算法设计与分析5
算法设计与分析C语言描述(陈慧南版)课后答案
算法设计与分析C语⾔描述(陈慧南版)课后答案第⼀章15P1-3. 最⼤公约数为1。
快1414倍。
主要考虑循环次数,程序1-2的while 循环体做了10次,程序1-3的while 循环体做了14141次(14142-2循环)若考虑其他语句,则没有这么多,可能就601倍。
第⼆章32P2-8.(1)画线语句的执⾏次数为log n 。
(log )n O 。
划线语句的执⾏次数应该理解为⼀格整体。
(2)画线语句的执⾏次数为111(1)(2)16jnii j k n n n ===++=∑∑∑。
3()n O 。
(3)画线语句的执⾏次数为。
O 。
(4)当n 为奇数时画线语句的执⾏次数为(1)(3)4n n ++,当n 为偶数时画线语句的执⾏次数为 2(2)4n +。
2()n O 。
2-10.(1)当 1n ≥ 时,225825n n n -+≤,所以,可选 5c =,01n =。
对于0n n ≥,22()5825f n n n n =-+≤,所以,22582()n n n -+=O 。
(2)当 8n ≥ 时,2222582524n n n n n -+≥-+≥,所以,可选 4c =,08n =。
对于0n n ≥,22()5824f n n n n =-+≥,所以,22582()n n n -+=Ω。
(3)由(1)、(2)可知,取14c =,25c =,08n =,当0n n ≥时,有22212582c n n n c n ≤-+≤,所以22582()n n n -+=Θ。
2-11. (1) 当3n ≥时,3log log n n n <<,所以()20log 21f n n n n =+<,3()log 2g n n n n =+>。
可选 212c =,03n =。
对于0n n ≥,()()f n cg n ≤,即()(())f n g n =O 。
注意:是f (n )和g (n )的关系。
算法设计与分析知到章节答案智慧树2023年天津大学
算法设计与分析知到章节测试答案智慧树2023年最新天津大学第一章测试1.下列关于效率的说法正确的是()。
参考答案:提高程序效率的根本途径在于选择良好的设计方法,数据结构与算法;效率主要指处理机时间和存储器容量两个方面;效率是一个性能要求,其目标应该在需求分析时给出2.算法的时间复杂度取决于()。
参考答案:问题的规模;待处理数据的初态3.计算机算法指的是()。
参考答案:解决问题的有限运算序列4.归并排序法的时间复杂度和空间复杂度分别是()。
参考答案:O(nlog2n);O(n)5.将长度分别为m,n的两个单链表合并为一个单链表的时间复杂度为O(m+n)。
()参考答案:错6.用渐进表示法分析算法复杂度的增长趋势。
()参考答案:对7.算法分析的两个主要方面是时间复杂度和空间复杂度的分析。
()参考答案:对8.某算法所需时间由以下方程表示,求出该算法时间复杂度()。
参考答案:O(nlog2n)9.下列代码的时间复杂度是()。
参考答案:O(log2N)10.下列算法为在数组A[0,...,n-1]中找出最大值和最小值的元素,其平均比较次数为()。
参考答案:3n/2-3/2第二章测试1.可用Master方法求解的递归方程的形式为()。
参考答案:T(n)=aT(n/b)+f(n) , a≥1, b>1, 为整数, f(n)>0.2.参考答案:对3.假定,, 递归方程的解是. ( )参考答案:对4.假设数组A包含n个不同的元素,需要从数组A中找出n/2个元素,要求所找的n/2个元素的中点元素也是数组A的中点元素。
针对该问题的任何算法需要的时间复杂度的下限必为。
( )参考答案:错5.使用Master方法求解递归方程的解为().参考答案:6.考虑包含n个二维坐标点的集合S,其中n为偶数,且所有坐标点中的均不相同。
一条竖直的直线若能把S集合分成左右两部分坐标点个数相同的子集合,则称直线L为集合S的一条分界线。
若给定集合S,则可在时间内找到这条分界线L。
算法设计和分析习题答案解析1_6章
习题11. 图论诞生于七桥问题。
出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。
七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图1.7是这条河以及河上的两个岛和七座桥的草图。
请将该问题的数据模型抽象出来,并判断此问题是否有解。
七桥问题属于一笔画问题。
输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。
请用伪代码描述这个版本的欧几里德算法1.r=m-n2.循环直到r=02.1 m=n2.2 n=r2.3 r=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。
要求分别给出伪代码和C++描述。
//采用分治法//对数组先进行快速排序//在依次比较相邻的差#include <iostream>using namespace std;int partions(int b[],int low,int high) {图1.7 七桥问题int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。
《算法设计与分析》(全)
1.1、算法与程序
程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序, 因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个 问题由操作系统中的一个子程序通过特定的算法来实 现。该子程序得到输出结果后便终止。
渐近分析记号的若干性质
(1)传递性: ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); (2)反身性: ➢ f(n)= (f(n));f(n)= O(f(n));f(n)= (f(n)). (3)对称性: ➢ f(n)= (g(n)) g(n)= (f(n)) . (4)互对称性: ➢ f(n)= O(g(n)) g(n)= (f(n)) ; ➢ f(n)= o(g(n)) g(n)= (f(n)) ;
巢湖学院计算机科学与技术系
渐近分析记号的若干性质
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明: ➢ 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对
所有n n1,有f1(n) c1f(n) 。 ➢ 类似地,对于任意g1(n) O(g(n)) ,存在正常数c2和自然数
巢湖学院计算机科学与技术系
第1章 算法引论
算法设计与分析习题与实验题(12.18)
《算法设计与分析》习题第一章引论习题1-1 写一个通用方法用于判定给定数组是否已排好序。
解答:Algorithm compare(a,n)BeginJ=1;While (j<n and a[j]<=a[j+1]) do j=j+1;If j=n then return trueElseWhile (j<n and a[j]>=a[j+1]) do j=j+1;If j=n then return true else return false end ifEnd ifend习题1-2 写一个算法交换两个变量的值不使用第三个变量。
解答:x=x+y; y=x-y; x=x-y;习题1-3 已知m,n为自然数,其上限为k(由键盘输入,1<=k<=109),找出满足条件(n2-mn-m2)2=1 且使n2+m2达到最大的m、n。
解答:m:=k; flag:=0;repeatn:=m;repeatl:=n*n-m*n-m*n;if (l*l=1) then flag:=1 else n:=n-1;until (flag=1) or (n=0)if n=0 then m:=m-1until (flag=1) or (m=0);第二章基础知识习题2-1 求下列函数的渐进表达式:3n 2+10n ; n 2/10+2n ; 21+1/n ; log n 3; 10 log3n 。
解答: 3n 2+10n=O (n 2), n 2/10+2n =O (2n ), 21+1/n=O (1), log n 3=O (log n ),10 log3n =O (n )。
习题2-2 说明O (1)和 O (2)的区别。
习题2-3 照渐进阶从低到高的顺序排列以下表达式:!n ,3/22,2,20,3,log ,4n n n n n 。
解答:照渐进阶从低到高的顺序为:!n 、 3n、 24n 、23n 、20n 、log n 、2习题2-4(1) 假设某算法在输入规模为n 时的计算时间为n n T 23)(⨯=。
算法设计与分析-动态规划习题
a
j
k
T(n)=2T(n/2)+O(n) 解此递归方程可知,T(n)=O(nlogn) 3) 记 b[j]=
a
k 1
j
k
,1≤i≤n,则所求的最大子段和问题为
a
k 1
j
k
=max max
a
k i
j
k
=max b[j]
由 b[j]的定义可知,b[j-1]>0 时,b[j]= b[j-1]+a[j], 否则 b[j]=a[j],因此 b[j]的动态规划递 归式 b[j]=max{b[j-1]+a[j],a[j]},1≤j≤n。 据此, 可设计出最大子段和动态规划算法如下: int MaxSum(int n,int *a) { Int sum=0,b=0; For(int i=1;i<=n;i++){ If(b>0)b+=a[j]; Else b=a[j]; If(b>sum)sum=b; } Return sum; } 显然,这个算法需要的时间和空间复杂度均为 O(n)。
则 RELI(1,n,c)可靠性设计的最优值为:
初始条件:f0 (X)=1,0≤X≤c
i
S ={ (f , X ) | f =f (X ) }
i i
S ={ (f , X ) | f =f (X ) }为可靠性设计问题 RELI(1,i,X) 的最优解,(f, X)是由 m1 ,m2 ,…,mi 的
按此递归式计算出来的 m(n,b)为最优值,算法所需的计算时间为 O(nb)。
4、可靠性设计:一个系统由 n 级设备串联而成,为了增强 可靠性,每级都可能并联了不止一台同样的设备。假设第 i 级设备 Di 用了 mi 台,该级设备的可靠性是 gi(mi),则这个 系统的可靠性是Π gi(mi)。一般来说 gi(mi)都是递增函数,所 以每级用的设备越多系统的可靠性越高。但是设备都是有成 本的, 假定设备 Di 的成本是 ci, 设计该系统允许的投资不超 过 c,那么,该如何设计该系统(即各级采用多少设备)使 得这个系统的可靠性最高。试设计一个动态规划算法求解可 靠性设计。
算法设计与分析-课后习题集答案
(2)当 时, ,所以,可选 , 。对于 , ,所以, 。
(3)由(1)、(2)可知,取 , , ,当 时,有 ,所以 。
11. (1)当 时, ,所以 , 。可选 , 。对于 , ,即 。
(2)当 时, ,所以 , 。可选 , 。对于 , ,即 。
(3)因为 , 。当 时, , 。所以,可选 , ,对于 , ,即 。
第二章
2-17.证明:设 ,则 。
当 时, 。所以, 。
第五章
5-4.SolutionType DandC1(int left,int right)
{while(!Small(left,right)&&left<right)
{int m=Divide(left,right);
所以n-1<=m<=n (n-1)/2;
O(n)<=m<=O(n2);
克鲁斯卡尔对边数较少的带权图有较高的效率,而 ,此图边数较多,接近完全图,故选用普里姆算法。
10.
T仍是新图的最小代价生成树。
证明:假设T不是新图的最小代价生成树,T’是新图的最小代价生成树,那么cost(T’)<cost(T)。有cost(T’)-c(n-1)<cost(t)-c(n-1),即在原图中存在一颗生成树,其代价小于T的代价,这与题设中T是原图的最小代价生成树矛盾。所以假设不成立。证毕。
13.template <class T>
select (T&x,int k)
{
if(m>n) swap(m,n);
if(m+n<k||k<=0) {cout<<"Out Of Bounds"; return false;}
(陈慧南 第3版)算法设计与分析——第5章课后习题答案
(3) 分析算法的时间复杂度 上述算法的时间复杂度为 n 2
(2) 编写 C 程序实现这一算法;
#include<iostream> #include<cstdio> #include<cmath> #include<algorithm> using namespace std; #define N 1000 struct point { double x; double y; }p1[N],pxSmall[N],pxLarge[N]; double Distance (point a , point b); double min (double a , double b); bool Compare_Y (point a , point b); bool Compare_X (point a , point b); double minDistance (int l, int r); int main() { int n ; double D ; cin>>n;
int main() { int n, x, *a; cin >> n; a = new int[n]; for (int i = 0; i < n; i++) cin >> a[i]; cin >> x; if (Triple_search(a, 0, n - 1, x) == -1) cout << "NotFound!" << endl; else cout << Triple_search(a, 0, n - 1, x) << endl; delete []a; return 0; } int Triple_search(int a[], int l, int r, int x) { if (l <= r) { int m1 = l + (r-l)/3; int m2 = l + (r-l)*2/3; if (a[m2]<x) return Triple_search(a, m2 + 1, r, x); else if (a[m1] < x && a[m2] > x) return Triple_search(a, m1 + 1, m2 - 1, x); else if (a[m1] > x) return Triple_search(a, l, m1 - 1, x); else if (a[m1] == x) return m1; else if (a[m2] == x) return m2; } return -1; }
算法设计与分析知识点
第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。
2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。
3、算法的时间复杂度的上界,下界,同阶,低阶的表示。
4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。
5、常用的几种数据结构:线性表、树、图。
第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。
递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。
递归元的递减方式~有两种:1、减法,即n -b,的形式。
2、除法,即n / b,的形式。
2、D(n)为常数c:这时,T(n) = 0(n P)。
D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。
对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。
计算机算法设计与分析(第5版)第1章
算法渐近复杂性
• T(n) , as n ; • (T(n) - t(n) )/ T(n) 0 ,as n; • t(n)是T(n)的渐近性态,为算法的渐近复杂性。 • 在数学上, t(n)是T(n)的渐近表达式,是T(n)略去低阶
问题求解(Problem Solving)
理解问题 精确解或近似解
选择数据结构 算法设计策略
设计算法 证明正确性
分析算法 设计程序
算法复杂性分析
• 算法复杂性 = 算法所需要的计算机资源 • 算法的时间复杂性T(n); • 算法的空间复杂性S(n)。 • 其中n是问题的规模(输入大小)。
算法的时间复杂性
项留下的主项。它比T(n) 简单。
渐近分析的记号
• 在下面的讨论中,对所有n,f(n) 0,g(n) 0。 • (1)渐近上界记号O • O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
0 f(n) cg(n) } • (2)渐近下界记号 • (g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
• (1)最坏情况下的时间复杂性 • Tmax(n) = max{ T(I) | size(I)=n } • (2)最好情况下的时间复杂性 • Tmin(n) = min{ T(I) | size(I)=n } • (3)平均情况下的时间复杂性
• Tavg(n) = p(I )T (I ) size(I )n
•
for x > -1,
x ln(1 x) x 1 x
•
for any a > 0,
Hale Waihona Puke log b nlim
算法设计与分析课后答案
5..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d一定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.7.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—山羊C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5.描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法DectoBin(n)//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.31.考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表‖60,35,81,98,14,47‖排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表‖60,35,81,98,14,47‖排序的过程如下所示:b.该算法不稳定.比如对列表‖2,2*‖排序c.该算法不在位.额外空间for S and Count[]4.(古老的七桥问题)习题1.41.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i 个元素(1<=i<=n)b.删除有序数组的第i 个元素(依然有序) hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array ’s element(e.g., 0 for an array of positive numbers ) to mark the i th position is empty. (―lazy deletion ‖)第2章 习题2.17.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n )∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断言是正确的。
算法设计与分析(第2版) 王红梅 胡明 习题参考答案
usingnamespacestd;
intmain()
{
longdoubleresult=1;
doublej=1;
for(inti=1;i<=64;++i)
{
j=j*2;
result+=j;
j++;
}
cout<<result<<endl;
return0;
}
习题3
1.假设在文本"ababcabccabccacbab"中查找模式"abccac",写出分别采用BF算法和KMP算法的串匹配过
else
value=a[i+2]-a[i+1];
}
cout<<value<<endl;
return0;
}
4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。要求分别给出伪代码和C++描述。
#include<iostream>
usingnamespacestd;
{
if(n==1)
return4;
elseif(n>1)
return3*T(n-1);
}
(2)
intT(intn)
{
if(n==1)
return1;
elseif(n>1)
return2*T(n/3)+n;
}
5.求下列问题的平凡下界,并指出其下界是否紧密。
(1)求数组中的最大元素;
(2)判断邻接矩阵表示的无向图是不是完全图;
田翠华著《算法设计与分析》课后习题参考答案
参考答案第1章一、选择题1. C2. A3. C4. C A D B5. B6. B7. D 8. B 9. B 10. B 11. D 12. B二、填空题1. 输入;输出;确定性;可行性;有穷性2. 程序;有穷性3. 算法复杂度4. 时间复杂度;空间复杂度5. 正确性;简明性;高效性;最优性6. 精确算法;启发式算法7. 复杂性尽可能低的算法;其中复杂性最低者8. 最好性态;最坏性态;平均性态9. 基本运算10. 原地工作三、简答题1. 高级程序设计语言的主要好处是:(l)高级语言更接近算法语言,易学、易掌握,一般工程技术人员只需要几周时间的培训就可以胜任程序员的工作;(2)高级语言为程序员提供了结构化程序设计的环境和工具,使得设计出来的程序可读性好,可维护性强,可靠性高;(3)高级语言不依赖于机器语言,与具体的计算机硬件关系不大,因而所写出来的程序可移植性好、重用率高;(4)把复杂琐碎的事务交给编译程序,所以自动化程度高,发用周期短,程序员可以集中集中时间和精力从事更重要的创造性劳动,提高程序质量。
2. 使用抽象数据类型带给算法设计的好处主要有:(1)算法顶层设计与底层实现分离,使得在进行顶层设计时不考虑它所用到的数据,运算表示和实现;反过来,在表示数据和实现底层运算时,只要定义清楚抽象数据类型而不必考虑在什么场合引用它。
这样做使算法设计的复杂性降低了,条理性增强了,既有助于迅速开发出程序原型,又使开发过程少出差错,程序可靠性高。
(2)算法设计与数据结构设计隔开,允许数据结构自由选择,从中比较,优化算法效率。
(3)数据模型和该模型上的运算统一在抽象数据类型中,反映它们之间内在的互相依赖和互相制约的关系,便于空间和时间耗费的折衷,灵活地满足用户要求。
(4)由于顶层设计和底层实现局部化,在设计中出现的差错也是局部的,因而容易查找也容易2 算法设计与分析纠正,在设计中常常要做的增、删、改也都是局部的,因而也都容易进行。
算法设计与分析习题答案1-6章
习题11.图论诞生于七桥问题。
出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。
七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图1.7是这条河以及河上的两个岛和七座桥的草图。
请将该问题的数据模型抽象出来,并判断此问题是否有解。
七桥问题属于一笔画问题。
输入:一个起点 输出:相同的点 1, 一次步行2, 经过七座桥,且每次只经历过一次 3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。
请用伪代码描述这个版本的欧几里德算法 1.r=m-n2.循环直到r=0 2.1 m=n 2.2 n=r 2.3 r=m-n 3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。
要求分别给出伪代码和C ++描述。
//采用分治法//对数组先进行快速排序 //在依次比较相邻的差 #include <iostream> using namespace std;int partions(int b[],int low,int high) {图1.7 七桥问题int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。
算法设计与分析习题答案1-6章
习题11. 图论诞生于七桥问题。
出生于瑞士的伟大数学家欧拉(LeonhardEuler ,1707—1783)提出并解决了该问题。
七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图是这条河以及河上的两个岛和七座桥的草图。
请将该问题的数据模型抽象出来,并判断此问题是否有解。
七桥问题属于一笔画问题。
输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
图 七桥问题南2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。
请用伪代码描述这个版本的欧几里德算法=m-n2.循环直到r=0m=nn=rr=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。
要求分别给出伪代码和C++描述。
编写程序,求n至少为多大时,n个“1”组成的整数能被2013整除。
#include<iostream>using namespace std;int main(){double value=0;for(int n=1;n<=10000 ;++n){value=value*10+1;if(value%2013==0){cout<<"n至少为:"<<n<<endl;break;}}计算π值的问题能精确求解吗编写程序,求解满足给定精度要求的π值#include <iostream>using namespace std;int main (){double a,b;double arctan(double x);圣经上说:神6天创造天地万有,第7日安歇。
为什么是6天呢任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。
智慧树知到《算法分析与设计》章节测试答案
智慧树知到《算法分析与设计》章节测试答案第一章1、给定一个实例,如果一个算法能得到正确解答,称这个算法解答了该问题。
A:对B:错答案: 错2、一个问题的同一实例可以有不同的表示形式A:对B:错答案: 对3、同一数学模型使用不同的数据结构会有不同的算法,有效性有很大差别。
A:对B:错答案: 对4、问题的两个要素是输入和实例。
A:对B:错答案: 错5、算法与程序的区别是()A:输入B:输出C:确定性D:有穷性答案: 有穷性6、解决问题的基本步骤是()。
(1)算法设计(2)算法实现(3)数学建模(4)算法分析(5)正确性证明A:(3)(1)(4)(5)(2)B:(3)(4)(1)(5)(2)C:(3)(1)(5)(4)(2)D:(1)(2)(3)(4)(5)答案: (3)(1)(5)(4)(2)7、下面说法关于算法与问题的说法错误的是()。
A:如果一个算法能应用于问题的任意实例,并保证得到正确解答,称这个算法解答了该问题。
B:算法是一种计算方法,对问题的每个实例计算都能得到正确答案。
C:同一问题可能有几种不同的算法,解题思路和解题速度也会显著不同。
D:证明算法不正确,需要证明对任意实例算法都不能正确处理。
答案: 证明算法不正确,需要证明对任意实例算法都不能正确处理。
8、下面关于程序和算法的说法正确的是()。
A:算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。
B:程序是算法用某种程序设计语言的具体实现。
C:程序总是在有穷步的运算后终止。
D:算法是一个过程,计算机每次求解是针对问题的一个实例求解。
答案: 算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。
,程序是算法用某种程序设计语言的具体实现。
,算法是一个过程,计算机每次求解是针对问题的一个实例求解。
9、最大独立集问题和()问题等价。
A: 最大团B:最小顶点覆盖C:区间调度问题D:稳定匹配问题答案:最大团,最小顶点覆盖10、给定两张喜欢列表,稳定匹配问题的输出是()。
算法设计与分析(安徽理工大学)智慧树知到答案章节测试2023年
第一章测试1.算法的重要特性( )。
A:能行性B:输出C:有穷性D:确定性E:输入答案:ABCDE2.语句 return sum(x,y);执行频度为1 ( )A:对B:错答案:B3.的上界函数是 ( )A:对B:错答案:A4.算法时间复杂度为O(1)说明算法执行时间是单位时间( )A:对B:错答案:B5.集合的位向量表示法,合并集合操作的时间复杂度为( )A:B:C:D:答案:A6.带加权规则的Union算法中,Parent(1)=-8,Parent(2)=-4,1、2代表的集合合并后,集合的根是1,Parent(1)=-12,Parent(2)=1( )A:对B:错答案:A7.写一个算法交换两个变量x、y的值不使用第三个变量。
答案:8.求下列函数的渐进表达式:; ; ;答案:9.的渐进表达式=____答案:10.按照渐进阶从低到高的顺序排列以下表达式:,,, ,,,。
答案:第二章测试1.递归程序每一次递归执行的语句都完全相同( )A:对B:错答案:B2.对数组ary[0:n-1]求和,采用如下递归方式:arysum(n)=ary[n-1]+arysum(n-1),递归方式是( )A:线性递归B:非线性递归答案:A3.问题规模为的全排列问题,可以看作个规模为的全排列问题,因此时间复杂度为: ( )A:错B:对答案:B4.递归程序简洁明了,因此比非递归程序执行效率高( )A:错B:对答案:A5.Master Method适应于求解形式如T(n)=aT(n/b)+f(n)的递归关系式。
其中,a表示子问题个数, n/b子问题规模,f(n)表示划分子问题或整合子问题解的时间。
( )A:对B:错答案:A6.递归关系式:F(n)=F(n-1)+F(n-2)+1是二阶齐次常系数线性递归式。
( )A:错B:对答案:A7.解形式为( )(p均为待定系数):A:B:C:D:答案:C8.求解非线性变系数递归关系式一个原则是“变换”,经过变换将其转换为线性常系数等常规可求的递归式。
算法设计与分析实验报告
本科实验报告课程名称:算法设计与分析实验项目:递归与分治算法实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真指导教师:郝晓丽2018年05月04 日实验一递归与分治算法1.1 实验目的与要求1.进一步熟悉C/C++语言的集成开发环境;2.通过本实验加深对递归与分治策略的理解和运用。
1.2 实验课时2学时1.3 实验原理分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。
需要注意的是,分治法使用递归的思想。
划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。
最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。
1.4 实验题目1.上机题目:格雷码构造问题Gray码是一个长度为2n的序列。
序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。
试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。
对于给定的正整数n,格雷码为满足如下条件的一个编码序列。
(1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。
(2)序列中无相同的编码。
(3)序列中位置相邻的两个编码恰有一位不同。
2.设计思想:根据格雷码的性质,找到他的规律,可发现,1位是0 1。
两位是00 01 11 10。
三位是000 001 011010 110 111 101 100。
n位是前n-1位的2倍个。
N-1个位前面加0,N-2为倒转再前面再加1。
3.代码设计:}}}int main(){int n;while(cin>>n){get_grad(n);for(int i=0;i<My_grad.size();i++)cout<<My_grad[i]<<endl;My_grad.clear();}return 0;}运行结果:1.5 思考题(1)递归的关键问题在哪里?答:1.递归式,就是如何将原问题划分成子问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【程序5-2】 一分为二的分治法 SolutionType DandC(int left,int right) { if (Small(left, right)) return S(left,right); else { int m=Divide(left,right); Return Combine(DandC(left,m), DandC(m+1,right)); } }
n1 0 T ( n ) 1 n2 T ( n / 2 ) T ( n / 2 ) 2
n2
5.3 二分搜索
问题 在有序表(已按关键字值非减排序)中搜 索给定元素的问题。
5.3.1 分治法求解
int SortableList<T>::BSearch(const T& x, int left,int right)const 后置条件: 在范围为[left,right]的表中搜索与x有相同 关键字值的元素;如果存在该元素,则函数返回该 元素在表中的位置,否则函数返回-1,表示搜索失 败。
5.1 一般方法
5.1.1 分治法的基本思想
分治法顾名思义就是分而治之。一个问题能够 用分治法求解的要素是:第一,问题能够按照某 种方式分解成若干个规模较小、相互独立且与原 问题类型相同的子问题;第二,子问题足够小时 可以直接求解;第三,能够将子问题的解组合成 原问题的解。由于分治法要求分解成同类子问题, 并允许不断分解,使问题规模逐步减小,最终可 用已知的方法求解足够小的问题,因此,分治法 求解很自然导致一个递归算法。
【程序5-5】分治法求最大最小元 template <class T> void SortableList<T>::MaxMin(int i, int j, T& max, T& min) const { T min1,max1; if (i==j) max=min=l[i]; else if (i==j-1) if (l[i]<l[j]) { max=l[j]; min=l[i]; } else { max=l[i]; min=l[j]; }
( n logb a ) T ( n ) ( n k log n ) k ( n )
如果a b k 如果a b k 如果a b k
T ( n ) aT ( n / b ) cnk a ( aT ( n / b 2 ) c( n / b )k ) cnk a mT ( 1 ) a m 1c( n / b m 1 )k ac( n / b )k cnk c a m i b ik
5.1.3 数据结构
【程序5-3】 可排序表类 template <class K,class D> struct E { //可排序表中元素的类型 operator K( )const { return key;} K key; D data; };
template <class T> class SortableList { //可排序表类 public: SortableList(int mSize); ~SortableList(); private: T *l ; int maxSize; int n; };
5.3.2 对半搜索
对半搜索 对半搜索是一种二分搜索。设当前搜索的子表 为(aleft,aleft+1,…,aright), 令 m=(left+right)/2
【程序5-7】 对半搜索递归算法 template <class T> int SortableList<T>::BSearch(const T& x, int left, int right)const { if (left<=right){ int m=(left+right)/2; if (x<l[m]) return BSearch(x,left,m-1); else if (x>l[m]) return BSearch(x,m+1,right); else return m; } return -1; }
【程序5-6】二分搜索算法框架 template <class T> int SortableList<T>::BSearch(const T& x, int left,int right)const { if (left<=right){ int m=Divide(left+right); if (x<l[m]) return BSearch(x,left,m-1); else if (x>l[m]) return BSearch(x,m+1,right); else return m; } return -1; }
ห้องสมุดไป่ตู้
【程序5-1】 分治法 SolutionType DandC(ProblemType P) { ProblemType P1,P2,,Pk; if (Small(P)) return S(P); else { Divide(P,P1,P2,,Pk); Return Combine(DandC(P1), DandC(P2),…,DandC(Pk)); } }
template <class T> void SortableList<T>::MergeSort() { MergeSort(0,n-1); }
性能分析
合并排序递归算法的时间复杂度为 O(n log n)。
d T( n ) 2T(n / 2) cn
n 1 n 1
d T( n ) 2T ( n / 2 ) cn
i 0 m
ca
m
k i ( b / a ) i 0
m
设r= bk /a ,下面分三种情况计算 。 (1)若r<1,则 m i r 1 /( 1 r )
i 0
所以 T(n) (n ) m (2)若r=1,则 r i 1 m 1 log n b
i 0
5.4.1 合并排序
合并两个有序序列
两路合并排序的基本运算是把两个有序序列合并成 一个有序序列。
【程序5-9】 Merge函数 template <class T> void SortableList<T>::Merge(int left, int mid,int right) { T* temp=new T[right-left+1]; int i=left,j=mid+1,k=0; while (( i<=mid )&& (j<=right)) if (l[i]<=l[j]) temp[k++]=l[i++]; else temp[k++]=l[j++]; while (i<=mid) temp[k++]=l[i++]; while (j<=right) temp[k++]=l[j++]; for (i=0,k=left;k<=right;) l[k++] = temp[i++]; }
else { int m=(i+j)/2; MaxMin(i,m,max,min); MaxMin(m+1,j,max1,min1); if (max<max1) max=max1; if (min>min1) min=min1; } }
5.2.2 时间分析
定理5-2
设有n个元素的表,假定n是2的幂,即n=2k,k 是正整数,程序5-5在最好、平均和最坏情况下 的比较次数都为3n/2–2。
5.1.2 算法分析
采用分治法求解问题通常得到一个递归算法。如 果较大的问题被分解成同样大小的几部分,那么分 析相应算法的执行时间,往往可得到如下的递推关 系式: T(n) = aT(n/b) + cnk,T(1) = c
定理5-1 设a,b,c和k为常数,T(n)=aT(n/b)+cnk, T(1)=c,则,
【程序5-10】两路合并排序 template <class T> void SortableList<T>::MergeSort(int left,int right) { if (left<right) { int mid = (left+right)/2; MergeSort(left,mid); MergeSort(mid+1,right); Merge(left,mid,right); } }
“十一五”国家级规划教 材
电子工业出版社
算法设计与分析
Design and Analysis of Algorithms In C++
陈慧南 编著
第2部分 算法设计策略
第5章 分治法
5.1 分治法的基本思想 5.2 求最大最小元 5.3 二分搜索 5.4 排序问题 5.5 选择问题 5.6 斯特拉森矩阵乘法
分治法求解
将待排序的元素序列一分为二分,得到两个长度 基本相等的子序列,如同对半搜索的做法;然后对 两个子序列分别排序,如果子序列较长,还可继续 细分,直到子序列的长度不超过1为止;当分解所得 的子序列已排列有序,可以采用上面介绍的将两个 有序子序列,合并成一个有序子序列的方法,实现 将子问题的解组合成原问题解,这是分治法不可缺 少的一步。
性质 5-3 若n=2h-1,则对半搜索二叉判定树是满二叉树。 性质5-4 若 n=2h-1 ,则对半搜索二叉判定树的外结点均在 h+1层上,否则,在第h或h+1层上,h=log n+1。