考研数学基础知识精华总结(最新)
考研数学知识点总结
考研数学知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!考研数学知识点总结最新考研数学知识点总结简述我们在进行考研数学的复习准备时,要知道必考的知识点有哪些,才能更好的提高自己的复习效率。
考研数学手写知识点总结
考研数学手写知识点总结一、数列和数项1. 定义数列是按一定顺序排列的一串数,每个数称为数列的项,用an表示,n称为项标。
2. 数列的表示一般用通项公式或者递推公式表示数列,通常表示成{an}或者{an}∞n=1。
3. 常见数列常见的数列有等差数列、等比数列、递推数列等,它们分别有自己的通项公式和性质。
4. 数列的求和常用的求和方法有等差数列的求和公式、等比数列的求和公式、Telescoping sum等。
二、集合与函数1. 集合的定义集合是由一个或多个共同特征的元素构成的整体,用大括号{}表示,元素之间用逗号隔开。
2. 集合的运算集合的运算包括并集、交集、差集、补集等,它们有自己的运算法则和性质。
3. 函数的定义函数是集合之间的一个对应关系,通常用f(x)表示,其中x是自变量,f(x)是因变量。
4. 函数的性质函数有奇偶性、周期性、单调性等性质,这些性质对函数的图像有一定的影响。
5. 函数的运算函数的运算包括加减乘除、复合函数、反函数等,它们有自己的运算法则和性质。
三、极限1. 极限的定义当自变量趋于某个值时,函数的值不断地接近于一个确定的数,这个确定的数称为极限。
2. 极限的计算常用的求极限的方法有代入法、夹逼法、单调有界法、洛必达法则等。
3. 极限的性质极限有唯一性、保号性、保序性、保界性等性质,这些性质有一定的应用价值。
4. 无穷小量与无穷大量当自变量趋于某个值时,函数的取值趋于零或者趋于无穷大,这种情况称为无穷小量与无穷大量。
四、导数与微分1. 导数的定义函数在某一点的导数是函数在这一点的切线斜率,常用f'(x)或者dy/dx表示。
2. 导数的计算常用的求导法则有常数法则、幂函数法则、指数函数法则、对数函数法则等。
3. 导数的性质导数有和性、差性、积性、商性、复合函数导数等性质。
4. 微分微分是导数的一个应用,微分形式为dy=f'(x)dx,微分近似计算的应用十分广泛。
五、积分1. 不定积分不定积分是导数的逆运算,常用∫f(x)dx表示,它相当于求函数在某一区间上的面积。
考研大学的数学知识点总结
考研大学的数学知识点总结
一、数学分析
1. 函数的极限与连续
2. 函数的导数与微分
3. 不定积分与定积分
4. 微分方程
5. 级数
6. 多元函数微分学
二、线性代数
1. 行列式与矩阵
2. 线性方程组
3. 矩阵的特征值与特征向量
4. 空间解析几何
5. 线性空间
三、概率统计
1. 随机变量与概率分布
2. 多个随机变量的概率分布
3. 统计推断
4. 假设检验
5. 相关与回归分析
四、离散数学
1. 集合与逻辑
2. 图论
3. 树与树的应用
4. 排列组合
5. 代数系统
五、常微分方程
1. 一阶常微分方程的基础理论
2. 高阶常微分方程与常系数齐次线性微分方程
3. 变系数线性微分方程
4. 高阶线性常系数齐次线性微分方程
5. 常微分方程的应用
六、数学建模
1. 数学建模的基本概念
2. 数学建模的基本方法
3. 实际问题的数学建模
4. 建立模型的思路与方法
5. 数学建模的应用
七、复变函数
1. 复数的基本概念
2. 复变函数的基本概念
3. 复变函数的解析性
4. 几何意义与应用
5. 复变函数的应用
以上是考研大学数学知识点的总结。
希望能对大家的学习有所帮助。
考研数三知识点总结
考研数三知识点总结一、数学基础知识1.集合与逻辑(1)集合的概念与运算(2)命题与联结词(3)命题公式与合取、析取范式(4)命题演算(5)范式和合取析取范式的相互转化(6)命题公式的永真式和等值式(7)命题逻辑的等值演算2. 代数与数论(1)复数的概念与运算(2)多项式的整除与因式分解(3)有理数的整除性(4)整数、模运算、同余(5)素数与合数(6)整数的唯一分解定理(7)不定方程的整数解3. 几何与简单的变量(1)空间几何问题与直线的方程(2)空间解析几何(3)坐标与原点(4)斜率与截距(5)直线的夹角与距离(6)点、直线、平面的位置关系(7)三角函数的概念与运算4. 极限与微积分(1)极限与无穷小(2)函数的极限(3)连续与间断(4)导数的概念与运算(5)定积分与不定积分(6)微分方程的基本概念(7)参数方程与极坐标方程二、典型题型解题技巧1. 集合与逻辑(1)对于集合的运算,要熟练掌握并运用交、并、差、补集等运算。
(2)在命题与联结词的运用中,要能够准确理解并灵活运用“非”、“或”、“与”等联结词的含义及其在逻辑命题中的应用。
(3)在命题公式的演算中,要善于利用等值演算将命题公式转化成合取或析取范式,以求解相关问题。
2. 代数与数论(1)对于复数的运算,要熟练掌握复数的加减乘除运算,并在解题过程中灵活运用复数的性质和运算规律。
(2)在多项式的整除与因式分解中,要善于运用求因式分解的方法,并能够准确判断多项式的整除性。
(3)对于素数与合数、模运算、同余等知识点,要能够理清概念,掌握相关定理,并能够灵活应用于解题过程中。
3. 几何与简单的变量(1)在直线的方程与三角函数的概念与运算中,要善于利用直线的斜率与截距,以及三角函数的相关性质,解决与直线、三角函数相关的几何问题。
(2)对于空间解析几何、坐标与原点、斜率与截距等知识点,要善于利用坐标系方法,灵活运用相关几何知识,解决几何问题。
4. 极限与微积分(1)在极限与无穷小、函数的极限等知识点中,要善于利用夹逼定理、无穷小量的性质、函数极限的计算方法,解决极限问题。
考研数一归纳知识点
考研数一归纳知识点考研数学一(高等数学)是考研数学中难度较大的科目,它涵盖了高等数学的多个重要领域。
以下是考研数学一的归纳知识点:1. 函数、极限与连续性:- 函数的概念、性质和分类。
- 极限的定义、性质和求法。
- 函数的连续性及其判断方法。
2. 导数与微分:- 导数的定义、几何意义和物理意义。
- 基本导数公式和导数的运算法则。
- 高阶导数的概念和求法。
- 微分的概念和微分中值定理。
3. 积分学:- 不定积分和定积分的概念、性质和计算方法。
- 换元积分法和分部积分法。
- 定积分的应用,如面积、体积和物理量的计算。
4. 级数:- 级数的概念、收敛性判断。
- 正项级数的收敛性判断方法,如比较判别法和比值判别法。
- 幂级数和泰勒级数。
5. 多元函数微分学:- 多元函数的概念、偏导数和全微分。
- 多元函数的极值问题和条件极值问题。
6. 重积分与曲线积分:- 二重积分和三重积分的概念和计算方法。
- 对坐标的曲线积分和曲面积分。
7. 常微分方程:- 一阶微分方程的解法,如可分离变量方程、线性微分方程等。
- 高阶微分方程的解法,如常系数线性微分方程。
8. 解析几何:- 空间直线和平面的方程。
- 空间曲线和曲面的方程。
9. 线性代数:- 矩阵的运算、行列式、特征值和特征向量。
- 线性空间和线性变换的概念。
- 线性方程组的解法。
10. 概率论与数理统计:- 随机事件的概率、条件概率和独立性。
- 随机变量及其分布,包括离散型和连续型随机变量。
- 数理统计中的参数估计和假设检验。
结束语:考研数学一的知识点广泛且深入,要求考生不仅要掌握基础概念和计算方法,还要能够灵活运用这些知识解决实际问题。
因此,考生在复习过程中需要注重理解、练习和总结,以提高解题能力和应试技巧。
希望以上的归纳能够帮助考生更好地准备考研数学一的考试。
考研数学二知识点总结
考研数学二知识点总结一、高等数学1. 函数、极限与连续- 函数的定义与性质- 极限的概念与计算- 连续函数的性质与应用2. 微分学- 导数的定义与性质- 常见函数的导数- 微分的应用3. 积分学- 不定积分的基本概念与性质- 定积分的基本概念与性质- 积分技巧与方法4. 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 梯度、方向导数与切平面5. 重积分- 二重积分的计算- 三重积分的计算- 重积分的应用6. 无穷级数- 级数的基本概念- 正项级数的收敛性- 幂级数与泰勒级数二、线性代数1. 行列式- 行列式的定义与性质- 行列式的计算方法- 行列式的应用2. 矩阵- 矩阵的基本运算- 矩阵的逆- 矩阵的秩3. 向量空间- 向量空间的基本概念- 子空间与维数- 向量间的线性关系4. 线性方程组- 线性方程组的解的结构 - 高斯消元法- 线性方程组的应用5. 特征值与特征向量- 特征值与特征向量的定义 - 特征值与特征向量的计算 - 矩阵的对角化6. 二次型- 二次型的标准型- 二次型的正定性- 二次型的应用三、概率论与数理统计1. 随机事件与概率- 随机事件的定义与性质- 概率的计算与性质- 条件概率与独立性2. 随机变量及其分布- 随机变量的定义- 离散型与连续型分布- 随机变量的数学期望与方差3. 多维随机变量及其分布- 联合分布与边缘分布- 条件分布与独立性- 随机向量的期望与方差4. 大数定律与中心极限定理- 大数定律的含义与应用- 中心极限定理的含义与应用5. 样本与估计- 样本的概念与性质- 点估计与区间估计- 估计量的评价标准6. 假设检验- 假设检验的基本思想- 显著性水平与P值- 常用的假设检验方法四、离散数学1. 集合与关系- 集合的基本概念与运算- 关系的基本概念与性质- 等价关系与偏序关系2. 图论基础- 图的基本概念与性质- 路径、回路与图的连通性- 图的着色问题3. 逻辑与布尔代数- 命题逻辑的基本结构- 布尔代数的运算与性质- 逻辑表达式的简化4. 递归与算法复杂度- 递归函数的性质与计算- 算法复杂度的概念与分类- 常见算法的时间复杂度分析请注意,这只是一个基本的大纲和示例内容。
考研数学一详细知识点总结
考研数学一详细知识点总结一、线性代数1. 行列式行列式是线性代数中的一个重要概念,它是一个具有特定数学性质的标量函数,它可以对矩阵进行某种代数计算,得到一个数。
通过行列式的性质和运算法则,我们可以求解线性方程组的解,判断矩阵的逆矩阵是否存在等。
行列式的基本定义、性质和运算法则是线性代数中的重要基础知识点。
2. 矩阵与向量空间矩阵是线性代数中的另一个重要概念,它是一个矩形数组,它是向量空间的一种表达形式。
矩阵的定义、运算法则、转置矩阵、伴随矩阵、特征值和特征向量等都是线性代数中的重要知识点。
3. 线性变换与矩阵的相似变换线性变换是线性代数中的一个重要概念,它是定义在向量空间上的一个运算,将一个向量空间中的一个向量映射到另一个向量空间中的一个向量。
线性变换与矩阵的相似变换在数学和工程中有着广泛的应用,对于理解线性代数的基本概念和运用都具有重要意义。
4. 线性方程组线性方程组是线性代数中的一个重要概念,它是由一系列线性方程构成的方程组。
通过行列式和矩阵的知识可以求解线性方程组的解,判断矩阵的逆矩阵是否存在等。
5. 向量的线性相关性向量的线性相关性是线性代数中的另一个重要概念,它是判断向量空间中向量之间的线性组合是否有零解的一个关键概念。
向量的线性相关性的性质、判断方法和应用是线性代数中的重要知识点之一。
6. 最小二乘法最小二乘法是线性代数中的另一个重要概念,它是一种用于数据拟合和参数估计的数学方法。
通过最小二乘法可以得到一个最优的拟合曲线或者参数估计,它在数学、统计学和工程领域中都有着广泛的应用。
二、概率统计1. 随机事件与概率随机事件是概率统计中的一个重要概念,它是指在一定条件下,结果是不确定的事件。
概率是描述随机事件发生可能性的一种数学方法,它是随机事件发生可能性的度量标准。
随机事件的基本性质和概率的基本性质是概率统计中的基础知识点。
2. 条件概率与独立性条件概率是指在已知一件事情发生的情况下,另一件事情发生的可能性。
高等数学考研知识点总结
高等数学考研知识点总结
嘿,宝子们!今天咱就来唠唠高等数学考研那些知识点哈!
先来说说函数极限吧!就好比你跑步,你能跑的最远距离就是那个极限呀!比如说,给你个函数 f(x) = (x - 1)/(x - 1),当 x 趋近于 1 的时候,这极限不就等于 1 嘛,这多明显呀!
然后呢,还有导数!导数就像是汽车的速度表,能告诉你函数变化的快慢。
就像曲线y = x²,它的导数就是 2x 呀,这就是告诉你在每个点上变化得有多快!“哎呀,这导数可太重要啦!”
再说说积分呀!积分就像把无数个小碎片拼成一个完整的东西。
比如你要计算一个图形的面积,用积分不就能搞定嘛!“哇塞,积分真的好神奇呀!”
高等数学里还有无穷级数呢!这就好像是一串无穷无尽的糖果,你得好好研究怎么去数清楚呀!像幂级数,那可真是考研的重点呀!
高等数学可不简单,但咱别怕呀!只要咱认真学,肯定能搞定它。
就像爬山一样,虽然过程累,但爬到山顶那一刻,哇,那感觉超棒的!宝子们,
加油呀!咱一定能在高等数学考研的道路上取得胜利!我相信你们都可以的!这就是我的观点,高等数学难,但我们能战胜它!。
考研数二知识点归纳总结
考研数二知识点归纳总结考研数学二,通常指的是高等数学和线性代数的组合。
以下是对考研数学二知识点的归纳总结:# 高等数学部分1. 函数、极限、连续性- 函数的概念与性质- 极限的定义与性质- 无穷小的比较- 函数的连续性与间断点2. 一元函数微分学- 导数的定义与几何意义- 基本初等函数的导数- 高阶导数- 微分中值定理- 洛必达法则- 函数的单调性与极值问题- 曲线的凹凸性与拐点- 函数图形的描绘3. 一元函数积分学- 不定积分与定积分的概念- 基本积分公式- 换元积分法与分部积分法- 定积分的性质与几何意义- 定积分的计算- 广义积分4. 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 方向导数与梯度5. 多元函数积分学- 二重积分与三重积分- 曲线积分与曲面积分- 格林公式、高斯公式与斯托克斯定理6. 无穷级数- 常数项级数的收敛性- 幂级数与泰勒级数- 函数的幂级数展开7. 常微分方程- 一阶微分方程的解法- 高阶微分方程的降阶- 线性微分方程的解法# 线性代数部分1. 矩阵理论- 矩阵的运算- 矩阵的秩与行列式- 逆矩阵与伴随矩阵- 分块矩阵2. 线性空间与线性变换- 向量空间的定义与性质- 基与维数- 线性变换与矩阵表示- 特征值与特征向量3. 线性方程组- 齐次线性方程组与非齐次线性方程组- 高斯消元法- 克拉默法则- 矩阵的行列式与线性方程组的解4. 特征值问题与二次型- 特征值与特征向量的计算- 对称矩阵的谱分析- 二次型的标准化与规范型5. 内积空间与正交性- 内积空间的定义与性质- 正交基与正交投影- 正交变换与酉矩阵6. 矩阵分解- 矩阵的LU分解- 矩阵的QR分解- 奇异值分解(SVD)结束语:考研数学二的知识点广泛且深入,掌握这些基础知识点是解决复杂数学问题的关键。
希望以上的归纳总结能够帮助考生系统地复习和巩固相关知识,为考研数学二的考试做好充分的准备。
考研高数知识点总结
考研高数知识点总结高等数学是考研数学中的重要一部分,对于考研学生来说,掌握高等数学的知识点是非常重要的。
下面是对高等数学知识点的总结,希望对考研学生有所帮助。
一、函数与极限1. 函数的概念:函数的定义域、值域和图像2. 函数的性质:奇偶性、周期性等3. 极限的概念:数列极限和函数极限4. 极限的性质:极限的四则运算、夹逼定理等5. 单调性与有界性:单调递增、单调递减、有界二、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的运算法则:加法减法法则、乘法法则、复合函数法则等3. 高阶导数与隐函数求导4. 微分与微分近似三、高阶导数与泰勒公式1. 高阶导数的定义与运算法则2. 泰勒展开式与泰勒公式四、不定积分与定积分1. 不定积分的概念与运算法则2. 反常积分:可积性、柯西准则、比较判别法等3. 定积分的概念与性质:函数积分的线性性、可加性、区间可加性等4. 牛顿-莱布尼茨公式与定积分的应用五、多元函数与偏导数1. 多元函数的定义与性质:定义域、值域、图像等2. 偏导数的概念:一阶偏导数、高阶偏导数3. 隐函数求导与全微分的概念4. 多元函数的极值与条件极值六、重积分与曲线曲面积分1. 二重积分的概念与计算方法:极坐标法、换元法、直角坐标系下的积分法2. 三重积分的概念与计算方法:柱面坐标法、球面坐标法、直角坐标系下的积分法3. 曲线积分与曲面积分的概念与计算方法七、常微分方程1. 常微分方程的基本概念:初值问题、解的存在唯一性2. 高阶线性常微分方程与常系数齐次线性方程3. 常微分方程的解法:分离变量法、齐次方程法、一阶线性非齐次方程法等4. 常微分方程的应用:动力学模型、电路网络分析等八、级数1. 级数的概念与基本性质:收敛、发散、极限、级数的四则运算等2. 正项级数与比较判别法、比值判别法、根值判别法等3. 幂级数与泰勒级数展开高等数学知识点总结完毕,以上知识点对考研的高等数学考试来说是基础中的基础。
硕士数学知识点总结
硕士数学知识点总结一、数学分析1. 极限与连续极限的概念是数学分析的基础,是分析函数的重要工具。
连续性是极限的重要应用,用来描述函数在点上的连续性。
在数学分析中,极限与连续是最基本的概念之一。
2. 微分与积分微分和积分是数学分析的重要分支,微分主要研究函数的变化规律,积分主要研究函数的面积和曲线长度。
微分和积分是数学分析的核心内容,也是物理、工程、经济等领域中最常见的数学工具。
3. 函数和级数函数是数学分析中的一个重要概念,级数是分析中的另一个重要概念。
函数是数学分析中研究的基本对象,级数是分析中用来研究无穷和的工具。
4. 泛函分析泛函分析是数学分析的重要分支之一,主要研究无穷维空间中的函数和算子。
泛函分析是抽象数学的重要分支,在数学分析及其应用中有着重要的作用。
5. 复变函数复变函数是数学分析中的一个重要分支,主要研究复数域上的函数。
复变函数是数学分析的重要组成部分,又是其他数学领域的重要工具。
6. 偏微分方程偏微分方程是数学分析中研究的一个重要对象,主要研究多元函数的变化规律。
偏微分方程是数学分析的重要应用,是物理、工程、经济等领域中最常见的数学工具之一。
二、代数学1. 线性代数线性代数是代数学的一个重要分支,主要研究向量空间及其上的线性运算。
线性代数是数学中的一门重要基础课,也是其他数学领域的重要工具。
2. 抽象代数抽象代数是代数学的一个重要分支,主要研究抽象代数结构及其性质。
抽象代数是现代数学的一个重要分支,与实际生活和工程实践有着密切的联系。
3. 群论群论是代数学的一个重要分支,主要研究群及其作用。
群论是现代数学的一个重要分支,对于代数、几何、拓扑等领域有着重要的应用。
4. 环论环论是代数学的一个重要分支,主要研究环及其作用。
环论是现代数学的一个重要分支,对于代数、几何、拓扑等领域有着重要的应用。
5. 域论域论是代数学的一个重要分支,主要研究域及其作用。
域论是现代数学的一个重要分支,对于代数、几何、拓扑等领域有着重要的应用。
考研数学常考知识点整理
考研数学常考知识点整理一、代数部分1.1 数学基础知识1.1.1 函数与方程1.1.1.1 基本函数与其性质1.1.1.2 方程与不等式1.1.2 数列与数列极限1.1.2.1 等差数列与等比数列1.1.2.2 数列极限的定义与性质1.1.3 概率与统计1.1.3.1 随机事件与概率计算1.1.3.2 排列组合与基本统计知识二、微积分部分2.1 极限与连续2.1.1 极限的定义与性质2.1.2 连续的概念与判定2.2 导数与微分2.2.1 导数的定义与性质2.2.2 微分的概念与计算2.3 积分2.3.1 不定积分与定积分的概念2.3.2 基本积分公式与常见积分方法2.3.3 几何应用与物理应用三、线性代数部分3.1 矩阵与行列式3.1.1 矩阵的基本运算与性质3.1.2 行列式的定义与计算3.2 向量空间与线性变换3.2.1 向量空间与子空间的概念3.2.2 线性变换的定义与性质四、概率论与数理统计部分4.1 随机变量与概率分布4.1.1 随机变量的定义与常见概率分布 4.1.2 期望与方差的计算4.2 参数估计与假设检验4.2.1 参数估计的方法与性质4.2.2 假设检验的基本原理与步骤五、常微分方程部分5.1 一阶常微分方程5.1.1 可分离变量与线性方程5.1.2 齐次方程与一阶线性方程 5.2 高阶常微分方程5.2.1 二阶常系数线性齐次方程5.2.2 二阶非齐次线性方程六、离散数学部分6.1 图论与树6.1.1 图的基本概念与性质6.1.2 树的定义与常见性质6.2 排列组合与离散概率6.2.1 排列与组合的基本计算6.2.2 离散概率的计算与应用以上是考研数学常考知识点的整理,希望对你的学习有所帮助。
记得多做练习题,夯实基础,理解概念及性质,注重对解题方法的掌握与应用。
加油!。
考研数学现代知识点归纳
考研数学现代知识点归纳考研数学现代知识点归纳是帮助考生系统地梳理和掌握线性代数、概率论与数理统计等现代数学的基本概念、原理和方法。
以下是对这些知识点的归纳总结:线性代数部分:1. 矩阵理论:矩阵的基本概念,矩阵的运算,包括矩阵的加法、乘法、转置、求逆等。
矩阵的秩、特征值和特征向量,以及它们在矩阵分解中的应用。
2. 向量空间:向量空间的定义,基和维数的概念,以及向量空间的子空间。
3. 线性变换:线性变换的定义,线性变换的矩阵表示,以及线性变换的性质。
4. 特征值问题:特征值和特征向量的计算方法,以及它们在实际问题中的应用。
5. 二次型:二次型的定义,标准型和规范型的转换,以及正定二次型的概念。
概率论与数理统计部分:1. 随机事件与概率:随机事件的定义,概率的基本概念,以及概率的计算方法。
2. 随机变量及其分布:随机变量的定义,离散型随机变量和连续型随机变量的区别,以及它们的概率分布。
3. 多维随机变量:多维随机变量的联合分布,边缘分布,以及条件分布。
4. 大数定律与中心极限定理:大数定律和中心极限定理的表述,以及它们在统计推断中的应用。
5. 统计量与抽样分布:统计量的定义,常见的抽样分布,以及它们在参数估计和假设检验中的作用。
6. 参数估计:点估计和区间估计的方法,以及估计量的优良性准则。
7. 假设检验:假设检验的基本概念,包括单尾检验和双尾检验,以及常见的检验方法。
8. 回归分析:简单线性回归和多元线性回归的概念,以及它们在数据分析中的应用。
结束语:考研数学现代知识点的归纳不仅要求考生对理论知识有深入的理解,还要求能够灵活运用这些知识解决实际问题。
希望以上的归纳能够帮助考生在备考过程中更加系统和高效地掌握现代数学的知识点。
考研数学二必背公式及知识点
考研数学二必背公式及知识点考研数学二对于很多考生来说是具有一定挑战性的科目,其中掌握必背的公式和知识点是取得好成绩的关键。
下面就为大家详细梳理一下考研数学二中那些必须牢记的公式和重要知识点。
一、函数、极限、连续1、函数的性质奇偶性:若 f(x) = f(x),则函数 f(x) 为偶函数;若 f(x) = f(x),则函数 f(x) 为奇函数。
周期性:若存在非零常数 T,使得对于任意 x,都有 f(x + T) =f(x),则函数 f(x) 为周期函数,T 为其周期。
2、极限的计算四则运算法则:若 lim f(x) = A,lim g(x) = B,则 lim f(x) ± g(x)= A ± B;lim f(x) × g(x) = A × B;lim f(x) / g(x) = A / B (B ≠ 0)。
两个重要极限:lim (1 + 1/x)^x = e (x → ∞);lim sin x / x= 1 (x → 0)。
3、连续的定义函数 f(x) 在点 x₀处连续,当且仅当 lim f(x) = f(x₀) (x → x₀)。
二、一元函数微分学1、导数的定义函数 y = f(x) 在点 x₀处的导数 f'(x₀) = lim f(x₀+Δx) f(x₀) /Δx (Δx → 0)。
2、基本导数公式(x^n)'= nx^(n 1)(sin x)'= cos x(cos x)'= sin x(e^x)'= e^x(ln x)'= 1 / x3、导数的四则运算f(x) ± g(x)'= f'(x) ± g'(x)f(x) × g(x)'= f'(x)g(x) + f(x)g'(x)f(x) / g(x)'= f'(x)g(x) f(x)g'(x) / g(x)²(g(x) ≠ 0)4、复合函数求导法则若 y = f(u),u = g(x),则 dy/dx = dy/du × du/dx5、微分的定义dy = f'(x)dx6、罗尔定理、拉格朗日中值定理、柯西中值定理罗尔定理:若函数 f(x) 满足在闭区间 a, b 上连续,在开区间(a, b) 内可导,且 f(a) = f(b),则在(a, b) 内至少存在一点ξ,使得 f'(ξ) =0。
考研数一知识点总结大全
考研数一知识点总结大全一、极限与连续1. 函数极限:定义、性质、极限存在准则、无穷小与无穷大、夹逼定理、洛必达法则等。
2. 数列极限:定义、性质、单调有界数列的极限、无穷小与无穷大、柯西收敛准则等。
3. 连续性:函数连续的概念、常用函数的连续性、间断点的分类与性质、闭区间连续函数的性质等。
二、微分学1. 导数的定义:函数在一点处的导数、导数的几何意义、导数的物理意义等。
2. 导数的运算:常见函数的导数、高阶导数、导数的四则运算、高阶导数的Leibniz 公式等。
3. 微分中值定理:拉格朗日中值定理、柯西中值定理、洛必达法则等。
4. 隐函数与参数方程的求导:隐函数的导数、参数方程的求导、高阶导数的计算等。
三、积分学1. 不定积分:基本初等函数的不定积分、换元积分法、分部积分法等。
2. 定积分:定积分的定义、性质、牛顿-莱布尼茨公式、定积分中值定理等。
3. 积分中值定理:第一中值定理、第二中值定理等。
4. 微积分基本定理:微积分基本定理的两种形式、牛顿公式、柯西公式、Leibniz公式等。
四、级数1. 数项级数的收敛性:数项级数的概念、正项级数的收敛性判别法、一般项级数的审敛法、绝对收敛与条件收敛等。
2. 收敛级数的性质:收敛级数的四则运算、级数收敛性的不等式判别法、级数收敛的Cauchy准则等。
3. 函数项级数:函数项级数的概念、一致收敛性、函数项级数的积分法、逐项积分与微分等。
五、常微分方程1. 常微分方程的基本概念:常微分方程的定义、解的概念、初值问题、解的存在唯一性等。
2. 一阶常微分方程:可分离变量方程、一阶线性微分方程、齐次方程及一阶可降阶线性微分方程等。
3. 高阶常微分方程:高阶线性常微分方程、常系数齐次线性方程、常系数非齐次线性方程、欧拉方程等。
4. 线性常微分方程组:齐次线性常微分方程组、非齐次线性常微分方程组、解的结构等。
六、偏微分方程1. 偏微分方程的基本概念:偏微分方程的定义、分类、特征曲线、解的概念等。
考研必看考研数学基础知识点梳理(高数篇)
考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。
考研高等数学基本知识点大全
高等数学基本知识点一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即A A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。
(完整版)考研高等数学知识点总结
高等数学知识点总结导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本人提供超强考研英语万能大作文模板,极适合英语基础差或对考研英语作文头疼的同学,本人今年考上的研究生,英语基础非常差,要是自己写可以说一个完整没错的句子都写不出,但使用此套模板考研作文答的非常好(可使您轻松16+(满分20)),而且节约了大量时间做其他的题目(考试时时间是非常紧的!),此套模板绝对是经实践检验的!大家知道考研单科受限绝大多数都是出在英语上,英语难是出了名的,尤其对英语基础稍差的更是头疼,害怕总分考得很高
却挂在英语上实在可惜,平时花费大量时间在英语上效果却不理想。
本套模板的特点是量少,只有四篇,涵盖全部四个类型,同学们也清楚如果给你几十上百的模板或压题我感觉就跟没给一样,因为你根本就不可能把那么多文章都弄熟了,时间上也不允许,尤其对英语基础稍差的,记英语的东西本来就很困难,而本套模板量很少就能方便同学很快掌握,熟练运用。
而且本套模板功能十分强大!任何考研题目都能完美套用,保证了您打高分,最后一个特点是模板内所需根据题目填写的词极少,可以说95%的都已给出,大家知道市面上我们见到的所谓模板往往就一个骨架,净是些连接性语句,大多数语句都还要自己写,这对英语基础稍差的无疑是困难的,而本模板就不同了,只要你考前将模板背熟写熟,上考场就可快速写出了!我也是今年考上的研究生,本套模板是经本人和同学实践检验的,大作文都可打到16+.本套价格100/份。
考研英语作文模板,超强!本人已考上研究生,现有考研英语超强作文万能模板,本套模板含四篇,含盖了四大类不同形式,本套模板句型复杂多变,需填文字极少!而且不论考什么题目都能用!保证大作文16+(满分20)不但能使您做文拿个高分,而且节约了大量时间做别的题目!此万能模板决对不同于辅导班的作文,本人也上过辅导班,而且当时同学也上了很多,基本大的辅导班都上了,相信你们已经上过英语辅导班的也都清楚了,那些老师就是能吹,时不时的说我跟命题的有什么什么关系,再就是讲些笑话说点轶闻什么的,根本就没什么收获,花几百块钱还不说,还浪费了我们大量宝贵时光!!!那些辅导班冲刺班提供的作文资
料不是一大本很厚的书就是只有一些连接词的所谓的作文模板,你们也可问一下学长什么的就知道辅导班的真实情况了!有需要的加qq727+9999+38 价格100/份,绝对超值了!比花几百上个辅导班却没什么效果不知强多少倍! 简单的说使用此模板需要你写的只有两句话加一个短语:一句描写图画内容,一句点明图画的思想,还有一个词就是中心词,使用很方便。
买模板一并赠送详细使用方法说明。
大家关心的关于考研作文的一些问题:
1 考研英语跟英语四六级的差异?
根据我当时考的经验,确实英语四六级考得很好的最后考研英语成绩却不如差得,我感觉这是因为他们准备不充分导致的,英语好的往往认为自己英语好,四六级都考得很好,就一步步扎实复习了,而学的差的往往作文都会准备模板去套,结果考得挺好,实际英语好的是没认清考研作文跟四六级的巨大区别,还是按四六级的来导致成绩很不理想,考研大作文要求是很高的,不光要写得出,而且要求句式复杂多变,并使用高级词汇,而且字数要求也多,否则即使写出也得不了高分,而且考试时间还紧,很多人因为作文耗费了大量时间导致别的没来得及答或直接蒙了.
2考研英语为什么要使用模板?
大家知道考研英语难,而作文占得分值又很大,并且考研大作文要求高(话题难、字数要求多、句式要求复杂多变、词汇要求用高级的等),而且考试时间又紧,不使用模板是很难得到一个理想分数的,你们也可以先拿一个考研英语真题的作文写一下,看要用多长时间,写出的质量怎么样。
3考研英语为什么能使用作文模板?
考研英语作文虽然非常难,但长期以来却形式很八股,不像四六级那样灵活多变,这也就决定我们可以使用模板,而且英语考试毕竟更注重语言而非思想,所以我们完全可以做出好的作文模板。
4网上也能找到很多作文模板,此模板有什么特别之处?
是的,网上也能找到很多作文模板,但都不能令人满意,要不我们也不用一遍又一遍的搜寻作文模板,下了一个又一个,虽然有些相对较好,但都不能满意,我想主要原因有这些:网上的模板大多只提供了个纲或骨架,很多句子还需要你自己去写,这对于英语基础较差写英语句子很困难的人来说无疑是个艰难的任务,另外网上的模板通用性不好,与考研作文的配合性不好,将考研作文带进去后比较牵强别扭等等,这都是网上模板的不足。
而本模板就很好的解决了这些问题,所需自己写的极少,通用性极强,且经本人考试实践,相当实用! 另外关键的问题是网上的模板就那几个,在各大考研论坛、资料网站到处都是,被全国人民所下载使用,而且那些模板从几年前就有,不知被全国人民用了多少年了,使用那些模板考试效果可想而知,老师浏览一下就心中有数,根本不用详读,分数就出来了,难以达到使用模板的高分的目的。