考研数学高数基础知识

合集下载

2021考研-高数0基础课-第1章 函数与极限 第2节数列极限

2021考研-高数0基础课-第1章 函数与极限 第2节数列极限
【注】1) 的作用; 2) N 的作用及 N 与 的关系;
【例1】用定义证明下列极限 1) lim qn 0. ( q 1)
n
2) lim n n 1. n
二,收敛数列的性质
1) 唯一性:收敛数列的极限是唯一的;
2) 有界性:收敛数列必有界;
3)
保号性:若
lim
n
xn
x2 k 1

lim
k
x2k

a.
内容小结
1. 数列极限的 " N" 定义及应用 2. 收敛数列的性质:
唯一性 ; 有界性 ; 保号性; 任一子数列收敛于同一极限
作业 P26 2; 3; 6; 7;8;
高等数学精讲
第一章 函数与极限
第二节 数列的极限
一、数列极限的定义 二 、收敛数列的性质
一、数列极限的定义
引例 圆的面积——割圆术
正六边形的面积 A1
正十二边形的面积 A2

R
正 6 2n1 形的面积 An
A1 , A2 , A3 ,, An ,
S
数列 x1 , x2 , x3 ,, xn , 记为 xn

a,

ห้องสมุดไป่ตู้
a 0(或
a 0 ),

N ,
当 n N , 时,都有 xn 0(或 xn 0 ),
推论 如果存在 N 0, 当 n N 时,xn 0 (或 xn 0 ), 则 a 0(或 a 0),
4) 收敛数列与其子列之间的关系
lim
n
xn

a

lim
k
例如
数列 x1 , x2 , x3 ,, xn , 记为 xn

考研基础阶段数学高数复习要点

考研基础阶段数学高数复习要点

考研基础阶段数学高数复习要点考研基础阶段数学高数复习内容一、考研高等数学复习目标及资料选择数学备考一定要有一个复习时间表,也就是要有一个周密可行的计划。

按照计划,循序渐进,切忌搞突击,临时抱佛脚。

高数这门课在数学一和数学三中占56%,在数学二中比例高达78%,因此高数在考研中的重要性是不言而喻的,那么在现阶阶段我们又该做些什么呢?廖老师建议大家在现阶段复习高数的重点集中在函数、极限和连续这两个模块。

高等数学部分的主体由函数、极限和连续、一元函数的微积分、多元函数的微积分、微分方程和级数五大模块构成(数学一、二、三在各个模块的要求有一定差异),从历年的试题中,高等数学的考查重点和难点更多的集中在前两个模块,他们既是考试的重点,也是学好后面模块的基础。

此外,廖老师建议这一阶段复习以教材为主,数学一、二的考生建议使用同济版高等数学、数学三同学推荐赵树��的《微积分》(第3版),中国人民大学出版社。

当教材习题对你而言没有太大困难的时候,可以参考一本基础阶段的考研辅导讲义,比较推荐的是国家行政学院出版社出版的,李永乐的复习全书,或北京理工大学出版社出版,张宇、蔡燧林主编的辅导讲义。

二、理解概念掌握定理数学中有很多概念。

概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。

所有的问题都在理解的基础上才能做好。

这里廖老师提出几个易混淆的概念,建议同学们在复习的时候要特别注意:连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。

定理是一个正确的命题,分为条件和结论两部分。

对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。

如罗尔定理:设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间 (a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f'(ξ)=0。

最新考研高数重点知识泰勒公式汇总

最新考研高数重点知识泰勒公式汇总

最新考研高数重点知识泰勒公式汇总泰勒公式是高等数学中非常重要且常用的一个工具,在考研高数中也是必备的知识点之一、下面将针对泰勒公式进行详细汇总,以供大家复习。

首先,我们来了解一下泰勒公式的基本形式。

泰勒公式是指将一个光滑函数在其中一点处展开成无穷阶的幂级数的形式。

泰勒公式的一般形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+...其中,f(x)代表原函数,f(a)代表在点a处的函数值,f'(a)代表函数在点a处的导数,f''(a)代表函数在点a处的二阶导数,f^n(a)代表函数在点a处的n阶导数,(x-a)^n代表x减去a的n次幂,n!代表n的阶乘。

了解了泰勒公式的基本形式后,我们来看一下泰勒公式的具体应用:1.求函数的近似值:泰勒公式可以将一个函数在其中一点的附近展开成一项项的幂级数,通过截取其中几项可以得到函数在该点附近的近似值。

通常情况下,我们会截取前几项,因为随着项数的增多,计算量会变得非常大。

2.求函数的极限:通过求出函数在其中一点的泰勒展开式,我们可以得到该函数在该点的极限。

如果一个函数在其中一点的泰勒展开式的前n项的系数构成的极限存在且有限,那么该极限就是函数在该点的极限。

3.求函数的高阶导数:泰勒公式可以展开到无穷阶,因此可以通过泰勒公式求出一个函数的高阶导数。

在实际应用中,经常会遇到需要求高阶导数的问题,泰勒公式能够很好地帮助解决这类问题。

4.求积分:泰勒公式对于求解积分也有很大的帮助。

我们可以通过一个函数在其中一点附近的泰勒展开式来求积分,从而得到积分的近似值。

这在实际应用中尤为重要,因为很多情况下,我们无法直接得到一个函数的积分表达式,只能通过近似的方式来计算积分值。

以上是泰勒公式的基本知识和应用,掌握了这些内容,相信对于考研高数的复习和应对考试会有很大的帮助。

高数基础知识总结

高数基础知识总结

( ) sin x
=
x−
x3 3!
+
x5 5!

+ (−1)n
x 2n+1
(2n +1)!
+
0
x 2n+1
( ) cos x = 1−
x2 2!
+
x4 4!
−Λ
+ (−1)n
x 2n
(2n)!
+
0
x 2n
( ) ln(1 + x) = x − x2 + x3 − Λ + (− )1 n+1 xn + 0 xn
连续,则 f (x) 必在 [a,b]上有界。
定理 2.(最大值和最小值定理)如果函数 f (x) 在闭
区间 [a,b]上连续,则在这个区间上一定存在最大值 M 和
最小值 m 。 其中最大值 M 和最小值 m 的定义如下:
定义 设 f (x0 ) = M 是区间 [a,b]上某点 x0 处的函数
(log a
lim
f (x) g(x)
=
A
(或


7.利用导数定义求极限
基本公式: lim ∆x→0
f (x0 + ∆x) −
∆x
f (x0 ) =
f ′(x0 )
[如果
值,如果对于区间 [a,b]上的任一点 x ,总有 f (x) ≤ M ,
则称 M 为函数 f (x) 在 [a,b]上的最大值。同样可以定义最
整数),则
lim
n→∞
xn
=
A 存在,且 A ≤
M
准则 2.(夹逼定理)设 g(x) ≤ f (x) ≤ h(x)

考研数学高数知识点归纳

考研数学高数知识点归纳

考研数学高数知识点归纳考研数学是众多考研科目中的重要一环,高等数学作为数学基础课程,其知识点广泛且深入。

以下是对考研数学高数知识点的归纳:一、函数、极限与连续性- 函数的概念、性质和分类- 极限的定义、性质和求法- 无穷小的比较和等价无穷小替换- 函数的连续性、间断点及其分类- 连续函数的性质和应用二、导数与微分- 导数的定义、几何意义和物理意义- 基本初等函数的导数公式- 高阶导数和隐函数的求导法则- 微分的概念、几何意义和应用- 导数的四则运算和复合函数的求导法则三、微分中值定理与导数的应用- 罗尔定理、拉格朗日中值定理和柯西中值定理- 泰勒公式和麦克劳林公式- 导数在几何上的应用,如曲线的切线、法线和弧长- 导数在物理上的应用,如速度、加速度和变力做功四、不定积分与定积分- 不定积分的定义和基本计算方法- 定积分的定义、性质和计算- 牛顿-莱布尼茨公式- 定积分在几何和物理上的应用,如面积、体积和功五、多元函数微分学- 多元函数的概念和极限- 偏导数和全微分- 多元函数的极值问题- 多元函数的泰勒展开六、重积分与曲线积分、曲面积分- 二重积分和三重积分的定义和计算方法- 曲线积分和曲面积分的计算- 格林公式、高斯公式和斯托克斯定理七、无穷级数- 常数项级数的收敛性判别- 幂级数和函数的泰勒级数展开- 函数项级数的一致收敛性- 傅里叶级数和傅里叶变换八、常微分方程- 一阶微分方程的求解方法,如分离变量法、变量替换法等- 高阶微分方程的求解,如常系数线性微分方程- 微分方程的物理背景和应用结束语:考研数学高数部分要求考生不仅要掌握基础概念和计算方法,还要能够灵活运用这些知识解决实际问题。

通过对上述知识点的系统学习和深入理解,考生可以为考研数学的高数部分打下坚实的基础。

希望每位考生都能在考研数学的征途上取得优异的成绩。

考研数学知识点总结归纳

考研数学知识点总结归纳

考研数学知识点总结归纳考研数学知识点第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定考研数学必备知识点总结高等数学部分第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的`计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)线性代数部分第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定概率论与数理统计部分第一章随机事件和概率1、随机事件的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)4、概率的基本性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的充要条件3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、随机变量函数的分布(离散型、连续型)第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、随机变量函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量函数的期望)2、方差、协方差、相关系数的计算公式3、运算性质(期望、方差、协方差、相关系数)4、常见分布的期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)第六章数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显著性检验2、假设检验的两类错误3、单个及两个正态总体的均值和方差的假设检验考研数学复习之拿高分方法一、理性分析三个组成部分,各个击破我们知道数学整个试卷的组成部分是:高数82分+线代34分+概率论34分;很明显微积分占了绝大部分;另外概率论里面很多题目要用到微积分的工具,实际上微积分的分数比82分要高,应该是能到100分左右。

考研用到的高数基础知识

考研用到的高数基础知识

考研用到的高数基础知识高等数学是考研数学的重要部分,那些重点难点在下文中均有讲述,复习要掌握好一些基础知识. 考研必备高数基础知识在下文列出.第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)3、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解.2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)考研高数怎样学?考研数学考三个科目,分别为高等数学、线性代数、概率论与数理统计. 但是备考数学的考生们总喜欢从高数开始复习,这是为什么呢?原因有二:其一,高等数学在试卷中所占分值最高,达整张卷面分值的百分之五十六,而且难度也居三科之首. 其二,科目之间的先后联系导致先复习高数.线性代数和概率论与数理统计,尤其是概率论与数理统计是以高数为基础的学科,不学高数难以很明白的学习后继学科,大学数学在课程设置上也是按次顺序进行,可见其科学性.为了更好的了解考研高等数学这一科目,在复习它之前我们应该了解一下它的知识体系是很有必要的. 这样我们可以有一个全局观,能清晰的知道每一章节之间的联系和侧重点.高等数学从大的方面分为一元函数微积分和多元函数微积分.一元微积分中包括极限、导数、不定积分、定积分;多元函数微积分包括多元函数微分学(主要是二元函数)和多元函数积分学. 另外还有微分方程和级数,这两章内容可看成是微积分的应用.除此之外还有向量代数与空间解析几何. 其中数一单独考查的内容为向量代数与空间解析几何和多元函数积分学中的三重积分、曲线积分、曲面积分,另外是数一数二数三公共部分,公共部分中也有一些细微差别,下面我们分章去介绍.一、一元微积分1.极限极限是高等数学中非常重要的一章,此概念贯穿整个高等数学始末,导数、定积分、偏导数、多元函数积分、级数等概念都是用极限来定义的.正是有了极限的概念数学才从有限升华到无限,这也是高等数学与初等数学的分水岭. 在考研数学中极限也是每年必考的内容,直接考查的分值高达14-18分.2.倒数有了极限的概念,那么导数的概念就有了理论根基,导数是一元函数微分学的灵魂,在考研中这章是重点,每年必考,而且灵活性和综合性较强. 这一章可从导数微分概念、计算、应用、中值定理三方面学复习.3.不定时积分不定积分本质上是求导的逆运算,本章重点是计算,其重要性怎样描述都不为过. 因为积分是决定高数学习成败的一个关键章节,后继章节如定积分、二重积分、三重积分、曲线曲面积分、微分方程中都会用到.4.定积分定积分是微积分所说的积分,除了掌握基本概念,还要掌握其计算相关内容及定积分的应用,每年必考. 微分方程本质上还是不定积分的计算. 二、多元微积分多元函数的微积分体系上与一元类似,微分学包括基本概念(二重极限、偏导数、可微)、偏导数计算、偏导数应用.多元函数积分学包括二重积分、三重积分、曲线曲面积分,考试重点在计算,属于每年必考题目. 最后一章级数包括三部分常数项级数(主要考查敛散性判别),幂级数(主要考查展开与求和)、傅里叶级数(数一单独考查),本章也属必考内容.►高数该怎样学?虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢.由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸. 同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.考研数学怎样自学成功?(一)抓住主干,突破重点,注重综合虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢. 以高等数学为例,由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸.同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.(二)注重联想记忆,筑起框架体系由于考试时间紧,复习任务重,知识点零散,很多知识都是会了但过了一段时间又忘了,想要做到长效记忆,就必须注重联想记忆,建立知识框架体系. 以线性代数为例,线性代数作为一门全新的学科,知识点分散,概念抽象,性质定理众多,如何快速的掌握所有考试要求的知识,这就需要我们先筑起知识框架,建立知识点间的联系,看到任何一个概念的时候都要多去发散,联想出跟它相关的所有知识点.比如当我们看到实对称矩阵的时候,我们就要想到实对称矩阵的三条重要性质:①实对称矩阵的特征值为实数,它主要应用于已知一个关于方阵A的矩阵方程去求矩阵A的特征值;②实对称矩阵不同特征值对应的特征向量相互正交,它在考试中应用的非常频繁,基本题目出现实对称矩阵八九不离十就是要利用这条性质;③实对称矩阵必能相似对角化,它主要用来判断一个矩阵是否可以相似对角化的问题. 只要这样重复的联想记忆,你就会对所有的知识点形成条件反射,运用起来才会毫无障碍.(三)突出核心考点,加强题型训练根据考研数学考试历年命题规律,有些知识点考查的相当频繁,甚至于每年都考,对于这样的知识点我们应该予以重视,作为我们最后冲刺阶段主攻的地方,通过加强该部分知识点大量题型训练,总结对应的解题技巧和方法,从而实现对该知识点的突破.以概率论与数理统计为例,二维连续型随机变量是历年考试的重点,因此与该知识点相关的所有题型都要掌握,相关题型主要有:①已知联合概率密度求边缘概率密度、条件概率密度,进而求随机变量的数字特征;②已知联合概率密度求二维随机变量落在区域D内的概率;③判断两个随机变量是否独立等,通过对相关题型的大量训练,总结解题套路,我们就能攻克该知识点.考研数学总体复习计划基础阶段基础阶段的主要任务是复习基础知识,掌握基本解题能力. 主要工作是把课本上的重要公式、定理、定义概念等熟练掌握,将课本例题和习题研究透彻. 复习完基础知识之后要做课后习题,进行知识巩固,确保能够准确、深刻地理解每一个知识点.【切忌】1.先做题再看书.2.做难题. 这一阶段不易做难题. 难的题目往往会打击考生基础阶段复习的信心,即使答案弄懂了也达不到复习的效果.【复习建议】1.以教材中的例题和习题为主,不适宜做综合性较强的题目. 做习题时一定要把题目中的考点与对应的基础知识结合起来,达到巩固基础知识的目的,切忌为了做题而做题.2.在考研大纲出来之前,不要轻易放弃任何一个知识点. 在基础复习阶段放弃的知识点,非常有可能成为后期备考的盲点,到最后往往需要花更多的时间来弥补.3.准备一个笔记本,用来整理复习当中遇到过的不懂的知识点. 弄懂后,写上自己的理解,并且将一些易出错、易混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,避免遗忘出错.4.对于基本知识、基本定理和基本方法,关键在理解,并且存在理解程度的问题. 所以不能仅仅停留在“看懂了”的层次上. 对一些易推导的定理,有时间一定要动手推一推;对一些基本问题的描述,特别是微积分中的一些术语的描述,一定要自己动手写一写. 这些基本功都很重要,到临场考试时就可以发挥作用了.PS:复习不下去的时候建议看看数学视频.【基础阶段复习教材】高数:同济版,讲解比较细致,例题难度适中,涉及内容广泛,是当前高校中采用比较广泛的教材,配套的辅导教材也很多.线代:同济版,轻薄短小,简明易懂,适合基础不好的学生;清华版,适合基础比较好的学生.概率论与数理统计:浙大版,基本的题型课后习题都有覆盖.强化阶段强化阶段的主要任务是建立完整的知识体系,提高综合解题能力.强化阶段的复习是提高考试成绩的关键,但是,如果没有基础阶段的知识储备,强化阶段的复习是很难取得良好效果的. 所以小伙伴们一定要注意,数学复习是环环相扣、步步承接的. 【强化阶段复习资料】以数学复习全书和历年考研数学真题为主. 要把考研中的题型归类练习,熟练掌握每一类题型的解题方法.(一)强化训练第一轮以题型与常考知识模块复习为主,通过练习测试巩固所学知识.【学习方法】1.使用教材配套的复习指导或习题集,通过做题巩固知识,遇到不会或似懂非懂的题目不要直接看参考答案,应当先温习教材相关章节,弄懂基本知识.2.按要求完成练习测试后,要留有一些时间对教材的内容进行梳理,对重点、难点做好笔记,以便之后的复习. 对于典型性、灵活性、启发性和综合性的题目要特别注重理解思路和技巧的培养.3.试题虽千变万化,知识结构却基本相同,题型也相对固定. 归纳题型与常考知识模块以便提高解题的针对性,进而提高解题速度和准确性.(二)强化训练第二轮通过综合基础题及考研真题来查漏补缺,训练解题速度.【需要做到】1.加大对综合题和应用题解题能力的训练,力求在解题思路上有所突破. 在综合题的解答中,迅速找到解题的切入点是关键,为此需要熟悉规范的解题思路,以便能够对做过的题目进行归纳分类、延伸拓展.2.在复习备考时对所学知识进行重组,搞清有关知识的纵向和横向联系,转化为自己掌握的东西. 应用题的解题步骤是认真理解题意,建立相关数学模型,如微分方程、函数关系、条件极值等,将其转化为某个数学问题求解.【注】基础阶段与强化阶段的终极目标是对考研数学内容建立一个知识网,熟练掌握考研各常见考试题型与解题方法.冲刺阶段强化阶段完成后,实际上考研数学的复习已经基本完成. 这个时候大家应该已经熟悉考研数学中的每一类题型以及对应的解题方法,而且已经具备较强的计算能力. 因此抽时间要做真题、模拟题培养考试状态,进入冲刺阶段的复习.【注意事项】冲刺阶段需要通过真题和模拟题的训练体验实战感觉,找到做题技巧并摸索出题特点,以便更利于临场发挥. 这一阶段要做到:1.要记忆,不要脱离教材. 对考研数学必需掌握的基本概念、公式、定理进行记忆,尤其是平时记忆模糊的公式,都需要重新回到教材找出原型来记忆.2.要总结、思考. 这一阶段不能搞题海战术,需要对上一轮复习中做过的历年真题和模拟题进行总结(包括理清基本的解题思路,对遗忘的知识点查漏补缺)3.要练习考研数学的套题. 坚持练套题到最后,手不能生. 最后阶段一定要做高质量的模拟题,尽量少做难题、偏题、怪题.【冲刺阶段复习资料】这一阶段的主要任务是查漏补缺,培养考试状态. 所以,建议的复习资料是基础阶段和强化阶段总结的复习笔记,历年真题与模拟题.。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结高等数学是考研数学的一个重要组成部分,考研高数考察的内容涉及广泛,难度较大。

要想在考研高数中取得好成绩,必须深入了解各种知识点,并且掌握适当的解题方法。

下面就对考研高数的知识点进行总结,以供考生参考。

一、函数与极限1.1 函数的基本概念函数是一种特殊的关系,即每个自变量对应且只对应一个因变量。

1.2 极限的概念极限是函数在自变量趋于某个值时,相应因变量的趋势。

1.3 极限的性质极限具有唯一性、局部有界性等性质。

1.4 极限的计算利用夹逼定理、洛必达法则等方法来计算极限。

二、导数与微分2.1 导数的概念导数表示函数在某一点的瞬时变化率。

2.2 导数的计算利用极限定义、导数的四则运算等方法来计算导数。

2.3 导数的应用利用导数求函数的单调性、凹凸性、极值等。

2.4 微分的概念微分是导数的几何意义。

三、积分与定积分3.1 不定积分不定积分是积分的基本形式,可以求出函数的原函数。

3.2 定积分定积分可以表示函数在某一区间上的总变化量。

3.3 定积分的计算利用牛顿—莱布尼茨公式、换元积分法、分部积分法等方法来计算定积分。

四、级数4.1 级数的概念级数是无穷项数列部分和的极限。

4.2 级数收敛与发散讨论级数的收敛性是比较重要的知识点。

4.3 常见级数如调和级数、等比级数、幂级数等。

五、常微分方程5.1 常微分方程的基本概念包括常微分方程的解、初值问题等内容。

5.2 一阶常微分方程一阶微分方程的解法包括可分离变量法、齐次方程、一阶线性微分方程等。

5.3 高阶常微分方程高阶微分方程的解法包括常系数线性齐次微分方程、常系数线性非齐次微分方程等。

总结:考研高数是数学中一个重要的分支,需要考生深入理解各种知识点,并且熟练掌握解题方法。

希望以上内容能够帮助考生更好地备考考研高数。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结引言随着我国研究生教育水平的提高,考研成为越来越多学子追求的目标。

高数是考研数学的重要组成部分,掌握高数知识不仅对考研学子而言至关重要,也是提高数学素养的关键。

本文将从高数的基本概念、常见定理、解题技巧等方面进行总结,帮助考研学子系统地了解高数知识点。

一、导数与微分1.1 基本概念导数是函数在某点处的瞬时变化率,可以用极限的概念来定义。

微分是导数概念的一种应用,代表函数在某点处的局部线性化。

在考研高数中,导数与微分是非常重要的概念,常被用于函数的研究和问题的解决。

1.2 常见导数公式常见的导数公式包括:幂函数的导数、指数函数的导数、对数函数的导数、三角函数的导数等。

考研学子需要掌握这些导数公式,并能熟练地进行推导和运用。

1.3 微分的应用微分在几何、物理等领域都有广泛的应用,如切线方程的求解、极值问题的研究、函数图像的描绘等。

在考研高数中,学子需理解微分的应用,掌握相关的解题技巧。

二、定积分2.1 定积分的概念定积分是对函数在一定区间上的积分,可以看作是曲线下面积的一种衡量。

在考研高数中,定积分是解决面积、体积、物理问题等的重要工具,学子需要深刻理解定积分的概念和性质。

2.2 定积分的计算定积分的计算方法包括:牛顿-莱布尼茨公式、定积分的性质、换元积分法、分部积分法等。

通过对这些计算方法的掌握,考研学子能够灵活地解决各种定积分计算题目。

2.3 定积分的应用定积分在几何、物理、经济等领域都有广泛的应用,如求曲线下面积、求旋转体的体积、求物体的质量和重心等。

考研学子需要理解定积分的应用,并掌握相关的解题技巧。

三、无穷级数3.1 级数的概念与性质级数是指一列数的和,无穷级数是指该列数的和在n趋于无穷时的性质。

在考研高数中,学子需要理解级数的概念、收敛与发散性质,以及级数收敛的判别法则等。

3.2 常见级数常见的级数包括:等比级数、调和级数、幂级数、泰勒级数等。

考研学子需要掌握这些常见级数的性质和收敛条件,以便能够快速判断级数的收敛性。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结高等数学是研究数与其变化规律的一门基础课程,是理工科学生学习的重要课程之一。

在考研数学中,高等数学是必考科目之一,占有较大比重。

下面就考研高等数学知识点进行总结,希望对考生们有所帮助。

一、函数与极限1. 基本概念:函数、反函数、复合函数、有界函数、周期函数等。

2. 极限的定义:数列极限的定义、函数极限的定义等。

3. 极限的性质:极限的唯一性、有界性、局部有界原理等。

4. 极限运算法则:加减乘除、复合函数的极限等相关运算法则。

5. 无穷大与无穷小:无穷大和无穷小的概念、性质及相关推论。

二、导数与微分1. 导数的定义:函数在某一点的导数、导数的几何意义、物理意义等。

2. 基本导数公式:多项式函数、三角函数、指数函数、对数函数等基本函数的导数。

3. 高阶导数:二阶导数、高阶导数及其相关概念。

4. 微分中值定理:拉格朗日中值定理、柯西中值定理等。

5. 隐函数与参数方程的导数:隐函数的导数、参数方程的导数等相关内容。

三、微分中的应用1. 函数的极值与最值:函数的极值点的判定、极值、最值等相关概念。

2. 函数的单调性与凹凸性:函数的单调区间、凹凸区间等相关概念。

3. 泰勒公式与泰勒展开:泰勒公式的表达形式、泰勒展开的求解方法及应用。

4. 微分的应用:函数的近似计算、误差估计、最优化问题等。

四、不定积分1. 不定积分的概念:定义、性质及运算法则。

2. 基本不定积分公式:多项式函数、三角函数、指数函数、对数函数等基本函数的不定积分公式。

3. 换元积分法:第一类换元法、第二类换元法及其应用。

4. 分部积分法:分部积分法的原理、应用条件及相关例题。

5. 有理函数积分法:有理函数积分的基本思路及方法。

五、定积分及其应用1. 定积分的定义:定积分的严格定义及其几何意义。

2. 定积分的性质:定积分的线性性、定积分的区间可加性等性质。

3. 定积分的基本定理:牛顿-莱布尼茨公式及其几何意义。

4. 定积分的应用:面积、定积分表示的物理量、定积分的几何应用等。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结高等数学是考研数学中的重要一部分,对于考研学生来说,掌握高等数学的知识点是非常重要的。

下面是对高等数学知识点的总结,希望对考研学生有所帮助。

一、函数与极限1. 函数的概念:函数的定义域、值域和图像2. 函数的性质:奇偶性、周期性等3. 极限的概念:数列极限和函数极限4. 极限的性质:极限的四则运算、夹逼定理等5. 单调性与有界性:单调递增、单调递减、有界二、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的运算法则:加法减法法则、乘法法则、复合函数法则等3. 高阶导数与隐函数求导4. 微分与微分近似三、高阶导数与泰勒公式1. 高阶导数的定义与运算法则2. 泰勒展开式与泰勒公式四、不定积分与定积分1. 不定积分的概念与运算法则2. 反常积分:可积性、柯西准则、比较判别法等3. 定积分的概念与性质:函数积分的线性性、可加性、区间可加性等4. 牛顿-莱布尼茨公式与定积分的应用五、多元函数与偏导数1. 多元函数的定义与性质:定义域、值域、图像等2. 偏导数的概念:一阶偏导数、高阶偏导数3. 隐函数求导与全微分的概念4. 多元函数的极值与条件极值六、重积分与曲线曲面积分1. 二重积分的概念与计算方法:极坐标法、换元法、直角坐标系下的积分法2. 三重积分的概念与计算方法:柱面坐标法、球面坐标法、直角坐标系下的积分法3. 曲线积分与曲面积分的概念与计算方法七、常微分方程1. 常微分方程的基本概念:初值问题、解的存在唯一性2. 高阶线性常微分方程与常系数齐次线性方程3. 常微分方程的解法:分离变量法、齐次方程法、一阶线性非齐次方程法等4. 常微分方程的应用:动力学模型、电路网络分析等八、级数1. 级数的概念与基本性质:收敛、发散、极限、级数的四则运算等2. 正项级数与比较判别法、比值判别法、根值判别法等3. 幂级数与泰勒级数展开高等数学知识点总结完毕,以上知识点对考研的高等数学考试来说是基础中的基础。

高等数学考研知识点总结6

高等数学考研知识点总结6

第六讲 一元函数微积分的应用一、考试要求1、理解(了解)函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

2、会用导数判断函数图形的凹凸性,会求函数图形的拐点,会求水平、铅直和斜渐近线,会描绘函数的图形。

3、了解曲率和曲率半径的概念,会计算曲率和曲率半径(*)4、掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力、质心等)及函数的平均值。

(数三、四只要求面积、旋转体的体积及简单的经济应用)二、 导数的应用主要涉及如下几个方面 1、求曲线的切线及法线方程 2、判断函数的单调性、凹凸性 3、研究函数的极值和最值 4、证明恒等式(不等式) 5、求渐进线方程 6、函数作图7、方程根的确定 1、求曲线的切线与法线方程1、切线方程 ))((000x x x f y y -'=-2、法线方程 )()(1000x x x f y y -'-=-注:若0)(0='x f ,切线方程为)(0x f y =,法线方程为0x x = 若∞=')(0x f ,切线方程为0x x =,法线方程为)(0x f y =例1、设)(x f 是可导的偶函数,它在0=x 的某邻域内满足)(2)sin 1(3)(2222x o x x f ef x+=+-,求曲线)(x f y =在点))1(,1(--f 处的切线方程及法线方程。

例2、(021)已知曲线)(x f y =与⎰-=xtdt ey arctan 02在)0,0(处的切线相同,写出此切线方程,并求极限2lim ()n nf n→∞2、 函数的单调性、凹凸性、极值、曲线的拐点 函数的单调性与极值定理:设f(x)在[a,b]上连续,在(a,b)内可导,① 如果在(a,b)内0)(>'x f ,则函数y=f(x)在[a,b]上单调增加; ② 如果在(a,b)内0)(<'x f ,则函数y=f(x)在[a,b]上单调减少.定理:1)(取极值的必要条件)设)(x f 在0x 达到极大或极小值,并且在0x 的某个邻域内可微,则.0)('0=x f2)两个充分条件:(1)如果存在0>δ使得(i) )(x f 在),(00δδ+-x x 中有定义;(ii )∈∀≤x x f ,0)('),(00x x δ-;(iii )∈∀≥x x f ,0)('),(00x x +δ; 则函数)(x f 在0x 的达到极小值。

考研数学高数38个必会知识点

考研数学高数38个必会知识点

考研数学高数38个必会知识点摘要:每一个需要考数学的考研er应该都知道,高数部分占了56%(约84分)的分数,而且高数基础不好的话,概率论可能也会有一点影响(数二不考概率,那么高数的分值更高),所以我们都知道学好高数多么重要,那么复习这么久,高数的必会知识点是哪些呢?一、函数极限连续1、正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。

2、理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。

掌握利用两个重要极限求极限的方法。

理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限。

3、理解函数连续性的概念,会判别函数间断点的类型。

了解初等函数的连续性和闭区间上连续函数的性质(最.大值、最小值定理和介值定理),并会应用这些性质。

重点是数列极限与函数极限的概念,两个重要的极限:lim(sinx/x)=1,lim(1+1/x)=e,连续函数的概念及闭区间上连续函数的性质。

难点是分段函,复合函数,极限的概念及用定义证明极限的等式。

二、一元函数微分学1、理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的关系。

2、掌握导数的四则运算法则和一阶微分的形式不变性。

了解高阶导数的概念,会求简单函数的n阶导数,分段函数的一阶、二阶导数。

会求隐函数和由参数方程所确定的函数的一阶、二阶导数及反函数的导数。

3、理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理。

4、理解函数极值的概念,掌握函数最.大值和最小值的求法及简单应用,会用导数判断函数的凹凸性和拐点,会求函数图形水平铅直和斜渐近线。

5、了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角。

6、掌握用罗必塔法则求未定式极限的方法,重点是导数和微分的概念,平面曲线的切线和法线方程函数的可导性与连续性之间的关系,一阶微分形式的不变性,分段函数的导数。

2020考研数学复习:高数必考的38个知识点

2020考研数学复习:高数必考的38个知识点

2020考研数学复习:高数必考的38个知识点2020考研数学复习:高数必考的38个知识点一、函数极限连续1、正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。

2、理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。

掌握利用两个重要极限求极限的方法。

理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限。

3、理解函数连续性的概念,会判别函数间断点的类型。

了解初等函数的连续性和闭区间上连续函数的性质(最.大值、最小值定理和介值定理),并会应用这些性质。

重点是数列极限与函数极限的概念,两个重要的极限:lim (sinx/x)=1,lim(1+1/x)=e,连续函数的概念及闭区间上连续函数的性质。

难点是分段函,复合函数,极限的概念及用定义证明极限的等式。

二、一元函数微分学1、理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的关系。

2、掌握导数的四则运算法则和一阶微分的形式不变性。

了解高阶导数的概念,会求简单函数的n阶导数,分段函数的一阶、二阶导数。

会求隐函数和由参数方程所确定的函数的一阶、二阶导数及反函数的导数。

3、理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理。

4、理解函数极值的概念,掌握函数最.大值和最小值的求法及简单应用,会用导数判断函数的凹凸性和拐点,会求函数图形水平铅直和斜渐近线。

5、了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角。

6、掌握用罗必塔法则求未定式极限的方法,重点是导数和微分的概念,平面曲线的切线和法线方程函数的可导性与连续性之间的关系,一阶微分形式的不变性,分段函数的导数。

罗必塔法则函数的极值和最.大值、最小值的概念及其求法,函数的凹凸性判别和拐点的求法。

难点是复合函数的求导法则隐函数以及参数方程所确定的函数的一阶、二阶导数的计算。

三、一元函数积分学1、理解原函数和不定积分和定积分的概念。

考研必看考研数学基础知识点梳理(高数篇)

考研必看考研数学基础知识点梳理(高数篇)

考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。

(完整版)高等数学基本知识点大全大一复习,考研必备

(完整版)高等数学基本知识点大全大一复习,考研必备

大一期末复习和考研复习必备高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。

变量x的变化范围叫做这个函数的定义域。

通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。

注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。

这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。

如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。

这里我们只讨论单值函数。

⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。

由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。

⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。

例:笛卡尔直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。

例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。

c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。

考研高等数学复习要点

考研高等数学复习要点

考研高等数学复习要点考研高等数学复习要点(篇1)一、备考资料高等数学(上、下)第六版,同济大学数学系编高等数学习题全解指南(与上配套)工程数学-线性代数第五版,同济大学数学系编线性代数附册学习辅导与习题全解(与上配套)概率论与数理统计第四版,浙江大学盛骤概率论与数理统计习题全解指南(与上配套)考研数学复习全书考研数学复习全书分阶习题同步训练(与上配套)数学基础过关660题数学历年真题权威解析线性代数辅导讲义我用的都是最基础最核心的资料,没有买其它花哨的辅导书。

可能我整个备考规划中最明智的一个安排就是把大部分时间分配给了数学。

我想即使在一般情况下这也是个真理,应该把最多的时间花在最能拉开分数的科目上。

对一般人来说,在同等的付出下,数学拉开20分比英语拉开20分的可能性要大得多。

二、备考经验就备考经验来说,其实比起学习别人的经验,我认为大家更应该去努力养成自己良好的学习习惯。

就考研来说,我认为把你和别人区分开来的并不是一本二本三本,也不是你准备的时间有多长多短,而是你自己的学习态度和学习习惯。

这才是贯穿始终的东西。

1、钻研精神看书做题必须明白每一步是为什么,不懂得问题可以请教大神研友,实在不明白可以在旁边标注,也许下一轮复习再看时就想通了。

这样看书的确会很慢,但是学得很扎实。

后期做题时必会感激自己前期这样扎实的学习。

2、尽量独立做题包括第一轮看教材时,书上的例题也先盖住答案自己做。

包括教材的章节习题和复习全书的例题等等,切勿看完题目就看答案,给自己留时间思考。

拿出做不出来誓死不看答案的决心,和一些数学大神交流后我发现这是他们的共性,既然是大神们的共性,那必然有可取之处,就像我发现身边诸多英语口语很棒的大神都爱看美剧,于是想练口语的我自然就要多看美剧。

一些小伙伴像看小说一样全书,扫过题目和答案一页页翻过,貌似效率很高。

但看完之后把书拿开,会做的题目又有几道呢?不排除个别大神有特立独行的学习方式,但我认为对大多数人来说,拿出笔和纸,盖住答案先自己做题,做完拿自己的答案和例题答案比对,虽说看似低效,但做一道题就掌握一道题目其实是最高效的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档