一次函数专题培优讲义,初二数学一次函数专项训练带答案

合集下载

人教版八年级下学期期末复习 第十九章《一次函数》 培优训练含参考答案

人教版八年级下学期期末复习 第十九章《一次函数》 培优训练含参考答案

期末复习:《一次函数》培优训练一.选择题1.下列各曲线中表示y是x的函数的是()A.B.C.D.2.函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠13.设0<k<2,关于x的一次函数y=kx+2(1﹣x),当1≤x≤2时的最大值是()A.2k﹣2 B.k﹣1 C.k D.k+14.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<15.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=6.如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.下列说法中正确的是()A.B点表示此时快车到达乙地B.B﹣C﹣D段表示慢车先加速后减速最后到达甲地C.快车的速度为km/hD.慢车的速度为125km/h7.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个9.已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k<0,m<010.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A.B.C.D.二.填空题11.如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.12.当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是.13.如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为.14.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为.15.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示兔子所行的路程).有下列说法:表示乌龟所行的路程,y2①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)16.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y 轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.17.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m=.18.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.三.解答题19.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.20.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.21.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.22.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.23.某酒厂每天生产A ,B 两种品牌的白酒共600瓶,A ,B 两种品牌的白酒每瓶的成本和利润如下表:设每天生产A 种品牌白酒x 瓶,每天获利y 元.(1)请写出y 关于x 的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?24.已知一次函数y =2x ﹣4的图象与x 轴、y 轴分别相交于点A 、B ,点P 在该函数的图象上,P 到x 轴、y 轴的距离分别为d 1、d 2.(1)当P 为线段AB 的中点时,求d 1+d 2的值;(2)直接写出d 1+d 2的范围,并求当d 1+d 2=3时点P 的坐标;(3)若在线段AB 上存在无数个P 点,使d 1+ad 2=4(a 为常数),求a 的值.25.一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.货车的路程y1(km),小轿车的路程y2(km)与时间x(h)的对应关系如图所示.(1)甲乙两地相距多远?小轿车中途停留了多长时间?(2)①写出y1与x的函数关系式;②当x≥5时,求y2与x的函数解析式;(3)货车出发多长时间与小轿车首次相遇?相遇时与甲地的距离是多少?26.如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案一.选择题1.解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D 正确.故选:D.2.解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.3.解:原式可以化为:y=(k﹣2)x+2,∵0<k<2,∴k﹣2<0,则函数值随x的增大而减小.∴当x=1时,函数值最大,最大值是:(k﹣2)+2=k.故选:C.4.解:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选:C.5.解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选:C.6.解:A、B点表示快车与慢车出发4小时两车相遇;故本选项错误;B、B﹣C﹣D段表示快、慢车相遇后行驶一段时间快车到达乙地,慢车继续行驶,慢车共用了12小时到达甲地故本选项错误;C、快车的速度=﹣=(km/h);故本选项正确;D、慢车的速度==(km/h);故本选项错误;故选:C.7.解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x ≤2,s =,当2<x ≤3,s =1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分. 故选:C .8.解:由图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A 城的距离y 与t 的关系式为y 甲=kt ,把(5,300)代入可求得k =60,∴y 甲=60t ,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt +n ,把(1,0)和(4,300)代入可得,解得,∴y 乙=100t ﹣100,令y 甲=y 乙可得:60t =100t ﹣100,解得t =2.5,即甲、乙两直线的交点横坐标为t =2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y 甲﹣y 乙|=50,可得|60t ﹣100t +100|=50,即|100﹣40t |=50,当100﹣40t =50时,可解得t =,当100﹣40t =﹣50时,可解得t =,又当t =时,y 甲=50,此时乙还没出发,当t =时,乙到达B 城,y 甲=250;综上可知当t 的值为或或或t =时,两车相距50千米, ∴④不正确; 综上可知正确的有①②共两个,故选:B .9.解:∵一次函数y =kx ﹣m ﹣2x 的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,∴k ﹣2<0,﹣m <0,∴k <2,m >0.故选:A .10.解:∵OB =,OC =1, ∴BC =2,∴∠OBC =30°,∠OCB =60°.而△AA 1B 1为等边三角形,∠A 1AB 1=60°,∴∠COA 1=30°,则∠CA 1O =90°.在Rt △CAA 1中,AA 1=OC =,同理得:B 1A 2=A 1B 1=,依此类推,第n 个等边三角形的边长等于.故选:A .二.填空题(共8小题)11.解:∵正比例函数y =x 也经过点A ,∴kx +b <x 的解集为x >3,故答案为:x >3. 12.解:y =(2﹣2k )x +k ﹣3经过第二、三、四象限,∴2﹣2k <0,k ﹣3<0,∴k >1,k <3,∴1<k <3;故答案为1<k <3;13.解:根据三个函数图象所在象限可得a <0,b >0,c >0,再根据直线越陡,|k |越大,则b >c .则b >c >a ,故答案为:a <c <b .14.解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16.即线段BC扫过的面积为16.故答案为16.15.解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y 1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=47.5,y 1=y2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.16.解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.17.解:∵一次函数y=(m+4)x+m+2的图象不过第二象限,∴,解得﹣4<m≤﹣2,而m是整数,则m=﹣3或﹣2.故填空答案:﹣3或﹣2.18.解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得,﹣x﹣3>2x﹣14解得,x<4.故答案为:x<4.三.解答题(共8小题)19.解:(1)把A(﹣2,﹣1),B(1,3)代入y=kx+b得,解得.所以一次函数解析式为y=x+;(2)把x=0代入y=x+得y=,所以D点坐标为(0,),所以△AOB的面积=S△AOD +S△BOD=××2+××1=.20.解:(1)设直线的解析式为y=kx+b,把A(﹣1,5),B(3,﹣3)代入,可得:,解得:,所以直线解析式为:y=﹣2x+3,把P(﹣2,a)代入y=﹣2x+3中,得:a=7;(2)由(1)得点P的坐标为(﹣2,7),令x=0,则y=3,所以直线与y轴的交点坐标为(0,3),所以△OPD的面积=.21.解:(1)∵直线y=﹣x+8与x轴,y轴分别交于点A,点B,∴A(6,0),B(0,8),在Rt△OAB中,∠AOB=90°,OA=6,OB=8,∴AB==10,∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上,∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0),由题意可知CD=BD,CD2=BD2,在Rt△OCD中,由勾股定理得162+y2=(8﹣y)2,解得y=﹣12.∴点D的坐标为D(0,﹣12),可设直线CD的解析式为y=kx﹣12(k≠0)∵点C(16,0)在直线y=kx﹣12上,∴16k﹣12=0,解得k=,∴直线CD的解析式为y=x﹣12.22.解:(1)慢车的速度=180÷(﹣)=60千米/时,快车的速度=60×2=120千米/时;(2)快车停留的时间:﹣×2=(小时),+=2(小时),即C(2,180),设CD的解析式为:y=kx+b,则将C(2,180),D(,0)代入,得,解得,∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x≤);(3)相遇之前:120x+60x+90=180,解得x=;相遇之后:120x+60x﹣90=180,解得x=;快车从甲地到乙地需要180÷120=小时,快车返回之后:60x=90+120(x﹣﹣)解得x=综上所述,两车出发后经过或或小时相距90千米的路程.23.解:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得y=20x+15(600﹣x)=5x+9000;(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得50x+35(600﹣x)≥26400,解得x≥360,∴每天至少获利y=5x+9000=10800.24.解:(1)对于一次函数y=2x﹣4,令x=0,得到y=﹣4;令y=0,得到x=2,∴A(2,0),B(0,﹣4),∵P为AB的中点,∴P(1,﹣2),则d1+d2=3;(2)①d1+d2≥2;②设P(m,2m﹣4),∴d1+d2=|m|+|2m﹣4|,当0≤m≤2时,d1+d2=m+4﹣2m=4﹣m=3,解得:m=1,此时P1(1,﹣2);当m>2时,d1+d2=m+2m﹣4=3,解得:m=,此时P2(,);当m<0时,不存在,综上,P的坐标为(1,﹣2)或(,);(3)设P(m,2m﹣4),∴d1=|2m﹣4|,d2=|m|,∵P在线段AB上,∴0≤m≤2,∴d1=4﹣2m,d2=m,∵d1+ad2=4,∴4﹣2m+am=4,即(a﹣2)m=0,∵有无数个点,即无数个解,∴a﹣2=0,即a=2.25.解:(1)由图可知,甲乙两地相距420km,小轿车中途停留了2小时;(2)①y1=60x(0≤x≤7);②当x=5.75时,y1=60×5.75=345,x≥5时,设y2=kx+b,∵y2的图象经过(5.75,345),(6.5,420),∴,解得:,∴x≥5时,y2=100x﹣230;(3)x=5时,有y2=100×5﹣230=270,即小轿车在3≤x≤5停车休整,离甲地270km,当x=3时,y1=180;x=5时,y1=300,∴火车在3≤x≤5时,会与小轿车相遇,即270=60x,x=4.5;当0<x≤3时,小轿车的速度为270÷3=90km/h,而货车速度为60km/h,故,货车在0<x≤3时,不会与小轿车相遇,∴货车出发4.5小时后首次与小轿车相遇,距离甲地270km.26.解:(1)对于直线AB:,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t<4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=×4×(t﹣4)=2t﹣8;(3)分为两种情况:①当M在OA上时,OB=OM=2,△COM≌△AOB.∴AM=OA﹣OM=4﹣2=2∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间是2秒钟;M(2,0),②当M在AO的延长线上时,OM=OB=2,则M(﹣2,0),此时所需要的时间t=[4﹣(﹣2)]/1=6秒,即M点的坐标是(2,0)或(﹣2,0).。

经典一次函数培优题含答案及讲解

经典一次函数培优题含答案及讲解

一次函数培优讲解已知一次函数y=ax+b的图像经过一,二,三象限,且与x轴交易点(-2,0),则不等式ax大于b的解集为()A.x>2. B.x<2. Cx>-2. D.x<-2此题正确选项为A解析:∵一次函数的图像过一、二、三象限∴有a>0将(-2,0)代入一次函数解析式则b=2a∴ax>b可化为ax>2a又a>0∴原不等式的解集为x>2在直角坐标系中,纵、横坐标都是整数的点,称为整点.设k为整数,当直线y=x+2与直线y=kx-4的交点为整点时,k的值可以取()个.因为直线y=x+2与直线y=kx-4的交点为整点,让这两条直线的解析式组成方程组,求得整数解即可.由题意得:{y=x+2y=kx-4,解得:{x=6k-1y=6k-1+2,∴k可取的整数解有0,2,-2,-1,3,7,4,-5共8个.若不等式2|x-1|+3|x-3|≤a有解,则实数a最小值是()绝对值的一元一次不等式.算题;分类讨论.类讨论:当x<1或1≤x≤3或x>3,分别去绝对值解x的不等式,然后根据x对应的取值范围得到a的不等式或不等式组,确定a的范围,最后确定a的最小值.≥<1,解得a>6当1≤x≤3,原不等式变为:2x-2+9-3x≤a,解得x≥7-a,∴1≤7-a≤3,解得4≤a≤6;当x>3,原不等式变为:2x-2+3x-9≤a,解得x<>3,解得a>4;综上所述,实数a最小值是4.已知实数a,b,c满足a+b+c不等于0,并且a/b+c=b/c+a=c/a+b=k,则直线y=kx-3一定通过哪三个象限?这个题目不需要证明,只需要判断即可。

首先,令x=0,则y=-3显然只要k>0 则,过1,3,4象限。

只要k<0 则,过2,3,4象限。

由a/b+c=b/c+a=c/a+b=k,显然a=b=c=1的时候,满足所有条件,而此时k》0所以过1,3,4象限。

再如a=b=c=-1的时候,也满足,此时k=0 , 那么y = -3 ,只过3、4象限。

2020——2021学年人教版 八年级数学下册 第十九章 一次函数 培优训练(含答案)

2020——2021学年人教版 八年级数学下册 第十九章 一次函数 培优训练(含答案)

人教版 八年级下册 第十九章 一次函数 培优训练一、选择题1. (2019•陕西)在平面直角坐标系中,将函数3y x 的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为 A .(2,0) B .(–2,0) C .(6,0) D .(–6,0)2. 函数y =kx +b 的图象如图,则当y <0时,x 的取值范围是( ) A .x <-2 B .x >-2 C .x <-1 D .x >-13. 设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A. 2a +3b =0B. 2a -3b =0C. 3a -2b =0D. 3a +2b =04. 若k ≠0,b <0,则y =kx +b 的图象可能是( )5. 如图,一次函数y 1=x +b与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( ) A. x >-2 B. x >0 C. x >1 D. x <16. 某通信公司就上宽带网推出了A ,B ,C 三种月收费方式,这三种收费方式每月所需的费用y (元)与上网时间x (h)的函数关系如图所示,则下列判断错误..的是( )A .每月上网时间不足25 h 时,选择A 方式最省钱B .每月上网费用为60元时,B 方式可上网的时间比A 方式多C .每月上网时间为35 h 时,选择B 方式最省钱D .每月上网时间超过70 h 时,选择C 方式最省钱7. 在坐标平面上,某个一次函数的图象经过(5,0)、(10,-10)两点,则此函数图象还会经过下列哪点( )A. (17,947)B. (18,958)C. (19,979)D. (110,9910)8. 如图所示,向一个半径为R ,容积为V 的球形容器内注水,则能够反映容器内水的体积y 与容器内水深x 间的函数关系的图象可能是( )二、填空题9. 已知3a y ax -=,若y 是x 的正比例函数,则a 的值是 .10. 若一次函数y =-2x +b (b 为常数)的图象经过第二、三、四象限,则b 的值可以是________(写出一个即可).11. 如图所示的是函数y kx b =+与y mx n =+的图象,求方程组kx b ymx n y +=⎧⎨+=⎩的解关于原点对称的点的坐标是________.12. (2019•上海)在登山过程中,海拔每升高1千米,气温下降6 °C,已知某登山大本营所在的位置的气温是2 °C,登山队员从大本营出发登山,当海拔升高x 千米时,所在位置的气温是y °C,那么y关于x的函数解析式是__________.13. 某油桶内有油20升,它有一个进油管和一个出油管,进油管每分钟进油4升,出油管每分钟出油6升.现同时打开两管,则油桶中剩余油量Q(升)与开管时间t (分)之间的函数关系式是,自变量t的取值范围是.14. 若点M(k-1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k-1)x +k的图象不经过...第________象限.15. 甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发.在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示.则乙到终点时,甲距终点的距离是________米.16. 如图所示,已知点C(1,0),直线y=-x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是________.三、解答题17. 某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件. (1)求k ,b 的值;(2)求销售该商品每周的利润w (元)与销售单价x (元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.18. 小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与所用的时间x (时)之间关系的函数图象.⑴根据图象回答:小明到达离家最远的地方需几小时?此时离家多远? ⑵小明出发两个半小时离家多远? ⑶小明出发多长时间距家12千米?时间(小时)4653212051015253019. 公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆.已知每辆甲种货车一次最多运送机器45台,租车费用为400元,每辆乙种货车一次最多运送机器30台,租车费用为280元.(1)设租用甲种货车x 辆(x 为非负整数),试填写表格:(2)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.20. 阅读:我们知道,在数轴上,1x =表示一个点,而在平面直角坐标系中,1x =表示一条直线;我们还知道,以二元一次方程210x y -+=的所有解为坐标的点组成的图形就是一次函数21y x =+的图象,它也是一条直线,如图①.观察图①可以得出:直线1x =与直线21y x =+的交点P 的坐标(1,3)就是方程组1210x x y =⎧⎨-+=⎩的解,所以这个方程组的解为13x y =⎧⎨=⎩; 在直角坐标系中,1x ≤表示一个平面区域,即直线1x =以及它左侧的部分,如图②;21y x ≤+也表示一个平面区域,即直线21y x =+以及它下方的部分,如图③.(1)y=2x+1x=1yxO P (1,3)Ox yx=1(2)O xyy=2x+1(3)回答下列问题.⑴在下面的直角坐标系中,用作图象的方法求出方程组122x y x =-⎧⎨=-+⎩的解;O xyO xy2O x yy 1=2x+1(4)⑵在上面的直角坐标系中,用阴影表示2220x y x y ≥-⎧⎪≤-+⎨⎪≥⎩所围成的区域.⑶如图⑷,表示阴影区域的不等式组为: .人教版 八年级下册 第十九章 一次函数 培优训练-答案一、选择题 1. 【答案】B【解析】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+,此时与x 轴相交,则0y =, ∴360x +=,即2x =-, ∴点坐标为(–2,0), 故选B .2. 【答案】B3. 【答案】D【解析】把点A (a ,b )代入y =-32x ,得b =-32a ,即2b =-3a ,∴3a +2b =0.4. 【答案】B 【解析】由k ≠0可知y =kx +b 是一次函数,图象不是上升就是下降,排除D ,由b <0可知,直线y =kx +b 与y 轴交于负半轴,排除A 、C ,故选B.5. 【答案】C 【解析】结合题图可知不等式x +b >kx +4的解集为函数图象y 1在y 2上方的函数图象所对的自变量取值,即x >1.6. 【答案】D [解析] 当x ≥50时,由(50,50)和(55,65)求得B 方式的解析式为y =3x-100.令y=120,得120=3x-100,解得x=.所以当x>时,选C 方式更省钱,可见选项D 错误.故选D .7. 【答案】C【解析】设该一次函数的解析式为y =kx +b (k ≠0),将点(5,0)、(10,-10)代入到y =kx +b 中得,⎩⎨⎧0=5k +b -10=10k +b ,解得⎩⎨⎧k =-2b =10,∴该一次函数的解析式为y =-2x +10.A.y =-2×17+10=957≠947,该点不在直线上;B.y =-2×18+10=934≠958,该点不在直线上;C.y =-2×19+10=979,该点在直线上;D.y =-2×110+10=945≠9910,该点不在直线上.8. 【答案】A【解析】在函数图象上,图象越靠近y 轴正半轴,则容器内水体积增大的速度越大;当x <R 时,球形容器中水平面圆的半径逐渐增大,故随着x 的增大,容器内水的体积增大的速度为先小后大,故排除B 、C 、D ;当x >R 时,球形容器中水平面圆的半径逐渐减小,故随着x 的增大,容器内水的体积增大的速度为先大后小,故选A.二、填空题 9. 【答案】4【解析】正比例函数的比例系数0a ≠且31a -=10. 【答案】-1(答案不唯一,满足b <0即可) 【解析】∵一次函数y =-2x +b 的图象经过第二、三、四象限,∴b <0,故b 的值可以是-1.11. 【答案】()34--,【解析】考察一次函数与二元一次方程组的关系,在平面直角坐标系内可知两个直线的交点坐标为()34,,所以它关于远点的对称的点的坐标是()34--,12. 【答案】y=-6x+2【解析】根据题意得y=–6x+2,故答案为:y=–6x+2.13. 【答案】Q=20-2t0≤t ≤1014. 【答案】一【解析】依据题意,M 关于y 轴对称点在第四象限,则M 点在第三象限,即k -1<0,k +1<0, 解得k<-1.∴一次函数y =(k -1)x +k 的图象过第二、三、四象限,故不经过第一象限.15. 【答案】175 【解析】由图象可知,甲前30秒跑了75米,则甲的速度为7530=2.5米/秒,甲出发180秒时,两人相离0千米,这说明甲出发后180秒时,乙追上了甲,此时两人所行路程相等为180×2.5=450米,乙用的时间为180-30=150秒,所以乙的速度为:450150=3米/秒,由此可以求出乙跑到终点所用时间为:15003=500秒,此时甲跑的时间为500+30=530秒,甲已跑路程为530×2.5=1325米,甲距终点的距离为1500-1325=175米.16. 【答案】10 【解析】作点C 关于y 轴的对称点C 1(-1,0),点C 关于直线AB 的对称点C 2,连接C 1C 2交OA 于点E ,交AB 于点D ,则此时△CDE 的周长最小,且最小值等于C 1C 2的长.∵OA =OB =7,∴CB =6,∠ABC =45°.∵AB 垂直平分CC 2,∴∠CBC 2=90°,∴C 2的坐标为(7,6).在Rt △C 1BC 2中,C 1C 2=C 1B 2+C 2B 2=82+62=10.即△CDE 周长的最小值是10.三、解答题17. 【答案】解:(1)根据题意,得 .k b k b =+⎧⎨=+⎩3050,1070 解得,.k b =-⎧⎨=⎩180∴k 的值为-1,b 的值为80;(2)∵w = (x -40) ( -x +80) =- (x - 60) 2+400, ∴当x =60时,w 有最大值为400元.答:销售该商品每周可获得的最大利润为400元.18. 【答案】⑴3小时,30千米;⑵22.5千米;⑶48分或5小时12分【解析】⑴由图象可知小明到达离家最远的地方需3小时,此时,他离家30千米.⑵∵小明出发2小时时,离家15千米.由于在CD 段小明走的路程为15千米,时间为1小时,故小明这一段的速度为15千米/时.∴150.57.5⨯=(千米)∴7.51522.5+=(千米)∴小明出发两个半小时离家22.5千米.⑶由图象可以看出小明从出发到距离家12千米有两个时刻,一是在AB段,二是在EF段,故分两种情况:①∵小明出发到1小时时,匀速前行,其速度为15千米/时∴12150.8÷=(时),0.8小时=48分②∵小明出发4小时后返回,∴返回时速度为30215÷=(千米/时)∴301215 1.2-÷=()(时)1.2时=1小时12分∴4小时+1小时12分=5小时12分故小明出发48分和出发5小时12分时离家都为12千米.19. 【答案】解:(1)由题意可得,在表一中,当租用甲种货车7辆时,最多运送的机器数量为45×7=315(台),则租用乙种货车8-7=1(辆),最多运送的机器数量为30×1=30 (台).当租用甲种货车x辆时,最多运送的机器数量为45x台,则租用乙种货车(8 -x)辆,最多运送的机器数量为30(8-x)=(-30x+240)台.在表二中,当租用甲种货车3辆时,租用甲种货车的费用为400×3=1200(元),则租用乙种货车8-3=5(辆),租用乙种货车的费用为280×5=1400(元);当租用甲种货车x辆时,租用甲种货车的费用为400x元,则租用乙种货车(8 -x)辆,租用乙种货车的费用为280(8-x)=(-280x+2240)元.故答案为:表一:315,45x,30,-30x+240;表二:1200,400x,1400,-280x+2240.(2)能完成此项运送任务的最节省费用的租车方案是租用甲种货车6辆,乙种货车2辆.理由:当租用甲种货车x辆时,设租用两种货车的总费用为y元,则y=400x+(-280x+2240)=120x+2240.因为45x+(-30x+240)≥330,所以x≥6.又因为8-x≥0,所以x≤8,所以x的取值范围为6≤x≤8且x为整数.因为在函数y=120x+2240中,120>0,所以在函数y=120x+2240中,y 随x 的增大而增大,所以当x=6时,y 取得最小值.即能完成此项运送任务的最节省费用的租车方案是租用甲种货车6辆,乙种货车2辆.20. 【答案】⑴如图⑸,解为14x y =-⎧⎨=⎩;⑵如图⑹;⑶根据图示信息求得2332y x =-+,则021332x y x y x ⎧⎪⎪+⎨⎪⎪-+⎩≥≥≤x=-1x(5)x(6)。

八年级数学期末复习专题-一次函数专题培优(含答案)

八年级数学期末复习专题-一次函数专题培优(含答案)

八年级数学期末复习专题-一次函数专题培优一、选择题:1.下列图象中,以方程-2x+y-2=0的解为坐标的点组成的图象是()2.如图,在正方形ABCD中,AB=3㎝.动点M自A点出发沿AB方向以每秒1㎝的速度运动,同时动点N自A点出发沿折线AD—DC—CB以每秒3㎝的速度运动,到达B点时运动同时停止.设△AMN的面积为y(㎝2),运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是( )3.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为( )A.(2.5,2.5) B.(3,3) C.(,) D.(,)4.如图,点A,B,C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1 B.3 C.3(m﹣1)D.1.5m-35.某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是()A.45.2分钟B.48分钟C.46分钟D.33分钟6.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路线为x,以点A.P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是()7.已知整数x满足-5≤x≤5,y=x+1,y2=-2x+4,对任意一个x,m都取y1,y2中的较小值,则m的最大值是( )1A.1 B.2 C.24 D.-98.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A.B的坐标分别为(1,0)、(4,0),将△ABC 沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.249.甲乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒,在跑步的过程中,甲乙两人之间的距离y(m)与乙出发的时间t(s)之间的函数关系如图所示,给出以下结论①a=8,②b=92,③c=123,其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③10.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为( )A.(0,0)B.(,)C.(-,-)D.(-,-)11.药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药后时间x(时)之间的函数关系如图所示,则当1≤x≤6时,y的取值范围是()A.≤y≤B.≤y≤8C.≤y≤8D.8≤y≤1612.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE 的周长最小时,点E的坐标为()A .(3,1)B .(3,)C .(3,)D .(3,2)二、填空题: 13.如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中A (﹣2,0),B (0,1),则直线BC 的函数表达式为 .14.直线434+-=x y 与x 轴、y 轴分别交于点A .B ,M 是y 轴上一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上,则点M 的坐标为 。

八年级数学一次函数知识点总结及练习题大全(含答案)

八年级数学一次函数知识点总结及练习题大全(含答案)

⼋年级数学⼀次函数知识点总结及练习题⼤全(含答案)⼀次函数⼀、命题趋势本讲内容主要有:正⽐例函数的图象和性质,⼀次函数的图象和性质,图象的平移,⽤待定系数法求解析式,⼀次函数与⼀次⽅程(组)、⼀次不等式(组)的关系以及实际应⽤等。

作为初中阶段的重点内容,测试中⼀般以选择、填空为主,也有作为与其他内容融合的综合题型出现。

(⼀)、⼀次函数y=kx+b 的图象和性质 [考点归纳][答案] ⼀、⼆、三, ⼀、三、四, , ⼀、⼆、四, ⼆、三、四, 增⼤, 增⼤, 减⼩, 减⼩. [考题精粹]1、若⼀次函数y =ax +b 的图象经过第⼀、⼆、四象限,则下列不等式中总是成⽴的是()A .ab >0B .a -b >0C .a 2+b >0D .a +b >0 2、关于直线l :y = kx +k (k ≠0),下列说法不正确的是( )A .点(0,k )在l 上B .l 经过定点(-1,0)C .当k >0时,y 随x 的增⼤⽽增⼤D .l 经过第⼀、⼆、三象限 3、若k ≠0,b <0,则y =kx +b 的图象可能是()4、如图4,点A 的坐标为(0,1),点B 是x 轴正半轴上的⼀动点,以AB 为边作等腰直⾓ABC ?,使?=∠90BAC ,设点B 的横坐标为x ,点C 的纵坐标为y ,能表⽰y 与x 的函数关系的图象⼤致是A B C D [考题评析]k >0 ,b >0k >0 ,b <0 k <0 ,b >0 k <0,b <01、解:∵⼀次函数y =ax +b 的图象经过第⼀、⼆、四象限,∴a <0,b >0,∴a 2>0,则a 2+b >0,选项C 正确.由a <0,b >0,可得ab <0,a -b <0,⼜因a ,b 的绝对值⼤⼩不确定,所以a +b 的正负⽆法确定,因此,选项A 、B 、D 均错误.故选择C .2、解:由直线l :y = kx +k (k ≠0),当x =0时,y =k ,所以点(0,k )在l 上,即A 正确;当x =-1时,y =0,所以l 经过定点(-1,0) ,即B 正确;当k >0时,y 随x 的增⼤⽽增⼤,所以C 正确;当k >0时,l 经过第⼀、⼆、三象限,当k <0时,l 经过第⼆、三、四象限,所以D 错误.故选择D .3、解:对于y=kx+b ,当x=0时,y=b ,即y=kx+b 的图像与y 轴的交点为(0,b ),当b <0时,(0,b )在x 轴下⽅,故y=kx+b 的图像为选项B.4、解:过点C 作CD ⊥y 轴,垂⾜为D ,∵∠DAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠DAC=∠OBA 。

石家庄二中八年级数学下册第十九章《一次函数》(培优专题)

石家庄二中八年级数学下册第十九章《一次函数》(培优专题)

一、选择题1.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫ ⎪⎝⎭B .2,02⎛⎫ ⎪ ⎪⎝⎭C .10,010⎛⎫ ⎪ ⎪⎝⎭D .1,010⎛⎫ ⎪⎝⎭A 解析:A【分析】 作点A 关于x 轴的对称点A',连接A'P ,则AP=A'P ,当A',P ,D 在同一直线上时,AP+DP 的最小值等于A'D 的长,依据待定系数法即可得到直线A'D 的解析式,进而得出点P 的坐标为2,03⎛⎫ ⎪⎝⎭. 【详解】解:如图所示,作点A 关于x 轴的对称点A',连接A'P ,则AP=A'P ,∴AP+DP=A'P+DP ,当A',P ,D 在同一直线上时,AP+DP 的最小值等于A'D 的长,∵AC=BC=2,AB 的中点为D ,∴A (0,2),B (2,0),D (1,1),A'(0,-2),设直线A'D 的解析式为y=kx+b (k≠0),则12k b b =+⎧⎨-=⎩, 解得:32k b =⎧⎨=-⎩,当y=0时,x=23, ∴点P 的坐标为(23,0), 故选:A .【点睛】本题主要考查了最短路线问题以及等腰直角三角形的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.2.已知关于x ,y 的二元一次方程组(7)2(31)5y k x y k x =--⎧⎨=-+⎩无解,则一次函数32y kx =-的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限B 解析:B【分析】先根据二元一次方程组无解,得出k 的值,再利用一次函数图象与系数的关系可得出一次函数的图象经过第一、三、四象限,进而可得出一次函数322y x =-的图象不经过第二象限.【详解】 解:∵(7)2(31)5y k x y k x =--⎧⎨=-+⎩∴(7-k )x-2=(3k-1)x+5(7-k )x-(3k-1)x=7(7-k-3k+1)x=7(8-4k)x=7∵二元一次方程组无解∴8-4k=0解得:k=2∴将k=2代入一次函数32y kx =-得322y x =- ∵k=2﹥0,b=32-<0 ∴一次函数322y x =-的图象不经过第二象限 故选:B本题考查了一次函数图象与系数的关系,牢记“k ﹥0,b <0⇔y =kx +b 的图象在一、三、四象限”是解题的关键.3.下列一次函数中,y 的值随着x 值的增大而增大的是( )A .–1y x =-B .0.3y x =C . 1y x =-+D .y x =-B 解析:B【分析】一次函数y kx b =+中,当0k >时y 的值随着x 值的增大而增大;当0k <时y 的值随着x 值的增大而减小,据此对各选项进行解答即可.【详解】解:A .∵y=-x-1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误; B .∵y=0.3x 中k=0.3>0,∴y 的值随着x 值的增大而增大,故本选项正确;C .∵y=-x+1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误;D .∵y=-x 中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误.故选:B .【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.4.下表反映的是某地区用电量x (千瓦时)与应交电费y (元)之间的关系:②用电量每增加1千瓦时,应交电费增加0.55元;③若用电量为8千瓦时,则应交电费4.4元;④若所交电费为2.75元,则用电量为6千瓦时,其中正确的有( )A .4个B .3个C .2个D .1个B解析:B【分析】根据一次函数的定义,由自变量的值求因变量的值,以及由因变量的值求自变量的值,判断出选项的正确性.【详解】解:通过观察表格发现:每当用电量增加1千瓦时,电费就增加0.55,∴y 是x 的一次函数,故①正确,②正确,设y kx b =+,根据表格,当1x =时,0.55y =,当2x =时, 1.1y =, 0.552 1.1k b k b +=⎧⎨+=⎩,解得0.550k b =⎧⎨=⎩, ∴0.55y x =,当8x =时,0.558 4.4y =⨯=,故③正确,当 2.75y =时,0.55 2.75x =,解得5x =,故④错误.故选:B .【点睛】本题考查一次函数的应用,解题的关键是掌握一次函数的实际意义和对应函数值的求解. 5.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角ABC ,使∠BAC=90°,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是( )A .B .C .D .A解析:A【分析】先作出合适的辅助线,再证明△ADC 和△AOB 的关系,即可建立y 与x 的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x ,OA=1,∠AOB=90°,∠BAC=90°,AB=AC ,点C 的纵坐标是y , 作AD ∥x 轴,作CD ⊥AD 于点D ,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC ,在△OAB 和△DAC 中,AOB ADC OAB DAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OAB ≌△DAC (AAS ),∴OB=CD ,∴CD=x ,∵点C 到x 轴的距离为y ,点D 到x 轴的距离等于点A 到x 的距离1,∴y=x+1(x >0).故选A .【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键. 6.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A .①②B .②③C .②④D .③④D解析:D【分析】 当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键. 7.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( )A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+B 解析:B【分析】设一次函数关系式为y kx b =+,y 随x 增大而增大,则0k >;图象经过点(1,2),可得k 、b 之间的关系式.综合二者取值即可.【详解】解:设一次函数关系式为y kx b =+,图象经过点(1,2),2k b ∴+=; y 随x 增大而增大,0k ∴>.即k 取正数,满足2k b +=的k 、b 的取值都可以.故选:B .【点睛】本题考查了待定系数法求一次函数解析式及一次函数的性质,为开放性试题,答案不唯一.只要满足条件即可.8.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( ) A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量D .2是常量,C 、r 是变量B解析:B【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【详解】解:圆的周长计算公式是c=2πr ,C 和r 是变量,2、π是常量,故选:B .【点睛】本题主要考查了常量,变量的定义,识记的内容是解题的关键.9.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB 段),小丽在图片中建立了坐标系,将AB 段看作一次函数y kx b =+图象的一部分,则k ,b 的取值范围是( )A .0k >,0b <B .0k >,0b >C .0k <,0b <D .0k <,0b >A解析:A【分析】 根据题意和题目中函数图象,可以延长,得到该函数图象经过的象限,从而可以得到k 、b 的正负情况,本题得以解决.【详解】解:由图象可得,该函数经过第一、三、四象限,0k ∴>,0b <,故选:A .【点睛】本题考查了一次函数的应用,一次函数的图象与系数的关系,解答本题的关键是明确题意,利用数形结合思想解答.10.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-C解析:C【分析】 根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.二、填空题11.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx b y mx n =+⎧⎨=+⎩的解为________. (2)若0kx b mx n <+<+,写出x 的取值范围________.【分析】(1)方程组的解就是函数图象的交点坐标的横纵坐标;(2)不等式的解就是当一次函数的图象在一次函数的图象上方时且两者的函数图象都在x 轴上方时x 的取值范围【详解】解:(1)方程组的解就是一次函数解析:34x y =⎧⎨=⎩35x << 【分析】(1)方程组的解就是函数图象的交点坐标的横纵坐标;(2)不等式的解就是当一次函数y mx n =+的图象在一次函数y kx b =+的图象上方时,且两者的函数图象都在x 轴上方时,x 的取值范围.【详解】解:(1)方程组y kx b y mx n=+⎧⎨=+⎩的解就是一次函数y kx b =+与y mx n =+的交点坐标的横纵坐标,由图知,34x y =⎧⎨=⎩; (2)不等式0kx b mx n <+<+的解就是找到图中一次函数y mx n =+的图象在一次函数y kx b =+的图象上方时,且两者的函数图象都在x 轴上方时,x 的取值范围,由图知,35x <<.【点睛】本题考查一次函数与二元一次方程组和不等式的关系,解题的关键是能够理解方程组的解就是函数图象的交点坐标的横纵坐标,以及利用函数图象解不等式的方法.12.直线1:l y kx =与直线2:l y ax b =+在同一平面直角坐标系中的图形如图所示,两条直线相交于点A ,直线x m =分别与两条直线交于M ,N 两点,若AMN 的面积不小于12时,则m 的取值范围是_______. 或【分析】把点A (12)代入直线方程先求出两条直线的解析式然后求出点MN 的坐标再求出MN 的长度利用三角形的面积公式即可求出答案【详解】解:由图可知点A 为(12)直线与y 轴的交点为(01)把点A (12解析:0m ≤或2m ≥【分析】把点A (1,2)代入直线方程,先求出两条直线的解析式,然后求出点M 、N 的坐标,再求出MN 的长度,利用三角形的面积公式,即可求出答案.【详解】解:由图可知,点A 为(1,2),直线2:l y ax b =+与y 轴的交点为(0,1),把点A (1,2)代入1:l y kx =,则2k =;∴12:l y x =;把点A (1,2)和点(0,1)代入2:l y ax b =+,21a b b +=⎧⎨=⎩,解得:11a b =⎧⎨=⎩; ∴2:1=+l y x ;把x m =分别代入两条直线方程,则12y m =,21y m =+,∴点M 的坐标为(m ,2m ),点N 的坐标为(m ,m+1), ∴2(1)1MN m m m =-+=-,∴△AMN 边MN 上的高为:1m - ∵1112AMN S m m ∆=•-•-, 当AMN 的面积等于12时,则 211111(1)222AMN S m m m ∆=•-•-=-=, ∴2m =或0m =, 结合AMN 的面积不小于12, ∴0m ≤或2m ≥;故答案为:0m ≤或2m ≥.【点睛】本题考查了一次函数的性质,解一元一次不等式,求一次函数的解析式,解题的关键是正确的理解题意,掌握一次函数的性质进行解题.13.如图所示的平面直角坐标系中,点A 坐标为(2,2),点B 坐标为(﹣1,1),在x 轴上有点P ,使得AP+BP 最小,则点P 的坐标为_____.(00)【分析】先作点B 关于x 轴的对称点C 再连接AC求出AC 的函数解析式再把y=0代入即可【详解】解:如图作点B 关于x 轴的对称点C 再连接AC 点B 坐标为(﹣11)点B 关于x 轴的对称点C 的坐标为(-1- 解析:(0,0)【分析】先作点B 关于x 轴的对称点C ,再连接AC ,求出AC 的函数解析式,再把y=0代入即可.【详解】解:如图,作点B 关于x 轴的对称点C ,再连接AC ,点B 坐标为(﹣1,1),∴点B 关于x 轴的对称点C 的坐标为(-1,-1),在x 轴上有点P ,∴线段BP 和CP 关于x 轴对称,∴BP=CP ,∴AP+BP= CP+AP ,当AP+BP 取最小值时,最小值即为线段AC 的长,点A 坐标为(2,2),设直线AC 的方程为:y=kx+b ,∴代入A 、C 的坐标,221k b k b +=⎧⎨-+=-⎩,解得10k b =⎧⎨=⎩, ∴AC l y x =:,点P 的纵坐标为0,代入y=0,∴x=0,∴点P 的坐标为(0,0),故答案为:(0,0).【点睛】此题主要考查最短路线问题,综合运用了一次函数的知识,熟练掌握最短路线问题的求解方法是解题的关键.14.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x ,三角形与正方形重叠部分的面积为y ,在下面的平面直角坐标系中,线段AB 表示的是三角形在正方形内部移动的面积图象,C 点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是______.①②③乙【分析】由题意可知三角形没全进入正方形之前重叠部分为直角三角形当三角形即将出正方形之后重叠部分为直角梯形利用面积公式求出两个图形的面积即可判断其图象【详解】设直角三角形的底为a 高为b 运行速度为v 由解析:乙【分析】由题意可知三角形没全进入正方形之前,重叠部分为直角三角形.当三角形即将出正方形之后,重叠部分为直角梯形.利用面积公式求出两个图形的面积即可判断其图象.【详解】设直角三角形的底为a ,高为b ,运行速度为v .由题意可知当三角形没全进入正方形之前,重叠部分为与原三角形相似的直角三角形. ∵重叠部分的直角三角形的底为vx ,∴根据三角形相似,可知:vx a b =重叠直角三角形的高 , 即重叠直角三角形的高=bvx a, ∴22122bvx bv y vx x a a==, ∵a , b , v 都为常数且大于0,∴222bv y x a =是一个开口向上的曲线. 当三角形即将出正方形之后,重叠部分为去掉与原三角形相似的直角三角形的直角梯形. 设正方形边长为l ,则该梯形的高为()l vx a --,下底为b ,根据三角形相似可知:vx l b a -=梯形上底, 即梯形上底()b vx l a -=, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦. ∵a , b , v ,l 都为常数且大于0,∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦中2x 项的系数为202bv a-<, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦是一个开口向下的曲线. ∴只有乙符合.故答案为:乙.【点睛】本题考查动点问题的函数图象.理解三角形运动过程中的分界点,利用三角形和梯形的面积公式列出关于x 的方程来判断其图象是解题关键.15.如图,直线l 是一次函数y kx b =+的图象,若点()4,A m 在直线l 上,则m 的值是____.3【分析】观察函数图象找出点的坐标利用待定系数法可求出直线的函数关系式再利用一次函数图象上点的坐标特征即可求出的值【详解】解:将代入得:解得:直线的函数关系式为当时故答案为:3【点睛】本题考查了一次解析:3【分析】观察函数图象找出点的坐标,利用待定系数法可求出直线l 的函数关系式,再利用一次函数图象上点的坐标特征即可求出m 的值.【详解】解:将(2,0)-,(0,1)代入y kx b =+,得:201k b b -+=⎧⎨=⎩, 解得:121k b ⎧=⎪⎨⎪=⎩,∴直线l 的函数关系式为112y x =+. 当4x =时,14132m =⨯+=. 故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征、函数图象以及待定系数法求一次函数解析式,根据点的坐标,利用待定系数法求出一次函数的解析式是解题的关键.16.已知:一次函数()21y a x =-+的图象不经过第三象限,化简=_________.【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限可得a-2<0进而得到a <2再根据二次根式的性质进行计算即可【详解】解:∵一次函数的图象不经过第三象限∴解得:故答案为:【点睛】本题考解析:52a -【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限,可得a-2<0,进而得到a <2,再根据二次根式的性质进行计算即可.【详解】解:∵一次函数()21y a x =-+的图象不经过第三象限,∴20a -<,解得:2a <,=23a a =-+-23a a =-+-52a =-,故答案为:52a -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:①k >0,b>0⇔y=kx+b 的图象在一、二、三象限;②k >0,b <0⇔y=kx+b 的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.17.如图,直线y=﹣43x+8与x轴、y轴分别交于点A、B,∠BAO的角平分线与y轴交于点M,则OM的长为_____.3【分析】过点M作MH⊥AB于H利用AAS可证△AHM≌△AOM则由全等三角形的性质可得AH=AOHM=OM根据一次函数的解析式可分别求出直线y=﹣x+8与两坐标轴的交点坐标并得OAOB的长由勾股定解析:3【分析】过点M作MH⊥AB于H,利用AAS可证△AHM≌△AOM,则由全等三角形的性质可得AH=AO,HM=OM.根据一次函数的解析式可分别求出直线y=﹣43x+8与两坐标轴的交点坐标,并得OA、OB的长,由勾股定理可求AB.最后在Rt△BMH中利用勾股定理即可求解OM的长.【详解】解:如图,过点M作MH⊥AB于H,∴∠BHM=∠AHM=90°=∠AOM.∵AM平分∠BOA,∴∠HAM=∠OAM.在△AHM和△AOM中,AHM AOM HAM OAM AM AM ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AHM ≌△AOM (AAS ).∴AH =AO ,HM =OM .将x =0代入y =﹣43x +8中,解得y =8, 将y =0代入y =﹣43x +8中,解得x =6, ∴A (6,0),B (0,8).即OA =6,OB =8.∴AB=10.∵AH =AO =6,∴BH =AB -AH =4.设HM =OM =x ,则MB =8-x ,在Rt △BMH 中,BH 2+HM 2=MB 2,即42+x 2=(8-x )2,解得x =3.∴OM =3.故答案为:3.【点睛】此题考查了一次函数的图象与性质、全等三角形的判定与性质等知识,熟练掌握一次函数的性质并能利用辅助线构造全等三角形与直角三角形模型是解本题的关键.18.请写出一个符合下列要求的一次函数的表达式:_______.①函数值y 随自变量x 增大而增大;②函数的图像经过第二象限.(答案不唯一保证即可)【分析】根据题意和一次函数的性质可以写出符合要求的一个一次函数本题得以解决【详解】解:∵一次函数的函数值y 随自变量x 增大而增大∴k >0∵函数的图象经过第二象限∴b >0∴符合下列解析:23y x =+(答案不唯一,保证0k >,0b >即可)【分析】根据题意和一次函数的性质,可以写出符合要求的一个一次函数,本题得以解决.【详解】解:∵一次函数的函数值y 随自变量x 增大而增大,∴k >0,∵函数的图象经过第二象限,∴b >0,∴符合下列要求的一次函数的表达式可以是23y x =+,故答案为:23y x =+(答案不唯一).【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答. 19.在学校,每一位同学都对应着一个学籍号,在数学中也有一些对应.现定义一种对应关系f ,使得数对(),x y 和数z 是对应的,此时把这种关系记作:(),f x y z =.对于任意的数m ,n (m n >),对应关系f 由如表给出:如:1,2213f =+=,2,1211f =-=,1,11f --=-,则使等式()12,32f x x +=成立的x 的值是___________.-1【分析】根据对应关系f 分三种情况求出x 的取值范围以及相应的x 的值再作出判断即可【详解】解:①若1+2x=3x 即x=1则3x=2解得x=(不符合题意舍去);②若1+2x >3x 即x <1则1+2x-3解析:-1.【分析】根据对应关系f ,分三种情况求出x 的取值范围以及相应的x 的值,再作出判断即可.【详解】解:①若1+2x=3x ,即x=1,则3x=2,解得x=23,(不符合题意,舍去); ②若1+2x >3x ,即x <1,则1+2x-3x=2,解得x=-1,③若1+2x <3x ,即x >1,则1+2x+3x=2, 解得x=15(不符合题意,舍去), 综上所述,x 的值是-1.故答案为:-1.【点睛】 本题考查了一元一次不等式及一元一次方程的应用,函数的概念,理解新定义的运算方法是解题的关键,难点在于分情况讨论.20.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______.或【分析】分当时和当时两种情况讨论根据函数的增减性以及y >4即可求得a 的取值范围【详解】解:当时一次函数y =ax +6y 随x 增大而减小在x=3时取得最小值此时解得此时;当时一次函数y =ax +6y 随x 增解析:01a <<或203a <<-【分析】分当0a <时和当0a >时两种情况讨论,根据函数的增减性以及y >4即可求得a 的取值范围.【详解】解:当0a <时,一次函数y =ax +6,y 随x 增大而减小,在x=3时取得最小值, 此时364a +>,解得23a >-,此时203a <<-; 当0a >时,一次函数y =ax +6,y 随x 增大而增大,在x=-2时取得最小值, 此时264a -+>,解得1a <,此时01a <<;综上所述,01a <<或203a <<-. 故答案为:01a <<或203a <<-. 【点睛】本题考查一次函数的增减性,一次函数与一元一次不等式.能分类讨论是解题关键. 三、解答题21.要从甲、乙两仓库向A 、B 两工地运送水泥.已知甲仓库可运出100吨水泥,乙仓库可运出80吨水泥;A 工地需要70吨水泥,B 工地需要110吨水泥.两仓库到A 、B 两工地的路程和每吨每千米的运费如下表:B 地水泥__________吨;乙仓库运往A 地水泥________吨,乙仓库运往B 地水泥_______吨.(2)试用x 的代数式表示总运费.(3)总运费能达到3695元吗?若能,求出此时甲仓库应运往A 地多少吨水泥;若不能,说明理由.解析:(1)100x -,70x -,10x +;(2)33920y x =-+;(3)能,75吨【分析】(1)用甲仓库一共可运出的100吨水泥减去x 得到甲仓库运往B 地的水泥吨数,用A 工地需要的水泥减去x 得到乙仓库运往A 工地的水泥吨数,用同样的方法得到乙仓库运往B 地的水泥吨数;(2)设总运费是y 元,根据表格中的距离和运费列出总费用的表达式;(3)令(2)中的3695y =,解出x 的值即可.【详解】解:(1)设甲仓库运往A 地水泥x 吨,则甲仓库运往B 地水泥()100x -吨; 乙仓库运往A 地水泥()70x -吨,乙仓库运往B 地水泥()110100x --⎡⎤⎣⎦吨故答案是:100x -,70x -,10x +;(2)设总运费是y 元,()()()1.220125100 1.215700.82010y x x x x =⨯+⨯-+⨯-+⨯+,整理得:33920y x =-+;(3)令3695y =,则339203695x -+=,解得75x =,答:可以,此时甲仓库应运往A 地75吨水泥.【点睛】本题考查一次函数的实际应用,解题的关键是根据题意列出函数关系式进行求解. 22.如图,一次函数y kx b =+的图象与x 轴交于点A ,与y 轴交于点()0,2B ,与正比例函数32y x =的图象交于点()4,C c . (1)求k 和b 的值. (2)如图1,点P 是y 轴上一个动点,当PA PC -最大时,求点P 的坐标.(3)如图2,设动点D ,E 都在x 轴上运动,且2DE =,分别连结BD ,CE ,当四边形BDEC 的周长取最小值时直接写出点D 和E 的坐标.解析:(1)1k =,2b =;(2)()0,6P ;(3)5,02E ⎛⎫⎪⎝⎭,1,02D ⎛⎫ ⎪⎝⎭. 【分析】(1)将C 的坐标代入正比例函数中,求出点C 坐标,进而用待定系数法即可得出结论; (2)利用三角形的两边之差小于第三边,判断出点P 是直线PC'和y 轴的交点,即可得出结论;(3)先判断出点D 的位置,先求出点G 的坐标,进而得出点F 的坐标,利用待定系数法求出直线BF 解析式即可得出结论.【详解】解:(1)把点C (4,c )代入32y x =, 解得:c=6,则点C (4,6), ∵一次函数交y 轴于点B (0,2),∴函数表达式为:y=kx+2,把点C 坐标代入上式,解得:k=1,故:k=1,b=2,(2)如图,作A 关于y 轴的对称点A ',连接CA '交y 轴于P 点, 此时PA PC -最大,()2,0A ',PA PA '=,设A C '的解析式为y ax m =+,将()4,6C ,()2,0A '代入得4620a m a m +=⎧⎨+=⎩,解得36a m =⎧⎨=-⎩, ∴36CA y x '=-PA PC PA PC CA --'==',∴()0,6P -.(3)以下各点的坐标分别为:B (0,2),C (4,6),过点C 作CG ∥DE ,使GC=DE ,则:四边形DECG为平行四边形,作点G作关于x轴的对称点F,连接BF,交x轴于D,点D即为所求点,则点G坐标为(2,6),点F坐标为(2,-6),则:DF=DG=EC,DB+CE=BD+DG=BD+DF=BF,即:BD+CE最小,而:DE、BC长度为常数,故:在图示位置时,四边形BDEC的周长取最小值,把点B、F点坐标代入一次函数表达式:y=nx+b′,解得:BF所在的直线表达式为:y=-4x+2,令:y=0,则x=12,则点D和E的坐标分别为(12,0)、(52,0),【点睛】此题为一次函数综合题,其中(3)的核心是确定点D的位置,考查了学生综合运用所学知识的能力.23.已知点(2,﹣4)在正比例函数y=kx的图象上.(1)求k的值;(2)若点(﹣1,m)也在此函数y=kx的图象上,试求m的值.解析:(1)-2;(2)2【分析】(1)结合点(2,-4)在正比例函数y=kx的图象上,根据正比例函数的性质,列方程并求解,即可得到答案;(2)根据(1)的结论,得到正比例函数的解析式;结合题意,通过计算即可得到答案.【详解】(1)∵点(2,-4)在正比例函数y=kx的图象上∴-4=2k解得:k=-2;(2)结合(1)的结论得:正比例函数的解析式为y=-2x∵点(-1,m)在函数y=-2x的图象上∴当x=-1时,m=-2×(-1)=2.【点睛】本题考查了正比例函数的知识;解题的关键是熟练掌握正比例函数、坐标的性质,从而完成求解.24.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y千米,出租车离甲地的距离为2y千米,两车行驶的时间为x小时,12,y y关于x的图象如图所示:(1)客车的速度是千米/小时,出租车的速度是千米小时:(2)根据图象,分别直接写出12,y y关于x的关系式;(3)求两车相遇的时间;(4)x 为何值时,两车相距100千米.解析:(1)60,100;(2)y 1=60x (0≤x≤10),y 2=-100x+600(0≤x≤6);(3)两车相遇的时间为154小时;(4)258小时或358小时. 【分析】(1)根据速度=路程÷时间,列式进行计算即可得解;(2)根据两函数图象经过的点的坐标,利用待定系数法求一次函数解析式解答即可; (3)由12y y =列出方程,求出即可;(4)由两车相距100千米,可得|y 1-y 2|=100,即可求解.【详解】解:(1)由图可知,甲乙两地间的距离为600km ,所以,客车速度=600÷10=60(km/h ),出租车速度=600÷6=100(km/h ),故答案为:60,100;(2)设客车的函数关系式为y 1=k 1x ,则10k 1=600,解得k 1=60,所以,y 1=60x (0≤x≤10),设出租车的函数关系式为y 2=k 2x+b ,则206600k b b +⎧⎨=⎩=, 解得2100600k b =-⎧⎨=⎩, 所以,y 2=-100x+600(0≤x≤6),故答案为:y 1=60x (0≤x≤10),y 2=-100x+600(0≤x≤6);(3)当出租车与客车相遇时,60x=-100x+600,解得x=154. 所以两车相遇的时间为154小时; (4)由题意可得:|-100x+600-60x|=100,∴x=258或358, 答:x 为258小时或358小时,两车相距100千米. 【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.25.在平面直角坐标系中,()1,5C -,()3,1D -,经过原点的直线m 上有一点()3,2,平移线段CD ,对应线段为EF (C 对应E ),若点E 、F 分别恰好在直线m 和x 轴上,则E 点坐标为_______.解析:()6,4--或()6,4 【分析】先求出直线m 的解析式为23y x =,由题意得:C ,D ,E ,F 构成以CD 为边的平行四边形,再分以CE 是平行四边形对角线时和以CF 为平行四边形对角线时分别求解即可.【详解】设m 的解析式为:y kx =,把()3,2代入得:23k =, m ∴的解析式为:23y x =, 由题意得:C ,D ,E ,F 构成以CD 为边的平行四边形,设2,3E a a ⎛⎫ ⎪⎝⎭,(),0F b , 则①以1CE 为平行四边形对角线时,由中点坐标公式可得1111C E D F CE DF x x x x y y y y +=+⎧⎪⎨+=+⎪⎩, 即1325103a b a -+=-+⎧⎪⎨+=+⎪⎩, 解得:64a b =-⎧⎨=-⎩, 即()16,4E --;②以2CF 为平行四边形对角线时,同理可得1325013b a a -+=-+⎧⎪⎨+=+⎪⎩, 解得64a b =⎧⎨=⎩, 即()26,4E ,综上所述:()16,4E --或()26,4E .故答案为:()6,4--或()6,4.【点睛】本题考查坐标与图形变化−平移,解题的关键是理解题意,利用一次函数与平行四边形的性质进行求解.26.如图,直线1l :1y x =+与直线2l :2y x n =-+相交于点()1,P b .(1)求点P 的坐标;。

数学初二一次函数提高练习与常考题和培优难题压轴题含解析

数学初二一次函数提高练习与常考题和培优难题压轴题含解析

数学初二一次函数提高练习与常考题和培优难题压轴题含解析一.选择题共9小题1.已知等腰三角形的周长为20cm,底边长为ycm,腰长为xcm,y与x的函数关系式为y=20﹣2x,那么自变量x的取值范围是A.x>0 B.0<x<10 C.0<x<5 D.5<x<102.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c 的大小关系是A.a>b>c B.c>b>a C.b>a>c D.b>c>a3.函数的自变量x的取值范围是A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠34.关于函数y=﹣x﹣2的图象,有如下说法:①图象过点0,﹣2②图象与x轴的交点是﹣2,0③由图象可知y随x的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2平行的直线,其中正确说法有A.5个 B.4个 C.3个 D.2个5.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y千米与慢车行驶时间t小时之间的函数图象是A.B.C.D.6.下列语句不正确的是A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线7.已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简A.n B.n﹣2m C.m D.2n﹣m8.如果一次函数y=kx+b,当﹣3≤x≤1时,﹣1≤y≤7,则kb的值为A.10 B.21 C.﹣10或2 D.﹣2或109.若函数y=2m+1x2+1﹣2mx+1m为常数是一次函数,则m的值为A.m B.m=C.m D.m=﹣二.填空题共9小题10.直线y=kx向下平移2个单位长度后恰好经过点﹣4,10,则k=.11.已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第象限.12.已知点A﹣4,a、B﹣2,b都在直线y=x+kk为常数上,则a与b的大小关系是a b.填“>”“<”或“=”13.已知正比例函数y=1﹣mx|m﹣2|,且y随x的增大而减小,则m的值是.14.如图,点A的坐标为﹣1,0,点Ba,a,当线段AB最短时,点B的坐标为.15.已知一次函数y=﹣3a+1x+a的图象上两点Ax1,y1,Bx2,y2,当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是.16.如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCP的面积S与运动时间ts的函数图象如图2所示,则BC的长是.17.如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在同一条直线上,则点A2015的坐标是.18.如图,在直角坐标系中,菱形ABCD的顶点坐标C﹣1,0、B0,2,点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m=.三.解答题共22小题19.已知:函数y=m+1x+2m﹣61若函数图象过﹣1,2,求此函数的解析式.2若函数图象与直线y=2x+5平行,求其函数的解析式.3求满足2条件的直线与直线y=﹣3x+1的交点.20.如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A4,0,B﹣1,5,直线l1与l2相交于点C,1求直线l2的解析式;2求△ADC的面积;3在直线l2上存在一点F不与C重合,使得△ADF和△ADC的面积相等,请求出F 点的坐标;4在x轴上是否存在一点E,使得△BCE的周长最短若存在请求出E点的坐标;若不存在,请说明理由.21.已知一次函数y=kx+b的图象与x轴、y轴分别交于点A﹣2,0、B0,4,直线l 经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.1求直线AB的解析式;2求点P的坐标;3点Qa,b在第二象限,且S△QAB=S△PAB.①用含a的代数式表示b;②若QA=QB,求点Q的坐标.22.某仓库甲、乙、丙三辆运货车,每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨,下图是从早晨上班开始库存量y吨与时间x小时的函数图象,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙工作.1甲、乙、丙三辆车中,谁是进货车2甲车和丙车每小时各运输多少吨3由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨.23.如图,直线l1的解析表达式为:y=3x﹣3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.1求△ADC的面积;2在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,则点P的坐标为;3若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形若存在,请直接写出点H的坐标;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A﹣5,1,B﹣2,4,C5,4,点D在第一象限.1写出D点的坐标;2求经过B、D两点的直线的解析式,并求线段BD的长;3将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.25.已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=121如图1,求点C的坐标;2如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF2=OE2+AF2;3在条件2中,若点E的坐标为3,0,求CF的长.26.如图1,点A的坐标是﹣2,0,直线y=﹣x+4和x轴、y轴的交点分别为B、C 点.1判断△ABC的形状,并说明理由;2动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,它们都停止运动.设M运动t秒时,△MON的面积为S.①求S与t的函数关系式;并求当t等于多少时,S的值等于②在运动过程中,当△MON为直角三角形时,求t的值.27.如图,一次函数y=﹣x+6的图象分别与y轴、x轴交于点A、B,点P从点B 出发,沿BA以每秒1个单位的速度向点A运动,当点P到达点A时停止运动,设点P的运动时间为t秒.1点P在运动的过程中,若某一时刻,△OPA的面积为12,求此时P点坐标;2在1的基础上,设点Q为y轴上一动点,当PQ+BQ的值最小时,求Q点坐标;3在整个运动过程中,当t为何值时,△AOP为等腰三角形28.如图,在平面直角坐标系中,已知点A0,1、D﹣2,0,作直线AD并以线段AD为一边向上作正方形ABCD.1填空:点B的坐标为,点C的坐标为.2若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C 落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t秒的函数关系式,并写出相应的自变量t的取值范围.29.有一根直尺,短边的长为2cm,长边的长为10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图①,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合,将直尺沿AB方向平移,如图②.设平移的长度为x cm,且满足0≤x≤10,直尺与直角三角形纸板重合部分的面积即图中阴影部分为Scm2.1当x=0时,S=;当x=4时,S=;当x=10时,S=.2是否存在一个位置,使阴影部分的面积为11cm2若存在,求出此时x的值.30.如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A0,m、Cn,0,B﹣5,0,且n﹣32+=0,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.1求A、C两点的坐标;2连接PA,用含t的代数式表示△POA的面积;3当P在线段BO上运动时,是否存在一点P,使△PAC是等腰三角形若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由.31.如图,在平面直角坐标系中,△ABC为等腰三角形,AB=AC,将△AOC沿直线AC 折叠,点O落在直线AD上的点E处,直线AD的解析式为,则1AO=;AD=;OC=;2动点P以每秒1个单位的速度从点B出发,沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S与t之间的函数关系式;3在2的条件下,直线CE上是否存在一点Q,使以点Q、A、D、P为顶点的四边形是平等四边形若存在,求出t值及Q点坐标;若不存在,说明理由.32.已知在平面直角坐标系中,Aa、o、Bo、b满足+|a﹣3|=0,P是线段AB 上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.1求a、b的值.2当P点运动时,PE的值是否发生变化若变化,说明理由;若不变,请求PE的值.3若∠OPD=45°,求点D的坐标.33.如图,ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.1求AB的长;2求CD的所在直线的函数关系式;3若动点P从点B出发,以每秒1个单位长度的速度沿B→A方向运动,过P作x轴=,求此时点P的坐标.的垂线交x轴于点E,若S△PBE34.在平面直角坐标系xoy中,对于任意两点P1x1,y1与P2x2,y2的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P11,2,点P23,5,因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点.1已知点A﹣,0,B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;2已知C是直线y=x+3上的一个动点,①如图2,点D的坐标是0,1,求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.35.对于两个已知图形G1、G2,在G1上任取一点P,在G2上任取一点Q,当线段PQ 的长度最小时,我们称这个最小的长度为图形G1、G2的“密距”;当线段PQ的长度最大值时,我们称这个最大的长度为图形G1、G2的“疏距”.请你在学习、理解上述定义的基础上,解决下面的问题;在平面直角坐标系xOy中,点A的坐标为﹣3,4,点B的坐标为3,4,矩形ABCD的对称中心为点O.1线段AD和BC的“密距”是,“疏距”是;2设直线y=x+bb>0与x轴、y轴分别交于点E、F,若线段EF与矩形ABCD的“密距”是1,求它们的“疏距”;3平面直角坐标系xOy中有一个四边形KLMN,将矩形ABCD绕点O旋转一周,在旋转过程中,它与四边形KLMN的“疏距”的最大值为7,①旋转过程中,它与四边形KLMN的“密距”的取值范围是;②求四边形KLMN的面积的最大值.36.在平面直角坐标系中,已知A,B两点分别在x轴,y轴上,OA=OB=4,C在线段OA 上,AC=3,过点A作AE⊥BC,交BC的延长线于E,直线AE交y轴于D.1求点D坐标.2动点P从点A出发,沿射线AO方向以每秒1个单位长度运动,设点P的运动时间为t秒,△POB的面积为y,求y与t之间的函数关系式并直接写出自变量的取值范围.3在2问的条件下,当t=1,PB=5时,在y轴上是否存在一点Q,使△PBQ为以PB为腰的等腰三角形若存在,求点Q的坐标;若不存在,请说明理由.37.如图,四边形OABC中,CB∥OA,∠OCB=90°,CB=1,OA=OC,O为坐标原点,点A在x轴上,点C在y轴上,直线过A点,且与y轴交于D点.1求出A、点B的坐标;2求证:AD=BO且AD⊥BO;3若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形若存在,请求出点N的坐标;若不存在,请说明理由.38.如图,一次函数y=﹣x+的图象与坐标轴分别交于点A和B两点,将△AOB沿直线CD折起,使点A与点B重合,直线CD交AB于点D.1求点C的坐标;2在射线DC上求一点P,使得PC=AC,求出点P的坐标;3在坐标平面内,是否存在点Q除点C外,使得以A、D、Q为顶点的三角形与△ACD 全等若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理.39.已知,如图,在平面直角坐标系中,点A、B的横坐标恰好是方程x2﹣4=0的解,点C的纵坐标恰好是方程x2﹣4x+4=0的解,点P从C点出发沿y轴正方向以1个单位/秒的速度向上运动,连PA、PB,D为AC的中点.1求直线BC的解析式;2设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等3如图2,若PA=AB,在第一象限内有一动点Q,连QA、QB、QP,且∠PQA=60°,问:当Q在第一象限内运动时,∠APQ+∠ABQ的度数和是否会发生改变若不变,请说明理由并求其值.40.方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为th,甲乙两人之间的距离为ykm,y与t的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发与乙相遇,…请你帮助方成同学解决以下问题:1分别求出线段BC,CD所在直线的函数表达式;2当20<y<30时,求t的取值范围;3分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象.数学初二一次函数提高练习与常考题和培优难题压轴题含解析参考答案与试题解析一.选择题共9小题1.2016春农安县月考已知等腰三角形的周长为20cm,底边长为ycm,腰长为xcm,y 与x的函数关系式为y=20﹣2x,那么自变量x的取值范围是A.x>0 B.0<x<10 C.0<x<5 D.5<x<10分析根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,进行求解.解答解:根据三角形的三边关系,得则0<20﹣2x<2x,由20﹣2x>0,解得x<10,由20﹣2x<2x,解得x>5,则5<x<10.故选D.点评本题考查了三角形的三边关系,一元一次不等式组的解法,正确列出不等式组是解题的关键.2.2012秋镇赉县校级月考如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是A.a>b>c B.c>b>a C.b>a>c D.b>c>a分析根据所在象限判断出a、b、c的符号,再根据直线越陡,则|k|越大可得答案.解答解:∵y=ax,y=bx,y=cx的图象都在第一三象限,∴a>0,b>0,c>0,∵直线越陡,则|k|越大,∴c>b>a,故选:B.点评此题主要考查了正比例函数图象的性质,y=kx中,当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.同时注意直线越陡,则|k|越大.3.2016春重庆校级月考函数的自变量x的取值范围是A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠3分析根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答解:根据题意得:2﹣x≥0且x﹣3≠0,解得:x≤2且x≠3,自变量的取值范围x≤2,故选A.点评本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:1当函数表达式是整式时,自变量可取全体实数;2当函数表达式是分式时,考虑分式的分母不能为0;3当函数表达式是二次根式时,被开方数非负.4.2016春南京校级月考关于函数y=﹣x﹣2的图象,有如下说法:①图象过点0,﹣2②图象与x轴的交点是﹣2,0③由图象可知y随x的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2平行的直线,其中正确说法有A.5个 B.4个 C.3个 D.2个分析根据一次函数的性质和图象上点的坐标特征解答.解答解:①将0,﹣2代入解析式得,左边=﹣2,右边=﹣2,故图象过0,﹣2点,正确;②当y=0时,y=﹣x﹣2中,x=﹣2,故图象过﹣2,0,正确;③因为k=﹣1<0,所以y随x增大而减小,错误;④因为k=﹣1<0,b=﹣2<0,所以图象过二、三、四象限,正确;⑤因为y=﹣x﹣2与y=﹣x的k值斜率相同,故两图象平行,正确.故选B.点评本题考查了一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b 中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.5.2016春重庆校级月考一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y千米与慢车行驶时间t小时之间的函数图象是A.B.C.D.分析分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.解答解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选:C.点评本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.6.2015春浠水县校级月考下列语句不正确的是A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线分析分别利用一次函数和反比例函数的定义以及其性质分析得出即可.解答解:A、所有的正比例函数肯定是一次函数,正确,不合题意;B、一次函数的一般形式是y=kx+bk≠0,故此选项错误,符合题意;C、正比例函数和一次函数的图象都是直线,正确,不合题意;D、正比例函数的图象是一条过原点的直线,正确,不合题意;故选:B.点评此题主要考查了一次函数和反比例函数的定义,正确把握其性质是解题关键.7.2016春无锡校级月考已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简A.n B.n﹣2m C.m D.2n﹣m分析根据一次函数图象与系数的关系,确定m、n的符号,然后由绝对值、二次根式的化简运算法则解得即可.解答解:根据图示知,关于x的一次函数y=mx+n的图象经过第一、二、四象限,∴m<0,n>0;∴|n﹣m|﹣=n﹣m﹣﹣m+n﹣m=2n﹣m.故选D.点评本题主要考查了一次函数图象与系数的关系,二次根式的性质与化简,绝对值的意义.一次函数y=kx+bk≠0,b≠0的图象,当k<0,b>0时,经过第一、二、四象限.8.2015秋盐城校级月考如果一次函数y=kx+b,当﹣3≤x≤1时,﹣1≤y≤7,则kb 的值为A.10 B.21 C.﹣10或2 D.﹣2或10分析由一次函数的性质,分k>0和k<0时两种情况讨论求解.解答解:由一次函数的性质知,当k>0时,y随x的增大而增大,所以得,解得.即kb=10;当k<0时,y随x的增大而减小,所以得,解得.即kb=﹣2.所以kb的值为﹣2或10.故选D.点评此题考查一次函数的性质,要注意根据一次函数图象的性质分情况讨论.9.2015秋西安校级月考若函数y=2m+1x2+1﹣2mx+1m为常数是一次函数,则m 的值为A.m B.m=C.m D.m=﹣分析根据一次函数的定义列出算式计算即可.解答解:由题意得,2m+1=0,解得,m=﹣,故选:D.点评本题考查的是一次函数的定义,一般地,形如y=kx+bk≠0,k、b是常数的函数,叫做一次函数.二.填空题共9小题10.2014春邹平县校级月考直线y=kx向下平移2个单位长度后恰好经过点﹣4,10,则k=﹣3.分析根据一次函数与正比例函数的关系可得直线y=kx向下平移2个单位后得y=kx﹣2,然后把﹣4,10代入y=kx﹣2即可求出k的值.解答解:直线y=kx向下平移2个单位后所得解析式为y=kx﹣2,∵经过点﹣4,10,∴10=﹣4k﹣2,解得:k=﹣3,故答案为:﹣3.点评此题主要考查了一次函数图象与几何变换,平移后解析式有这样一个规律“左加右减,上加下减”.11.2016春南京校级月考已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第二、三、四象限.分析根据直线y=kx+b经过第一、二、四象限可以确定k、b的符号,则易求﹣b的符号,由﹣b,k的符号来求直线y=﹣bx+k所经过的象限.解答解:∵直线y=kx+b经过第一、二、四象限,∴k<0,b>0,∴﹣b<0,∴直线y=﹣bx+k经过第二、三、四象限.故答案是:二、三、四.点评本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.12.2016春大丰市校级月考已知点A﹣4,a、B﹣2,b都在直线y=x+kk为常数上,则a与b的大小关系是a<b.填“>”“<”或“=”分析先根据一次函数的解析式判断出一次函数的增减性,再根据﹣4<﹣2即可得出结论.解答解:∵一次函数y=x+kk为常数中,k=>0,∴y随x的增大而增大,∵﹣4<﹣2,∴a<b.故答案为:<.点评本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.2015春建瓯市校级月考已知正比例函数y=1﹣mx|m﹣2|,且y随x的增大而减小,则m的值是3.分析先根据正比例函数的定义列出关于k的不等式组,求出k取值范围,再根据此正比例函数y随x的增大而减小即可求出k的值.解答解:∵此函数是正比例函数,∴,解得m=3,故答案为:3.点评本题考查的是正比例函数的定义及性质,根据正比例函数的定义列出关于k 的不等式组是解答此题的关键.14.2016春天津校级月考如图,点A的坐标为﹣1,0,点Ba,a,当线段AB最短时,点B 的坐标为﹣,﹣.分析过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,先根据垂线段最短得出当点B与点D重合时线段AB最短,再根据直线OB的解析式为y=x得出△AOD是等腰直角三角形,故OE=OA=,由此可得出结论.解答解:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D﹣,﹣.故答案为:﹣,﹣.点评本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.2015春宜兴市校级月考已知一次函数y=﹣3a+1x+a的图象上两点Ax1,y1,Bx2,y2,当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是0≤a<.分析根据y随x的增大而增大可得x的系数大于0,图象不经过第四象限,那么经过一三或一二三象限,那么此函数的常数项应为非负数.解答解:∵x1>x2时,y1>y2,∴﹣3a+1>0,解得a<,∵图象不经过第四象限,∴经过一三或一二三象限,∴a≥0,∴0≤a<.故答案为:0≤a<.点评考查了一次函数图象上的点的坐标的特点;得到函数图象可能经过的象限是解决本题的关键.16.2015秋靖江市校级月考如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCP的面积S与运动时间ts的函数图象如图2所示,则BC的长是2.分析由函数的图象可知点P从点A运动到点D用了2秒,从而得到AD=2,当点P 在DE上时,三角形的面积不变,故此DE=4,从而可求得DC=2,于是得到AC=2+2,从而可求得BC的长为2+.解答解:由函数图象可知:AD=1×2=2,DE=1×6﹣2=4.∵△DEC是等腰直角三角形,∴DC===2.∴AC=2+2.∵△ABC是等腰直角三角形,∴BC===.故答案为:.点评本题主要考查的是动点问题的函数图象,由函数图象判断出AD、DE的长度是解题的关键.17.2016春盐城校级月考如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为a 的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在同一条直线上,则点A2015的坐标是a,a.分析根据题意得出直线BB1的解析式为:y=x,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.解答解:过B1向x轴作垂线B1C,垂足为C,由题意可得:Aa,0,AO∥A1B1,∠B1OC=60°,∴OC=a,CB1=OB1sin60°=a,∴B1的坐标为:a,a,∴点B1,B2,B3,…都在直线y=x上,∵B1a,a,∴A1a,a,∴A22a,a,…A n a,.∴A2015a,a.故答案为.点评此题主要考查了一次函数图象上点的坐标特征以及数字变化类,得出A点横纵坐标变化规律是解题关键.18.2016春泰兴市校级月考如图,在直角坐标系中,菱形ABCD的顶点坐标C﹣1,0、B0,2,点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m=3.分析根据菱形的对角线互相垂直平分表示出点A的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值范围,再根据各选项数据选择即可.解答解:∵菱形ABCD的顶点C﹣1,0,点B0,2,∴点A的坐标为﹣1,4,当y=4时,﹣x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,故答案为3.点评本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单.三.解答题共22小题19.2016春武城县校级月考已知:函数y=m+1x+2m﹣61若函数图象过﹣1,2,求此函数的解析式.2若函数图象与直线y=2x+5平行,求其函数的解析式.3求满足2条件的直线与直线y=﹣3x+1的交点.分析1根据一次函数图象上点的坐标特征,把﹣1,2代入y=m+1x+2m﹣6求出m的值即可得到一次函数解析式;2根据两直线平行的问题得到m+1=2,解出m=1,从而可确定一次函数解析式.3两直线的解析式联立方程,解方程即可求得.解答解:1把﹣1,2代入y=m+1x+2m﹣6得﹣m+1+2m﹣6=2,解得m=9,所以一次函数解析式为y=10x+12;2因为函数y=m+1x+2m﹣6的图象与直线y=2x+5平行,所以m+1=2,解得m=1,所以一次函数解析式为y=2x﹣4.3解得,∴两直线的交点为1,﹣2.点评本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.20.2015秋兴化市校级月考如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A4,0,B﹣1,5,直线l1与l2相交于点C,1求直线l2的解析式;2求△ADC的面积;3在直线l2上存在一点F不与C重合,使得△ADF和△ADC的面积相等,请求出F 点的坐标;4在x轴上是否存在一点E,使得△BCE的周长最短若存在请求出E点的坐标;若不存在,请说明理由.分析1利用待定系数法即可直接求得l2的函数解析式;2首先解两条之间的解析式组成的方程组求得C的坐标,然后利用三角形的面积公式即可求解;3△ADF和△ADC的面积相等,则F的纵坐标与C的总坐标一定互为相反数,代入l2的解析式即可求解;4求得C关于x轴的对称点,然后求得经过这个点和B点的直线解析式,直线与x 轴的交点就是E.解答解:1设l2的解析式是y=kx+b,根据题意得:,解得:,则函数的解析式是:y=﹣x+4;2在中令y=0,解得:x=﹣2,则D的坐标是﹣2,0.解方程组,解得:,。

第十九章 一次函数单元培优训练(解析版)

第十九章 一次函数单元培优训练(解析版)

第十九章 一次函数单元培优训练班级___________ 姓名___________ 学号____________ 分数____________考试范围:第19章 一次函数,共23题; 考试时间:120分钟; 总分:120分一、选择题(本大题共6小题,每小题3分,共18分)1.(2022春·上海·八年级专题练习)下列函数是一次函数的是( )A .11y x =+B .2y x =-C .22y x =+D .y kx b=+2.(2021春·河南周口·八年级统考期末)若函数y =kx +b 的图象过点A (﹣3,0),B (0,4),则不等式kx +b ≥0的解集是( )A .x ≥﹣3B .x ≤﹣3C .x ≥4D .x ≤4【答案】A【分析】结合函数图象即可求得.【详解】解:由函数y =kx +b 的图象过点A (﹣3,0),B (0,4)画出函数图象如图,由图象可知,不等式kx +b ≥0的解集是x ≥﹣3.故选:A .【点睛】本题主要考查了一次函数与一元一次不等式之间的关系,能够熟练运用一次函数图象解一元一次不等式是解题的关键.3.(2019秋·广西贺州·八年级统考期中)函数233y x =--自变量x 的取值范围是( ).A .0x ¹B .1x ¹C .1x >D .1x <【答案】B【分析】根据分式的分母不为零进行求解即可.【详解】根据题意,330x -¹,解得1x ¹,故选:B.【点睛】本题主要考查了反比例函数自变量的取值范围,熟练掌握分式的性质是解决本题的关键.4.(2022春·河北唐山·八年级统考期末)如图,直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +>-的解集在数轴上表示正确的是( )A .B .C .D .【答案】A 【分析】观察函数图象得到当x >-1时,函数y =x +b 的图象都在y =kx -1的图象上方,所以不等式x +b >kx -1的解集为x >-1,然后根据用数轴表示不等式解集的方法对各选项进行判断.【详解】解:当x >-1时,x +b >kx -1,即不等式x +b >kx -1的解集为x >-1.故选:A .【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =ax +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.5.(2022春·广东韶关·八年级统考期末)如图OB 、AB 分别表示甲、乙两名同学运动的一次函数图象,图中s 和t 分别表示运动路程和时间,已知甲的速度比乙快.有以下说法:①乙让甲先跑12米;②甲的速度比乙快1.5米/秒;③ 8秒钟内,甲在乙后面;④ 8秒钟后,甲超过了乙,其中正确的说法是()A.①②④B.①②③C.①③④D.②③④【答案】D【分析】根据函数图象可以得出:乙比甲先跑了12米;根据速度=路程÷时间可求出甲的速度与乙的速度;8秒钟时甲乙相遇,可判断两人的位置关系.【详解】解:由图象知OA=12,即乙比甲先跑了12米,故①错误;甲的速度为:64÷8=8米/秒,乙的速度为:(64-12)÷8=6.5米/秒,即甲的速度比乙快1.5米/秒,故②正确;8秒时甲乙相遇,8秒钟内,甲在乙后面,8秒钟后,甲超过了乙,故③④正确;综上所述,正确的序号为:②③④,故选D.【点睛】本题考查了一次函数的实际运用,需结合图形解答.借助数形结合的思想,从函数图象中提取有用信息是解决此题的关键.6.(2015秋·江苏苏州·八年级统考期中)在直角坐标系中,等腰直角三角形A1B1O、A2B2B1、A3B3B2、…、A n B n B n-1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y kx b=+的图像上,点B1、B2、B3、…、B n均在x轴上.若点B1的坐标为(1,0),点B2的坐标为(3,0),则点A n的坐标为()A.(,)B.(,)C.(,+1)D.(,)【答案】D【详解】试题分析:如图,∵点B1的坐标为(1,0),点B2的坐标为(3,0),∴OB 1=1,OB 2=3,则B 1B 2=2.∵△A 1B 1O 是等腰直角三角形,∠A 1OB 1=90°,∴OA 1=OB 1=1.∴点A 1的坐标是(0,1).同理,在等腰直角△A 2B 2B 1中,∠A 2B 1B 2=90°,A 2B 1=B 1B 2=3,则A 2(1,2).∵点A 1、A 2均在一次函数y=kx+b 的图象上,∴1{2b k b==+,解得,11k b =ìí=î,∴该直线方程是y=x+1∵点A 3,B 2的横坐标相同,都是3,∴当x=3时,y=4,即A 3(3,4),则A 3B 2=4,∴B 3(7,0).同理,B 4(15,0),…B n (2n -1,0),∴当x=2n-1-1时,y=2n-1-1+1=2n-1,即点A n 的坐标为(2n-1-1,2n-1).故选D考点:一次函数综合题二、填空题(本大题共6小题,每小题3分,共18分)7.(2022秋·湖南长沙·九年级校考阶段练习)一次函数31y x =-+图象不经过第_________象限.【答案】三【分析】根据一次函数的图象和性质,即可求解.【详解】解:∵30,10-<>,∴一次函数31y x =-+图象经过第一、二、四象限,∴一次函数31y x =-+图象不经过第三象限.故答案为:三【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数()0y kx b k =+¹,当0,0k b >>时,一次函数图象经过第一、二、三象限;当0,0k b ><时,一次函数图象经过第一、三、四象限;当0,0k b <>时,一次函数图象经过第一、二、四象限;当0,0k b <<时,一次函数图象经过第二、三、四象限是解题的关键.8.(2022秋·四川成都·八年级四川省成都市石室联合中学校考期末)若函数y =(k ﹣2)x |k |﹣1+1是关于x 的一次函数,则k =_____.9.(2021·广东深圳·深圳中学校考二模)在平面直角坐标系中,直线y kx =向右平移2个单位后,刚好经过点()0,4,则不等式24x kx >+的解集为________.【答案】1x >【分析】由题意直线y kx =向右平移2个单位后,刚好经过点(0,4),根据待定系数法求出直线的解析式,然后代入不等式中,从而求出不等式的解集.【详解】解:Q 直线y kx =向右平移2个单位得:(2)y k x =-,又其过点(0,4),42k \=-,解得:2k =-,\不等式24x kx >+可化为:224x x >-+解得1x >.故答案为:1x >.【点睛】此题考查平移的性质及待定系数法求直线的解析式,还考查求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).10.(2022春·陕西渭南·八年级统考期末)将直线5y kx =+的图像向下平移3个单位后,经过点A (1,0),则平移后的直线解析式为______.【答案】22y x =-+【分析】根据一次函数的平移可得直线5y kx =+的图像向下平移3个单位后得2y kx =+,然后把(1,0)代入2y kx =+即可求出k 的值即可.【详解】解:直线5y kx =+的图像向下平移3个单位后得2y kx =+,Q 经过点(1,0),02k \=+,解得:2k =-,∴平移后的直线的解析式为22y x =-+,故答案为:22y x =-+.【点睛】本题主要考查了一次函数图像的平移变换和待定系数法求一次函数解析式,解题的关键是掌握平移后解析式有这样一个规律“左加右减,上加下减”.11.(2016秋·八年级课时练习)直线y kx b =+与直线32y x =-+平行,且经过点(1,6),则该函数关系式为________【答案】39y x =-+【详解】试题解析:该直线与直线32y x =-+ 平行,所以3,k =-即:3,y x b =-+再把点()16,代入有631,b =-´+ 解得9,b = 所以一次函数的关系式为:39,y x =-+故答案为:39,y x =-+点睛:直线111y k x b =+ 与直线222y k xb =+平行时:1212,.k k b b =¹12.(2021·全国·八年级假期作业)已知直线11y k x b =+与直线22y k x b =+的交点坐标为()2,3-,则直线11y k x b =-与直线22y k x b =-的交点坐标为____________.三、(本大题共5小题,每小题6分,共30分)13.(2022秋·江苏盐城·八年级校考阶段练习)已知一次函数y=kx﹣3,当x=1时,y=7.(1)求这个一次函数的表达式;(2)试判断点P(2,15)是否在这个一次函数y=kx﹣3的图象上,并说明理由.【答案】(1)y=10x﹣3;(2)不在,理由见详解.【分析】(1)把x与y的值代入一次函数解析式求出k的值,即可确定出解析式;(2)把x=2的值代入解析式计算求出y的值即可判断.【详解】解:(1)把x=1,y=7代入y=kx﹣3得:7=k﹣3,解得:k=10,则y=10x﹣3;(2)把x=2代入y=10x﹣3得y=10×2﹣3=17≠15,所以点P(2,15)不在这个一次函数y=kx﹣3的图象上.【点睛】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).14.(2022秋·八年级课时练习)金百超市经销某品牌童装,单价为每件50元时,每天销量为60件,当单价每件从50元降了20元时,一天销量为100件.设降x元时,一天的销量为y件.已知y是x的一次函数.(1)求y与x之间的关系式;(2)若某天销售童装80件,则该天童装的单价是多少?【答案】(1)y与x之间的关系式为y=2x+60(2)该天童装的单价是每件40元【分析】(1)根据题意先设出y与x的函数关系式y=kx+b,再根据题目中的数据,即可求出该函数的解析式;(2)将y= 80代入(1) 中函数关系式,求出相应的x的值即可.【详解】(1)因为y是x的一次函数.所以,设y与x的函数关系式为y=kx+b,由题意知,当x=0时,y=60 ;当x=20时,y= 100,所以,60 20100bk b=ìí+=î解之得:602 bk=ìí=î所以y与x之间的关系式为y=2x+60 ;(2)当y=80时,由80=2x+60,解得x=10,所以50- 10= 40(元),所以该天童装的单价是每件40元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数关系式.15.(2022秋·八年级课时练习)已知正比例函数图象经过点(1,2)-(1)求此正比例函数的解析式;(2)点(2,2)-是否在此函数图象上?请说明理由.【答案】(1)2y x =-;(2)否,理由见解析.【分析】(1)利用待定系数法求解析式即可;(2)将(2,2)-代入解析式,若等式成立则说明在函数图象上,否则不在.【详解】(1)解:设正比例函数解析式为y kx =,∵函数图象过(1,2)-,将其代入解析式可得:2k =-,∴2k =-,即解析式为:2y x =-,(2)解:否,理由如下:假设点(2,2)-在此函数图象上,则将其代入解析式应满足等式成立,但是222-¹-g ,∴(2,2)-不在此函数图象上.【点睛】本题考查正比例函数,比较简单,重点要掌握待定系数法求解析式,以及利用解析式判断点是否在函数图象上.16.(2022秋·安徽滁州·八年级统考期中)已知3y +与x 成正比例,当2x =时,7y =.(1)求y 与x 的函数表达式;(2)当12x =-时,求y 的值.17.(2020春·湖北黄冈·八年级统考期末)如图,直线 8y kx =+ 分别与 x 轴,y 轴相交于 A ,B 两点,O 为坐标原点,A 点的坐标为()4,0.(1)求 k 的值;(2)过线段 AB 上一点 P (不与端点重合)作 x 轴,y 轴的垂线,垂足分别为 M ,N .当长方形 PMON 的周长是 10 时,求点 P 的坐标.【答案】(1)2k =-;(2)()32,.【分析】(1)将点A 的坐标代入直线解析式即可;(2)设点P 的坐标为()28P t t -+,,由长方形的性质计算其周长即可解题.【详解】(1) Q 直线 8y kx =+ 经过 ()40A ,, 048k \=+,2k \=-.(2) Q 点 P 在直线 28y x =-+ 上,设 ()28P t t -+,,PN t \=,28PM t =-+,Q 四边形 PNOM 是长方形,\ 长方形 PNOM 的周长 ()28210C t t =-+´=,解得 3t =,\ 点 P 的坐标为 ()32,.【点睛】本题考查一次函数解析式求法、待定系数法、含参数点坐标、长方形的周长公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.四、(本大题共3小题,每小题8分,共24分)18.(2020春·甘肃庆阳·八年级统考期末)已知函数(21)13y m x m =-+-,m 为何值时:(1)这个函数的图像过原点(2)这个函数为一次函数(3)函数值y 随x 的增大而增大19.(2022秋·八年级课时练习)直线AB 与x 轴交于点A(2,0),与y 轴交于点B(0,-4).(1)求直线AB 的解析式.(2)若直线CD 与AB 平行,且直线CD 与y 轴的交点与B 点相距2个单位,则直线CD 的解析式为________.【答案】(1)y=2x-4;(2)y=2x-2或y=2x-6【详解】试题分析:(1)运用待定系数法求解即可;(2)由于两条直线平行知k 和值相同,再根据直线CD 与y 轴的交点与B 点相距2个单位可得b 的值.试题解析:(1)设y=kx+b(k≠0)由题意得b=-4,2k+b=0解得k=2,b=-4.∴y=2x-4.(2)y=2x-2或y=2x-6.20.(2021春·山东济宁·八年级统考期末)A城有肥料200t,B城有肥料300t.现要把这些肥料全部运往C、D两乡,C乡需要肥料240t,D乡需要肥料260t,其运往C、D两乡的运费如下表:C(元/t)D(元/t)A2030B1015设从A城运往C乡的肥料为xt,从A城运往两乡的总运费为y1元,从B城运往两乡的总运费为y2元.(1)分别写出y1、y2与x之间的函数关系式(不要求写自变量的取值范围);(2)试比较A、B两城总运费的大小;(3)若B城的总运费不得超过3800元,怎样调运使两城总费用的和最少?并求出最小值.【答案】(1)y1=−10x+6000,y2=5x+3300(2)x=180时,y1=y2;x>180时,y1<y2;x<180时,y1>y2;(3)当从A城调往C乡肥料100t,调往D乡肥料100t,从B城调往C乡肥料140t,调往D乡肥料160t,两城总费用的和最少,最小值为8800元.【分析】(1)根据题意即可得出y1、y2与x之间的函数关系式;(2)根据(1)的结论列方程或列不等式解答即可;(3)设两城总费用为y,根据(1)的结论得出y与x之间的函数关系式,根据题意得出x的取值范围,再根据一次函数的性质解答即可.【详解】(1)根据题意得:y1=20x+30(200−x)=−10x+6000,y2=10(240−x)+15(300−240+x)=5x+3300.(2)若y1=y2,则−10x+6000=5x+3300,解得x=180,A、B两城总费用一样;若y1<y2,则−10x+6000<5x+3300,解得x>180,A城总费用比B城总费用小;若y1>y2,则−10x+6000>5x+3300,解得0<x<180,B 城总费用比A 城总费用小.(3)依题意得:5x +3300≤3800,解得x ≤100,设两城总费用为W ,则W =y 1+y 2=−5x +9300,∵−5<0,∴W 随x 的增大而减小,∴当x =100时,W 有最小值8800.200−100=100(t ),240−100=140(t ),100+60=160(t ),答:当从A 城调往C 乡肥料100t ,调往D 乡肥料100t ,从B 城调往C 乡肥料140t ,调往D 乡肥料160t ,两城总费用的和最少,最小值为8800元.【点睛】本题考查了一次函数的应用.根据题意列出一次函数解析式是关键.注意到(2)需分类讨论.五、(本大题共2小题,每小题9分,共18分)21.(2021春·河北邯郸·八年级统考期末)某商场计划采购A ,B 两种不同型号的电视机共50台,已知A 型电视机进价1500元,售价2000元;B 型电视机进价为2400元,售价3000元.(1)设该商场购进A 型电视机x 台,请写出全部售出后该商店获利y 与x 之间函数表达式.(2)若该商场采购两种电视机的总费用不超过108300元,全部售出所获利润不低于28500元,请设计出所有采购方案,并求出使商场获得最大利润的采购方案及最大利润.【答案】(1)10030000y x =-+;(2)共有三种采购方案:①甲型13台,乙型37台,②甲型14台,乙型36台,③甲型15台,乙型35台,采购甲型电脑13台,乙型电脑37台时商店获得最大利润,最大利润是28700元【分析】(1)由题意,获得总利润等于A 、B 两种型号利润之和即可列出函数解析式;(2)由采购两种电视机的总费用不超过108300元,全部售出所获利润不低于28500元列出不等式组,求出x 的取值范围,再根据函数的性质求解即可.【详解】解:(1)(1)由题意得:y =(2000-1500)x +(3000-2400)×(50-x )=-100x +30000,∴全部售出后该商店获利y 与x 之间函数表达式为:10030000y x =-+;(2)由题意得:()1500240050108300x x +-£且1003000028500x -+³解得1315x ££,∵x 为正整数,∴13x =、14、15,共有三种采购方案:①甲型13台,乙型37台,②甲型14台,乙型36台,③甲型15台,乙型35台,∵1000-<,∴y 随x 的增大而减小,∴当x 取最小值时,y 有最大值,即13x =时,y 最大值100133000028700=-´+=,∴采购甲型电脑13台,乙型电脑37台时商店获得最大利润,最大利润是28700元.【点睛】本题考查一次函数和一元一次不等式组的应用,由题意正确列出函数关系式和不等式组是解题关键.22.(2018春·四川南充·八年级统考期末)黄岩岛是我国南沙群岛的一个小岛.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一艘外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.如图是渔政船及渔船与港口的距离s (海里)和渔船离开港口的时间t (时)之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离开港口的距离s 和渔船离开港口的时间t 之间的函数关系式;(2)已知两船相距不超过30海里时,可以用对讲机通话,在渔政船驶往黄岩岛的过程中,求两船可以用对讲机通话的时间长?所以10.4﹣9.6=0.8(小时)所以,两船可以用对讲机通话的时间长为0.8小时.【点睛】本题考查了一次函数的应用.关键是根据图象求出渔船的分段函数的解析式及渔政船行驶的函数关系式.六、(本大题共12分)23.(2020秋·浙江宁波·九年级统考期末)如图1,小明用一张边长为6cm 的正方形硬纸板设计一个无盖的长方体纸盒,从四个角各剪去一个边长为xcm 的正方形,再折成如图2所示的无盖纸盒,记它的容积为3ycm .(1)y 关于x 的函数表达式是__________,自变量x 的取值范围是___________.(2)为探究y 随x 的变化规律,小明类比二次函数进行了如下探究:①列表:请你补充表格中的数据:x 00.511.522.53y012.513.52.50②描点:把上表中各组对应值作为点的坐标,在平面直角坐标系中描出相应的点;③连线:用光滑的曲线顺次连结各点.(3)利用函数图象解决:若该纸盒的容积超过312cm ,估计正方形边长x 的取值范围.(保留一位小数)【答案】(1)3242436y x x x =-+,03x <<;(2)①16,8;②见解析;③见解析;(3)0.5 1.6x <<(或0.4 1.7x <<)【分析】(1)先根据已知条件用含x 的式子表示出长方体底面边长,再乘以长方体的高即可;(2)①根据(1)得出的关系式求当x=1、2时对应的y 的值补充表格;②③根据描点法画出函数图像即可;(3)根据图像知y=12时,x 的值由两个,再估算x 的值,再根据图像由y >12,得出x 的取值范围即可.【详解】解:(1)由题意可得,无盖纸盒的底面是一个正方形,且边长为(6-2x )cm ,∴232(62)42436y x x x x x =-=-+,x 的取值范围为:0<6-2x <6,解得03x <<.故答案为:3242436y x x x =-+;03x <<;(2)①当x=1时,y=4-24+36=16;当x=2时,y=4×8-24×4+36×2=8;故答案为:16,8;②③如图所示:(3)由图像可知,当y=12时,0<x <1,或1<x <2,①当0<x <1时,当x=0.4时,y=10.816,当x=0.5时,y=12.5,∴当y=12时,x≈0.5(或0.4);②当1<x <2时,当x=1.6时,y=12.544,当x=1.7时,y=11.492,∴当y=12时,x≈1.6(或1.7),∴当y >12时,x 的取值范围是0.5 1.6x <<(或0.4 1.7x <<).【点睛】本题主要考查列函数关系式、函数图像的画法、根的估算以及函数的性质,解题的关键是掌握基本概念和性质.。

人教版数学八年级下册 期末培优专题 一次函数行程类问题(含简单答案)

人教版数学八年级下册 期末培优专题 一次函数行程类问题(含简单答案)

参考答案
2.(1)100 ; 80 (2) y 40t 20 ,教官们领取装备所用的时间 0.5h ; (3)客车第二次出发时的速度至少是 60km/h .
3 即按原路返回,结果比货车早一个小时到达甲地.如图是两车距各自出发地的距离 y( km ) 与货车行驶时间 x(h)之间的函数图象,结合图象回答下列问题:
(1)图中 a 的值是______;
(2)求轿车到达乙地再返回甲地所花费的时间; (3)轿车在返回甲地的过程中与货车相距 30km ,直接写出货车已经从乙地出发了多长时间? 15.小聪和小慧沿图 1 中的风景区游览,约好在飞瀑见面.小聪驾驶电动汽车从宾馆出发, 小慧也于同一时间骑电动自行车从塔林出发:图 2 中的图象分别表示两人离宾馆的路程 y(km) 与时间 x(h) 的函数关系,试结合图中信息回答:
8.快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地卸装货物用 时 30 分钟,结束后,立即按原路以另一速度匀速返回,直至与慢车相遇,已知慢车的速度
为 60km / h .两车之间的距离 y km 与慢车行驶的时间 x h 的函数图象如图所示.
(1)求出图中线段 AB 所表示的函数表达式; (2)两车相遇后,如果快车以返回的速度继续向甲地行驶,求到达甲地还需多长时间.
(1) a ________, b __________; (2)求出姐姐从家出发直到返回家的过程中,姐姐离家的距离 y1 与时间 t 之间的关系式; (3)在姐姐去体育场的过程中,直接写出 t 为何值时,两人相距 400m .
4.港口 A 、 B 、 C 依次在同一条直线上,甲、乙两艘船同时分别从 A 、 B 两港出发,匀速 驶向 C 港,甲、乙两船与 B 港的距离 y (海里)与行驶时间 x (时)之间的关系如图所 示.

八年级数学培优专题一、一次函数培优训练经典题型精选全文完整版

八年级数学培优专题一、一次函数培优训练经典题型精选全文完整版

可编辑修改精选全文完整版一次函数培优经典题型(最新)一、正比例函数的定义1、若y=(m+1)x+m2﹣1是关于x的正比例函数,则m的值为.2、已知函数y=(m+2)x﹣m2+4(m是常数)是正比例函数,则m=.二、一次函数的图象1、在同一平面直角坐标系中,函数y=kx﹣b与y=bx+k的图象不可能是()A.B.C.D.2、如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B.C.D.3、一次函数y=kx+k的图象可能是()A.B.C.D.4、如图,三个正比例函数的图象分别对应的解析式是:①y=ax,②y=bx,③y=cx,请用“>”表示a,b,c的不等关系.三、一次函数的性质1、已知直线y=kx+b过点A(﹣3,y1),B(4,y2),若k<0,则y1与y2大小关系为()A.y1>y2B.y1<y2C.y1=y2D.不能确定2、当1≤x≤10时,一次函数y=﹣3x+b的最大值为17,则b=.3、已知一次函数y=mx﹣2m(m为常数),当﹣1≤x≤3时,y有最大值6,则m的值为()A.﹣B.﹣2C.2或6D.﹣2或64、已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3B.﹣3C.3或﹣3D.k的值不确定5、在平面直角坐标系中,已知一次函数y=kx+b(k,b为常数且k≠0).(1)当b=3k+6时,该函数恒经过一点,则该点的坐标为;(2)当﹣2≤x≤2时,﹣8≤y≤4,则该函数的解析式为.6、一次函数y=ax﹣a+1(a为常数,且a<0).(1)若点(2,﹣3)在一次函数y=ax﹣a+1的图象上,求a的值;(2)当﹣1≤x≤2时,函数有最大值2,求a的值.四、一次函数图象与系数的关系1、若一次函数y=(m﹣2)x+m+1的图象经过一、二、四象限,则m的取值范围是()A.m<﹣1B.m<2C.﹣1<m<2D.m>﹣12、一次函数y=(2k﹣1)x+k的图象不经过第三象限,则k的取值范围是()A.k>0B.C.k≥0D.3、关于x的一次函数y=(k﹣2)x+k2﹣4k+4,若﹣1≤x≤1时,y>0总成立,则k的取值范围是()A.k<1或k>3B.k>1C.k<3D.1<k<34、一次函数y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简:﹣|2﹣b|=.5、关于x的一次函数y=(2a+1)x+a﹣2,若y随x的增大而增大,且图象与y轴的交点在原点下方,则实数a的取值范围是.6、函数y=3x+k﹣2的图象不经过第二象限,则k的取值范围是.7、设,则一次函数y=kx﹣k的图象一定过第_________象限.五、一次函数图象与几何变换1、直线y=﹣5x向上平移2个单位长度,得到的直线的解析式为()A.y=5x+2B.y=﹣5x+2C.y=5x﹣2D.y=﹣5x﹣2 2、在平面直角坐标系中,将正比例函数y=﹣2x的图象向右平移3个单位长度得到一次函数y=kx+b(k≠0)的图象,则该一次函数的解析式为()A.y=﹣2x+3B.y=﹣2x+6C.y=﹣2x﹣3D.y=﹣2x﹣63、若直线l1:y=kx+b(k≠0)是由直线l2:y=4x+2向左平移m(m>0)个单位得到,则下列各点中,可能在直线l1上的是()A.(0,1)B.(2,﹣1)C.(﹣1,2)D.(3,0)4、在平面直角坐标系中,将函数y=x的图象绕坐标原点逆时针旋转90°,再向上平移1个单位长度,所得直线的函数表达式为()A.y=﹣x+1B.y=x+1C.y=﹣x﹣1D.y=x﹣15、若一次函数y=kx+b与y=﹣2x+1的图象关于y轴对称,则k、b的值分别等于.六、待定系数法求一次函数解析式1、P(8,m),A(2,4),B(﹣2,﹣2)三点在同一直线上,则m的值为.2、已知y﹣2与x成正比例,且当x=﹣1时y=5,则y与x的函数关系式是.3、已知y﹣1与x成正比例,当x=﹣2时,y=4.(1)求出y与x的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a的值.4、已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.5、已知y﹣3与2x+4成正比例,且当x=﹣1时,y=7.(1)求y与x的函数关系式;(2)求此函数图象与坐标轴围成的面积.七、一次函数与一元一次方程1、如图,直线y=x+5和直线y=ax+b相交于点P,观察其图象可知方程x+5=ax+b的解()A.x=15B.x=25B.C.x=10D.x=202、如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=4的解是()A.x=1B.x=2C.x=3D.x=43、如图,一次函数y=ax+b与正比例函数y=kx的图象交于点P(﹣2,﹣1),则关于x的方程ax+b=kx的解是.4、根据一次函数y=kx+b的图象,直接写出下列问题的答案:(1)关于x的方程kx+b=0的解;(2)代数式k+b的值;(3)关于x的方程kx+b=﹣3的解.八、一次函数中的面积问题1、若一次函数y=2x+b与坐标轴围成的三角形面积为9,则这个一次函数的解析式为.2、直线y=kx+b经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则k为.3、如图,一次函数y=x﹣4的图象与x轴,y轴分别交于点A,点B,过点A作直线l将△ABO分成周长相等的两部分,则直线l的函数解析式为.4、如图,在平面直角坐标系xOy中,A(2,0),B(2,4),C(0,4).若直线y=kx﹣2k+1(k是常数)将四边形OABC分成面积相等的两部分,则k的值为.5、如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=.6、如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.九、一次函数的应用1、甲乙两人骑自行车分别从A,B两地同时出发相向而行,甲匀速骑行到B地,乙匀速骑行到A地,甲的速度大于乙的速度,两人分别到达目的地后停止骑行.两人之间的距离y(米)和骑行的时间x(秒)之间的函数关系图象如图所示,现给出下列结论:①a=450;②b=150;③甲的速度为10米/秒;④当甲、乙相距50米时,甲出发了55秒或65秒.其中正确的结论有()A.①②B.①③C.②④D.③④2、甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后乙出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示.(1)a的值是,甲的速度是km/h.(2)求线段EF所表示的y与x的函数关系式;(3)若甲乙两车距离不超过10km时,车载通话机可以进行通话,则两车在行驶过程中可以通话的总时长为多少小时?十、一次函数综合题1、如图,直线与x轴,y轴分别交于点A,B,点C,D分别是AB,AO的中点,点P是y轴上一动点,则PC+PD的最小值是.2、若直线AB:y=x+4与x轴、y轴分别交于点B和点A,直线CD:y=﹣x+2与x轴、y轴分别交于点D和点C,线段AB与CD的中点分别是M,N,点P为x轴上一动点.(1)点M的坐标为;(2)当PM+PN的值最小时,点P的坐标为.3、如图,在平面直角坐标系中,一次函数的图象分别与x、y轴交于点A、B,点C在y轴上,AC平分∠OAB,则线段BC=.4、如图,点C的坐标是(2,2),A为坐标原点,CB⊥x轴于B,CD⊥y轴于D,点E是线段BC的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为.5、如图,一次函数y=kx+b的图象经过点A(0,3)和点B(2,0),以线段AB为边在第一象限内作等腰直角△ABC使∠BAC=90°(1)求一次函数的解析式;(2)求出点C的坐标;(3)点P是y轴上一动点,当PC最小时,求点P的坐标.6、如图,直线l:y=kx+b(k≠0)与坐标轴分别交于点A,B,以OA为边在y=8.轴的右侧作正方形AOBC,且S△AOB(1)求直线l的解析式;(2)如图1,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD =DE.①当AE+CE最小时,求E点的坐标;②如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,请求出点H的坐标.。

八年级数学一次函数专项训练(含参考答案)

八年级数学一次函数专项训练(含参考答案)
一次函数专项训练
练习一 一次函数与正比例函数 1. 已知正比例函数的图像过点(2,-4),求这个正比例函数的关系式。
2. 已知一次函数的关系式为 y kx 2 ,当 x 2 时 y 的值为 4,求 k 的值及一次 函数的关系式。
3. 已知关于 x 的一次函数 y kx 4k 2(k 0) 。若其图像经过原点,求这个一次 函数的关系式。
4. 已知一次函数 y kx b ,在 x 0 时的 y 值为 4;在 x 1 时的值为-2,求这 个一次函数的关系式。
5. 已知一次函数 y kx b 的图像经过点 A(0,4),点 B(2,0) (1)求这个一次函数的关系式; (2)当 x 1 时,求 y 的值。
第1页共8页
练习二 确定一次函数的关系式 1. 已知直线 l 过 A,B 两点,A(0,-1),B(1,0)。求直线 l 的函数关系式。
4 5. y xBiblioteka 16. (1) y 9x 7
1. y 3 x 6 2
2. k 1 ,b 6 2
3. y 3x 1
(2) x 5 9
练习三 确定一次函数的关系式
4. (1) y x 2
(2)(0,-2)或(2,0)
5. (1) y 2x 7
(2)12.25
1. k 1,b 2
2. 在平面直角坐标系中,一次函数 y kx b 的图像经过点 A(2,1),B(0,2),C (-1,n),试求 n 的值。
3. 一次函数的图像与 y 轴的交点为(0,-3),且与坐标轴围成的三角形的面积为 6,求这个一次函数的关系式。
4. 如图,已知一次函数 y kx b 的图像经过 A(-2,-1),B(1,3)两点,并且 交 x 轴于点 C,交 y 轴于点 D。 (1)求该一次函数的关系式; (2)求△AOB 的面积。

初二数学讲义(一次函数(1))(含答案)

初二数学讲义(一次函数(1))(含答案)

初二数学讲义(一次函数(1))一、知识梳理:1.函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。

2. 正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ 是一次函数的特殊情况,即在一次函数中b 取零。

当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1)解析式:y=kx (k 是常数,k ≠0)(2)必过点:(0,0)、(1,k )(3)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5)倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴3. 一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过(0,b )和(-kb ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k 、b 是常数,k ≠0)(2)必过点:(0,b )和(-kb ,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限 ⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限(4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.4.直线y=k 1x+b 1与y=k 2x+b 2的位置关系(1)两直线平行:k 1=k 2且b 1 ≠b 2(2)两直线相交:k 1≠k 2(3)两直线重合:k 1=k 2且b 1=b 25.三个一次的关系:任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围二、重点例题与同步训练:1.已知等腰三角形的周长为20cm ,将底边y (cm )表示成腰长x (cm )•的函数关系式是____________,其自变量的取值范围是_____________.2. 若函数21(3)45m y m x x +=++-是一个一次函数.则m=________________.同步训练:已知函数y=(k-1)x+k 2-1,当k________时,它是一次函数,当k=_______•时,它是正比例函数.3. 已知abc ≠0,而且a b b c c a c a b+++===p ,那么直线y=px+p 一定通过( ) (A )第一、二象限 (B )第二、三象限(C )第三、四象限 (D )第一、四象限4. 过点P (-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线 可以作( )(A )4条 (B )3条 (C )2条 (D )1条5. 设b>a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内,•则有一组a ,b 的取值,使得下列4个图中的一个为正确的是( )6. 当-1≤x ≤2时,函数y=ax+6满足y<10,则常数a 的取值范围是( )(A )-4<a<0 (B )0<a<2(C )-4<a<2且a ≠0 (D )-4<a<27.定义:f(a,b)=(b,a),g(m,n)=(﹣m,﹣n).例如f(2,3)=(3,2),g(﹣1,﹣4)=(1,4).则g[f(﹣5,6)]等于()A.(﹣6,5)B.(﹣5,﹣6)C.(6,﹣5) D.(﹣5,6)同步训练:定义:()(0)f x kx b k=+≠,(())()(0)f f x kf x b k=+≠满足:(())43f f x x=+,求()f x的解析式.8.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程11+=1x1m-的解为▲9.对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d (P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.10. 如图11-31所示,已知直线y=x+3的图象与x 轴、y 轴交于A ,B 两点,直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为2:1的两部分,求直线l 的解析式.同步训练. 已知一次函数的图象,交x 轴于A (-6,0),交正比例函数的图象于点B ,且点B•在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位,•求正比例函数和一次函数的解析式.11. 已知点P 在直线2y x =+上移动,(10),(10)A B -,,,ABP ∆的面积s 的取值范围是12s ≤≤,则点P 的横坐标的取值范围是____________________________.12. 在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取( ) (A )2个 (B )4个 (C )6个 (D )8个13. 设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为S k (k=1,2,3,……,2014),那么S 1+S 2+…+S 2014=_______.14. 已知:一次函数y= x-3的图象与x 轴、y 轴分别交于A 、B 两点,过点C (4,0)作AB 的垂线交AB 于点E ,交y 轴于点D ,求点D 、E 的坐标.(解此题时,可以用定理:若直线11112222(0)(0),y k x b k y k x b k =+≠=+≠与垂直121k =-则k .)课后作业:1.已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >22. 如图,在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),直线y=kx-2与线段AB 有交点,则k 的值不可能是( )A .-5B .-2C .3D . 53. 如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >24. 已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为A .x<-1B .x> -1C . x>1D .x<15. 已知梯形ABCD 的四个顶点的坐标分别为A (-1,0),B (5,0),C (2,2),D (0,2),直线y=kx +2将梯形分成面积相等的两部分,则k 的值为A. -32B. -92C. -74D. -72 6. 若一次函数y=kx+b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,•则一次函数的解析式为________.7.已知直线1y kx b y x =+=+与直线平行,且该直线与坐标轴所围三角形面积是2,求该直线解析式.8. 在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换: ①f (x ,y )=(y ,x ).如f (2,3)=(3,2);②g (x ,y )=(﹣x ,﹣y ),如g (2,3)=(﹣2,﹣3).按照以上变换有:f (g (2,3))=f (﹣2,﹣3)=(﹣3,﹣2),那么g (f (﹣6,7))等于【 】A .(7,6)B .(7,﹣6)C .(﹣7,6)D .(﹣7,﹣6)9. 已知a,b,c 均为非零实数,且=a b c b c a c a b k c a b +-+-+-==,直线y kx b =+与坐标轴围成的三角形面积是2,求直线解析式.作业答案:1.D ;2.B ;3.D ;4.A ;5.A ;6. y=2x+7或y=-2x+3 ;7.2,2y x y x =+=-;8.C;9.2,2,22y x y x y x y =+=-=-+=--答案:1.y=20-2x, 5<x<10;2. 0m =或3m =-;同步:≠1;-13.3.B;4.C ;5.B ;6.D ;7.A;同步:()21,()23f x x f x x =+=--;8.x=3;9. 【答案】解:(1)由题意,得|x|+|y|=1。

《一次函数》培优题含答案解析

《一次函数》培优题含答案解析

《一次函数》培优题含答案解析1.如图1,已知直线y=2某+2与y轴、某轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交某轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.考点:一次函数综合题。

分析:(1)如图1,作CQ⊥某轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:(1)如图1,作CQ⊥某轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=某+2;(2)如图2,作CH⊥某轴于H,DF⊥某轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣某﹣,P(∴P(﹣,),由y=某+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN∴BN==某,,ON=,,k)是线段BC上一点,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.3.如图直线:y=k某+6与某轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(某,y)是直线在第二象限内一个动点,试写出△OPA的面积S与某的函数关系式,并写出自变量某的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。

一次函数培优及答案

一次函数培优及答案

Oy (微克/毫升) x (时)314 8 4 一次函数培优题一、填空题2、函数34+-=x y 的图象上存在点P ,点P 到x 轴的距离等于4,则点P 的坐标是________。

5、已知直线()42-+--=a x x a y 不经过第四象限,则a 的取值范围是 。

7、如图,折线ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km ;②汽车在行驶途中停留了0.5h ;③汽车在整个行驶过程中的平均速度为803km ;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。

其中正确的说法有_______________.8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了___D_____千克.” 二、选择题2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则当1≤x ≤6时,y 的取值范围是( )A . 8 3≤y ≤ 64 11B . 64 11≤y ≤8C . 83≤y ≤8 D .8≤y ≤163、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( )A .①③ B.①④ C.②③ D.②④6、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( ).A .x >1B .x <1C .x >-2D .x <-2 第6题 第7题7、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,则直线AB 的解析式是( )A.23y x =--B.26y x =--C.23y x =-+D.26y x =-+ 8、已知一次函数b kx y +=,当x 增加3时,y 减少2,则k 的值是( )A.32B.23C.32-D.23- O 1xy-2 y =k 2x +cy =k 1x +bxyO B A 2y x =-9、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是 ( )A.甲的效率高B.乙的效率高C.两人的效率相等D.两人的效率不能确定11、直线y=x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )A.5个B.6个C.7个D.8个12、已知一次函数()1-=x k y ,若y 随x 的增大而减小,则该函数的图像经过( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 三、解答题1、李明从蚌埠乘汽车沿高速公路前往A 地,已知该汽车的平均速度是100千米/小时,它行驶t 小时后距蚌埠的路程......为s 1千米. ⑴请用含t 的代数式表示s 1;⑵设另有王红同时从A 地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距.蚌埠的路程...s 2(千米)与行驶时间t (时)之间的函数关系式为s 2=kt +b (k 、t 为常数,k ≠0),若李红从A 地回到蚌埠用了9小时,且当t=2时,s 2=560. ①求k 与b 的值;②试问在两辆汽车相遇之前,当行驶时间t 的取值在什么范围内,两车的距离小于288千米?A .B .C .D .2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.3、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示: 根据图象解答下列问题:(1) 洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升? (2) 已知洗衣机的排水速度为每分钟19升, ① 求排水时y 与x 之间的关系式。

北师大版八年级上册一次函数和几何解培优专题(解析版)(20200706090246)

北师大版八年级上册一次函数和几何解培优专题(解析版)(20200706090246)

( 2)如图, 若过点 B 的直线 BP 与长方形 OABC 的边交于点 P,且将长方形 OABC 的面积分为 1:4 两部分,求点 P 的坐标.
6.如图,在平面直角坐标系 坐标为 A(m , 2).
xOy 中,正比例函数 y= x 的图象与一次函数 y= kx - k 的图象的交点
(1) 求 m 的值和一次函数的解析式;
27.已知一次函数 y1 k1x b 与正比例函数 y2 k2 x 都经过点 M 3, 4 , y1 的图像与 y 轴交于 点 N ,且 ON 2 OM .
( 1)求 y1 与 y2 的解析式; ( 2)求 ⊿ MON 的面积 . 28.如图,直线 y= k1x(x≥ 0与) 双曲线 y= k2 (x> 0)相交于点 P(2, 4).已知点 A(4, 0), B(0,3) ,
(2) 设一次函数 y=kx - k 的图象与 y 轴交于点 B,求 △AOB 的面积;
(3) 直接写出使函数 y= kx - k 的值大于函数 y= x 的值的自变量 x 的取值范围.
2 / 66
北师大版八年级上册一次函数和几何解答题
培优专题(解析版)
7.如图,已知直线 y=- 2x+ 6 与 x 轴交于点 A ,与 y 轴交于点 B. (1) 点 A 的坐标为 ________,点 B 的坐标为 ________. (2) 求 △ AOB 的面积. (3) 直线 AB 上是否存在一点 C(点 C 与点 B 不重合 ),使 △AOC 的面积等于 △ AOB 的面积?若存在, 求出点 C 的坐标;若不存在,请说明理由.
1 / 66
北师大版八年级上册一次函数和几何解答题
培优专题(解析版)
4.已知一次函数 y=kx+b ( k、 b 是常数)的图像平行于直线 y -3 x ,且经过点( 2, -3).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档