大学物理课后习题及答案第13章
大学物理课本答案习题 第十三章习题解答
习题十三13-1 如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为1r ,2r 。
已知两导线中电流都为0sin I I t ω=,其中I 0和ω为常数,t 为时间。
导线框长为a ,宽为b ,求导线框中的感应电动势。
解:无限长直电流激发的磁感应强度为02IB rμ=π。
取坐标Ox 垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右。
取回路的绕行正方向为顺时针。
由场强的叠加原理可得x 处的磁感应强度大小00122()2()IIB r x r x μμ=+π+π+方向垂直纸面向里。
通过微分面积d d S a x =的磁通量为00m 12d d d d 2()2()I I B S B S a x r x r x μμΦππ⎡⎤=⋅==+⎢⎥++⎣⎦通过矩形线圈的磁通量为00m 012d 2()2()b I I a x r x r x μμΦ⎡⎤=+⎢⎥π+π+⎣⎦⎰012012ln ln sin 2a r b r b I t r r μω⎛⎫++=+ ⎪π⎝⎭ 感生电动势0m 12012d ln ln cos d 2i a r b r b I t t r r μωΦεω⎛⎫++=-=-+ ⎪π⎝⎭ 012012()()ln cos 2ar b r b I t r r μωω⎡⎤++=-⎢⎥π⎣⎦0i ε>时,回路中感应电动势的实际方向为顺时针;0i ε<时,回路中感应电动势的实际方向为逆时针。
13-2 如题图13-2所示,有一半径为r =10cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B 中(B =0.5T )。
圆形线圈可绕通过圆心的轴O 1O 2转动,转速1600r min n -=⋅。
求圆线圈自图示的初始位置转过题图13-1题图13-2解图13-1/2π时,(1) 线圈中的瞬时电流值(线圈的电阻为R =100Ω,不计自感); (2) 圆心处磁感应强度。
大学物理第十三章(热力学基础)部分习题及答案
第十三章热力学基础一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;4、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
5、什么是熵增加原理?答:一切不可逆绝热过程中的熵总是增加的,可逆绝热过程中的熵是不变的。
把这两种情况合并在一起就得到一个利用熵来判别过程是可逆还是不可逆的判据——熵增加原理。
6、什么是卡诺循环? 简述卡诺定理?答案:卡诺循环有4个准静态过程组成,其中两个是等温线,两个是绝热线。
卡诺提出在稳度为T1的热源和稳度为T2的热源之间工作的机器,遵守两条一下结论:(1)在相同的高温热源和低温热源之间工作的任意工作物质的可逆机,都具有相同的效率。
(2)工作在相同的高温热源和低温热源之间的一切不可逆机的效率都不可能大于可逆机的效率。
7、可逆过程必须同时满足哪些条件?答:系统的状态变化是无限缓慢进行的准静态过程,而且在过程进行中没有能量耗散效应。
二、选择题1、对于理想气体的内能,下列说法中正确的是( B ):( A ) 理想气体的内能可以直接测量的。
(B) 理想气体处于一定的状态,就有一定的内能。
华理大学物理第13章习题课
1 e2 e1 4.5(2 1 )=225 2
【填空题6】检验滚珠大小的干涉装置示意如图 (a)。S为单色光源,波长为λ,L为会聚透镜,M为 半透半反镜。在平晶T1、T2之间放置A、B、C三 个滚珠,其中A为标准件,直径为d0。在M上方观
察时,观察到等厚条纹如图(b)所示.若轻压C端 d0 ,条纹间距变小,则可算出B珠的直径d1=______
其右边条纹的执行部分的切线相切。则工件的上
表面缺陷是【】 (A)不平处为凸起纹,最大高度为500nm; (B)不平处为凸直纹,最大高度为250nm ; (C)不平处为凹槽,最大深度为500nm ; (D)不平处为凹槽,最大深度为250nm 。 a
b
【选择题4】在双缝干涉实验中,入射光的波长为 λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光
相干光的光程差应为 ;从劈尖棱边算起,第
三条明纹中心离棱边的水平距离为
。
n1=1 n2=1.25 n3=1.15
2n2 e
2n2e
2
2.5e k
2
2
2.5e 3
2
2.5 e
l sin l sin
(1)形状——直线
e
级次——外小中间大,
中间疏,两侧密
2e k 2 2d 0 kmax (d0 2) 2 kmax 4.5
r k 1, 2,3, 4 (2 ) e d 0 2R r2 2e 2(d0 ) k 2 2R 2
【选择题6】在折射率n3=1.60的玻璃片表面镀一层 折射率n2=1.38的MgF2薄膜作为增透膜。为了使波 长为λ=500nm的光,从折射率n1=1.00的空气垂直 入射到玻璃片上的反射尽可能地减少, MgF2 薄
昆明理工大学物理习题集(下)第十三章元答案
u
u2
(C) y Acos[(t x )] (D) y Acos[(t x) ]
u
u
5、一平面简谐波以波速 u 沿 x 轴正方向传播, O 为坐标原点。已知 P 点的振动方程为
y Acost ,则:[ CC ]
(A) O 点的振动方程为 y Acos(t l / u)
(B)波的表达式为 y Acos[t (l / u) (x / u)]
(A)λ
(B)λ/2
(C)3λ/4
(D)λ/4
12、若在弦线上的驻波表达式是 y 0.20sin 2x cos20t 。则形成该驻波的两个反向进行
的行波为:[ CC ]
(A)
y1
0.10cos[2
(10t
x)
2
]
y2
0.10cos[2
(10t
x)
2
]
(B)
y1
0.10cos[2
(10t
x)
4
S2
C
N
引起的振动
均干涉相消,则 S 2 的初相应为2
2k
3 2
,k
0,1,2,。
8.如图所示,一平面简谐波沿 x 轴正方向传播,波长为 ,若 P1 点处质点的振动方程
为 y1 Acos(2vt ) , 则 P2 点 处 质 点 的 振 动 方 程 为
y2
A c os [2v
2
(L1
L2 )]
]
y2
0.10cos[2
(10t
x)
3 4
]
(C)
y1
0.10
cos[2
(10t
x)
2
]
y2
0.10cos[2
大学物理2,13.第十三章思考题
1、如图13-9所示,薄膜介质的折射率为n 1,薄膜上下介质的折射率分别为n 1和n 3,并且n 2比n 1和n 3都大。
单色平行光由介质1垂直照射在薄膜上,经薄膜上下两个表面反射的两束光发生干涉。
已知薄膜的厚度为e , λ1为入射光在折射率为n 1的介质中的波长,则两束反射光的光程差等于多少? 【答案:22112λn e n S -=∆】 详解:由于入射光在上表面从光疏介质投射到光密介质上存在半波损失,因此反射光一的光程为21λ=S由于入射光在下表面从光密介质投射到光疏介质上没有半波损失,因此反射光二的光程为e n S 222=两束反射光的光程差为22212λ-=-=∆e n S S S其中λ为光在真空的波长,它与介质1中的波长的关系为λ=n 1λ1,因此22112λn e n S -=∆ 2、在双缝干涉实验中,两缝分别被折射率为n 1和n 2、厚度均为e 的透明薄膜遮盖。
波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差等于多少? 【答案:λϕen n )(π212-=∆】详解:设从双缝发出的两束光到屏中央处的距离为r ,依题意它们到达屏中央处的光程分别为)(11e r e n S -+= )(22e r e n S -+=它们的光程差为12S S S -=∆e n n )(12-=因此,在屏中央处两束相干光的相位差为n 3图13-9λϕS∆=∆π2λen n )(π212-=3、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取哪些办法?【答案:增大双缝与屏之间的距离D 、增大入射光波长λ、减小双缝间距d 、减小折射率n 】详解:双缝干涉条纹间距为dnD x λ=∆ 因此,为使屏上的干涉条纹间距变大,可以增大双缝与屏之间的距离D 、改用波长λ较长的光进行实验、将两缝的间距d 变小、将实验装置放在折射率n 较小的透明流体中。
4、如图13-10所示,在双缝干涉实验中,屏幕E 上的P 点处是明条纹。
大学物理第13章习题解答
第十三章习题解答1选择题:1B ,2A ,3B ,4A ,5D2填空题:1,2sin /d πθλ;2,0.45mm ;3,900nm ;4,变密;5,向上;6,向下;7,棱边,保持不变。
3计算题:1 用λ=500nm 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的棱边是暗纹。
若劈尖上面媒质的折射率n 1大于薄膜的折射率n (n =1.5).求:⑴ 膜下面媒质的折射率n 2与n 的大小关系; (2) 第10条暗纹处薄膜的厚度; ⑶ 使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么变化?若e ∆=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据?解:⑴ n 2>n 。
因为劈尖的棱边是暗纹,对应光程差为:2)12(22λλ+=+=∆k ne ,膜厚e =0处,有k =0,只能是下面媒质的反射光有半波损失2λ才合题意; (2) 3995009 1.510222 1.5ne n λλ-⨯∆=⨯===⨯⨯ mm (因10个条纹只有9个条纹间距)⑶ 膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=∆e μm ,原来第10条暗纹处现对应的膜厚为)100.2105.1(33--⨯+⨯='∆e mm343.5102 1.5212 5.010n e N λ--'∆⨯⨯⨯∆===⨯ 现被第21级暗纹占据.2 ⑴ 若用波长不同的光观察牛顿环,λ1=600nm ,λ2=450nm ,观察到用λ1时的第k 个暗环与用λ2时的第k +1个暗环重合,已知透镜的曲率半径是190cm .求用λ1时第k 个暗环的半径.(2) 又如在牛顿环中用波长为500nm 的第5个明环与用波长为λ2的第6个明环重合,求未知波长λ2.解: ⑴ 由牛顿环暗环公式:λkR r k = 据题意有 21)1(λλR k kR r +==,∴ 212λλλ-=k ,代入上式得:2121λλλλ-=Rr =31085.1-⨯=m (2) 用1500λ=nm 照射,51=k 级明环与2λ的62=k 级明环重合,则有:2)12(2)12(2211λλR k R k r -=-=∴121221251500409.121261k k λλ-⨯-==⨯=-⨯-nm 3 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由d 1=1.40×10-2m 变为d 2=1.27×10-2m ,求液体的折射率.解: 由牛顿环明环公式2)12(21λR k D r -==空, n R k D r 2)12(22λ-==液两式相除得n D D =21,即22.161.196.12221≈==D D n 4 在双缝干涉实验中,波长λ=550 nm 的单色平行光垂直入射到缝间距d =2×10-4 m 的双缝上,屏到双缝的距离D =2 m .求:(1) 中央明纹两侧的两条第10级明纹中心的间距;(2) 用一厚度为e =6.6×10-5 m 、折射率为n =1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1 nm = 10-9 m)解: (1),x dk D λ=,21010 5.510()Dx m d λ-==⨯,1020.11()x m = (2),(1)69.6n ek λ-==5 双缝干涉实验装置如图所示,双缝与屏之间的距离D =120 cm ,两缝之间的距离d =0.50 mm ,用波长λ=500 nm (1 nm=10-9 m)的单色光垂直照射双缝. (1) 求原点O (零级明条纹所在处)上方的第五级明条纹的坐标x . (2) 如果用厚度l =1.0×10-2 mm , 折射率n =1.58的透明薄膜复盖在图中的S 1缝后面,求上述第五级明条纹的坐标x '.解:(1)55 6.0()Dx mm d λ==(2)21=()(1)5x k r r l nl d n l Dδλλ'=--+=--=19.9x mm '=6 在杨氏双缝实验中,设双缝之间的距离为0.2m m ,在距双缝远1m 的屏上观察干涉条纹,若入射光是波长为400760nm nm 的白光,问屏上离零级明纹20mm 处,哪些波长的光最大限度地加强?解:3410(5.210)dx nmk D λλ⨯===6,7,8,9,10k ==666.6,571.4,500,444.4,400dxnm Dkλ=7 在双缝干涉实验中,波长550nm λ=的单色平行光垂直入射到双缝间距4210md -=⨯的双缝上,屏到双缝的距离2m D =.求: (1)中央明纹两侧的两条第10级明纹中心的间距;(2)用一厚度为56.610m e -=⨯、折射率为 1.58n =的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处? 解:同第4题(重复了)8 杨氏双缝干涉实验中,双缝间距为0.3m m ,用单色光垂直照射双缝,在离缝 1.20m 的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为22.78mm ,问所用单色光的波长为多少?解:522.78/211.39x mm ===380dxnm Dkλ= 9 油轮漏出的油(折射率 1.25n =)在海水(折射率为1.30)表面形成一层薄薄的油污. (1)如果太阳正位于海域上空,一直升飞机的驾驶员从机上向下观察,他所正对的油层厚度为400nm ,则他将观察到油层呈现什么颜色?(2)如果一潜水员潜入该区域水下,又将看到油层呈现什么颜色? 解:阶梯型薄膜。
大学物理课后习题及答案 第13章
第13章 光学一 选择题*13-1 在水中的鱼看来,水面上和岸上的所有景物,都出现在一倒立圆锥里,其顶角为( )(A)48.8(B)41.2(C)97.6(D)82.4解:选(C)。
利用折射定律,当入射角为1=90i 时,由折射定律1122sin sin n i n i = ,其中空气折射率11n =,水折射率2 1.33n =,代入数据,得折射角2=48.8i ,因此倒立圆锥顶角为22=97.6i 。
*13-2 一远视眼的近点在1 m 处,要看清楚眼前10 cm 处的物体,应配戴的眼镜是( )(A)焦距为10 cm 的凸透镜 (B)焦距为10 cm 的凹透镜 (C)焦距为11 cm 的凸透镜 (D)焦距为11 cm 的凹透镜解:选(C)。
利用公式111's s f+=,根据教材上约定的正负号法则,'1m s =-,0.1m s =,代入得焦距0.11m =11cm f =,因为0f >,所以为凸透镜。
13-3 在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明纹位于图中O 处,现将光源S 向下移动到图13-3中的S ′位置,则[ ] (A) 中央明纹向上移动,且条纹间距增大(B) 中央明纹向上移动,且条纹间距不变(C) 中央明纹向下移动,且条纹间距增大 (D) 中央明纹向下移动,且条纹间距不变解:选(B)。
光源S 由两缝S 1、S 2到O 处的光程差为零,对应中央明纹;当习题13-3图向下移动至S ′时,S ′到S 1的光程增加,S ′到S 2的光程减少,为了保持光程差为零,S 1到屏的光程要减少,S 2到屏的光程要增加,即中央明纹对应位置要向上移动;条纹间距dD x λ=∆,由于波长λ、双缝间距d 和双缝所在平面到屏幕的距离D 都不变,所以条纹间距不变。
13-4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射。
若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为[ ](A) 3个 (B) 4个 (C) 5个 (D) 6个解:选(B)。
大学物理第 13 章 第 2 次课 -- 理想气体的等温过程和绝热过程..
p1
2'
T C
V2 V2' V1 10
T1 1
V1 V
负号表示外界对气体做功. 2)绝热过程做的功
o
氢气为双原子气体, 表查13-1得 =1.41, CV,m= 20.44 J· mol-1· K-1 . 由绝热过程方程 由此可得,
TV
1
常数c'
得
T1V1
1
T2V2
1
上海师范大学
3 /12
§13.4
理想气体的等温过程和绝热过程
二、绝热过程
绝热过程: 理想气体状态发生变化的过程中, 气体与外界没有热量传递. 绝热过程是一种理想过程, 实际的过程不可能是真正的绝热过程. 但在状态的变化过程中, 如果系统与外界的热传递很小, 以致可以忽略, 则这
种过程可以近似地视为绝热过程. 如汽车发动机气缸中气体的膨胀就可以近 p ( p1 ,V1 , T1 ) 似地看成是绝热过程.
6 /12
上海师范大学
将
Cp,m R CV ,m , C p,m / CV ,m 代入上式, 简得
C p ,m dV dp CV, m V p
§13.4 理想气体的等温过程和绝热过程 (CV ,m R) dV dp CV, m V p
dV dp 0 V p
上海师范大学
(14)
5 /12
§13.4 2. 绝热过程的物态方程 理想气体的物态方程:
理想气体的等温过程和绝热过程
pV RT
V R 常数 等压过程: T p
p R 常数 等体过程: T V 等温过程: pV 常数
绝热过程中, 状态参量p,V,T都发生变化, 能否写出两个量之间的变化关系? 对理想气体的物态方程
大学物理第十三章课后答案
习题十三13-1 衍射的本质是什么?衍射和干涉有什么联系和区别 ?答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象• 其实质是 由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生. 而干涉则是 由同频率、同方向及位相差恒定的两列波的叠加形成.13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动 ?答:把单缝沿透镜光轴方向平移时, 衍射图样不会跟着移动. 单缝沿垂直于光轴方向平移时, 衍射图样不会跟着移动.13-3 什么叫半波带?单缝衍射中怎样划分半波带 ?对应于单缝衍射第 3级明条纹和第4级暗条纹,单缝处波面各可分成几个半波带?λ答:半波带由单缝 A 、B 首尾两点向'方向发出的衍射线的光程差用2来划分•对应于第3级明纹和第4级暗纹,单缝处波面可分成 7个和8个半波带. a Sin =(2k • 1) “ =(2 3 ■ 1) “ =7∙.∙由 22 2a Sin -4 ' - 8—213-4 在单缝衍射中,为什么衍射角 ,愈大(级数愈大)的那些明条纹的亮度愈小 ? 答:因为衍射角「愈大则asin「值愈大,分成的半波带数愈多,每个半波带透过的光通量 就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公mλasin =(2k 1) (k =1,2,)式 2来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?k ■解:当全部装置浸入水中时,由于水中波长变短,对应asin 「= k ∙ = n ,而空气中为asi n「= k ∙,∙. Si n 「=n Sin ",即「=n :,水中同级衍射角变小,条纹变密.λ如用asin(2k ■ I)2 (k=1,2,…)来测光的波长,则应是光在水中的波长.(因asin‘ 只代表光在水中的波程差)•13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化 ?(1)缝宽变窄;(2)入射光波长变长;(3)入射平行光由正入射变为斜入射. 解:(1)缝宽变窄,由asin ' =k'知,衍射角「变大,条纹变稀;(2) ,变大,保持a, k不变,则衍射角 「亦变大,条纹变稀; (3) 由正入射变为斜入射时, 因正入射时asin即=k ∙;斜入射时,a(Sin「-Sin^)^k-,保持a ,'不变,则应有 ^ k或k二::k •即原来的k 级条纹现为k级.13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾 ?怎样说明?λ答:不矛盾•单缝衍射暗纹条件为.asin=k' =2k 2 ,是用半波带法分析(子波叠加问 题)•相邻两半波带上对应点向'方向发出的光波在屏上会聚点一一相消, 而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为dsin a ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.13-8 光栅衍射与单缝衍射有何区别 ?为何光栅衍射的明条纹特别明亮而暗区很宽 ?答:光栅衍射是多光束干涉和单缝衍射的总效果. 其明条纹主要取决于多光束干涉.光强与缝数N 2成正比,所以明纹很亮;又因为在相邻明纹间有 (N -1)个暗纹,而一般很大,故 实际上在两相邻明纹间形成一片黑暗背景.13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级 ?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即"(a +b)si n d =±k ?* (k =0,1,2,…) a sin W = ±k 九 (^ = 1,2∙…)a +b * k = k H可知,当 a 时明纹缺级.(1)a∙b =2a 时,k = 2,4,6,•…偶数级缺级;(2) a b =3a 时,k=3,6,9,•…级次缺级;⑶ a ∙b =4a , k=4,8,12,∙∙级次缺级.13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问 (1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大 ?不同波长的光分开程度与什 么因素有关?解:(1)零级明纹不会分开不同波长的光. 因为各种波长的光在零级明纹处均各自相干加强. ⑵可见光中红光的衍射角最大,因为由(a' b) sin :护=k ‘,对同一 k 值,衍射角 -'.ο13-11 一单色平行光垂直照射一单缝, 若其第三级明条纹位置正好与 6000 A的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为a sin = (2 k 1)2o当人=6000 A 时 k = 2,='X 时,k = 3 重合时'角相同,所以有5 ■ X6000 =4286 o7Ao13-12 单缝宽0.10mm,透镜焦距为50Cm 用^ =5000 A 的绿光垂直照射单缝•求:(1) 位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少 ?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少 ?AλL X = 2 f解:中央明纹的宽度为na-Sin —半角宽度为 na(1)空气中,n=1,所以A5000 汇 10 “J:x =2 0.5厂=5.0 100.10 汉 10ma sin 即=(22 1)-6000=(2 3 ■ 1)1015000 X 10 一 3V - Sin厂=5.0 10 一0.10x10 一rad(2)浸入水中,n=1.33 ,所以有105000 x10一3:^=2 0.50- 3.76 10 _1.33x0.10x10—mI5000 00」° 3V - Sin 3 : 3.7610 一 1.33 X 0.1 X10 一 rad13-13 用橙黄色的平行光垂直照射一宽为 a=0.60mm 的单缝,缝后凸透镜的焦距 f=40.0cm ,观察屏幕上形成的衍射条纹•若屏上离中央明条纹中心 1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?X 1.4 J3.5 10 tan f 4002 0.6 3.5 10 2k 1k = 4 得)-4 = 4700o若-3 = 6000 A ,则P 点是第3级明纹;o若-4 =4700 A ,贝U P 点是第4级明纹.a Sin = (2k 亠 1)-⑶由2可知,当k=3时,单缝处的波面可分成2k 1当k=4时,单缝处的波面可分成2kTo13-14用‘氛=5900A 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹? 1 a+b = J二o解:500 mm =2.010 mm = 2.010 A由(a ' b )sin ' = k '知,最多见到的条纹级数ka +b 2.0 汇104k max ==fc3.39∣Z-Qkmax^3所以有5900,即实际见到的最高级次为o 13-15 波长为5000A 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透解:(1)由于P 点是明纹,故有a sin ' = (2k 1)—2 , k =1,2,3 - ■ 2a sin 2k 1X4.2 X10 °2k 1k =3,得 K =6000 mmoA=7个半波带;=9个半波带.<Pmax 对应的max镜焦距为60cm. 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成30°斜入射时,中央明条纹的位移为多少?1a +b = ------ =5.0x10~6解: 200 mm 5.0 10 - m(1)由光栅衍射明纹公式X Sin Φ = tan W =— (a +b) sin 申=k k ,因k =1 ,又fX 1(a +b)所以有f这就是中央明条纹的位移值•o13-16 波长九=6000A 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在 Sin=0∙20与Sin =0∙30处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;⑶ 在90°> ’ > -90 °范围内,实际呈现的全部级数.解:(1)由(a b) Sin= k,式对应于Sin :1=0∙2° 与Sin ;:2=0∙30 处满足:-Lo0.20 (a b) =2 6000 10 I. 100.30 (a b) =3 600010得 a ∙ b =6.0 10 * m(2)因第四级缺级,故此须同时满足(a ■ b) Sin = k ■a sin = k ,= 1.5 10 "βk解得取=1 ,得光栅狭缝的最小宽度为 1.5 10 m⑶由(a b) Sin = k ■k 土(a ■ b) Sin λπW =—当 2,对应 k = k m aXa +b .66.0 10 k10λ6000 10500010 210 恥 60 10 一X l5.0 10 -⑵对应中央明纹, 2= 6.0 10 一k = 0 =6 Cm正入射时, (a -b) Sin 斜入射时, (a -b)(sin=0二Sin所以 Sin=0日)=0 即Sin 申±sin 日=0Sinl : tanXCP二 30=1 60 10 2 2=3010m = 30Cm因_4 , _ 8缺级,所以在-9°:::「::: 9°范围内实际呈现的全部级数为k = 0, 一1, _2, _3, _5, _6, 一7, _9 共 15 条明条纹(k= 1° 在 k= 9° 处看不到).o13-17 一双缝,两缝间距为 0.1mm ,每缝宽为0.02mm ,用波长为4800A 的平行单色光垂 直入射双缝,双缝后放一焦距为 50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹 的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹 ? 解:(1)中央明纹宽度为 (2)由缺级条件a sin = k '■(a - b) sin = k ■0.1k " = 5k ' 0.02 k =1,2,即k=5,10,15,…缺级V -1.221 .22 5000= 30.5 10 D0.2d4f tan v : f v - 50030 .5 10 一 =1.5.∙.爱里斑半径2mm13-19已知天空中两颗星相对于一望远镜的角距离为 4.84 × 10-6rad ,它们都发出波长为o5500A 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星 ?解:由最小分辨角公式J -1.22 —D5λ5.5j<10D =1.22 — =1 .22- = 13.864.84 10 Cmo13-20已知入射的X 射线束含有从0.95〜1.30A 范围内的各种波长,晶体的晶格常数为 o2.75 A ,当X 射线以45°角入射到晶体时,问对哪些波长的 X 射线能产生强反射? 解:由布喇格公式2d Sin=k'_ 2d Sin 申λ = --------得k时满足干涉相长Qo当 k =1 时,& = m 、s in 45=3.89 A2 2.75 sin 45Λ --1.91 ok =2 时,2AI 。
大学物理Ⅰ第13章光的干涉与衍射习题答案
第13章 光的干涉与衍射训练题(含答案)一、选择题1. 如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2> n 3。
若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是[ ] (A ) e n 22 (B) 222λ-e n(C) λ-e n 22 (D) 2222n e n λ-2.真空波长为λ的单色光,在折射率为n 的均匀透明介质中从A 点沿某一路径传播到B 点,路径的长度为l 。
若l 等于下列各选项给出的值,A 、B 两点光振动位相差记为ϕ∆,则[ ] (A) 3, 32l λϕπ=∆= (B) πϕλn nl 3,23=∆=(C) πϕλ3,23=∆=nl (D) πϕλn nl 3,23=∆=3. 在双缝干涉实验中,两缝隙间距离为d ,双缝与屏幕之间的距离为)(d D D >>。
波长为λ的平行单色光垂直照射到双缝上。
屏幕上干涉条纹中相邻暗纹之间的距离是 [ ] (A)d D λ2 (B) D dλ (C) λdD (D) dDλ4. 如图所示,用波长为λ的单色光照射双缝干涉实验装置,若将一折射率为n 、劈角为α的透明劈尖b 插入光线2中,则当劈尖b 缓慢向上移动时(只遮住S 2),屏C 上的干涉条纹[ ] (A) 间隔变大,向下移动。
(B) 间隔变小,向上移动。
(C) 间隔不变,向下移动。
(D) 间隔不变,向上移动。
5. 把一平凸透镜放在平玻璃上,构成牛顿环装置。
当平凸透镜慢慢地向上平移时,由反射光形成的牛顿环[ ] (A) 向中心收缩,条纹间隔变小。
Sλ3(B) 向中心收缩,环心呈明暗交替变化。
(C) 向外扩张,环心呈明暗交替变化。
(D) 向外扩张,条纹间隔变大。
6. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的 [ ] (A) 振动振幅之和。
《大学物理学》习题解答(第13章 稳恒磁场)(1)
【13.1】如题图所示的几种载流导线,在 O 点的磁感强度各为多少?
(a)
(b) 习题 13-1 图
(c)
【13.1 解】 (a) B 0
I 1 0 I 0 0 ,方向朝里。 4 2R 8R 0 I 。 2R
(b) B
0 I
2R
(c) B
mv eB
2mE k eB
6.71 m 和 轨 迹 可 得 其 向 东 偏 转 距 离 为
x R R 2 y 2 2.98 10 3 m
【13.17 解】利用霍耳元件可以测量磁感强度,设一霍耳元件用金属材料制成,其厚度为 0.15 mm,载流 - 子数密度为 1024m 3,将霍耳元件放入待测磁场中,测得霍耳电压为 42μV,通过电流为 10 mA。求待测磁 场的磁感强度。 【13.17 解】由霍耳电压的公式可得 B
B 4
2 0 I 0 I 。 (cos 45 cos135) 4a a
习题 13-2 图
习题 13-3 图
【13.3】以同样的导线联接成如图所示的立方形,在相对的两顶点 A 及 C 上接一电源。试求立方形中心的 磁感强度 B 等于多少? 【13.3 解】由对称性可知,相对的两条棱在立方体中心产生的磁感强度相等而方向相反,故中心处的磁感 强度为零。 【13.4】如图所示,半径为 R 的半球上密绕有单层线圈,线圈平面彼此平行。设线圈的总匝数为 N,通过 线圈的电流为 I,求球心处 O 的磁感强度。 【13.4 解】在半球上距球心 y 处取一个宽度为 Rdθ 的园环,其对球心的张角为 θ,半径为 r=Rsinθ,包含 的电流为 dI
2rB 0, 2rB 0 NI , 2rB 0,
湖南大学物理(2)第13章课后习题参考答案
第13章 静电场中的导体和电解质一、选择题1(D),2(A),3(C),4(C),5(C),6(B),7(C),8(B),9(C),10(B)二、填空题(1). 4.55×105 C ;(2). σ (x ,y ,z )/ε0,与导体表面垂直朝外(σ > 0) 或 与导体表面垂直朝里(σ < 0). (3). εr ,1, εr ; (4). 1/εr ,1/εr ;(5). σ ,σ / ( ε 0ε r ); (6).Rq 04επ ;(7). P ,-P ,0; (8) (1- εr )σ / εr ; (9). 452; (10). εr ,εr三、计算题1.如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势.解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q . (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点 产生的电势的代数和 q Q q q O U U U U +-++= r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+2. 一圆柱形电容器,外柱的直径为4 cm ,内柱的直径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度的大小为E 0= 200 KV/cm .试求该电容器可能承受的最高电压. (自然对数的底e = 2.7183)解:设圆柱形电容器单位长度上带有电荷为λ,则电容器两极板之间的场强分布 为 )2/(r E ελπ= 设电容器内外两极板半径分别为r 0,R ,则极板间电压为⎰⎰⋅π==R rRr r r r E U d 2d ελ 0ln 2r Rελπ=电介质中场强最大处在内柱面上,当这里场强达到E 0时电容器击穿,这时应有002E r ελπ=,000ln r R E r U = 适当选择r 0的值,可使U 有极大值,即令0)/ln(/d d 0000=-=E r R E r U ,得 e R r /0=,显然有22d d r U < 0,故当 e R r /0= 时电容器可承受最高的电压 e RE U /0max = = 147 kV.3. 如图所示,一圆柱形电容器,内筒半径为R 1,外筒半径为R 2 (R 2<2 R 1),其间充有相对介电常量分别为εr 1和εr 2=εr 1 / 2的两层各向同性均匀电介质,其界面半径为R .若两种介质的击穿电场强度相同,问:(1) 当电压升高时,哪层介质先击穿?(2) 该电容器能承受多高的电压?解:(1) 设内、外筒单位长度带电荷为+λ和-λ.两筒间电位移的大小为 D =λ / (2πr ) 在两层介质中的场强大小分别为E 1 = λ / (2πε0 εr 1r ), E 2 = λ / (2πε0 εr 2r ) 在两层介质中的场强最大处是各层介质的内表面处,即E 1M = λ / (2πε0 εr 1R 1), E 2M = λ / (2πε0 εr 2R ) 可得 E 1M / E 2M = εr 2R / (εr 1R 1) = R / (2R 1)已知 R 1<2 R 1, 可见 E 1M <E 2M ,因此外层介质先击穿. (2) 当内筒上电量达到λM ,使E 2M =E M 时,即被击穿,λM = 2πε0 εr 2RE M 此时.两筒间电压(即最高电压)为:r r r r U R R r M RR r M d 2d 221201012⎰⎰+=επελεπελ⎪⎪⎭⎫ ⎝⎛+=R R R R RE r r M r 22112ln 1ln 1εεε4. 一空气平行板电容器,两极板面积均为S ,板间距离为d (d 远小于极板线度),在两极板间平行地插入一面积也是S 、厚度为t (<d )的金属片,如图所示. 试求:(1) 电容C 于多少? (2) 金属片放在两极板间的位置对电容值有无影响?解:设极板上分别带电荷+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为 )/(01S q E ε=金属板与B 板间场强为 )/(02S q E ε= 金属片内部场强为 0='E 则两极板间的电势差为2211d E d E U U B A +=- )(210d d S q+=ε)(0t d Sq -=ε 由此得 )/()/(0t d S U U q C B A -=-=ε因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容值无影响.O R 1R 2Rεr 2εr 1t S S S d Ad 1t d 2d5. 如图所示,一电容器由两个同轴圆筒组成,内筒半径为a ,外筒半径为b ,筒长都是L ,中间充满相对介电常量为εr 的各向同性均匀电介质.内、外筒分别带有等量异号电荷+Q和-Q .设 (b - a ) << a ,L >> b ,可以忽略边缘效应,求:(1) 圆柱形电容器的电容;(2) 电容器贮存的能量.解:由题给条件 (a a b <<-)和b L >>,忽略边缘效应, 应用高斯定理可求出两 筒之间的场强为: )2/(0Lr Q E r εεπ= 两筒间的电势差 =π=⎰r drL QU bar εε02a b L Q r ln 20εεπ 电容器的电容 )]//[ln()2(/0a b L U Q C r εεπ== 电容器贮存的能量 221CU W =)/ln()]4/([02a b L Q r εεπ=6. 如图所示,一平板电容器,极板面积为S ,两极板之间距离为d ,其间填有两层厚度相同的各向同性均匀电介质,其介电常量分别为ε1和ε2.当电容器带电荷±Q 时,在维持电荷不变下,将其中介电常量为ε1的介质板抽出,试求外力所作的功.解:可将上下两部分看作两个单独的电容器串联,两电容分别为d S C 112ε=,d SC 222ε= 串联后的等效电容为 ()21212εεεε+=d SC带电荷±Q 时,电容器的电场能量为 ()S d Q C Q W 21212242εεεε+== 将ε1的介质板抽去后,电容器的能量为 ()S d Q W 202024εεεε+='外力作功等于电势能增加,即 ⎪⎪⎭⎫⎝⎛-=-'=∆=102114εεS d Q W W W A7. 如图所示,将两极板间距离为d 的平行板电容器垂直地插入到密度为ρ、相对介电常量为εr 的液体电介质中.如维持两极板之间的电势差U 不变,试求液体上升的高度h .解:设极板宽度为L ,液体未上升时的电容为 C 0 = ε0HL / d 液体上升到h 高度时的电容为()d hL dL h H C rεεε00+-=()011C H h r ⎥⎦⎤⎢⎣⎡-+=ε 在U 不变下,液体上升后极板上增加的电荷为()d hLU U C CU Q r /100-=-=∆εε电源作功 ()d hLU QU A r /120-==∆εε液体上升后增加的电能20212121U C CU W -=∆()d hLU r /12120-=εε 液体上升后增加的重力势能 2221gdh L W ρ=∆因 A = ∆W 1+∆W 2,可解出 ()2201gdU h r ρεε-=思考题1. 无限大均匀带电平面(面电荷密度为σ)两侧场强为)2/(0εσ=E ,而在静电平衡状态下,导体表面(该处表面面电荷密度为σ)附近场强为0/εσ=E ,为什么前者比后者小一半?参考解答:关键是题目中两个式中的σ不是一回事。
大学物理课后习题详解(第十三章)中国石油大学
习 题 十 三13-1 求各图中点P 处磁感应强度的大小和方向。
[解] (a) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此a I B πμ401=对于导线2:πθθ==21,因此02=BaIB B B πμ4021p =+= 方向垂直纸面向外。
(b) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此rI a I B πμπμ44001==,方向垂直纸面向内。
对于导线2:21πθ=,πθ=2,因此rI a I B πμπμ44002==,方向垂直纸面向内。
半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的圆形导线在圆心处产生的磁感应强度的一半,即rIr I B 4221003μμ==,方向垂直纸面向内。
所以,rIr I r I r I r I B B B B 4244400000321p μπμμπμπμ+=++=++=(c) P 点到三角形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是()aI d IB πμπμ23150cos 30cos 400000=-=故P 点总的磁感应强度大小为aIB B πμ29300== 方向垂直纸面向内。
13-2 有一螺线管长L =20cm ,半径r =2.0cm ,导线中通有强度为I =5.0A 的电流,若在螺线管轴线中点处产生的磁感应强度B =310166-⨯.T 的磁场,问该螺线管每单位长度应多少匝?[解] 已知载流螺线管轴线上场强公式为()120cos cos 2θθμ-=nIB由图知: 10410cos 2=θ,10410cos 1-=θ,所以,⎪⎪⎭⎫ ⎝⎛⨯=10410220nI B μ, 所以,匝=1000101040IBn μ=13-3 若输电线在地面上空25m 处,通以电流31081⨯.A 。
大学物理13章答案
第13章 静电场中的导体和电介质13.1一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E r πε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04c q U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl . 设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为 ⎰⋅=ΦSdD d 012d d d 2S S S rlDπ=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少? [解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离图13.3球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q q U r a b πεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q =3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少? (2)A 板电势为多少? [解答](1)设A 的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为σ1S 和q 2 = σ2S ,q 1 = 在B 、C 板上分别感应异号电荷-q 1和-q 2,由电荷守恒得方程q = q 1 + q 2 = σ1S + σ2S . ① A 、B 间的场强为 E 1 = σ1/ε0, A 、C 间的场强为 E 2 = σ2/ε0.设A 板与B 板的电势差和A 板与C 板的的电势差相等,设为ΔU ,则ΔU = E 1d 1 = E 2d 2, ②即 σ1d 1 = σ2d 2. ③解联立方程①和③得σ1 = qd 2/S (d 1 + d 2),所以 q 1 = σ1S = qd 2/(d 1+d 2) = 2×10-8(C);q 2 = q - q 1 = 1×10-8(C).B 、C 板上的电荷分别为q B = -q 1 = -2×10-8(C); q C = -q 2 = -1×10-8(C). (2)两板电势差为ΔU = E 1d 1 = σ1d 1/ε0 = qd 1d 2/ε0S (d 1+d 2), 由于 k = 9×109 = 1/4πε0, 所以 ε0 = 10-9/36π,因此 ΔU = 144π = 452.4(V). 由于B 板和C 板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A ,带电量为q ,在它的附近放一块与A 平行的金属导体板B ,板B 有一定的厚度,如图所示.则在板B 的两个表面1和2上的感应电荷分别为多少?[解答]由于板B 原来不带电,两边感应出电荷后,由电荷守恒得 0. ①q 1 + q 2 = 虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S ,则面电荷密度分别为σ1 = q 1/S 、σ2 = q 2/S 、σ = q/S ,图13.42 图13.5它们产生的场强大小分别为E 1 = σ1/ε0、E 2 = σ2/ε0、E = σ/ε0.在B 板内部任取一点P ,其场强为零,其中1面产生的场强向右,2面和A 板产生的场强向左,取向右的方向为正,可得E 1 - E 2 – E = 0,即 σ1 - σ2 – σ = 0,或者说 q 1 - q 2 + q = 0. ② 解得电量分别为q 2 = q /2,q 1 = -q 2 = -q /2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V ,两板间相距为 1.2mm ,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0. 由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0. 由于两板带等量异号的电荷,所以 σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d , 所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m -2),σ2 = -σ3 = -8.84×10-7(C·m -2).13.7一球形电容器,内外球壳半径分别为R 1和R 2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214R C R R πε=-表示. (提示:可看作两个球电容器的并联,且地球半径R >>R 2)[一:并联电容法.在外球外面再接一个半径为R 3壳,外壳也接地.内球壳和外球壳之间是容为 104C πε=壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-图13.6202214R R R πε=-.方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-.根据高斯定理可得两球壳之间的场强为122002`44R q q E r R r πεπε==-,负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r=⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰1212021202()11()44R q R R q R R R R πεπε-=-=球面间的电容为202214R q C U R R πε==-.13.8球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为12012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为 ε1S/d 1和C 2 = ε2S/d 2. C 1 = 总电容的倒数为122112*********d d d d C C C S S S εεεεεε+=+=+=,总电容为122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍? [解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为 ⎰⋅=ΦS d S D d12d d d 2S S S rlDπ=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl ,根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLRU E r r r λπε=⋅==⎰⎰⎰E l21ln 2R R λπε=.电容为212ln(/)q l C U R R πε==.在真空时的电容为00212ln(/)l q C U R R πε==,所以倍数为C/C 0 = ε/ε0.13.11在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布;(2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为 Dr S D SSd 24d d π==⋅=Φ⎰⎰S D高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P ,所以 P = D - ε0E =031(1)4rQ r επ-r .在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以 D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0.(2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为`101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1.两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2.13.13一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d .13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d .(2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U .当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为 W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d .(3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ; 介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ①由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ②解联立方程得01112211/C U C Q Q C C C C ==++,真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S d εσε===++.同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S d εεσε==++.13.15平行板电容器极板面积为200cm 2,板间距离为 1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少? [解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=-20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2V V W w V E Vε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰. 当R = b 时,能量为210ln4l b W a λπε=;当R =22200ln48l l b W a λλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l , 根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln44bV aQ Q bW W r lr l a πεπε===⎰⎰. (3)由公式W = Q 2/2C 得电容为222ln(/)Q l C W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=,得1212120PFC C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U 1 = Q/C 1 = CU/C 1 = 600(V); 第二个电容器两端的电压为U 2 = Q/C 2 = CU/C 2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。
大学物理B2_第13章_1
7
第十三章 热力学基础1
第十三章 热力学基础
教学基本要求
1. 掌握内能、功和热量等概念,理解准静态过程; 2. 掌握定体摩尔热容量和定压摩尔热容量; 3. 掌握热力学第一定律,能分析、计算理想气体在等体、等压、 等温和绝热过程中的功、热量和内能的改变量; 4. 理解循环的意义和循环过程的能量转换关系;能熟练计算卡 诺循环或其它的简单循环的效率;
第十三章 热力学基础1
第十三章 热力学基础
13-1 准静态过程 功 热量 内能 摩尔热容 13-2 热力学第一定律
13-3 理想气体的等体和等压过程 13-4 理想气体的等温和绝热过程 13-5 循环过程 卡诺循环
13-6 热力学第二定律表述 卡诺定理 13-7 熵 熵增加原理 13-8 热力学第二定律的统计意义
很大,但前进中要与其他分子作频繁 的碰撞,每碰一次,分子运动方向就 发生改变,所走的路程非常曲折。 分子自由程: 气体分子两次相邻碰撞之间自由通过的路程。
2014年10月15日星期三
2
第十三章 热力学基础1
分子碰撞频率:
在单位时间内一个分子与其他分子碰撞的次数。
一、平均碰撞频率 假定: 1 . 分子为刚性小球 ; 2 . 分子有效直径为d; 3 . 其它分子皆静止, 某 一分子以平均速率
默认:理想气体的各过程为准静态过程 一、摩尔热容 1.热容: 一定量的物质升高(或降低)1K温度所吸收(或放热)的热量 数学表达式:C Q
T
或 C
dQ dT
C 2.比热容:单位质量的热容, c m 3.摩尔热容:
1mol的物质升高(或降低)1K温度所吸收(或放热)的热量 数学表达式: Cmol
大学物理13章习题详细答案
习题1313-3.如习题13-3图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。
设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差。
(2)板B 接地时,两板间的电势差。
[解] (1)两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为因而板间电场强度为 SQ E 02ε=电势差为 SQdEd U 0AB 2ε== (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为 故板间电场强度为 SQ E 0ε=电势差为 SQdEd U 0AB ε== B A-Q/2Q/2Q/2Q/2A B -QQ13-4 两块靠近的平行金属板间原为真空。
使两板分别带上面电荷密度为σ0的等量异号电荷,这时两板间电压为U 0=300V 。
保持两板上电量不变,将板间空间一半如图习题13-4图所示充以相对电容率为εr =5的电介质,试求(1) 金属板间有电介质部分和无电介质部分的E,D 和板上的自由电荷密度σ; (2) 金属板间电压变为多少?电介质上下表面束缚电荷面密度多大?13-5.如习题13-5图所示,三个无限长的同轴导体圆柱面A 、B 和C ,半径分别为R A 、R B 、R C 。
圆柱面B 上带电荷,A 和C 都接地。
求B 的内表面上线电荷密度λ1和外表面上线电荷密度λ2之比值λ1/λ2。
[解] 由A 、C 接地 BC BA U U = 由高斯定理知 r E 01I 2πελ-=rE 02II 2πελ= AB 0101I BA ln 2d 2d ABA BR Rr r U R R R R πελπελ=-==⎰⎰r E IIIB C 0202II BC ln 2d 2d CB CBR R r r U R R R R πελπελ===⎰⎰r EBC 02A B 01ln 2ln 2R R R R πελπελ= 因此 AB BC 21ln :ln:R R R R =λλ13-6.如习题13-6图所示,一厚度为d 的无限大均匀带电导体板,单位面积上两表面带电量之和为σ。
大学物理B2_第13章_4
2014年10月15日星期三
T1
D
W
B
p3
o V1 V4
T2
V2
C
V
V3
卡诺热机效率与工作物质无关,只与两个热源的温
度有关,两热源温差越大,则卡诺循环的效率越高。 只要提高T1或降低T2, 就可以要提高热机效率。
3
第十三章 热力学基础4
例1. 图中两卡诺循环 1
2 吗 ?
b
2014年10月15日星期三
第十三章 热力学基础4
五、熵增加原理 热二律指出,自然界所发生的物理过程是有一定方向的,那
判断过程进行方向的公共准则是什么呢? 孤立系统可逆过程 S 0 孤立系统中所发生的一切不可逆过程的熵总是增加,可逆过程 熵不变,这就是熵增加原理。 熵增加原理成立的条件: 孤立系统或绝热过程。 熵增加原理的应用:给出实际过程进行方向的判椐。 孤立系统不可逆过程 S 0
1954年国际计量大会决定:规定水的三相点定义为热力学温 度的273.16K,这样热力学温标的1个刻度值就等于水的三相点 1 的热力学温度的 273.16 12 2014年10月15日星期三
第十三章 热力学基础4
13-7 熵 熵增加原理
一、问题的引出 热力学第二定律表明,一切与热现象有关的实际过程都是不 可逆的。能否找到一个状态函数,并用这个状态函数在初、终两 态的差异或单向变化的性质来判断实际过程进行的方向呢? 这个状态函数就是熵! 二、状态函数熵的引入 Q T Q Q 1 2 1 2 1 2 可逆卡诺热机的效率为: Q1 T1 T1 T2 Q1 Q2 0 其中Q1是吸热,Q2是放热。 上式称克劳修斯等式 T1 T2 Q1 Q2 0 Q >0 吸热,Q 0 放热。 统一用热一律的符号规定: T1 T2 Q 称热温比 上式表明可逆卡诺循环热温比之和为零。 T
大学物理题库-第13章 热力学基础
热力学基础一 选择题01功、热量、内能,热力学第一定律及其对典型的热力学过程的应用,绝热过程1. 对于理想气体系统来说,在下列过程中的哪个过程,所吸收的热量、内能的增量和对外作功三者均为负值: [ ](A )等体降压过程(B )等温膨胀过程(C )绝热膨胀过程 (D )等压压缩过程答案:D2.一定量的理想气体,经历某过程后,温度升高了.则根据热力学定律可以断定:(1) 该理想气体系统在此过程中吸了热.(2) 在此过程中外界对该理想气体系统作了正功.(3) 该理想气体系统的内能增加了.(4) 在此过程中理想气体系统既从外界吸了热,又对外作了正功.以上正确的断言是:(A) (1)、(3). (B) (2)、(3).(C) (3). (D) (3)、(4).(E) (4). [ ]答案:C(060101104)3. 如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A) 是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。
[ ]答案:C(060101106)4. 如图所示,一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分,两边分别装入质量相等、温度相同的2H 和2O 。
开始时绝热板P 固定。
然后释放之,板P 将发生移动(绝热板与容器壁之间不漏气,且摩擦可以忽略不计),在达到新的平衡位置后,若比较两边温度的高低,则结果是:[ ](A ) 2H 比2O 温度高;(B ) 2O 比2H 温度高;(C ) 两边温度相等且等于原来的温度;(D ) 两边温度相等但比原来的温度降低了。
答案:DV5. 如图,bca 为理想气体绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是: (A) b 1a 过程放热,作负功;b 2a 过程放热,作负功. (B) b 1a 过程吸热,作负功;b 2a 过程放热,作负功. (C) b 1a 过程吸热,作正功;b 2a 过程吸热,作负功.(D) b 1a 过程放热,作正功;b 2a 过程吸热,作正功. [ ] 答案:B6. 如图所示,一定量的理想气体,沿着图中直线从状态a ( 压强p 1 = 4 atm ,体积V 1 =2 L )变到状态b ( 压强p 2 =2 atm ,体积V 2 =4 L ).则在此过程中:(A) 气体对外作正功,向外界放出热量. (B) 气体对外作正功,从外界吸热.(C) 气体对外作负功,向外界放出热量. (D) 气体对外作正功,内能减少. [ ] 答案:B7. 一定量的理想气体,其状态改变在p -T 图上沿着一条直线从平衡态a 到平衡态b (如图).(A) 这是一个膨胀过程. (B) 这是一个等体过程. (C) 这是一个压缩过程. (D) 数据不足,不能判断这是那种过程. [ ] 答案:C8. 一定量的理想气体分别由初态a 经①过程ab 和由初态a ′经②过程a′cb 到达相同的终态b ,如p -T 图所示,则两个过程中气体从外界吸收的热量 Q 1,Q 2的关系为: (A) Q 1<0,Q 1> Q 2. (B) Q 1>0,Q 1> Q 2.(C) Q 1<0,Q 1< Q 2. (D) Q 1>0,Q 1< Q 2. [ ]答案:B 02 理想气体的定容摩尔热容,定压摩尔热容,迈耶公式和比热比1、在等压、等容、等温、绝热四种过程中,某单原子分子理想气体的摩尔热容依次应该是:[ ] 、[ ] 、[ ] 、[ ](A ) 0 (B ) 3R /2 (C ) 5R /2 () ∞答案:C ;B ;D ;A03循环过程,卡诺循环,热机效率,制冷系数1、一条等温线和一条绝热线不能组成循环过程的原因是:[ ](A ) 违背了热力学第一定律p OV b 1 2 a c 123412 p(B)违背了热力学第二定律(C)一条等温和一条绝热线不能相交两次(D)一个循环过程至少应由三条曲线组成答案:BC2、两个卡诺热机的循环曲线如图所示,一个工作在温度为T1 与T3的两个热源之间,另一个工作在温度为T2与T3的两个热源之间,已知这两个循环曲线所包围的面积相等.由此可知:(A)两个热机的效率一定相等.(B)两个热机从高温热源所吸收的热量一定相等.(C)两个热机向低温热源所放出的热量一定相等.(D)两个热机吸收的热量与放出的热量(绝对值)的差值一定相等.[ ]答案:D3、一定量的某种理想气体起始温度为T,体积为V,该气体在下面循环过程中经过三个平衡过程:(1) 绝热膨胀到体积为2V,(2)等体变化使温度恢复为T,(3) 等温压缩到原来体积V,则此整个循环过程中(A) 气体向外界放热(B) 气体对外界作正功(C) 气体内能增加(D) 气体内能减少[]答案:A4、一定量的理想气体,起始温度为T,体积为V0.后经历绝热过程,体积变为2 V0.再经过等压过程,温度回升到起始温度.最后再经过等温过程,回到起始状态.则在此循环过程中(A) 气体从外界净吸的热量为负值.(B) 气体对外界净作的功为正值.(C) 气体从外界净吸的热量为正值.(D) 气体内能减少.[]答案:A5、一定质量的理想气体完成一循环过程.此过程在V-T图中用图线1→2→3→1描写.该气体在循Array环过程中吸热、放热的情况是(A) 在1→2,3→1过程吸热;在2→3过程放热.(B) 在2→3过程吸热;在1→2,3→1过程放热.(C) 在1→2过程吸热;在2→3,3→1过程放热.(D) 在2→3,3→1过程吸热;在1→2过程放热.[]答案: C6、理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是:(A) S 1 > S 2. (B) S 1 = S 2.(C) S 1 < S 2. (D) 无法确定. [ ]答案:B7、一定量某理想气体所经历的循环过程是:从初态(V 0,T 0)开始,先经绝热膨胀使其体积增大1倍,再经等体升温回复到初态温度T 0,最后经等温过程使其体积回复为V 0,则气体在此循环过程中. (A) 对外作的净功为正值. (B) 对外作的净功为负值.(C) 内能增加了. (D) 从外界净吸的热量为正值. [ ]答案:B8、如图所示,工作物质进行a Ⅰb Ⅱa 可逆循环过程,已知在过程a Ⅰb 中,它从外界净吸收的热量为Q ,而它放出的热量总和的绝对值为Q 2,过程b Ⅱa 为绝热过程;循环闭曲线所包围的面积为A .该循环的效率为(A) Q A =η . (B) Q A >η. (C) 2Q Q A +=η. (D) 121T T -=η. [ ] (式中T 1、T 2为a 、b 两点的温度)答案:C04可逆过程,不可逆过程,卡诺定理,热力学第二定律得两种表述1、 “理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功.”对此说法,有如下几种评论,哪种是正确的?(A) 不违反热力学第一定律,但违反热力学第二定律.(B) 不违反热力学第二定律,但违反热力学第一定律.(C) 不违反热力学第一定律,也不违反热力学第二定律.(D) 违反热力学第一定律,也违反热力学第二定律. [ ]答案:C2、根据热力学第二定律可知:(A) 功可以全部转换为热,但热不能全部转换为功.(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体(C) 不可逆过程就是不能向相反方向进行的过程.(D) 一切自发过程都是不可逆的. [ ]答案:D3、关于在相同的高温恒温热源和相同的低温恒温热源之间工作的各种热机的效率,以及它们在每一循环中对外所作的净功,有以下几种说法,其中正确的一种说法是:(A)这些热机的效率相等,它们在每一循环中对外作的净功也相等.(B)不可逆热机的效率一定小于可逆热机的效率,不可逆热机在每一循环中对外所作的净功一定小于可逆热机在每一循环中对外所作的净功.p V O a (T 1)b (T 2)ⅠⅡ(C)各种可逆热机的效率相等,但各种可逆热机在每一循环中对外所作的净功不一定相等.(E) 这些热机的效率及它们在每一循环中对外所作的净功大小关系都无法断定. [ ]答案:C05热力学第二定律的统计意义,熵的概念和熵增原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第13章 光学一 选择题*13-1 在水中的鱼看来,水面上和岸上的所有景物,都出现在一倒立圆锥里,其顶角为( )(A)48.8o (B)41.2o (C)97.6o (D)82.4o解:选(C)。
利用折射定律,当入射角为1=90i o 时,由折射定律1122sin sin n i n i = ,其中空气折射率11n =,水折射率2 1.33n =,代入数据,得折射角2=48.8i o ,因此倒立圆锥顶角为22=97.6i o 。
*13-2 一远视眼的近点在1 m 处,要看清楚眼前10 cm 处的物体,应配戴的眼镜是( )(A)焦距为10 cm 的凸透镜 (B)焦距为10 cm 的凹透镜 (C)焦距为11 cm 的凸透镜 (D)焦距为11 cm 的凹透镜解:选(C)。
利用公式111's s f+=,根据教材上约定的正负号法则,'1m s =-,0.1m s =,代入得焦距0.11m =11cm f =,因为0f >,所以为凸透镜。
13-3 在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明纹位于图中O 处,现将光源S 向下移动到图13-3中的S ′位置,则[ ] (A) 中央明纹向上移动,且条纹间距增大(B) 中央明纹向上移动,且条纹间距不变(C) 中央明纹向下移动,且条纹间距增大(D) 中央明纹向下移动,且条纹间距不变习题13-3图解:选(B)。
光源S 由两缝S 1、S 2到O 处的光程差为零,对应中央明纹;当向下移动至S ′时,S ′到S 1的光程增加,S ′到S 2的光程减少,为了保持光程差为零,S 1到屏的光程要减少,S 2到屏的光程要增加,即中央明纹对应位置要向上移动;条纹间距dD x λ=∆,由于波长λ、双缝间距d 和双缝所在平面到屏幕的距离D 都不变,所以条纹间距不变。
13-4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射。
若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为[ ](A) 3个 (B) 4个 (C) 5个 (D) 6个 解:选(B)。
暗纹半波带数目为2k ,第二级2k =,代入数据,得半波带数目为4。
13-5 波长550nm λ=的单色光垂直入射于光栅常数41.010cm d a b -=+=⨯的光栅上,可能观察到的光谱线的最大级次为[ ](A) 4 (B) 3 (C) 2 (D) 1 解:选(D)。
由光栅方程sin d k θλ=±,当1sin =θ时,得dk λ=,代入数据,得 1.8k =,k 取整数,最大级次为1。
13-6 三个偏振片1P 、2P 与3P 堆叠在一起,1P 与3P 的偏振化方向相互垂直,2P 与1P 的偏振化方向间的夹角为30︒,强度为0I 的自然光入射于偏振片1P ,并依次透过偏振片1P 、2P 与3P ,则通过三个偏振片后的光强为[ ](A)0316I (B) 08 (C) 0332I(D) 0解:选(C)。
设自然光光强为0I ,自然光通过偏振片1P ,光强减半,变为02I ;由马吕斯定律α20cos I I =,通过偏振片2P ,光强变为2003cos 3028I I︒=,通过偏振片3P ,光强变为20033cos 60832I I ︒=。
13-7 自然光以ο7.54的入射角照射到两介质交界面时,反射光为完全线偏振光,则折射光为[ ](A) 完全线偏振光,且折射角是ο3.35(B) 部分偏振光且只是在该光由真空入射到折射率为2的介质时,折射角是ο3.35(C) 部分偏振光,但需知两种介质的折射率才能确定折射角 (D) 部分偏振光且折射角是ο3.35解:选(D)。
通过实验发现,自然光在两种各向同性介质分界面上反射、折射,当入射角变化时,折射光始终是部分偏振光;当入射角等于布儒斯特角时,反射光为完全偏振光,且入射角与折射角之和为90o ,因为入射角为ο7.54,所以折射角为35.3o 。
二 填空题13-8 在双缝干涉实验中,若使两缝之间的距离减小,则屏幕上干涉条纹间距________,若使单色光波长减小,则干涉条纹间距________。
解:条纹间距dD x λ=∆,若使两缝之间的距离d 减小,则x ∆增大;若使单色光波长λ减小,则x ∆减小。
13-9 如图13-9所示,当单色光垂直入射薄膜时,经上下两表面反射的两束光发生干涉。
当123n n n <<时,其光程差为________;当132n n n =<时,其光程差为________。
解:当123n n n <<时,单色光垂直入射薄膜,由于12n n <,在薄膜上表面反射光将产生半波损失,由于23n n <,在薄膜下表面反射光也将产生半波损失,两者相互抵消,无附加光程差,因此光程差为22n e ;当132n n n =<时,单色光垂直入射薄膜,由于12n n <,在薄膜上表面反射光将产生半波损失,由于23n n >,在薄膜下表面反射光将不产生半波损失,整体产生附加光程差2λ,因此光程差为22+2n e λ。
13-10 波长为λ的单色光垂直照射在缝宽为4a λ=的单缝上,对应30θ=︒衍射角,单缝处的波面可划分为________个半波带,对应的屏上条纹为________条纹。
解:由于sin 4sin302a θλλ=⨯︒=,为波长整数倍,所以对应的屏上条纹为暗条纹,且级次k 为2;又由于暗纹半波带数目为2k ,所以半波带数目为4。
13-11 平行单色光垂直入射到平面衍射光栅上,若增大光栅常数,则衍射图样中明条纹的间距将________,若增大入射光的波长,则明条纹间距将________。
解:根据几何关系,屏上距离屏中心x 处的P 点明条纹的衍射角满足公式tan x f θ=,根据光栅方程sin d k θλ=±,得sin k dλθ=,由于θ角很小,因此有θθθ≈≈sin tan ,所以x k f d λ=,得明条纹的间距x f dλ∆=。
若增大光栅常数d ,则x ∆变小;若增大入射光的波长λ,则x ∆变大。
13-12 强度为0I 的自然光,通过偏振化方向互成30︒角的起偏器与检偏器后,光强度变为________。
解:自然光通过起偏器,光强减半,变为02I ;由马吕斯定律α20cos I I =,通过检偏器,光强变为2003cos 3028I I ︒=。
三 计算题*13-13 一人高1.8 m ,站在照相机前3.6 m 处拍照,摄得其像的高恰为100mm ,问此照相机镜头的焦距有多大解:照相机通过镜头(相当于凸透镜)将物体会聚成倒立缩小实像成像于感光底片上,横向放大率21'h s h sβ===-,倒立像的高2100mm =0.1m h =--,人高11.8m h =, 3.6m s =,代入数据,得'0.2m s =,再利用公式111's s f+=,得0.1895m 18.95cm f ==。
*13-14 一个光学系统由一个焦距为5 cm 的会聚透镜和一焦距为10 cm 的发散透镜组成,二者之间的相距5 cm 。
若物体放在会聚透镜前10 cm 处,求经此光学系统所成像的位置和放大率。
解:先对会聚透镜进行计算,利用公式111111's s f +=,物体放在会聚透镜前10cm 处110cm s =,焦距为5cm 的会聚透镜15cm f =,代入数据,得1'10cm s =,即第一次所成像在会聚透镜后10cm 处;然后对发散透镜进行计算,利用公式222111's s f +=,由于二透镜之间的相距5cm ,则第一次所成像在发散透镜后5cm 处25cm s =-,焦距为10cm 的发散透镜210cm f =-,代入数据,得2'10cm s =,即第二次所成像在发散透镜后10cm 处。
放大率121212''()()s s s s βββ==-⨯-,代入数据,得2β=-,负号表示倒立像。
因此,最后成像在发散透镜后10cm 处,是放大2倍的倒立实像。
*13-15 一架显微镜的物镜和目镜相距为20 cm ,物镜焦距为7 mm ,目镜的焦距为5 mm ,把物镜和目镜均看作是薄透镜。
试求(1)被观察物到物镜的距离;(2)物镜的横向放大率;(3)显微镜的视角放大率。
解:显微镜能够对微小物体成放大像,物体经物镜成放大实像于目镜物方焦点内侧附近,再经目镜成虚像于人眼的明视距离25cm 附近。
(1)考虑物镜,设被观察物到物镜的距离为s ,根据几何关系可知,放大实像到物镜的距离'2005195mm s =-=,利用公式111's s f+=,7mm f =,得7.3mm s =;(2)物镜的横向放大率's sβ=-,代入数据,得26.7β=-; (3)显微镜的视角放大率o12S M f f ∆=-,其中o S 为明视距离,等于250mm ,∆为物镜像方焦点到目镜物方焦点的距离,称为光学间隔,20075188mm ∆=--=,而17mm f =,25mm f =,代入数据,得1343M =-。
13-16 在双缝干涉实验中,两缝间距为0.3mm ,用单色光垂直照射双缝,在离缝1.20m 的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为22.78mm 。
问所用光的波长为多少,是什么颜色的光解:双缝干涉暗纹位置d D k x λ)21(+±=,Λ,2,1,0=k ,第5条暗纹,4k =,中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为22.78mm ,即222.78mm x =,得211.39mm=1.13910m x -=⨯,因此211.13910(4)2D dλ-⨯=+,代入40.3mm=310m d -=⨯和 1.2m D =,得76.32810m=632.8nm λ-=⨯,是红光。
13-17 在双缝干涉实验中,用波长546.1nm λ=的单色光照射,双缝与屏的距离'300mm d =。
测得中央明纹两侧的两个第五级明条纹的间距为12.2mm ,求双缝间的距离。
解:条纹间距dD x λ=∆,考虑到中央明纹,两个第五级明条纹间有11条条纹,共有10个条纹间距,因此12.21.22mm 10x ∆==,利用公式d D x λ=∆,代入数据,得双缝间的距离41.3410m d -=⨯。
13-18 如图13-18所示,将一折射率为的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹。
假定550nm λ=,求:(1)条纹如何移动;(2)云母片厚度t 。
解:(1)条纹如何移动可通过中央明纹来判断。