java内存空间详解
java内存结构
java内存结构Java的内存结构JVM的内存结构主要有三⼤块:堆、⽅法区和栈。
堆内存是JVM中最⼤的⼀块,由年轻代和⽼年代组成,⽽年轻代内存⼜被分为三部分,Eden空间、FromSurvivor空间和ToSurvivor空间,默认情况下年轻代是按照8:1:1的⽐例来分配。
⽅法区存储类信息、常量、静态变量等数据,是线程共享的区域,为与Java堆区分,⽅法区还有⼀个别名Non-Heap(⾮堆);栈⼜分为Java虚拟机栈和本地⽅法栈主要⽤于⽅法的执⾏。
JVM和系统调⽤之间的关系⽅法区和堆是所有线程共享的内存区域;⽽java虚拟机栈、本地⽅法栈和程序员计数器是线程私有的内存区域。
1. Java堆(Heap)对于⼤多数应⽤来说,Java堆(Java Heap)是Java虚拟机所管理的内存中最⼤的⼀块,Java堆是被所有线程共享的⼀块内存区域,在虚拟机启动时创建。
此内存区域的唯⼀⽬的就是存放对象实例,⼏乎所有的对象实例都在这⾥分配内存。
Java堆是垃圾收集器管理的主要区域,因此很多时候也被成为“GC堆”。
如果从内存回收的⾓度看,由于现在收集器基本都是采⽤的分代收集算法,所以Java堆中还可以细分为:新⽣代和⽼年代,再细致⼀点的有Eden空间、From Survivor空间、ToSurvivor空间等。
根据Java虚拟机规范的规定,Java堆可以处于物理上不连续的空间内存中,只要逻辑上是连续的即可,就像我们的磁盘空间⼀样。
在实现时,既可以实现成固定⼤⼩的,也可以是可扩展的,不过当前主流的虚拟机都是按照可扩展来实现的(通过-Xmx和-Xms控制)。
如果在堆中没有内存完成实例分配,并且堆也⽆法再扩展时,将会抛出OOM(OutOfMemoryError)异常。
2. ⽅法区(Method Area)⽅法区与Java堆⼀样,是各个线程共享的内存区域,它⽤于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据,虽然Java虚拟机规范把⽅法区描述为堆的⼀个逻辑部分,但是它有⼀个别名Non-Heap(⾮堆),⽬的应该是与Java堆区分开。
Java基础知识点归纳
Java基础知识点归纳Java基础学问点归纳对于刚刚接触Java的人,java基础学问技术点繁多,那么yjbys我为大家汇总最全java学问点如下,仅供大家参考学习!1. JVM相关(包括了各个版本的特性)对于刚刚接触Java的人来说,JVM相关的学问不愿定需要理解很深,对此里面的概念有一些简洁的了解即可。
不过对于一个有着3年以上Java阅历的资深开发者来说,不会JVM几乎是不行接受的。
JVM作为java运行的基础,很难信任对于JVM一点都不了解的人可以把java 语言吃得很透。
我在面试有超过3年Java阅历的开发者的时候,JVM几乎就是一个必问的问题了。
当然JVM不是唯一确定技术能力好坏的面试问题,但是可以佐证java开发能力的高低。
在JVM这个大类中,我认为需要把握的学问有:JVM内存模型和结构GC原理,性能调优调优:Thread Dump,分析内存结构class 二进制字节码结构,class loader 体系,class加载过程,实例创建过程方法执行过程:Java各个大版本更新提供的新特性(需要简洁了解)2. Java的运行(基础必备)这条可能出看很简洁,java程序的运行谁不会呢?不过很多时候,我们只是单纯通过IDE去执行java程序,底层IDE又是如何执行java程序呢?很多人并不了解。
这个学问点是最最基本的java开发者需要把握的,初学java,第一个确定是教你如何在指令行中执行java程序,但是很多人一旦把java学完了,IDE用上了,就把这个都忘了。
为什么强调要知道这个呢,知道了java最纯粹的启动方式之后,你才能在启动出问题的时候,去分析当时启动的名目多少,执行命名如何,参数如何,是否有缺失等。
这样有利于你真正开发中去解决那些奇诧异怪的可能和环境相关的问题。
在这里需要把握的学问有:javac 编译java文件为class 文件java 指令的使用,带package的java类如何在指令行中启动java程序涉及到的各个路径(classpath,java。
《Java性能调优指南》
《Java性能调优指南》随着互联网的飞速发展,Java作为一种重要的编程语言,被越来越广泛地应用于各个领域。
但是,Java程序的性能问题也随之出现。
如何调优Java 程序的性能,成为了每个开发人员需要解决的难题。
本文将为大家介绍Java性能调优的指南。
一、JVM参数设置JVM(Java虚拟机)参数设置是Java性能调优的关键。
JVM有众多的参数,不同的参数设置会对Java程序的性能产生不同的影响。
常用的JVM参数设置包括以下几个方面:1. 内存设置内存是Java程序的一大瓶颈。
如果内存设置不合理,会导致Java程序频繁地进行垃圾回收,造成程序的延迟和不稳定。
在设置内存参数时需要注意以下几点:- -Xmx: 最大堆内存,设置合理的最大堆内存大小可以减少JVM的垃圾回收次数,提高程序性能。
- -Xms: 初始堆内存,设置合理的初始堆内存大小可以加快程序启动时间,提高程序性能。
- -XX:NewRatio: 新生代与老年代的比例,如果设置得当,可以减少垃圾回收的次数。
通常新生代的大小为总堆容量的1\/3或1\/4,老年代的大小为总堆容量的2\/3或3\/4。
2. 垃圾回收设置垃圾回收是Java程序中必不可少的一部分。
合理的垃圾回收参数设置可以提高程序性能。
常用的垃圾回收参数设置包括以下几点:- -XX:+UseParallelGC: 使用并行GC,适用于多核CPU。
- -XX:+UseConcMarkSweepGC: 使用CMS GC,适用于大型Web应用程序。
- -XX:+UseG1GC: 使用G1 GC,适用于大内存应用程序。
3. JIT设置JIT(即时编译器)是Java程序中非常重要的一部分。
合理的JIT参数设置可以提高程序的性能。
常用的JIT参数设置包括以下几点:- -XX:+TieredCompilation: 启用分层编译,可以提高程序启动时间和性能。
- -XX:CompileThreshold: JIT编译阈值,设置JIT编译的最小方法调用次数,可以提高程序性能。
Java里的堆(heap)栈(stack)和方法区(method)
Java⾥的堆(heap)栈(stack)和⽅法区(method)基础数据类型直接在栈空间分配,⽅法的形式参数,直接在栈空间分配,当⽅法调⽤完成后从栈空间回收。
引⽤数据类型,需要⽤new来创建,既在栈空间分配⼀个地址空间,⼜在堆空间分配对象的类变量。
⽅法的引⽤参数,在栈空间分配⼀个地址空间,并指向堆空间的对象区,当⽅法调⽤完成后从栈空间回收。
局部变量 new 出来时,在栈空间和堆空间中分配空间,当局部变量⽣命周期结束后,栈空间⽴刻被回收,堆空间区域等待GC回收。
⽅法调⽤时传⼊的 literal 参数,先在栈空间分配,在⽅法调⽤完成后从栈空间分配。
字符串常量在DATA 区域分配,this 在堆空间分配。
数组既在栈空间分配数组名称,⼜在堆空间分配数组实际的⼤⼩!哦对了,补充⼀下static在DATA区域分配。
从Java的这种分配机制来看,堆栈⼜可以这样理解:堆栈(Stack)是操作系统在建⽴某个进程时或者线程(在⽀持多线程的操作系统中是线程)为这个线程建⽴的存储区域,该区域具有先进后出的特性。
每⼀个Java应⽤都唯⼀对应⼀个JVM实例,每⼀个实例唯⼀对应⼀个堆。
应⽤程序在运⾏中所创建的所有类实例或数组都放在这个堆中,并由应⽤所有的线程共享.跟C/C++不同,Java中分配堆内存是⾃动初始化的。
Java中所有对象的存储空间都是在堆中分配的,但是这个对象的引⽤却是在堆栈中分配,也就是说在建⽴⼀个对象时从两个地⽅都分配内存,在堆中分配的内存实际建⽴这个对象,⽽在堆栈中分配的内存只是⼀个指向这个堆对象的指针(引⽤)⽽已。
<⼆>这两天看了⼀下深⼊浅出JVM这本书,推荐给⾼级的java程序员去看,对你了解JAVA的底层和运⾏机制有⽐较⼤的帮助。
废话不想讲了.⼊主题:先了解具体的概念:JAVA的JVM的内存可分为3个区:堆(heap)、栈(stack)和⽅法区(method)堆区:1.存储的全部是对象,每个对象都包含⼀个与之对应的class的信息。
java jvm 空间担保机制
文章标题:深度探讨Java JVM空间担保机制在进行Java编程和开发过程中,我们经常会听到关于Java虚拟机(JVM)的空间担保机制的概念。
这个机制是如何工作的?为什么它如此重要?本篇文章将从深度和广度两个方面对Java JVM空间担保机制进行全面评估,并在此基础上撰写一篇有价值的文章。
让我们回顾一下Java虚拟机的内存结构。
Java虚拟机的内存分为堆内存和栈内存两部分。
堆内存用于存储对象实例,而栈内存则用于存储基本数据类型和对象的引用。
在堆内存的使用过程中,会涉及到内存的分配和回收,而这恰好是空间担保机制所要解决的核心问题。
空间担保机制是Java虚拟机为了保证内存分配的安全而设计的一种机制。
当程序在进行内存分配时,如果发现无法满足当前对象的内存需求,空间担保机制就会进行一次垃圾回收,尝试为新对象腾出空间。
这就意味着,即使堆内存已经快要耗尽,空间担保机制也能够及时地进行垃圾回收,从而保证程序的正常运行。
在实际编程中,我们经常会遇到内存泄漏和内存溢出的问题。
而空间担保机制正是为了解决这些问题而设计的。
通过空间担保机制,程序可以更加灵活地进行内存分配和回收,从而避免了因为内存不足而导致程序崩溃的情况。
从个人的观点来看,Java JVM空间担保机制是Java编程中非常重要的一部分。
它不仅保证了程序的稳定性和健壮性,还使得程序员能够更加专注于程序的逻辑和功能实现,而不用过多地关注内存管理的细节问题。
正因如此,我们需要深入地理解和掌握空间担保机制的工作原理和技术细节,从而更好地进行Java编程和开发工作。
总结而言,Java JVM空间担保机制是Java编程中至关重要的一环。
通过本文的深度探讨,我们可以更加全面、深刻和灵活地理解这一机制。
在日后的编程实践中,我们应该充分利用空间担保机制的优势,避免内存管理的烦恼,从而更好地完成编程任务和项目开发。
希望我的文章能够帮助你更好地理解Java JVM空间担保机制,期待与你共享更多有价值的内容!Java虚拟机(JVM)是一种能够执行Java字节码的虚拟机,它是Java语言的核心和关键部分。
java8 jvm参数
java8 jvm参数Java 8 JVM参数在Java开发中,JVM(Java Virtual Machine)参数是非常重要的一部分,它可以对Java程序的性能和行为进行调优和配置。
本文将介绍一些常用的Java 8 JVM参数,并讨论它们的作用和用法。
一、堆内存参数1. -Xms:指定JVM的初始堆内存大小。
比如,-Xms512m表示初始堆内存为512MB。
2. -Xmx:指定JVM的最大堆内存大小。
比如,-Xmx1024m表示最大堆内存为1GB。
3. -Xmn:指定JVM的新生代内存大小。
新生代内存主要用于存放新创建的对象。
比如,-Xmn256m表示新生代内存为256MB。
4. -XX:NewRatio:指定新生代和老年代内存的比例。
默认值为2,表示新生代和老年代的比例为1:2。
5. -XX:SurvivorRatio:指定Eden区和Survivor区的比例。
默认值为8,表示Eden区和Survivor区的比例为8:1。
二、垃圾回收参数1. -XX:+UseSerialGC:使用串行垃圾回收器。
适用于单线程环境,对于小型应用或测试环境比较适用。
2. -XX:+UseParallelGC:使用并行垃圾回收器。
适用于多核处理器环境,可以充分利用多核的性能。
3. -XX:+UseConcMarkSweepGC:使用CMS(Concurrent Mark Sweep)垃圾回收器。
适用于对响应时间有较高要求的场景,能够减少垃圾回收暂停时间。
4. -XX:+UseG1GC:使用G1(Garbage First)垃圾回收器。
适用于大内存应用和服务器环境,能够更好地管理堆内存。
5. -XX:MaxGCPauseMillis:设置垃圾回收暂停时间的目标值。
默认值为200ms。
三、调优参数1. -XX:MetaspaceSize:指定元空间(Metaspace)的初始大小。
元空间主要用于存放类的元数据信息。
java jvm堆内存扩容机制以及缩容机制
一、介绍Java虚拟机(JVM)是一种能够在计算机上运行Java程序的虚拟机。
在Java应用程序运行的过程中,JVM会使用堆内存来存储对象实例。
堆内存的大小会直接影响程序的性能和稳定性。
了解JVM堆内存的扩容机制以及缩容机制对于Java开发人员来说是非常重要的。
二、堆内存的扩容机制1. 初始内存和最大内存在启动Java程序时,可以通过设置参数-Xms和-Xmx来指定JVM堆内存的初始大小和最大大小。
初始内存指定JVM堆内存的初始大小,最大内存指定JVM堆内存的最大大小。
当JVM启动时,会先分配初始内存,并且在应用程序运行中达到初始内存的上限时,堆内存会自动扩容。
当堆内存扩容达到最大内存时,程序会抛出内存溢出错误。
2. 自动扩容JVM堆内存的自动扩容是由垃圾回收器(GC)来完成的。
当堆内存中的对象实例占用的空间超过了当前内存的剩余空间时,GC会触发一次垃圾回收操作,释放部分无用对象实例的内存空间,从而使堆内存得以扩容。
这种自动扩容机制可以有效地避免了由于堆内存空间不足而导致的程序性能下降或者程序崩溃的情况。
三、堆内存的缩容机制1. 内存回收JVM堆内存的缩容机制是由GC和虚拟机内部的内存管理器来完成的。
当堆内存中的对象实例占用的空间下降到一定程度时,内存管理器会自动触发一次内存回收操作,将不再使用的内存空间释放出来,从而使堆内存得以缩容。
这种自动缩容机制可以帮助程序及时释放不再使用的内存空间,提高堆内存的利用率,从而提升程序的性能和稳定性。
2. 手动内存回收除了自动内存回收之外,开发人员也可以通过调用System.gc()方法手动触发一次垃圾回收操作,来释放不再使用的内存空间。
这种手动的内存回收操作也可以帮助程序及时释放内存空间,提高程序的性能和稳定性。
四、总结JVM堆内存的扩容机制和缩容机制是保障Java程序高性能和稳定运行的重要环节。
通过合理设置初始内存和最大内存参数,以及合理使用垃圾回收器和内存管理器,可以有效地管理JVM堆内存的扩容和缩容,从而提高程序的性能和稳定性。
jvm 向os申请内存的机制
JVM(Java虚拟机)是Java程序的运行评台,它负责将Java字节码转换为机器码并在操作系统上运行。
在JVM的运行过程中,内存管理是一个非常重要的环节,其中向操作系统申请内存是一个核心机制。
本文将从JVM向操作系统申请内存的机制展开探讨,希望为读者提供深入了解JVM内存管理的知识。
一、JVM内存结构在探讨JVM向操作系统申请内存的机制之前,首先需要了解JVM的内存结构。
JVM的内存可以分为三部分:堆(Heap)、栈(Stack)和方法区(Method Area)。
其中堆用于存储对象实例和数组,栈用于存储局部变量和方法调用,方法区用于存储类信息、常量、静态变量等。
二、内存申请过程1. 程序启动当一个Java程序启动时,JVM会为该程序分配一定的内存。
这部分内存一般是由操作系统分配给JVM的,称为虚拟机初始化内存(Initial Heap)和虚拟机最大内存(Maximum Heap)。
虚拟机初始化内存用于存放JVM运行所需的数据结构,虚拟机最大内存表示JVM最大可用的堆内存。
2. 堆内存分配JVM对堆内存的管理是一种延迟分配的策略。
也就是说,JVM并不是在程序启动时一次性向操作系统申请所需的堆内存,而是根据程序运行的需要在必要时向操作系统动态申请内存。
在堆内存分配时,有两种情况需要考虑:- 新对象分配内存:当程序中创建新的对象实例或数组时,JVM会根据对象的大小向操作系统申请内存。
如果堆内存中有足够的空间,JVM会直接在堆中为对象分配内存,并记录对象的位置区域。
如果堆内存中没有足够的连续空间,JVM会触发一次垃圾回收操作,释放一些无用的对象,从而腾出足够的内存空间。
- 大对象分配内存:当程序中需要创建一个较大的对象时,堆内存中可能没有足够的连续空间来满足对象的分配需求。
这时,JVM会将对象存放到“老年代”(Old Generation),并触发一次“Full GC”(full garbage collection)操作来释放老年代中无用的对象,从而为大对象的分配腾出空间。
【JVM】jmap命令详解----查看JVM内存使用详情
copy 于https:///sxdcgaq8080/p/11089664.html【JVM 】jmap 命令详解----查看JVM 内存使⽤详情linux 获取java 进程PID :如果命令使⽤过程中报错,可能解决你问题的⽅案:==========================================1、jmap 命令基本概述 jmap 命令是⼀个可以输出所有内存中对象的⼯具,甚⾄可以将VM 中的heap ,以⼆进制输出成⽂本。
打印出某个java 进程(使⽤pid )内存内的,所有‘对象’的情况(如:产⽣那些对象,及其数量)。
64位机上使⽤需要使⽤如下⽅式:jmap -J-d64 -heap pid2、命令格式jmap [option] <pid>(to connect to running process) 连接到正在运⾏的进程jmap [option] <executable <core>(to connect to a core file) 连接到核⼼⽂件jmap [option] [server_id@]<remote server IP or hostname>(to connect to remote debug server) 连接到远程调试服务3.参数说明1) options :> pid: ⽬标进程的PID ,进程编号,可以采⽤ps -ef | grep java 查看java 进程的PID;> executable: 产⽣core dump 的java 可执⾏程序;> core: 将被打印信息的core dump ⽂件;> remote-hostname-or-IP: 远程debug 服务的主机名或ip;> server-id: 唯⼀id,假如⼀台主机上多个远程debug 服务;2)基本参数:[就是替换[option]位置的参数]1> -dump:[live,]format=b,file=<filename> 使⽤hprof ⼆进制形式,输出jvm 的heap 内容到⽂件=. live ⼦选项是可选的,假如指定live 选项,那么只输出活的对象到⽂件. 命令:jmap -dump:live,format=b,file=myjmapfile.txt 19570结果:即可在/root ⽬录打开myjmapfile.txt ⽂件。
java基本数据类型所占用的内存空间大小
java基本数据类型所占⽤的内存空间⼤⼩⼀、基本数据类型 Java语⾔提供了⼋种基本类型。
六种数值类型(四个整数型,两个浮点型),⼀种字符类型,还有⼀种布尔型。
java中基本数据类型中没有⽆符号类型(C、C++中有),只有有符号类型。
在计算机内,定点数有3种表⽰法:原码、反码和补码原码:⼆进制定点表⽰法,即最⾼位为符号位,“0”表⽰正,“1”表⽰负,其余位表⽰数值的⼤⼩。
反码:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。
补码:正数的补码与其原码相同;负数的补码是将其原码的除符号位外的所有位,逐位取反,然后加1。
计算机中数据的运算都是通过补码进⾏的。
反码是为了解决减法运算,补码是为了解决反码产⽣的±0的问题。
计算机中负数是⽤补码的形式保存、并⽤它参与加减法运算的,减法会被转换为加法,计算机中没有减法运算。
在计算机中减法运算可以转换成加法运算,⽐如8-1 --> 8+(-1) = 7原码: 8: 0000 1000 -1: 1000 0001反码: 8: 0000 1000 -1: 1111 1110补码: 8: 0000 1000 -1: 1111 1111补码运算: (0000 1000) + (11111111) = 0000 0111 --> 4+2+1=7⽐如:-128+127 --> 127+(-128) = -1 0111 1111 + (1000 0000) = 1111 1111(补码) --> 1111 1110(反码) --> 1000 0001(原码) --> -1计算机都是以补码来存储的: ⑴⼀个数为正,则它的原码、反码、补码相同。
⑵⼀个数为负,则符号位为1,其余各位是对原码取反(符号位不变),然后整个数加1。
先⽤⼀个正数1举例原码:0000 0001反码:0000 0001补码:0000 0001正数的原码=反码=补码对于-1来说原码:1000 0001反码:1111 1110(符号位不变,其他相反)补码:1111 1111(补码是反码+1) Java中⽤补码表⽰⼆进制数。
JAVA内存分配算法分析
内存空洞及内存分配算法研究前言 (2)几个简单的场景(Linux 64位下测试): (2)Linux默认的内存分配机制 (3)1.glibc的内存分配机制: (4)2.glibc的内存释放机制: (5)为什么会有内存空洞 (5)Fastbin介绍 (6)3.Linux多线程环境下内存空洞所占内存可能会翻数倍 (6)4.Stlport内存管理相关说明 (8)Glibc常见内存管理参数介绍 (9)如何消除内存空洞的影响 (10)1.内存空洞的外在现象 (11)2.一个判断是否有内存空洞的脚本 (11)3.自己实现并使用一个内存分配器 (13)其它的内存分配器介绍及使用 (18)4.实现的一个内存泄露检查工具 (18)总结 (19)前言内存泄露一直是C或C++程序员的一个很头疼的问题,但更严重的是有些时候我们发现即使我们调用free或delete释放了内存,进程占用内存也不下降,这也给很多程序员以藉口,如果发现内存使用量增长,要求排查时,我们往往会说,“内存我都释放了,Purify也跑过了,这是内存空洞造成的,是glibc 的行为我也无能为力。
事实上也是,简单的分配不释放的内存泄露问题一般在开发者测试阶段甚至之前就可以排查掉,但这并不代表没有内存问题,特别是对于电信领域,很多程序运行数月甚至数年都不会停,很多很小的问题在乘以时间后会无限放大。
本文首先介绍了Linux的内存分配机制,以及在真实场景下引发的问题,并提出了一些解决方法,并介绍了如何实现并使用一个简单的内存分配器,以及项目组实现的判断是否有内存空洞的一个脚本,和一个内存泄露检查工具。
几个简单的场景(Linux 64位下测试):✧连续分配1001块100K的内存,把前面分配的1000块内存释放掉,此时通过top检查进程所占内存,发现内存完全不会下降;✧每次分配一块8字节内存,和一块100K的内存,连续分配1000次,然后依次把这些内存全部释放,此时通过top检查进程所占内存,发现内存不会下降;✧多线程下同样的内存使用不当的程序,Linux上内存上涨量可能会是数倍于AIX10M左右的文本数据,如果以一定的格式存储于stlport的数据结构中,实际占用内存会膨胀100倍以上上述的几种场景看似简单,但实际上却都是真实的血淋淋的案例抽象出来的,有些案例的定位花费了大量的人力,而这些场景往往都是purify之类工具测试不出来的,下面通过介绍linux的内存分配机制来解释上述场景,并提出解决方案。
java内存分配及释放
1、Java的内存管理就是对象的分配和释放问题。
在Java中,程序员需要通过关键字new为每个对象申请内存空间 (基本类型除外),所有的对象都在堆 (Heap)中分配空间。
对象的释放是由GC决定和执行的。
在Java中,内存的分配是由程序完成的,而内存的释放是有GC完成的,这种收支两条线的方法简化了程序员的工作。
但也加重了JVM的工作。
这也是Java程序运行速度较慢的原因之一。
GC释放空间方法:监控每一个对象的运行状态,包括对象的申请、引用、被引用、赋值等。
当该对象不再被引用时,释放对象。
2、内存管理结构Java使用有向图的方式进行内存管理,对于程序的每一个时刻,我们都有一个有向图表示JVM的内存分配情况。
将对象考虑为有向图的顶点,将引用关系考虑为图的有向边,有向边从引用者指向被引对象。
另外,每个线程对象可以作为一个图的起始顶点,例如大多程序从main进程开始执行,那么该图就是以main进程顶点开始的一棵根树。
在这个有向图中,根顶点可达的对象都是有效对象,GC将不回收这些对象。
如果某个对象 (连通子图)与这个根顶点不可达(注意,该图为有向图),那么我们认为这个(这些)对象不再被引用,可以被GC回收。
3、使用有向图方式管理内存的优缺点Java使用有向图的方式进行内存管理,可以消除引用循环的问题,例如有三个对象,相互引用,只要它们和根进程不可达的,那么GC也是可以回收它们的。
这种方式的优点是管理内存的精度很高,但是效率较低。
另外一种常用的内存管理技术是使用计数器,例如COM模型采用计数器方式管理构件,它与有向图相比,精度行低(很难处理循环引用的问题),但执行效率很高。
★ Java的内存泄露Java虽然由GC来回收内存,但也是存在泄露问题的,只是比C++小一点。
1、与C++的比较c++所有对象的分配和回收都需要由用户来管理。
即需要管理点,也需要管理边。
若存在不可达的点,无法在回收分配给那个点的内存,导致内存泄露。
JVM内存溢出详解(栈溢出,堆溢出,持久代溢出、无法创建本地线程)
JVM内存溢出详解(栈溢出,堆溢出,持久代溢出、⽆法创建本地线程)1、内存溢出和内存泄漏的区别 内存溢出(Out Of Memory):是指程序在申请内存时,没有⾜够的内存空间供其使⽤,出现Out Of Memory。
内存泄露(Memory Leak):是指程序在申请内存后,由于某种原因⽆法释放已申请的内存空间,导致这块内存⽆法再次被利⽤,造成系统内存的浪费。
memory leak会最终会导致out of memory。
2、内存溢出分类2.1 栈内存溢出(StackOverflowError): 程序所要求的栈深度过⼤导致,可以写⼀个死递归程序触发。
2.2 堆内存溢出(OutOfMemoryError : java heap space)需要分清是内存溢出还是内存泄漏:(1)如果是内存溢出,则通过调⼤ -Xms,-Xmx参数。
(2)如果是内存泄露,则看对象如何被 GC Root 引⽤。
2.3 持久带内存溢出(OutOfMemoryError: PermGen space)持久带中包含⽅法区,⽅法区包含常量池。
因此持久带溢出有可能是(1)运⾏时常量池溢出,也有可能是(2)⽅法区中保存的Class对象没有被及时回收掉或者Class信息占⽤的内存超过了我们配置。
⽤String.intern()触发常量池溢出。
Class对象未被释放,Class对象占⽤信息过多,有过多的Class对象。
可以导致持久带内存溢出。
2.4 ⽆法创建本地线程Caused by: ng.OutOfMemoryError:unable to create new native thread系统内存的总容量不变,堆内存、⾮堆内存设置过⼤,会导致能给线程分配的内存不⾜。
3、内存溢出详解3.1 栈溢出(StackOverflowError) 栈溢出抛出 StackOverflowError 错误,出现此种情况是因为⽅法运⾏的时候栈的深度超过了虚拟机容许的最⼤深度所致。
JVM堆内存(heap)详解
JVM堆内存(heap)详解Java 堆内存管理是影响性能的主要因素之⼀。
堆内存溢出是 Java项⽬⾮常常见的故障,在解决该问题之前,必须先了解下 Java 堆内存是怎么⼯作的。
先看下JAVA堆内存是如何划分的,如图:1. JVM内存划分为堆内存和⾮堆内存,堆内存分为年轻代(Young Generation)、⽼年代(Old Generation),⾮堆内存就⼀个永久代(Permanent Generation)。
2. 年轻代⼜分为Eden(⽣成区)和 Survivor(⽣存区)。
Survivor区由FromSpace和ToSpace组成。
Eden区占⼤容量,Survivor两个区占⼩容量,默认⽐例是8:1:1。
3. 堆内存⽤途:存放的是对象,垃圾收集器就是收集这些对象,然后根据GC算法回收。
4. ⾮堆内存⽤途:永久代,也称为⽅法区,存储程序运⾏时长期存活的对象,⽐如类的元数据、⽅法、常量、属性等。
在JDK1.8版本废弃了永久代,替代的是元空间(MetaSpace),元空间与永久代上类似,都是⽅法区的实现,他们最⼤区别是:元空间并不在JVM中,⽽是使⽤本地内存。
元空间有两个参数:MetaspaceSize:初始化元空间⼤⼩,控制发⽣GC阈值。
MaxMetaspaceSize:限制元空间⼤⼩上限,防⽌异常占⽤过多物理内存。
为什么移除永久代?移除永久代原因:为融合HotSpot JVM与JRockit VM(新JVM技术)⽽做出的改变,因为JRockit没有永久代。
有了元空间就不再会出现永久代OOM问题了分代概念新⽣成的对象⾸先放到年轻代Eden区,当Eden空间满了,触发Minor GC,存活下来的对象移动到 Survivor0区,Survivor0区满后触发执⾏Minor GC,Survivor0区存活对象移动到Survivor1区,这样保证了⼀段时间内总有⼀个survivor区为空。
经过多次Minor GC仍然存活的对象移动到⽼年代。
Java达内学习笔记3
内存分类:栈内存、堆内存、寄存器、方法构造(代码段)、池内存栈内存:地址、基本内存的值(栈内存很小,不放对象)堆内存:对象、地址、基本内存的值、寄存器:运算的中间值代码段:如构造方法等的代码池内存:长放在内存里面的东西放在池内存里面(常驻内存)Staff staff = new Staff () ;执行次序:①Staff staff现在栈里面图1-1public class Test {public static void main(String[] args) {Staff staff = new Staff();staff.id="007";="詹姆斯.邦德";staff.salary=10000.0F;staff.faSalary();}}public class Staff {String id;String name;float salary;public void faSalary(){System.out.println(salary);}}编译:javac -d . Hello.java运行:Java com.tenara.Helloimport语句可以导入不同包的class文虚拟机先找栈,通过栈找到堆!垃圾回收机制回收的主要是堆内存里面的东西。
GC是怎么判断堆内存里面的东西已经成为垃圾可以被回收了?GC是从栈找到堆,如果堆里面的内容在栈里面没有对应的地址变元,则被视为垃圾清理掉!import java.util.Scanner; //扫描键盘public class Test2 {public static void main(String [] args){Scanner sc = new Scanner(System.in);//扫描字符串String str=sc.next();System.out.println("输入了"+str);//扫描整数int aa=sc.nextInt();System.out.println("输入了"+aa);//扫描doubledouble dd=sc.nextDouble();System.out.println("输入了"+dd);}}Operators1、"( )"优先级高2、"="优先级低Assignment operators= += -= %= *= /= <<= >>= >>>=&= ^= |=public class Test6 {public static void main(String [] arsg){byte b1=2;byte b2=3;b1=(byte)(b1+b2); // 语句1 加法,转intb1+=b2; //语句2 赋值,不转int}}b1+=b2;是否和语句b1=b1+b2完全等价?答案是否定的,上面程序中的语句1和语句2给出了证明。
Java中的String到底占用多大的内存空间?你所了解的可能都是错误的!!
Java中的String到底占⽤多⼤的内存空间?你所了解的可能都是错误的!!写在前⾯最近⼩伙伴加群时,我总是问⼀个问题:Java中的String类占⽤多⼤的内存空间?很多⼩伙伴的回答着实让我哭笑不得,有说不占空间的,有说1个字节的,有说2个字节的,有说3个字节的,有说不知道的,更让⼈哭笑不得的是竟然还有⼈说是2的31次⽅。
那如果真是这样的话,服务器的内存空间还放不下⼀个字符串呀!作为程序员的我们,可不能闹这种笑话呀。
今天,我们就⼀起来聊聊Java中的String到底占⽤多⼤的内存空间!Java对象的结构⾸先,我们来下Java对象在虚拟机中的结构,这⾥,以HotSpot虚拟机为例。
从上⾯的这张图⾥⾯可以看出,对象在内存中的结构主要包含以下⼏个部分:Mark Word(标记字段):对象的Mark Word部分占4个字节,其内容是⼀系列的标记位,⽐如轻量级锁的标记位,偏向锁标记位等等。
Klass Pointer(Class对象指针):Class对象指针的⼤⼩也是4个字节,其指向的位置是对象对应的Class对象(其对应的元数据对象)的内存地址对象实际数据:这⾥⾯包括了对象的所有成员变量,其⼤⼩由各个成员变量的⼤⼩决定,⽐如:byte和boolean是1个字节,short和char是2个字节,int和float是4个字节,long和double是8个字节,reference是4个字节对齐:最后⼀部分是对齐填充的字节,按8个字节填充。
换种说法就是:对象头(object header):8 个字节(保存对象的 class 信息、ID、在虚拟机中的状态)Java 原始类型数据:如 int, float, char 等类型的数据引⽤(reference):4 个字节填充符(padding)Java中的String类型空String占⽤的空间这⾥,我们以Java8为例进⾏说明。
⾸先,我们来看看String类中的成员变量。
Java heap space 与 PermGen space
Java内存溢出与JVM堆设置前言最近在开发一个J2EE架构的项目,在我笔记本的跑一点问题都没有,可是移植到台式机上就跑不起来了,总是报Java heap space,所以百度+ 谷歌(现在访问不了)下,了解相关的运行机制,并找出解决方案。
ng.OutOfMemoryError: Java heap space解释:JVM 堆的设置是指java 程序运行过程中JVM 可以调配使用的内存空间的设置。
JVM 在启动的时候会自动设置Heap size 的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)是物理内存的1/4。
可以利用JVM 提供的-Xmn -Xms -Xmx 等选项可进行设置。
Heap size 的大小是Young Generation 和Tenured Generaion 之和。
在JVM 中如果98%的时间是用于GC 且可用的Heap size 不足2%的时候将抛出此异常信息。
提示:Heap Size 最大不要超过可用物理内存的80%,一般的要将-Xms和-Xmx选项设置为相同,而-Xmn为1/4的-Xmx值。
JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。
32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。
我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
ng.OutOfMemoryError: PermGen space解释PermGen space的全称是Permanent Generation space,是指内存的永久保存区域OutOfMemoryError: PermGen space。
从文字上看就是内存溢出,解决方法是加大内存。
为什么会内存溢出,这是由于这块内存主要是被JVM存放Class和Meta信息的,Class在被Load的时候被放入PermGen space区域,它和存放Instance的Heap区域不同,GC(Garbage Collection)不会在主程序运行期对PermGen space进行清理,所以如果你的APP会LOAD很多CLASS的话,就很可能出现PermGen space错误。
java区分新生代 老年代的方法
一、概述在Java虚拟机(JVM)中,内存分为多个区域,其中包括新生代和老年代。
对于Java程序而言,合理区分和管理新生代和老年代的内存是非常重要的。
本文将介绍Java中区分新生代和老年代的方法。
二、新生代和老年代的区别1. 内存分配新生代是指JVM中的年轻对象存活区域,主要用于存放新创建的对象。
而老年代则是存放芳龄较大的对象和经过多次垃圾回收仍然存活的对象。
2. 垃圾回收机制针对不同年代的对象,JVM会采用不同的垃圾回收机制。
新生代对象通常使用复制算法进行垃圾回收,而老年代对象则采用标记清除或标记整理算法。
三、区分新生代和老年代的方法1. 芳龄阈值JVM通过设定对象的芳龄阈值来区分新生代和老年代的对象。
芳龄阈值通常是通过参数“-XX:MaxTenuringThreshold”来进行设置,当对象经过多次垃圾回收后仍然存活并达到了设定的芳龄阈值,就会被晋升到老年代。
2. 分代回收策略JVM采用分代回收策略,对新生代和老年代采用不同的垃圾回收算法和频率。
在新生代,会频繁地进行“Minor GC”,即年轻代的垃圾回收,来清理掉短时间内逝去的对象。
而在老年代,会较少地进行“Full GC”,来进行整个堆空间的垃圾回收。
3. 内存空间划分JVM会将堆内存划分为新生代和老年代,通过参数“-Xmn”来设置新生代的大小,而老年代则占据了整个堆内存的一部分。
合理划分堆内存空间可以更好地区分新生代和老年代的对象。
4. 分代假设JVM基于“分代假设”,即假设大部分对象在短时间内就会被回收,因此将新创建的对象放入新生代中,而将经过多次存活的对象放入老年代。
5. 垃圾回收器选择JVM提供了多种垃圾回收器,可以根据业务场景和性能要求来选择不同的垃圾回收器。
对于新生代对象较多的场景,可以选择使用“Parallel Scavenge”垃圾回收器。
四、结论合理区分新生代和老年代的对象对于Java程序的性能和稳定性非常重要。
通过对新生代和老年代的内存划分、垃圾回收机制和内存分配等方面进行合理配置,可以更好地利用JVM的内存资源,提高Java程序的运行效率和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硬盘heap stack Data code内存 程序 操作系统代码 程序代码 New ,在堆里面为属性分配空间,初始化(String 默认值为null ) 声明的时候非配空间,初始值为null (局部变量,方法参数) 全局变量 存放程序所需要的代码 类变量,全局字符串,常量存放在数据段Java内存分配与管理是Java的核心技术之一,之前我们曾介绍过Java的内存管理与内存泄露以及Java垃圾回收方面的知识,今天我们再次深入Java核心,详细介绍一下Java 在内存分配方面的知识。
一般Java在内存分配时会涉及到以下区域:◆寄存器:我们在程序中无法控制◆栈:存放基本类型的数据和对象的引用,但对象本身不存放在栈中,而是存放在堆中◆堆:存放用new产生的数据◆静态域:存放在对象中用static定义的静态成员◆常量池:存放常量◆非RAM存储:硬盘等永久存储空间Java内存分配中的栈在函数中定义的一些基本类型的变量数据和对象的引用变量都在函数的栈内存中分配。
当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当该变量退出该作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。
Java内存分配中的堆堆内存用来存放由new创建的对象和数组。
在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。
在堆中产生了一个数组或对象后,还可以在栈中定义一个特殊的变量,让栈中这个变量的取值等于数组或对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量。
引用变量就相当于是为数组或对象起的一个名称,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或对象。
引用变量就相当于是为数组或者对象起的一个名称。
引用变量是普通的变量,定义时在栈中分配,引用变量在程序运行到其作用域之外后被释放。
而数组和对象本身在堆中分配,即使程序运行到使用new 产生数组或者对象的语句所在的代码块之外,数组和对象本身占据的内存不会被释放,数组和对象在没有引用变量指向它的时候,才变为垃圾,不能在被使用,但仍然占据内存空间不放,在随后的一个不确定的时间被垃圾回收器收走(释放掉)。
这也是Java 比较占内存的原因。
实际上,栈中的变量指向堆内存中的变量,这就是Java中的指针!常量池(constant pool)常量池指的是在编译期被确定,并被保存在已编译的.class文件中的一些数据。
除了包含代码中所定义的各种基本类型(如int、long等等)和对象型(如String及数组)的常量值(final)还包含一些以文本形式出现的符号引用,比如:◆类和接口的全限定名;◆字段的名称和描述符;◆方法和名称和描述符。
虚拟机必须为每个被装载的类型维护一个常量池。
常量池就是该类型所用到常量的一个有序集和,包括直接常量(string,integer和floating point常量)和对其他类型,字段和方法的符号引用。
对于String常量,它的值是在常量池中的。
而JVM中的常量池在内存当中是以表的形式存在的,对于String类型,有一张固定长度的CONSTANT_String_info表用来存储文字字符串值,注意:该表只存储文字字符串值,不存储符号引用。
说到这里,对常量池中的字符串值的存储位置应该有一个比较明了的理解了。
在程序执行的时候,常量池会储存在Method Area,而不是堆中。
堆与栈Java的堆是一个运行时数据区,类的(对象从中分配空间。
这些对象通过new、newarray、anewarray和multianewarray等指令建立,它们不需要程序代码来显式的释放。
堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的,Java的垃圾收集器会自动收走这些不再使用的数据。
但缺点是,由于要在运行时动态分配内存,存取速度较慢。
栈的优势是,存取速度比堆要快,仅次于寄存器,栈数据可以共享。
但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。
栈中主要存放一些基本类型的变量数据(int, short, long, byte, float, double, boolean, char)和对象句柄(引用)。
栈有一个很重要的特殊性,就是存在栈中的数据可以共享。
假设我们同时定义:1.int a = 3;2.int b = 3;编译器先处理int a = 3;首先它会在栈中创建一个变量为a的引用,然后查找栈中是否有3这个值,如果没找到,就将3存放进来,然后将a指向3。
接着处理int b = 3;在创建完b的引用变量后,因为在栈中已经有3这个值,便将b直接指向3。
这样,就出现了a与b同时均指向3的情况。
这时,如果再令a=4;那么编译器会重新搜索栈中是否有4值,如果没有,则将4存放进来,并令a指向4;如果已经有了,则直接将a指向这个地址。
因此a值的改变不会影响到b的值。
要注意这种数据的共享与两个对象的引用同时指向一个对象的这种共享是不同的,因为这种情况a的修改并不会影响到b, 它是由编译器完成的,它有利于节省空间。
而一个对象引用变量修改了这个对象的内部状态,会影响到另一个对象引用变量。
String是一个特殊的包装类数据。
可以用:String str = new String("abc");String str = "abc";两种的形式来创建,第一种是用new()来新建对象的,它会在存放于堆中。
每调用一次就会创建一个新的对象。
而第二种是先在栈中创建一个对String类的对象引用变量str,然后通过符号引用去字符串常量池里找有没有"abc",如果没有,则将"abc"存放进字符串常量池,并令str指向”abc”,如果已经有”abc”则直接令str指向“abc”。
比较类里面的数值是否相等时,用equals()方法;当测试两个包装类的引用是否指向同一个对象时,用==,下面用例子说明上面的理论。
1.String str1 = "abc";2.String str2 = "abc";3.System.out.println(str1==str2); //true可以看出str1和str2是指向同一个对象的。
1.String str1 =new String ("abc");2.String str2 =new String ("abc");3.System.out.println(str1==str2); // false用new的方式是生成不同的对象。
每一次生成一个。
因此用第二种方式创建多个”abc”字符串,在内存中其实只存在一个对象而已. 这种写法有利与节省内存空间. 同时它可以在一定程度上提高程序的运行速度,因为JVM会自动根据栈中数据的实际情况来决定是否有必要创建新对象。
而对于String str = new String("abc");的代码,则一概在堆中创建新对象,而不管其字符串值是否相等,是否有必要创建新对象,从而加重了程序的负担。
另一方面, 要注意: 我们在使用诸如String str = "abc";的格式定义类时,总是想当然地认为,创建了String类的对象str。
担心陷阱!对象可能并没有被创建!而可能只是指向一个先前已经创建的对象。
只有通过new()方法才能保证每次都创建一个新的对象。
由于String类的immutable性质,当String变量需要经常变换其值时,应该考虑使用StringBuffer类,以提高程序效率。
1. 首先String不属于8种基本数据类型,String是一个对象。
因为对象的默认值是null,所以String的默认值也是null;但它又是一种特殊的对象,有其它对象没有的一些特性。
2. new String()和new String(”")都是申明一个新的空字符串,是空串不是null;3. String str=”kvill”;String str=new String (”kvill”)的区别示例:1.String s0="kvill";2.String s1="kvill";3.String s2="kv" + "ill";4.System.out.println( s0==s1 );5.System.out.println( s0==s2 );结果为:truetrue首先,我们要知结果为道Java 会确保一个字符串常量只有一个拷贝。
因为例子中的s0和s1中的”kvill”都是字符串常量,它们在编译期就被确定了,所以s0==s1为true;而”kv”和”ill”也都是字符串常量,当一个字符串由多个字符串常量连接而成时,它自己肯定也是字符串常量,所以s2也同样在编译期就被解析为一个字符串常量,所以s2也是常量池中”kvill”的一个引用。
所以我们得出s0==s1==s2;用new String() 创建的字符串不是常量,不能在编译期就确定,所以new String() 创建的字符串不放入常量池中,它们有自己的地址空间。
示例:6.String s0="kvill";7.String s1=new String("kvill");8.String s2="kv" + new String("ill");9.System.out.println( s0==s1 );10.System.out.println( s0==s2 );11.System.out.println( s1==s2 );结果为:falsefalsefalse例2中s0还是常量池中"kvill”的应用,s1因为无法在编译期确定,所以是运行时创建的新对象”kvill”的引用,s2因为有后半部分new String(”ill”)所以也无法在编译期确定,所以也是一个新创建对象”kvill”的应用;明白了这些也就知道为何得出此结果了。
4. String.intern():再补充介绍一点:存在于.class文件中的常量池,在运行期被JVM装载,并且可以扩充。
String的intern()方法就是扩充常量池的一个方法;当一个String实例str调用intern()方法时,Java 查找常量池中是否有相同Unicode的字符串常量,如果有,则返回其的引用,如果没有,则在常量池中增加一个Unicode等于str的字符串并返回它的引用;看示例就清楚了示例:1.String s0= "kvill";2.String s1=new String("kvill");3.String s2=new String("kvill");4.System.out.println( s0==s1 );5.System.out.println( "**********" );6.s1.intern();7.s2=s2.intern(); //把常量池中"kvill"的引用赋给s28.System.out.println( s0==s1);9.System.out.println( s0==s1.intern() );10.System.out.println( s0==s2 );结果为:falsefalse //虽然执行了s1.intern(),但它的返回值没有赋给s1true //说明s1.intern()返回的是常量池中"kvill"的引用true最后我再破除一个错误的理解:有人说,“使用String.intern() 方法则可以将一个String 类的保存到一个全局String 表中,如果具有相同值的Unicode 字符串已经在这个表中,那么该方法返回表中已有字符串的地址,如果在表中没有相同值的字符串,则将自己的地址注册到表中”如果我把他说的这个全局的String 表理解为常量池的话,他的最后一句话,”如果在表中没有相同值的字符串,则将自己的地址注册到表中”是错的:示例:1.String s1=new String("kvill");2.String s2=s1.intern();3.System.out.println( s1==s1.intern() );4.System.out.println( s1+" "+s2 );5.System.out.println( s2==s1.intern() );结果:1.false2.kvill kvill3.true在这个类中我们没有声名一个”kvill”常量,所以常量池中一开始是没有”kvill”的,当我们调用s1.intern()后就在常量池中新添加了一个”kvill”常量,原来的不在常量池中的”kvill”仍然存在,也就不是“将自己的地址注册到常量池中”了。