位线,∴EF ∥AD .又EF ⊄平面ACD ,AD ⊂平面ACD ,∴直线EF ∥平面ACD .(Ⅱ)∵EF ∥AD ,AD ⊥BD ,∴EF ⊥BD .∵CB =CD ,F 是BD 的中点,∴CF ⊥BD .∵CF ∩EF =F ,∴BD ⊥平面CEF .∵BD ⊂平面BCD ,∴平面EFC ⊥平面BCD .11.(Ⅰ)由题意知,FG =GA ,FH =HD ,∴GH ∥AD ,,21AD GH =又BC ∥AD ,AD BC 21=,∴GH ∥BC ,GH =BC , ∴四边形BCHG 是平行四边形. (Ⅱ)C ,D ,F ,E 四点共面.理由如下: 由BE ∥AF ,AF BF 21=,G 是F A 的中点, 得BE ∥FG ,且BE =FG .∴EF ∥BG .由(Ⅰ)知BG ∥CH ,∴EF ∥CH ,故EC ,FH 共面,又点D 在直线FH 上, 所以C ,D ,F ,E 四点共面. (Ⅲ)连结EG ,由AB =BE ,BE ∥AG ,BE =AG 及∠BAG =90°,知ABEG 是正方形,故BG ⊥EA .由题设知F A ,AD ,AB 两两垂直,故AD ⊥平面F ABE ,∴BG ⊥AD . ∴BG ⊥平面EAD ,∴BG ⊥ED . 又ED ∩EA =E ,∴BG ⊥平面ADF . 由(Ⅰ)知CH ∥BG ,∴CH ⊥平面ADE .由(Ⅱ)知F ∈平面CDE ,故CH ⊂平面CDE ,得平面ADE ⊥平面CDE .。

高中数学必修二第八章立体几何初步典型例题(带答案)

高中数学必修二第八章立体几何初步典型例题(带答案)

高中数学必修二第八章立体几何初步典型例题单选题1、如图,△A′B′C′是水平放置的△ABC的直观图,其中B′C′=C′A′=2,A′B′,A′C′分别与x′轴,y′轴平行,则BC=()A.2B.2√2C.4D.2√6答案:D分析:先确定△A′B′C′是等腰直角三角形,求出A′B′,再确定原图△ABC的形状,进而求出BC.由题意可知△A′B′C′是等腰直角三角形,A′B′=2√2,其原图形是Rt△ABC,AB=A′B′=2√2,AC=2A′C′=4,∠BAC=90°,则BC=√8+16=2√6,故选:D.2、如图直角△O′A′B′是一个平面图形的直观图,斜边O′B′=4,则原平面图形的面积是()A.8√2B.4√2C.4D.√2答案:A解析:根据斜二测画法规则可求原平面图形三角形的两条直角边长度,利用三角形的面积公式即可求解.由题意可知△O′A′B′为等腰直角三角形,O′B′=4,则O′A′=2√2,所以原图形中,OB=4,OA=4√2,×4×4√2=8√2.故原平面图形的面积为12故选:A3、正方体中,点P,O,R,S是其所在棱的中点,则PQ与RS是异面直线的图形是()A.B.C.D.答案:C分析:对于A,B,D,利用两平行线确定一个平面可以证明直线PQ与RS共面,对于C,利用异面直线的定义推理判断作答.对于A,在正方体ABCD−A1B1C1D1中,连接AC,A1C1,则AC//A1C1,如图,因为点P,Q,R,S是其所在棱的中点,则有PQ//AC,RS//A1C1,因此PQ//RS,则直线PQ与RS共面,A错误;对于B,在正方体ABCD−A1B1C1D1中,连接AC,QS,PR,如图,因为点P,Q,R,S是其所在棱的中点,有AP//CR且AP=CR,则四边形APRC为平行四边形,即有AC//PR,又QS//AC,因此QS//PR,直线PQ与RS共面,B错误;对于C,在正方体ABCD−A1B1C1D1中,如图,因为点P,Q,R,S是其所在棱的中点,有RS//BB1,而BB1⊂平面ABB1A1,RS⊄平面ABB1A1,则RS//平面ABB1A1,PQ⊂平面ABB1A1,则直线PQ与RS无公共点,又直线PQ与直线BB1相交,于是得直线PQ与RS不平行,则直线PQ与RS是异面直线,C正确;对于D,在正方体ABCD−A1B1C1D1中,连接A1B,D1C,PS,QR,如图,因为A1D1//BC且A1D1=BC,则四边形A1D1CB为平行四边形,有A1B//D1C,因为点P,Q,R,S是其所在棱的中点,有PS//A1B,QR//D1C,则PS//QR,直线PQ与RS共面,D错误.故选:C4、下面四个选项中一定能得出平面α/⁄平面β的是()A.存在一条直线a,a//α,a//βB.存在一条直线a,a⊂α,a//βC.存在两条平行直线a,b,a⊂α,b⊂β,a//β,b//αD.存在两条异面直线a,b,a⊂α,b⊂β,a//β,b//α答案:D分析:对于A,B,C,举出符合条件的特例即可判断;对于D,过直线a作平面γ∩β=c,再证c//α即可. 如图,ABCD−A1B1C1D1是长方体,平面ABCD为平面α,平面ABB1A1为平面β,对于A,直线C1D1为直线a,显然a//α,a//β,而α与β相交,A不正确;对于B,直线CD为直线a,显然a⊂α,a//β,而α与β相交,B不正确;对于C,直线CD为直线a,直线A1B1为直线b,显然a⊂α,b⊂β,a//β,b//α,而α与β相交,C不正确;对于D,因a,b是异面直线,且a⊂α,b⊂β,过直线a作平面γ∩β=c,如图,则c//a,并且直线c与b必相交,而c⊄α,于是得c//α,又b//α,即β内有两条相交直线都平行于平面α,⁄平面β.因此,平面α/故选:D5、某正方体被截去部分后得到的空间几何体的三视图如图所示,则该空间几何体的体积为()A .132B .223C .152D .233答案:C分析:根据几何体的三视图,可知该几何体是棱长为2的正方体截去两个小三棱锥,根据三棱锥的体积公式即可求解.解:根据几何体的三视图,该空间几何体是棱长为2的正方体截去两个小三棱锥,由图示可知,该空间几何体体积为V =23−(13×12×12×1+13×12×12×2)=152,故选:C.6、已知圆锥的母线长为3,其侧面展开图是一个圆心角为2π3的扇形,则该圆锥的体积为( ) A .√23πB .2√23πC .πD .√2π 答案:B分析:根据弧长计算公式,求得底面圆半径以及圆锥的高,即可求得圆锥的体积.设圆锥的底面圆半径为r ,故可得2πr =2π3×3,解得r =1,设圆锥的高为ℎ,则ℎ=√32−12=2√2,则圆锥的体积V =13×πr 2×ℎ=13×π×2√2=2√23π. 故选:B.7、已知正四棱锥的底面边长为6,侧棱长为5,则此棱锥的侧面积为( )A .6B .12C .24D .48答案:D分析:首先由勾股定理求出斜高,即可求出侧面积;解:正四棱锥的底面边长为6,侧棱长为5,则其斜高ℎ′=√52−(62)2=4,所以正四棱锥的侧面积S =12×4×6×4=48故选:D8、已知三棱锥P −ABC ,其中PA ⊥平面ABC ,∠BAC =120°,PA =AB =AC =2,则该三棱锥外接球的表面积为( )A .12πB .16πC .20πD .24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC 的外心为G ,O 为球心,所以OG ⊥平面ABC ,因为PA ⊥平面ABC ,所以OG//PA ,设D 是PA 中点,因为OP =OA ,所以DO ⊥PA ,因为PA ⊥平面ABC ,AG ⊂平面ABC ,所以AG ⊥PA ,因此OD//AG ,因此四边形ODAG 是平行四边形,故OG =AD =12PA =1, 由余弦定理,得BC =√AB 2+AC 2−2AB ⋅AC ⋅cos120°=√4+4−2×2×2×(−12)=2√3,由正弦定理,得2AG =√3√32⇒AG =2,所以该外接球的半径R 满足R 2=(OG )2+(AG )2=5⇒S =4πR 2=20π,故选:C .小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.多选题9、(多选)下列说法中正确的是()A.若直线l与平面α不平行,则l与α相交B.直线l在平面外是指直线和平面平行C.如果直线l经过平面α内一点P,又经过平面α外一点Q,那么直线l与平面α相交D.如果直线a∥b,且a与平面α相交于点P,那么直线b必与平面α相交答案:CD分析:由线面直线的位置关系逐一判断即可求解.若直线l与平面α不平行,则l与α相交或l⊂α,所以A不正确.若l⊄α,则l//α或l与α相交,所以B不正确.由线面直线的位置关系可知,C、D正确.故选:CD10、如图,长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,M为AA1的中点,过B1M作长方体的截面α交棱CC1于N,则()A.截面α可能为六边形B .存在点N ,使得BN ⊥截面αC .若截面α为平行四边形,则1≤CN ≤2D .当N 与C 重合时,截面面积为3√64答案:CD分析:利用点N 的位置不同得到的截面α的形状判断选项A ,C ,利用线面垂直的判定定理分析选项B ,利用平面几何知识求相应的量结合梯形的面积公式求得截面的面积,从而可判断选项D .长方体ABCD −A 1B 1C 1D 1中,AB =BC =1,AA 1=2,M 为AA 1的中点,过B 1M 作长方体的截面α交棱CC 1于N , 设N 0为CC 1的中点,根据点N 的位置的变化分析可得:当1≤CN ≤2时,截面α为平行四边形,当0<CN <1时,截面α为五边形,当CN =0时,即点N 与点C 重合时,截面α为梯形,故A 不正确,C 正确;设BN ⊥截面α,因为B 1M ⊂面α,所以BN ⊥B 1M ,所以N 只能与C 重合才能使BN ⊥B 1M ,因为BN 不垂直平面B 1CQM ,故此时不成立,故B 不正确;因为当点N 与点C 重合时,截面α为梯形,如下图所示:过M 作MH 垂直于B 1C 于H ,设梯形的高为ℎ,MH =x ,则由平面几何知识得:ℎ2=(√2)2−x 2=(√52)2−(√52−x)2,解得x =2√55,ℎ=√305,所以截面α的面积为:12×(√5+√52)×ℎ=12×3√52×√305=3√64,故D 正确;故选:CD .小提示:关键点睛:本题考查长方体的截面的形状,关键在于分析动点在不同的位置时,截面的形状,运用线面平行的判定定理和平面几何知识求得截面的面积.11、在棱长为2的正方体ABCD−A1B1C1D1中,点P是正方体的棱上一点,|PB|+|PC1|=λ,则()A.λ=2时,满足条件的点P的个数为1B.λ=4时,满足条件的点P的个数为4C.λ=4√2时,满足条件的点P的个数为2D.若满足|PB|+|PC1|=λ的点P的个数为6,则λ的取值范围为(2√2,4)答案:BC分析:根据各棱上的点P到B,C1两点距离之和对选项进行逐一分析,由此确定正确选项.设E,F分别是C1D1,AB的中点,|BD1|=√22+(2√2)2=2√3,|BE|=|C1F|=√12+(2√2)2=3,|A1C1|=|A1B|=2√2.由于|BC1|=2√2,所以|PB|+|PC1|=λ≥2√2,所以A选项错误.λ=4,满足|PB|+|PC1|=4的点为B1,C,E,F共4个,所以B选项正确.λ=4√2,满足|PB|+|PC1|=4√2的点为A1,D共2个,所以C选项正确.当P在正方形ADD1A1(不包括A,D,D1,A1)上运动时,λ∈(2+2√3,4√2),此时棱A1B1与棱CD上,也存在点使λ∈(2+2√3,4√2).所以当λ∈(2+2√3,4√2)时,满足|PB|+|PC1|=λ的点P的个数为6,所以D选项错误.故选:BC填空题12、已知A、B、C、D四点不共面,且AB//平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG是______四边形.答案:平行分析:由题,平面ABD∩平面α=FH,结合AB//平面α可得AB//FH,同理可得四边形EFHG另外三边与AB,CD的位置关系,即可得到答案.由题,平面ABD∩平面α=FH,因为AB//平面α,所以AB//FH,又平面ABC∩平面α=EG,所以AB//EG,则FH//EG,同理GH//CD//EF,所以四边形EFHG是平行四边形,所以答案是:平行13、如图已知A是△BCD所在平面外一点,AD=BC,E、F分别是AB、CD的中点,若异面直线AD与BC所成角的大小为π3,则AD与EF所成角的大小为___________.答案:π3或π6分析:取AC的中点G,连接EG,GF,则∠EGF=π3或∠EGF=2π3,分别分析这两种情况下∠GFE的大小即为AD与EF所成角.解:如图所示:取AC的中点G,连接EG,GF,则EG//BC,GF//AD,所以∠EGF为异面直线AD与BC所成角或其补角.因为AD=BC,所以EG=GF,当∠EGF=π3时,△EGF为等边三角形,∠GFE=π3,即AD与EF所成角的大小为π3;当∠EGF=2π3时,EG=GF,△EGF为等腰三角形,∠GFE=π6,即AD与EF所成角的大小为π6.所以答案是:π3或π6.14、已知三棱柱ABC −A 1B 1C 1中,棱长均为2,顶点A 1在底面ABC 上的射影恰为AB 的中点D ,E 为AC 的中点,则直线BE 与直线AB 1所成角的余弦值为________.答案:34分析:根据三棱柱性质与题中的中点条件,可将所求直线BE 与直线AB 1所成角的余弦值转化为求直线GB 1与直线AB 1所成角的余弦值,那么就要通过多次转化最终求得△AGB 1中三边长,然后直接在△AGB 1中运用余弦定理即可.如图,取A 1C 1中点G ,连接B 1G,AG,AE,DE,GE ,由三棱柱的性质易证得GE //BB 1,GE =BB 1,所以四边形GEBB 1为平行四边形,所以GB 1//BE ,所以下面即求直线GB 1与直线AB 1所成角的余弦值.由题意知,A 1D ⊥平面ABC ,因为AB,DE ⊂平面ABC ,所以A 1D ⊥AB,A 1D ⊥DE ,在Rt △AA 1D 中,AA 1=2,AD =12AB =1,∠A 1DA =90°,求得A 1D =√3,∠A 1AD =60°. 所以在菱形AA 1B 1B 中,AB 1=2ABcos30°=2√3.在Rt △A 1DE 中,∠A 1DE =90°,A 1D =√3,DE =12BC =1,求得A 1E =2. 所以在△A 1AE 中,根据余弦定理得cos∠A 1AE =AA 12+AE 2−A1E 22AE⋅AA 1=14,所以cos∠AA 1G =cos(π−∠A 1AE)=−14.在△A 1AG 中根据余弦定理得AG 2=AA 12+A 1G 2−2AA 1⋅A 1Gcos∠AA 1G,AG =√6.在△AGB 1中,AG =√6,AB 1=2√3,GB 1=√3,根据余弦定理得cos∠GB 1A =GB 12+AB12−AG 22GB 1⋅AB 1=34,所以直线GB 1与直线AB 1所成角的余弦值为34,即直线BE 与直线AB 1所成角的余弦值为34. 故答案为:34解答题15、在空间四边形ABCD中,AB=CD,点M、N分别为BD、AC的中点.(1)若直线AB与MN所成角为60°,求直线AB与CD所成角的大小;(2)若直线AB与CD所成角为θ,求直线AB与MN所成角的大小.答案:(1)60°(2)θ2或π−θ2分析:根据异面直线所成角的定义,借助平行关系作出平行直线,从而找到异面直线所成角(或补角)即可求解.(1)如图,取AD的中点为P,连接PM、PN.因为点M、N分别为BD、AC的中点,所以PM//AB,PN//CD,且PM=12AB,PN=12CD,所以,∠MPN为直线AB与CD所成的角(或补角),∠PMN为直线AB与MN所成的角(或补角). 又AB=CD,所以PM=PN,即△PMN为等腰三角形.直线AB与MN所成角为60°,即∠PMN=60°,则∠MPN=180°−2×60°=60°.所以,直线AB与CD所成的角为60°.(2)(2)若直线AB与CD所成的角为θ,则∠MPN=θ或∠MPN=π−θ.若∠MPN=θ,则∠PMN=π−∠MPN2=π−θ2,即直线AB与MN所成角为π−θ2;若∠MPN=π−θ,则∠PMN=π−∠MPN2=θ2,即直线AB与MN所成角为θ2.综上所述,直线AB与MN所成的角为θ2或π−θ2.。

高考数学学科二轮备考关键问题指导系列十(立体几何典例剖析及资源推送)

高考数学学科二轮备考关键问题指导系列十(立体几何典例剖析及资源推送)

6
如图,由题意可知,O 为球心,在正方体中, EF FG2 EG2 22 22 2 2 ,即 R 2 ,
取最大值,最大值为
64 3
,
又l
3
时, V
27 4
,
l
3
3
时, V
81 ,所以正四棱锥的体积V 4
的最小值为
27 4
,
所以该正四棱锥体积的取值范围是
27 4
,64 3
.故选
C.
【点评】1、球与几何体的切接是高考热点,常作为客观题压轴题出现,但由于同学们对这类问题训练比
较大,对解题套路相对比较熟悉,
面的面积为180.0km2 ,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到
157.5m 时,增加的水量约为( 7 2.65 )
A. 1.0109 m3
B. 1.2109 m3
C. 1.4109 m3 D. 1.6109 m3
【答案】C
【解析】把增加的水量转化为棱台的体积,依题意可知棱台的高为 MN 157.5 148.5 9 (m),
棱台上底面积 S 140.0km2 140 106m2 ,下底面积 S 180.0km2 180 106m2 ,
∴V 1 h S S SS 1 9 140106 180106 1401801012
3
3
3 320 60 7 106 96 18 2.65107 1.437109 1.4109(m3) .故选 C.
2
圆锥的表面积 S1 πrl πr2 3πr2 ,
2
球的表面积
S2
4πR2

3 2
r
3πr2 ,

立体几何经典大题(各个类型的典型题目)

立体几何经典大题(各个类型的典型题目)

立体几何大题训练(1)1.如图,已知ZkABC是正三角形,EA, CD都垂直于平面ABC∙且EA=AB=Za. DC=a, F是BE的(1)FD〃平面ABC: (2) AF丄平而EDB.2.己知线段PA丄矩形ABCD所在平而,M、N分别是AB. PC的中点。

(1)求证:MN//平面PAD: (2)当ZPDA=45°时,求证:MN丄平面PCD;3.如图,在四面体ABCD中,CB=CD,ADdBD.点E, F分别是AB1BD的中点•求证:(1)直线EF//面ACD: (2)平面EFC丄面BCD.4.在斜三棱柱A l B l C l-ABC中,底面是等腰三角形,AB=AC,侧面BB l C l C丄底面ABC(1)若D是BC的中点,求证AD±CC1:(2)过侧面BB l C l C的对角线BC l的平面交侧棱于M,若扯仁M&, 求证截面MBCl丄侧面BBiCiC:(3)AM=MA l是截面MBCI丄平面BB l CIC的充要条件吗?请你叙述判断理由5.如图,在正方体ABCD-A l BXC I Dl >, M、N、G分别是A1A, D i C, AD的中点. 求证:(1) MN//平面ABCD:(2) MN丄平面B1BG.D6.如图,在正方体ABCD-AlBlClDI中,E、F为⅛AD. AB的中点•(1)求证:EF 〃平面CB1D1:(2)求证:平面CAAlCl丄平面CBiDi.7.如图,在直四棱柱ABCD-A1B1C1D11I1,底面ABCD 为等腰梯形,AB/7CD, AB=4, BC=CD=2, AA1=Z, E、El分别是棱AD、AAI的中点(1)设F是棱AB的中点,证明:直线EEl〃面FCCi:C)证明:平面DIAC丄面BBlClCoDBl EI8.如图,在四棱锥P-ABCD中•F分别在PD, Be上,且PE:(1)求证:PA丄平面ABCD:底面ABCD是菱形,ZABC=60°ED=BF: FCO(2)求证:EF//平面PAB。

六年级下立体几何问题典型例题

六年级下立体几何问题典型例题

立体几何问题
1、如图,一个瓶子里装着一些水,瓶子的下面部分是圆柱形,根据图中的数据可以计算出瓶子的容积是立方厘米。

(π取3.14)
2、阿呆买来一个模型,形状如图所示,上面的圆柱底面半径为3厘米,高为4厘米,下面的正方体棱长为6厘米,那么这个模型的表面积是平方厘米。

(π取3.14)
3、阿瓜买来一个模型,形状如下图所示,正方体棱长为12厘米,内部挖掉一个底面半径为6厘米,高为12厘米的圆柱,那么这个模型的表面积是平方厘米。

(π取3)
4、如图,一个底面周长为18.84厘米的圆柱,斜着截取一段后如图,那么部分的体积是立方厘米。

(π取3.14)
5、一个圆柱形的水池,底面半径为2米,池中有一些水,将一块石头完全浸没在水中,发现水面上升了0.5米,这块石头的体积是立方米。

(π取3.14)
6、一个底面长10分米,宽8分米,高10分米的长方形水池,存有二分之一的水,将一个高4分米,底面积为40平方分米的长方体竖直放入池中,水面会上升分米。

7、一个底面直径为10厘米,高为20厘米的圆柱形容器中装有6厘米的水,把一个土豆完全浸没在水中,水面高度现在是16厘米,那么这个土豆的体积是立方厘米。

8、一个底面半径为6厘米的圆柱形水池,里面装了一些水,水中淹没着一个底面半径为3厘米,高6厘米的圆锥体,当圆锥体取出后水面将降低厘米。

9、一个长方体容器内装着水,水面高3厘米,从里面量,容器的底面积是20平方厘米,将一个底面积为10平方厘米、高2厘米的铁块放入容器中,水面的高度会变成厘米。

10、一个高是5分米的圆柱形容器里装满了水,将一个底面积为6平方分米,高1.5分米的圆锥体放入容器中,有水溢出,溢出水的体积是立方分米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例5. 四棱锥P—ABCD中,PA⊥底面ABCD,AB//CD,
AD=CD=1,∠BAD=120°,PA= (1)求证:BC⊥平面PAC; (2)求二面角D—PC—A的余弦值; (3)求点B到平面PCD的距离。
3
, ∠ACB=90º
例3.如图,在直三棱柱 ABC A1 B1C1 中,AC AB 4, BB1 4 2, ,点N在 CA1 上,且
EB FC
线交PC于G α (1)求BD与平面ABP所成角 的正切值;
(2)证明: △EFG是直角三角形; PE 1 (3)当 EB 2 时,求△EFG的面积.
A D

E
C
角P-ED-A的大小为 4 . 试确定点E的位置.
例3.如图,在四棱锥P—ABCD中,侧面 PAD为正三角形,底面ABCD为正方形, 侧面PAD⊥底面ABCD,M为底面ABCD内 的一个动点,且满足MP=MC,则点M在正 方形ABCD内的轨迹为 ( )
例4.(07浙江文)在如图所示的几何
D
体中,EA⊥平面ABC,BD⊥平ABC, AC⊥BC,且AC=BC=BD=2AE,M是
E
AB的中点.
(1)求证: CM
Aห้องสมุดไป่ตู้
C M B
EM ;
(2)求DE与平面EMC所成的角的正切 值.
3. P为ΔABC所在平面外一点,O为P在ΔABC上的射影。 若P到ΔABC的三边距离相等,且O在ΔABC的内部,则O是ΔABC的 __________心。 若P到ΔABC的三个顶点距离相等,则O是ΔABC的__________心,又 若∠ACB=90º ,则O在_____________________. 若PA⊥BC,PB⊥AC,则O是ABC的__________心。 若PA,PB,PC两两垂直,则O是ABC的__________心。
例1.如图,直四棱柱ABCD—A1B1C1D1的高为3, 底面是边长为4且∠DAB=60°的菱形, AC∩BD=O,A1C1∩B1D1=O1,E是O1A的中点. 求点E到平面O1BC的距离.
D1 O1 A1 B1 E
C1
D O C
A
B
P
例2. 如图,四边形ABCD为矩形,且AD=4,AB=2, PA⊥平面ABCD,E为BC上的动点. (1) 当E为BC的中点时,求证:PE ⊥ DE; (2) 设PA=1,在线段BC上存在这样的点E,使得二面 B
BM 2, BAC 90
CN 1 NA 1 3
(1) 求证:
MN // 平面A1 B1C1
(2)求点 A1 到平面AMC的距离; 的大小. (3)求二面角 C A1M B
例4. (2008广东理)如图5 所示,四棱锥P-ABCD的底面 ABCD是半径为R的圆的内接四边形,其中BD是圆的直径, ∠ABD=60°,∠BDC=45o.PD垂直底面ABCD,PD= 2 2R , PE DF E,F分别是PB,CD上的点,且 ,过点E作BC的平行
相关文档
最新文档