高三理科数列专题训练

合集下载

高三数列综合练习题

高三数列综合练习题

高三数列综合练习题数列是数学中常见且重要的概念,不仅在高中数学中有广泛应用,而且在其他学科和实际生活中也有着重要的作用。

在高三阶段,对数列的综合运用是学习的重点和难点之一。

本文将为大家提供一些高三数列综合练习题,希望能够帮助同学们更好地掌握和运用数列的知识。

1. 已知数列{an}满足a1=1,an+1=an+2/n(n+1)(n∈N*),求前n项和Sn。

解析:首先我们将数列的前几项进行计算,得到a2、a3、a4...a2=a1+2/2(2+1)=2a3=a2+2/3(3+1)=2+4/3=10/3a4=a3+2/4(4+1)=10/3+2/4=5/2可以看出数列的通项公式为an = (n+1)/2n(其中n>=1),接下来我们求前n项和Sn。

根据数列的前n项和的定义,Sn=a1+a2+...+an,代入an的通项公式:Sn=1+(1+1)/2*1+(2+1)/2*2+...+(n+1)/2*n将Sn进行化简:Sn=1/2*(n+1)/1+2/2*(n+1)/2+3/2*(n+1)/3+...+n/2*(n+1)/n=1/2*((n+1)/1+(n+1)/2+(n+1)/3+...+(n+1)/n)=(n+1)/2*(1/1+1/2+1/3+...+1/n)综上所述,前n项和为Sn=(n+1)/2*(1/1+1/2+1/3+...+1/n)。

2. 数列{an}的通项公式为an = (n+1)/(2n+1)(n∈N*),求前n项和Sn。

解析:同样先计算数列的前几项:a1=(1+1)/(2*1+1)=2/3a2=(2+1)/(2*2+1)=3/5a3=(3+1)/(2*3+1)=4/7可以观察到数列的通项公式与分数的形式有关,我们可以猜测通项公式的形式为an=(n+1)/(2n+1)。

接下来求前n项和Sn:Sn=a1+a2+...+an,代入an的通项公式:Sn=2/3+3/5+4/7+...+(n+1)/(2n+1)将Sn进行化简:Sn=(2/3)+(3/5)+(4/7)+...+(n+1)/(2n+1)=(3-1)/3+(5-2)/5+(7-4)/7+...+[(2n+1)-(n+1)]/(2n+1)=1-1/3+2/5-2/7+3/9-3/11+...+(n-n/(2n+1))可以看出分子部分是一项正一项负,而且绝对值递增,分母部分是奇数递增。

高三数列专题练习30道带答案(3)

高三数列专题练习30道带答案(3)

高三数列专题训练二学校: ___________ 姓名:___________ 班级:___________ 考号:___________一、解答题1 •在公差不为零的等差数列a n中,已知a2 3,且a,、a3、a7成等比数列.(1)求数列a n的通项公式;9(2)设数列a n的前n项和为& ,记b n ——,求数列b n的前n项和T .2S2n2•已知等差数列a n的前n项和为S n ,公差d 0,且S 50, a1,a4,a13成等比数列.(I)求数列a n的通项公式;(n)设n是首项为1,公比为3的等比数列,求数列b n的前n项和T n.a n1 13 •设等比数列a n的前n项和为S n , a2 &,且$ 花,S2, &成等差数列,数列b n满足b n 2n .(1)求数列a n的通项公式;□ 1(2)设C n a n b n,若对任意n N*,不等式c1c2…c n2S n1恒成立,2求的取值范围.4.已知等差数列{a n}的公差d 2,其前n项和为S n,且等比数列{b }满足d 印,b2 a4, b3 a13.(I)求数列{a n}的通项公式和数列{b n}的前n项和B n;1(n)记数列{—}的前n项和为T n,求T n.Sn5 .设数列a n的前n项和为S n,且满足S n 2 %门1,2,3丄.(1)求数列a n的通项公式;(2)若数列b n满足b 1,且b n 1 b n a n ,求数列b n的通项公式;(3)设C n n 3 b n,求数列C n的前n项和T n .6 .已知差数列等 K 的前n 项和S n ,且对于任意的正整数 n 满足2 S1 K 1(1) 求数列 a n 的通项公式; b n —1—b (2) 设 a n a n 1 ,求数列4的前n 项和B n .7.对于数列{a n }、{b n },S n 为数列{a .}的前n 项和,且S n 1 (n 1) & a . n , a 1 bi 1 , b n 1 3b n 2, n N .(1) 求数列{a n }、{b n }的通项公式;(2) 令C n 2(a n n ),求数列{C n }的前n 项和T n .n(b n 1)11 8 •已知 a n 是各项均为正数的等比数列,且 a 1 a2 2(— —),a ?(1) 求a n 的通项公式;1 2(2) 设b n (a n —)2,求数列 b n 的前n 项和「. 9•已知数列{a n }的首项a 1 1 ,前n 项和为S n ,且S n 1 2S n n 1 0 ( n N *) (I) 求证:数列{a n 1}为等比数列;(n) 令b n na n ,求数列{b n }的前n 项和T n .110 •已知各项都为正数的等比数列 {a n }满足 a 3是3a 1与2a 2的等差中项,且a£2 a 3.2(I)求数列{a n }的通项公式;1 2S(n)设b n log 3 a n ,且S n 为数列{b n }的前n 项和,求数列{ ------------- }的前n 项和T n .S n11 .已知数列a n 的前n 项和为S n ,a 1 1,S 2n 2a n 务. (1)求数列 a n 的通项公式; (2)若 b n 2* ,求 D b 3 b 5 ... b 2n 1 . a 3 a 4 a 564( a s 1 a 412 •设公差不为0的等差数列a n的首项为1,且a2, a5,a14构成等比数列.(1) 求数列 a n 的通项公式;(2) 若数列b n 满足一 — L —1 —n , n N ,求b n 的前n 项和T n .a i a 2 a n 2 13 .已知数列 a n 是等比数列,满足a i 3,a 4 24,数列b n 满足d 4© 22, 且b n a n 是等差数列. (I )求数列 a n 和b n 的通项公式;(II )求数列b n 的前n 项和。

数列练习题高中

数列练习题高中

数列练习题高中一、等差数列1. 已知等差数列的前三项分别为3,5,7,求第10项的值。

2. 在等差数列{an}中,若a1=1,公差d=2,求前10项的和。

3. 已知等差数列的通项公式为an=3n2,求前n项和的表达式。

4. 在等差数列{an}中,若a5+a8=34,a3+a6=26,求首项a1和公差d。

二、等比数列1. 已知等比数列的前三项分别为2,6,18,求第6项的值。

2. 在等比数列{bn}中,若b1=3,公比q=3,求前5项的和。

3. 已知等比数列的通项公式为bn=2^n,求前n项和的表达式。

4. 在等比数列{bn}中,若b3•b6=144,b4•b5=108,求首项b1和公比q。

三、数列的综合应用1. 已知数列{cn}的通项公式为cn=n^2+n,求前n项和。

2. 在数列{dn}中,若d1=1,d2=3,dn=dn1+dn2(n≥3),求第10项的值。

3. 已知数列{en}的前n项和为Sn=2^n1,求通项公式。

4. 设数列{fn}的通项公式为fn=3n+2,求证:数列{fn+1 fn}是等差数列。

四、数列的极限1. 求极限:lim(n→∞) (1+1/n)^n。

2. 求极限:lim(n→∞) (n^2 n) / (2n^2 + 3n + 1)。

3. 求极限:lim(n→∞) (sqrt(n^2+1) sqrt(n^21))。

五、数列的应用题1. 一等差数列的前5项和为35,前10项和为110,求前15项和。

2. 一等比数列的第3项为12,第6项为48,求首项和公比。

3. 一数列的前n项和为2^n 1,求第10项的值。

4. 一数列的通项公式为an=n^2+n,求证:该数列的前n项和为(n+1)(n+2)/2。

六、数列的性质与判定3. 已知数列{gn}的通项公式为gn=2n1,判断数列{gn+1 gn}是否为等差数列。

4. 已知数列{hn}的通项公式为hn=n^3,判断数列{hn+1 / hn}是否为等比数列。

专题3 数列专题压轴小题(原卷版)

专题3 数列专题压轴小题(原卷版)

专题3 数列专题压轴小题一、单选题1.(2022·全国·模拟预测(理))数列{}n a 满足1a a =,2131n n n a a a +=--,则下列说法错误的是( ) A .若1a ≠且2a ≠,数列{}n a 单调递减B .若存在无数个自然数n ,使得1n n a a +=,则1a =C .当2a >或1a <时,{}n a 的最小值不存在D .当3a =时,121111,12222n a a a ⎛⎤++⋅⋅⋅⋅⋅⋅+∈ ⎥---⎝⎦2.(2022·浙江·杭州高级中学模拟预测)已知数列{}n a 中,11a =,若()*112,N n n n na a n n n a --=≥∈+,则下列结论中错误的是( ) A .41225a =B .11112n n a a +-≤ C .ln(1)1n a n ⋅+<D .21112n n a a -≤ 3.(2022·浙江·高三开学考试)已知数列{}n a 满足递推关系1e 1e nn a an a +-=,且10a >,若存在等比数列{}n b 满足1+≤≤n n n b a b ,则{}n b 公比q 为( )A .12B .1eC .13D .1π4.(2022·浙江·模拟预测)已知数列{}n a 满足()()112,1ln n n a a a b b n *+=-=+-∈N .若{}n a 有无穷多个项,则( ) A .0b ≥B .1b ≥-C .1b ≥D .2b ≥-5.(2022·全国·高三专题练习)已知等差数列{}n a (公差不为零)和等差数列{}n b 的前n 项和分别为n S ,n T ,如果关于x 的实系数方程22021202120210x S x T -+=有实数解,那么以下2021个方程()201,2,3,,2021i i x a x b i -+==⋅⋅⋅中,无实数解的方程最多有( )A .1008个B .1009个C .1010个D .1011个6.(2022·全国·高三专题练习)己知数列{}n a 满足:12a =,)()1123n n a a n *+=∈N .记数列{}n a 的前n 项和为n S ,则( ) A .101214S << B .101416S << C .101618S <<D .101820S <<7.(2022·浙江·慈溪中学模拟预测)已知数列{}n a 满足:112a =-,且()1ln 1sin +=+-n n n a a a ,则下列关于数列{}n a 的叙述正确的是( ) A .1n n a a +>B .1124-≤<-n aC .212nn n a a a +>-+D .2124n n a -≤-8.(2022·浙江省江山中学高三期中)已知数列{}n a 满足13a =,121n n na a a +=+-,记数列{}2n a -的前n项和为n S ,设集合12624535,,,5251712M ⎧⎫=⎨⎬⎩⎭,{nN M Sλλ=∈>对*n ∈N 恒成立},则集合N 的元素个数是( ) A .1B .2C .3D .49.(2022·浙江省嘉善中学高三阶段练习)已知数列{}n a 满足11a =,()*14,2n n a a n N n -⎫=+∈≥,n S 为数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和,则( ) A .20227833S << B .2022723S <<C .2022523S << D .2022513S <<10.(2022·全国·高三专题练习)已知数列{}{}{}n n n a b c 、、满足()*111112233411111112334n n n n n n n n n n n b a b c c a a c c n S n T n b b b b a a a n+++====-=⋅∈=+++≥=+++≥---N ,,,(),(),则下列有可能成立的是( )A .若{}n a 为等比数列,则220222022a b > B .若{}n c 为递增的等差数列,则20222022S T <C .若{}n a 为等比数列,则220222022a b < D .若{}n c 为递增的等差数列,则20222022S T >11.(2022·浙江·模拟预测)已知各项均为正数的数列{}n a 满足11a =,()1*111n n n n n a a n N a +++=-∈,则数列{}n a ( )A .无最小项,无最大项B .无最小项,有最大项C .有最小项,无最大项D .有最小项,有最大项12.(2022·浙江浙江·二模)已知{}n a 为非常数数列且0n a ≠,1a μ=,()()*1sin 2,,n n n a a a n λμλ+=++∈∈R N ,下列命题正确的是( )A .对任意的λ,μ,数列{}n a 为单调递增数列B .对任意的正数ε,存在λ,μ,()*00n n ∈N ,当0n n >时,1n a ε-<C .存在λ,μ,使得数列{}n a 的周期为2D .存在λ,μ,使得2122n n n a a a +++->13.(2022·浙江温州·二模)对于数列{}n x ,若存在正数M ,使得对一切正整数n ,恒有n x M ≤,则称数列{}n x 有界;若这样的正数M 不存在,则称数列{}n x 无界,已知数列{}n a 满足:11a =,()()1ln 10n n a a λλ+=+>,记数列{}n a 的前n 项和为n S ,数列{}2na 的前n 项和为nT ,则下列结论正确的是( ) A .当1λ=时,数列{}n S 有界 B .当1λ=时,数列{}n T 有界 C .当2λ=时,数列{}n S 有界D .当2λ=时,数列{}n T 有界14.(2022·北京市育英学校高三开学考试)[]x 为不超过x 的最大整数,设n a 为函数()[]f x x x ⎡⎤=⎣⎦,[)0,x n ∈的值域中所有元素的个数.若数列12n a n ⎧⎫⎨⎬+⎩⎭的前n 项和为n S ,则2022S =( )A .10121013B .12C .20214040D .1011101215.(2022·浙江浙江·高三阶段练习)已知数列{}n a 满足11a =,且12n n T a a a =,若*12,1n nn n a T T n N a ++∈=,则( ) A .5011,1211a ⎛⎫∈⎪⎝⎭B .5011,1110a ⎛⎫∈⎪⎝⎭C .1011,87a ⎛⎫∈ ⎪⎝⎭D .1011,65a ⎛⎫∈ ⎪⎝⎭16.(2022·浙江·高三专题练习)已知数列{}n a 满足()*111,1ln 2n n a a a n N +==+∈,记n T 表示数列{}n a 的前n 项乘积.则( ) A .911,3026T ⎛⎫∈⎪⎝⎭ B .911,2622T ⎛⎫∈⎪⎝⎭ C .911,2218T ⎛⎫∈⎪⎝⎭ D .911,1814T ⎛⎫∈⎪⎝⎭ 17.(2022·浙江·湖州中学高三阶段练习)已知各项均为正数的数列{}n a 满足11a =,()11e cos n a n n a a n +*+=-∈Ν,其前n 项和为n S ,则下列关于数列{}n a 的叙述错误的是( ) A .()1n n a a n *+>∈Ν B .()211n n n a a a n *++<+∈ΝC.)n a n *∈ΝD.)n S n *<∈Ν18.(2022·浙江·镇海中学高三期末)已知无穷项实数列{}n a 满足: 1a t =, 且 14111n n n a a a +=--, 则( )A .存在1t >, 使得20111a a =B .存在0t <, 使得20211a a =C .若2211a a =, 则21a a =D .至少有2021个不同的t , 使得20211a a =19.(2022·浙江杭州·高三期末)若数列{}n a 满足1n n a a +<,则下列说法错误的是( ) A .存在数列{}n a 使得对任意正整数p ,q 都满足p pq q a a a =+ B .存在数列{}n a 使得对任意正整数p ,q 都满足pq q p a pa qa =+ C .存在数列{}n a 使得对任意正整数p ,q 都满足p q q p a pa qa +=+ D .存在数列{}n a 使得对任意正整数p ,q 部满足p q p q a a a +=20.(2022·全国·高三专题练习)已知{}n a 是各项均为正整数的数列,且13a =,78a =,对*k N ∀∈,11k k a a +=+与1212k k a a ++=有且仅有一个成立,则127a a a ++⋅⋅⋅+的最小值为( ) A .18 B .20C .21D .2221.(2022·浙江·海亮高级中学模拟预测)已知数列{},n a n N *∈,212,n n n a a a m m R +=-+∈,下列说法正确的是( )A .对任意的(0,1)m ∈,存在1[1,2]a ∈,使数列{}n a 是递增数列;B .对任意的95(,)42m ∈,存在1[1,2]a ∈,使数列{}n a 不单调;C .对任意的(0,1)m ∈,存在1[1,2]a ∈,使数列{}n a 具有周期性;D .对任意的(0,1)m ∈,当1[1,2]a ∈时,存在3n a >.22.(2022·全国·高三专题练习)已知{}n a 是等差数列,()sin n n b a =,存在正整数()8t t ≤,使得n t n b b +=,*n N ∈.若集合{}*,n S x x b n N==∈中只含有4个元素,则t 的可能取值有( )个A .2B .3C .4D .523.(2022·上海民办南模中学高三阶段练习)已知数列{}n a 满足:当0n a ≠时,2112+-=n n na a a ;当0n a =时,10n a +=;对于任意实数1a ,则集合{}0,1,2,3,nn an ≤=的元素个数为( )A .0个B .有限个C .无数个D .不能确定,与1a 的取值有关24.(2022·全国·高三专题练习)已知数列{}n a 满足1221nn n a a a +=+,满足()10,1a ∈,1220212020a aa ++⋅⋅⋅+=,则下列成立的是( ) A .120211ln ln 2020a a ⋅> B .120211ln ln 2020a a ⋅=C .120211ln ln 2020a a ⋅<D .以上均有可能25.(2022·全国·高三专题练习)已知各项都为正数的数列{}n a 满足1(2)a a a =>,1*11()n a n n ne a ka n N a +-++=-+∈,给出下列三个结论:①若1k =,则数列{}n a 仅有有限项;①若2k =,则数列{}n a 单调递增;①若2k =,则对任意的0M >,陼存在*0n N ∈,使得020n n M a >成立.则上述结论中正确的为( ) A .①① B .①① C .①① D .①①①二、多选题26.(2022·全国·清华附中朝阳学校模拟预测)数列{}n a 满足1a a =,2131n n n a a a +=--,则下列说法正确的是( )A .若1a ≠且2a ≠,数列{}n a 单调递减B .若存在无数个自然数n ,使得1n n a a +=,则1a =C .当2a >或1a <时,{}n a 的最小值不存在D .当3a =时,121111,12222n a a a ⎛⎤++⋅⋅⋅⋅⋅⋅+∈ ⎥---⎝⎦27.(2022·福建省福州第一中学高三开学考试)已知数列{}n a 满足101a <<,()()11ln 2N*n n n a a a n ++=-∈,n S 为数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论正确的是( ) A .()12n n n S +>B .202212022a >C .01n a <<D .若113a =,则1132n n a -≥⋅28.(2022·江苏·高三开学考试) 已知n S 是数列{}n a 的前n 项和,21n n S S n +=-+,则( )A . 121(2)n n a a n n ++=-≥B . 22n n a a +-=C . 当10a =时,501225S =D . 当数列{}n a 单调递增时,1a 的取值范围是11,44⎛⎫- ⎪⎝⎭29.(2022·湖北武汉·高三开学考试)已知数列{}n a 满足:11a =,(()11322n n a a n -=≥,下列说法正确的是( )A .N n *∀∈,12,,n n n a a a ++成等差数列B .()1132n n n a a a n +-=-≥C .()11*23N n n n a n --≤≤∈D .*N n ∀∈,12,,n n n a a a ++一定不成等比数列30.(2022·浙江绍兴·模拟预测)已知正项数列{}n a ,对任意的正整数m 、n 都有222m n m n a a a +≤+,则下列结论可能成立的是( ) A .n mmn a a a m n+= B .m n m n na ma a ++= C .2m n mn a a a ++=D .2m n m n a a a +⋅=31.(2022·全国·模拟预测)已知数列{}n a 满足328a =,()()1122nn n a n a n --⎡⎤=+≥⎢⎥⎣⎦,*n ∈N ,数列{}n b 的前n 项和为n S ,且()()222212221log log n n n n n b a a a a +-+=⋅-⋅,则下列说法正确的是( ) A .4221a a = B .1216a a ⋅=C .数列212n n a a -⎧⎫⎨⎬⎩⎭为单调递增的等差数列D .满足不等式50n S ->的正整数n 的最小值为6332.(2022·福建南平·三模)如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =⋅⋅⋅⋅⋅⋅且,i i x y ∈Z .记n n n a x y =+,如()11,0A 记为11a =,()21,1A -记为20a=,()30,1A -记为31,a =-⋅⋅⋅,以此类推;设数列{}n a 的前n 项和为n S .则( )A .202242a =B .202287S =-C .82n a n =D .()245312n n n n S ++=33.(2022·全国·长郡中学模拟预测)已知数列{}n a 的前n 项和为n S ,且1n n S a +=对于*n N ∀∈恒成立,若定义(1)n n S S =,()()(1)12nk k ni i S S k -==≥∑,则以下说法正确的是( )A .{}n a 是等差数列B .()232122nn n n S -+=-C .()()()121A 1!k k k n k nn S S k +++--=+D .存在n 使得()202120222022!nn S =34.(2022·全国·高三专题练习)我们常用的数是十进制数,如32101079110010710910⨯⨯+⨯⨯=++,表示十进制的数要用10个数码.0,1,2,3,4,5,6,7,8,9;而电子计算机用的数是二进制数,只需两个数码0和1,如四位二进制的数()3212110112120212⨯⨯⨯++⨯=+,等于十进制的数13.把m 位n 进制中的最大数记为(),M m n ,其中m ,*,2n n ∈≥N ,(),M m n 为十进制的数,则下列结论中正确的是( )A .()5,231M =B .()()4,22,4M M =C .()()2,11,2M n n M n n ++<++D .()()2,11,2M n n M n n ++>++35.(2022·全国·高三专题练习)已知数列{}n a 满足11a =,()12ln 11n n n a a a +=++,则下列说法正确的有( ) A .31225a a a <+B .2211n nn a a a +-≤+ C .若2n ≥,则131141ni i a =≤<+∑ D .()()1ln 121ln 2nni i a =+≤-∑36.(2022·海南·嘉积中学高三阶段练习)“0,1数列”在通信技术中有着重要应用,它是指各项的值都等于0或1的数列.设A 是一个有限“0,1数列”,()f A 表示把A 中每个0都变为1,0,每个1都变为0,1,所得到的新的“0,1数列”,例如()0,1,1,0A,则()()1,0,0,1,0,1,1,0f A =.设1A 是一个有限“0,1数列”,定义()1k k A f A +=,1k =、2、3、⋅⋅⋅.则下列说法正确的是( )A .若()31,0,0,1,1,0,0,1A =,则()10,0A =B .对任意有限“0,1数列”1A ,则()2,n A n n ≥∈N 中0和1的个数总相等C .1n A +中的0,0数对的个数总与n A 中的0,1数对的个数相等D .若()10,0A =,则2021A中0,0数对的个数为10101413-() 37.(2022·全国·高三专题练习(理))设数列{}n a 满足10a =,3128,N n na ca c n *+=+-∈其中c 为实数,数列{}2n a 的前n 项和是n S ,下列说法不正确的是( ) A .当1c >时,{}n a 一定是递减数列 B .当0c <时,不存在c 使{}n a 是周期数列 C .当10,4c ⎡⎤∈⎢⎥⎣⎦时,[]0,2n a ∈D .当17c =时,52n S n >- 三、填空题38.(2022·全国·高三专题练习)对于数列{}n a ,若1,n n a a +是关于x 的方程2103n n x c x -+=的两个根,且12a =,则数列{}n c 所有项的和为________.39.(2022·全国·高三专题练习(文))已知函数()2()log 41xf x x =+-,数列{}n a 是公差为2的等差数列,若()()()()112233440a f a a f a a f a a f a +++=,则数列{}n a 的前n 项和n S =__________.40.(2022·全国·高三专题练习)数列{}n a 满足:2110n n n a a a a c +==-++,.若数列{}n a 单调递减,则c的取值范围是________;若数列{}n a 单调递增,则c 的取值范围是__________.41.(2022·全国·高三专题练习(理))黎曼猜想由数学家波恩哈德·黎曼于1859年提出,是至今仍未解决的世界难题.黎曼猜想研究的是无穷级数1111()123s s s sn n n ξ∞-===+++⋅⋅⋅∑,我们经常从无穷级数的部分和1111123s s s s n +++⋅⋅⋅+入手.已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,则122021111S S S ⎡⎤++⋅⋅⋅=⎢⎥⎣⎦______.(其中[]x 表示不超过x 的最大整数) 42.(2022·上海·华东师范大学附属东昌中学高三阶段练习)已知函数2()(2),2x f x f x x ≤<=-≥⎪⎩,若对于正数(*)n k n N ∈,直线n y k x =与函数()f x 的图像恰好有21n 个不同的交点,则22212n k k k ++⋯+=___________.43.(2022·全国·高三专题练习)设①A n B n C n 的三边长分别为a n ,b n ,c n ,n =1,2,3…,若11b c >,1112b c a +=,11,2n n n n n a c a a b +++==,12n n n a bc ++=,则n A ∠的最大值是________________.44.(2022·上海·高三专题练习)若数列{}n a 满足()**120,n n n n k a a a a n N k N +++++++=∈∈,则称数列{}n a 为“k 阶相消数列”.已知“2阶相消数列”{}n b 的通项公式为2cos n b n ω=,记12n n T b b b =,12021n ≤≤,*n N ∈,则当n =___________时,n T 取得最小值45.(2022·上海·高三专题练习)若数列{}n a 满足()*4411414242434141032n n n n n n n n a a a a a a a n N a a +-----=-=-===∈,,,且对任意*n N ∈都有n a m <,则m 的最小值为________.46.(2022·全国·高三开学考试(理))用()g n 表示自然数n 的所有因数中最大的那个奇数,例如:9的因数有1,3,9,(9)9g =,10的因数有1,2,5,10,(10)5g =,那么2015(1)(2)(3)(21)g g g g ++++-=__________.47.(2022·江苏苏州·模拟预测)设函数()21f x x =,()()222f x x x =-,()31sin 23f x x π=,取2019i it =,0,1,2,,2019i =,()()()()()()102120192018k k k k k k k S f t f t f t f t f t f t +-++=--,1,2,3k =,则1S ,2S ,3S 的大小关系为________.(用“<”连接)四、双空题48.(2022·浙江·模拟预测)已知数列{}n a 对任意的n *∈N ,都有n a *∈N ,且131,,2n n n n n a a a a a ++⎧⎪=⎨⎪⎩为奇数为偶数.①当18a =时,2022a =_________.①若存在m *∈N ,当n m >且n a 为奇数时,n a 恒为常数P ,则P =_________.49.(2022·全国·高三专题练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程若第1个图中的三角形的周长为1,则第n 个图形的周长为___________;若第1个图中的三角形的面积为1,则第n 个图形的面积为___________.50.(2022·全国·高三专题练习)对于正整数n ,设n x 是关于x 的方程:()222253log 1nn n nx x x ++++=的实根,记12nnax⎡⎤=⎢⎥⎣⎦,其中[]x表示不超过x的最大整数,则1a=______;若πsin2n nnb a=⋅,nS为{}n b的前n项和,则2022S=______.。

高考理科数学一轮复习专题训练:数列(含详细答案解析)

高考理科数学一轮复习专题训练:数列(含详细答案解析)

B . 3 2.在正项等比数列{a }中,已知 a 4 = 2 , a = ,则 a 5 的值为( 8= 2 , a = ,可得 8 q 4 = 8 = ,又因为 q > 0 ,所以 q = 1 2 2127B .35063C .28051D . 3502第 7 单元 数列(基础篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前 n 项和为 S n ,若 a 1=12,S 5=90,则等差数列{a n }公差 d =()A .2【答案】C2 C .3D .4【解析】∵a =12,S =90,∴ 5 ⨯12 + 1 5 5 ⨯ 4 2d = 90 ,解得 d=3,故选 C .n 8 1 )1 1 A . B . - C . -1 D .14 4【答案】D【解析】由题意,正项等比数列{a }中,且 a n 48 1 a 1 a 16 41,则 a = a ⋅ q = 2 ⨯ = 1 ,故选 D .5 43.在等差数列{a n}中, a 5+ a = 40 ,则 a + a + a = ( ) 13 8 9 10A .72B .60C .48D .36【答案】B【解析】根据等差数列的性质可知: a 5 + a 13 = 40 ⇒ 2a 9 = 40 ⇒ a 9 = 20 ,a + a + a = 2a + a = 3a = 60 ,故本题选 B .8 9109994.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7 天,共走了 700 里,则这匹马第 7 天所走的路程等于()A .700里里 里【答案】A127里【解析】设马每天所走的路程是 a 1, a 2 ,.....a 7 ,是公比为1的等比数列,a 1 - ( )7 ⎪a = a q 6= 7005.已知等差数列{a n } 的前 n 项和 S n 有最大值,且 a=10(a +a )2= 5(a + a ) = 5(a + a ) > 0 , S =2 = 11a < 0 , (a + 2d - 1)2 = (a + d - 1)(a + 4d - 1) ⎩ d = 2这些项的和为 700, S = 7 ⎛ 1 ⎫ 1 ⎝ 2 ⎭1 - 12 = 700 ⇒ a =1 64 ⨯ 700 127 ,7 1 127 ,故答案为 A .a 5< -1 ,则满足 S 6n> 0 的最大正整数 n 的值为()A .6B .7C .10D .12【答案】C【解析】设等差数列{a n } 的公差为 d ,因为等差数列{a n } 的前 n 项和 S n 有最大值,所以 d < 0 ,a又 a 5 < -1 ,所以 a 5 > 0 , a 6 < 0 ,且 a 5 + a 6 > 0 ,6 所以 S1 101 10 5 6 11 所以满足 S n > 0 的最大正整数 n 的值为 10.11(a + a )1 1166.已知等差数列{a n}的公差不为零, Sn为其前 n 项和, S 3 = 9 ,且 a 2 - 1 , a 3 - 1, a 5 - 1构成等比数列,则 S 5 = ( )A .15B . -15C .30D .25【答案】D【解析】设等差数列{a n}的公差为 d (d ≠ 0),⎧⎪3a + 3d = 9⎧a = 1 由题意 ⎨ 1 ,解得 ⎨ 1 ⎪⎩ 1 1 1.∴ S = 5 ⨯1 +5 5 ⨯ 4 ⨯ 22 = 25 .故选 D .7.在等差数列{a n } 中, a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,则数列{a n } 的前 11 项和等于(A .66B .132C . -66D . -132【答案】D)S = 11⨯ (a + a ) 2 2 2 = 15 ,解得 n = 5 ,( )nC . a = 3n -1D . a =3n【解析】因为 a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,所以 a 3 + a 9 = -24 ,又 a 3 + a 9 = -24 = 2a 6 ,所以 a 6 = -12 ,11⨯ 2a1 11 = 6 = -132 ,故选 D . 118.我国南宋数学家杨辉 1261 年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为 2n -1 ,若去除所有为 1 的项,依次构成数列 2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15 项和为()A .110B .114C .124D .125【答案】B【解析】由题意, n 次二项式系数对应的杨辉三角形的第 n +1行, 令 x = 1 ,可得二项展开式的二项式系数的和 2n ,其中第 1 行为 2 0 ,第 2 行为 21 ,第 3 行为 22 ,L L 以此类推,即每一行的数字之和构成首项为 1,公比为 2 的对边数列,则杨辉三角形中前 n 行的数字之和为 S = n 1- 2n1- 2 = 2n - 1,若除去所有为 1 的项,则剩下的每一行的数字的个数为1,2,3, 4,L ,可以看成构成一个首项为 1,公差为 2 的等差数列,则T =n n (n + 1)2 ,令 n (n + 1)所以前 15 项的和表示前 7 行的数列之和,减去所有的 1,即 27 - 1 - 13 = 114 ,即前 15 项的数字之和为 114,故选 B .9.已知数列{a }的前 n 项和为 S nn,满足 2S n =3a n -1 ,则通项公式 a n 等于()A . a = 2n- 1n【答案】CB . a= 2nn n: , + , + + , + + + , ,那么数列 {b }= ⎧⎨ 1 ⎩ a an n +1 ⎭n + 1 ⎭C . 4 ⨯ ⎝ 2 n + 1 ⎭D .⎝ 1 + 2 + ⋅⋅⋅ + n n2 a an (n + 1) ⎝ n n + 1 ⎭ = = = 4 ⨯ - ⎪ , ∴ S = 4 ⨯ 1 - + - + - + ⋅⋅⋅ + - = 4 ⨯ 1 - ⎪ 2 2 3 3 4 n n + 1 ⎭ ⎝ ⎝⎪ , 1 1 ⎫【解析】当 n = 1 时, 2S 1 = 3a 1 -1 ,∴ a 1 = 1 ,当 n ≥ 2 且 n ∈ N * 时, 2S n -1 = 3a n -1 - 1 ,则 2S n - 2Sn -1 = 2a n = 3a n - 1 - 3a n -1 + 1 = 3a n - 3a n -1 ,即 a n = 3an -1,∴ 数列 {a }是以1 为首项, 3 为公比的等比数列∴ a nn= 3n -1 ,本题正确选项 C . 10.已知数列 满足,且 ,则( )A .B .C .D .【答案】B【解析】利用排除法,因为,当当当当时,时,时,时, ,排除 A ;,B 符合题意;,排除 C ;,排除 D ,故选 B .11.已知数列为()1 12 1 23 1 2 34 2 3 3 4 4 45 5 5 5⋯ n ⎫ ⎬ 前 项和A .1 - 1 ⎛ n + 1B . 4 ⨯ 1 - 1 ⎫ ⎛ 1 ⎪ - 1 ⎫⎪1 1-2 n + 1【答案】B【解析】由题意可知: a =nn (n + 1)= = , n + 1 n + 1 2∴ b = 1n n n +11 4 ⎛ 1 1 ⎫ n n + 1 ⋅2 2⎛ 1 1 1 1 1 ⎛ n本题正确选项 B .1 ⎫n + 1 ⎭12.已知数列{a }满足递推关系: a , a = ,则 a 2017= (12016B . 12018D . 1=a 2 -= 1 . ⎩ a∴ 1=1}满足 a 2 q ,可设三数为 , a , aq ,可得 ⎪⎨ a⎪ q 求出 ⎨ ,公比 q 的值为 1.=3an n +1 = a 1 n a + 12 n)A .12017C .12019【答案】C【解析】∵ ana + 1 n1, a = ,∴ 1 1 1 a a n +1 n⎧ 1 ⎫∴数列 ⎨ ⎬ 是等差数列,首项为 2,公差为 1.n ⎭a2017= 2 + 2016 = 2018 ,则 a2018 .故选 C .第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知等比数列{a n 1 = 12 ,且 a 2a 4 = 4(a3 - 1) ,则 a 5 = _______.【答案】8【解析】∵ a 2a 4 = 4(a 3 - 1) ,∴ a 3 = 4(a 3 -1) ,则 a 3 = 2 ,∴ a = 5 a 2 3 = a122 1 2= 8 ,故答案为 8.14.若三数成等比数列,其积为 8,首末两数之和为 4,则公比 q 的值为_______.【答案】1【解析】三数成等比数列,设公比为⎧a = 2⎩ q = 1⎧ a3 = 8 a q + aq =4 ⎩,15.在数列 {an}中,a 1= 1 , an 3 + a n(n ∈ N *)猜想数列的通项公式为________.=3a4 3 + a 53 + a 6 3a 3a 32 数列的通项公式为 a = 3n + 2 n + 2+ = (m + n) + ⎪ = 10 + + ⎪ ≥ 10 + 2 ⋅ ⎪⎪ = 2 , n m ⎭ 8 ⎝ n m ⎭【答案】3n + 2【解析】由 an 3 + a n, a = 1 ,可得 a = 1 2 3a 1 3 + a 13 3 3= , a = = , a == ,……,∴ 猜想 3 4 2 33,本题正确结果 .n16.已知正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,若存在两项 a m , a n ,使得 8 a m a n = a 1 ,则9 1+ 的最小值 mn为__________.【答案】2【解析】Q 正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,∴ 2a 1q 4 +a 1q 3 =a 1q 2 ,整理得 2q 2 +q - 1 = 0 ,又 q > 0 ,解得 q = 12,Q 存在两项 a , a 使得 8 a ⋅ a = a ,∴ 64a 2 q m +n -2 = a 2 ,整理得 m + n = 8 ,m nmn111∴则 9 1 1 ⎛ 9 1 ⎫ 1 ⎛ m 9n ⎫ 1 ⎛ m 9n ⎫ m n 8 ⎝ m n ⎭ 8 ⎝9 1 m 9n+ 的最小值为 2,当且仅当 = 取等号,但此时 m , n ∉ N * .m n n m又 m + n = 8 ,所以只有当 m = 6 , n = 2 时,取得最小值是 2.故答案为 2.三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.(10 分)已知等差数列{a n(1)求 {a}的通项公式;n}的公差不为 0, a 1= 3 ,且 a , a , a 成等比数列.2 4 7(2)求 a 2 + a 4 + a 6 + L + a 2n .【答案】(1) a n = n + 2 ;(2) n 2 + 3n .【解析】(1)Q a 2 , a 4 , a 7成等比数列,∴a42= a a ,2 7即 (a 1 + 3d )2 = (a 1 + d )(a 1 + 6d ) ,化简得 (a 1 - 3d )d = 0 ,∵公差 d ≠ 0 ,∴ a 1 = 3d ,6=n (a +a ) (2)若b= 4 { ⎪ 12 由题意得 ⎨,则 ⎨ , ⎩ 7 ⎪(a + 6d )2 = (a + d )(a + 21d )⎩ 1化简得 ⎨⎧a + 2d = 7(2)证明: b = 42n (2n + 4) n (n + 2) 2 ⎝ n n + 2 ⎭ - + - + - + L +⎪1 + - - = - ⎪ < . ⎪Q a = 3 ,∴ d = 1,∴ a = a + (n - 1)d = n + 2 .1 n1(2)由(1)知 a 2n = 2n + 2 ,故{a 2n } 是首项为 4、公差为 2 的等差数列,所以 a + a + a + L + a2 4 6 n (4 + 2n + 2)2 2n = = n 2 + 3n . 2 218.(12 分)已知公差不为零的等差数列{a n } 满足 S 5 = 35 ,且 a 2 , a 7 , a 22 成等比数列.(1)求数列{a n } 的通项公式;n nn(a - 1)(a + 3) ,且数列 b n }的前 n 项和为 T n ,求证: T < 3n 4.【答案】(1) a n = 2n + 1;(2)见详解.【解析】(1)设等差数列{a n } 的公差为 d ( d ≠ 0 ),⎧ 5 ⨯ 4⎧S = 355a + d = 35 5a 2 = a a2 221 11 ⎩2a 1 = 3d ⎧a = 3 ,解得 ⎨ 1⎩d = 2,所以 a = 3 + 2 (n -1) = 2n +1. nn nn(a -1)(a + 3) =4 11⎛1 1 ⎫ = = - ⎪ ,所以 T = n 1 ⎛ 1 1 1 1 1 1 1 1 1 1 ⎫- + - 2 ⎝ 1 3 2 4 3 5 n - 1 n + 1 n n + 2 ⎭= 1 ⎛ 1 1 1 ⎫ 3 1 ⎛ 1 1 ⎫ 3 + 2 ⎝ 2 n + 1 n + 2 ⎭ 4 2 ⎝ n + 1 n + 2 ⎭ 419.(12 分)已知数列{a n}的前 n 项和为 Sn且 S = 2a - 1 (n ∈ N * ) .n n(1)求数列{a n}的通项公式;(2)求数列{na n}的前 n 项和 T n.【答案】(1) a = 2n- 1 ;(2) T = n ⋅ 2n - 2n + 1 .nn【解析】(1)因为 S = 2a - 1 ,当 n ≥ 2 时, S = 2a - 1 ,7= 2a + 1 , n ∈ N * .+1),数列 ⎨ 15 ≤ T n < ; 即 a ∴ 数列 {a }的通项公式为 a = 2n - 1 n ∈ N * .(2n + 1)(2n + 3) 2⎝ 2n + 1 2n + 3⎪⎭ , - ⎪ + - ⎪ +⋅⋅⋅+⎪⎥ 2 ⎢⎣⎝ 3 5 ⎭ ⎝ 5 7 ⎭ ⎝ 2n + 2n + 3 ⎭⎦ 6 4n + 6整理可得 a n = 2a n -1 ,Q a = S = 2a - 1 ,解得 a = 1 ,1 111所以数列 {a n}为首项为1 ,公比为 2 的等比数列,∴a = 2n -1 .n(2)由题意可得:T = 1⨯ 20 + 2 ⨯ 21 + ⋅⋅⋅ + n ⋅ 2n ,n所以 2T = 1⨯ 21 + 2 ⨯ 22 + ⋅⋅⋅ + (n - 1)2n -1 + n ⋅ 2n ,n两式相减可得 -T = 1 + 21 + 22 + ⋅⋅⋅+ 2n -1 - n ⋅ 2n = n∴ T = n ⋅ 2n - 2n + 1 .n1 - 2n 1 - 2- n ⋅ 2n = 2n - 1 - n ⋅ 2n ,20.(12 分)已知数列{a n}满足 a 1= 1 , an +1n(1)求证数列{a n +1}是等比数列,并求数列{a n } 的通项公式;(2)设 b = log (a n 2 2n +1 ⎧ 1 ⎫ 1 1b b ⎬ 的前 n 项和 T n ,求证:6 ⎩ n n +1 ⎭.【答案】(1)证明见解析, a = 2n - 1(n ∈ N * )(2)见解析. n【解析】(1)由 an +1 = 2a n + 1 ,得 a n +1 + 1 = 2 (a + 1),n+ 1n +1 a + 1n= 2 ,且 a + 1 = 2 ,1∴ 数列 {a +1}是以 2 为首项, 2 为公比的等比数列,n∴ a + 1 = 2 ⨯ 2n -1 = 2n ,n( )nn(2)由(1)得: b = logn2(a2n +1+ 1) = log (22n +1- 1 + 1)= 2n + 1 ,2∴1b bn n +11 1 ⎛ 1 1 ⎫ = = -∴T = n1 ⎡⎛ 1 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫⎤ 1 1 - = - (n ∈ N * ),8又 0 < 1即 1n (2)设数列满足 b = a sin a π2的前 项和 .⎪⎩n,2 3 L 2 3 L 2 (a + 4) = S + S 2a = d + 4 d = 2 ⎪ ⎩= asin n π + ⎪ = a cos (n π ) , 2 ⎭ ⎝n +1,2n -1,⎪⎩n, 2 3 L 2 3 L a ⋅ a1 1 1 1 1 1 1≤ ,∴- ≤- < 0 ,∴ ≤ - < ,4n + 6 10 10 4n + 6 15 6 4n + 6 61≤ T < .15 621.(12 分)已知等差数列的前 项和为 ,且 是 与 的等差中项.(1)求的通项公式;n ,求n n【答案】(1)⎧⎪- (n + 2), ;(2) T = ⎨n n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .⎧a = 7⎧a + 2d = 7 ⎧a = 3 【解析】(1)由条件,得 ⎨ 3 ,即 ⎨ 1 , ⎨ 1⎪715⎩1⎩,所以{a n }的通项公式是(2)由(1)知, b = a sinnn.(2n + 1)π 2n n⎛ π ⎫(1)当 n = 2k -1 (k =1,2,3,…)即 n 为奇数时, b = -a , b nnn +1= aT = -a + a - a + L + a n 1 2 3 n -1 - a = -a + (-2) n - 1= -n - 2 ;n 1(2)当 n = 2k (k =1,2,3,…):即 n 为偶数时, b = a , bnnn -1= -aT = -a + a - a +⋯- a n 1 2 3 n -1+ a = 2 ⋅ n n 2= n ,⎧⎪- (n + 2), 综上所述, T = ⎨n22.(12 分)设正项数列n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .的前 n 项和为 ,已知 .(1)求证:数列 是等差数列,并求其通项公式;(2)设数列的前 n 项和为 ,且 b = 4n nn +1,若对任意 都成立,求实数 的取值范围.9(2)由(1)可得 b = 1 n (n + 1) n n + 1∴ T = 1 - ⎪ + - ⎪ + L + - ⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫1 n = 1 -= , ⎪ 2 ⎭ ⎝ 2 3 ⎭⎝ n n + 1 ⎭n + 1 n + 1⎝,即 nλ < n + (-1)n ⋅ 2 对任意⎢⎣ ⎥⎦n 恒成立,令 f (n ) = (n + 2)(n + 1)Q f (n + 1)- f (n ) = n (n + 1)- 2②当 为奇数时, λ < (n - 2)(n + 1)又 (n - 2)(n + 1)= n - - 1 ,易知:f (n ) = n - 在【答案】(1)见证明,【解析】(1)证明:∵;(2),且.,当当即时,时,有,解得 .,即.,于是,即.∵ ,∴为常数,∴数列是 为首项, 为公差的等差数列,∴.1 1= - ,nnn + 1都成立⎡ n (n + 1)+ (-1)n ⋅ 2 (n + 1)⎤⇔ λ <⎢⎥ nmin(n ∈ N *),①当 为偶数时, λ < (n + 2)(n + 1) = n + 2+ 3 ,n nn (n + 1) > 0 ,在 上为增函数,;n 恒成立,2 2 n n n为增函数,,102⨯ 4 ⨯ 3 = 0 ⎧a = -3 ⎪S 4 = 4a 1 + ⎪⎩a = a + 4d = 516 4⎩q3 (a + a + a ) = 120 ∴由①②可知:,综上所述 的取值范围为.第 7 单元 数列(提高篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.记 S 为等差数列{a } 的前 n 项和.已知 S = 0 , a = 5 ,则()n n45A . a n = 2n - 5B . a n = 3n - 10C . S = 2n 2 - 8nD . S = 1n nn 2 - 2n【答案】A2.已知等比数列{a }中, a n 3 ⋅ a = 20 , a = 4 ,则 a 的值是( )13 6 10A .16B .14C .6D .5【答案】D【解析】由等比数列性质可知 a ⋅ a = a 2 = 20 ,3138由 a 6 = 4 ,得 q 4= a 2 8 = a 2620 5= ,∴ a = a q 4 = 5 ,本题正确选项 D .10 63.等比数列{a } 中, a + a + a = 30 , a + a + a = 120 ,则 a + a + a = ( )n123456789A .240B .±240C .480D .±480【答案】C【解析】设等比数列{a } 中的公比为 q ,由 a + a + a = 30 , a + a + a = 120 ,n 1 2 3 4 5 6⎧ 得 ⎨a + a + a = 301 2 31 2 3,解得 q 3 = 4 ,∴ a + a + a = q 3 (a + a + a ) = 480.7 8 9 4 5 6112 , N = 4.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9 填入3 ⨯ 3 的方格内,使三行,三列和两条对角线上的三个数字之和都等于 15.一般地,将连续的正整数1,2,3,L , n 2 填入 n ⨯ n 个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记 n 阶幻方的对角线上的数字之和为 N n ,如图三阶幻方的 N 3 = 15 ,那么 N 9 的值为()A .369B .321C .45D .41【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,根据等差数列的性质可知对角线的两个数相加正好等于1 + n 2,根据等差数列的求和公式 S = n (1+ n 2 ) 9 9 ⨯ (1+ 92 ) 2 = 369 ,故选 A .5.已知 1, a 1 , a 2 ,9 四个实数成等差数列,1, b 1 , b 2 , b 3 ,9 五个数成等比数列,则b 2 (a 2 - a 1 ) = ( A .8 B .-8 C .±8 D .98【答案】A)【解析】由 1, a 1 , a 2 ,9 成等差数列,得公差 d = a 2 - a 1 = 9 - 1 84 - 1 = 3 ,由 1, b , b , b ,9 成等比数列,得 b 2 = 1⨯ 9 ,∴ b = ±3 ,12322当 b = -3 时,1, b , -3 成等比数列,此时 b 2 = 1⨯ (-3) 无解,2 11所以 b = 3 ,∴ b (a - a 2 2 2 1 ) = 3 ⨯ 8= 8 .故选 A .36.已知数列{a n }是公比不为 1 的等比数列, S n为其前 n 项和,满足 a = 2 ,且16a , 9a , 2a2 1 4 7成等差数列,则 S = ()3A . 5B .6C .7D .9【答案】C【解析】数列{a n } 是公比 q 不为 l 的等比数列,满足 a 2 = 2 ,即 a 1q = 2 ,122 ⨯ 2 + 3)⨯ 2 ; 2 ⨯ 2 + 4 )⨯3 ;22- 5 =,且 A n =7n + 45a7= (10B .172C . 143A . 93【解析】因为 7 = 7 = a + a a 2a A = 13 = 7 ⨯13 + 45 = 17 1 13 2 且16a , 9a , 2a 成等差数列,得18a = 16a + 2a ,即 9a q 3 = 8a + a q 6 ,1 47417111解得 q = 2,a = 1 ,则 S = 1 3 1 - 23 1 - 2= 7 .故选 C .7.将石子摆成如图的梯形形状,称数列 5,9,14,20,L ,为“梯形数”.根据图形的构成,此数列的第 2016 项与 5 的差,即 a 2016- 5 = ()A . 2018⨯ 2014B . 2018⨯ 201C .1011⨯ 2015D .1010⨯ 2012【答案】C【解析】由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n =1 时, a = 2 + 3 = 11(n =2 时, a = 2 + 3 + 4 = 2…,由此我们可以推断:1 (a = 2 + 3 + L + (n + 2 ) = 1n⎡⎣2 + (n + 2)⎤⎦ ⨯ (n + 1),∴ a 1⨯ ⎡⎣2 + (2016 + 2)⎤⎦ ⨯ (2016 + 1)- 5 = 1011⨯ 2015 .故选 C .20168.已知两个等差数列{a }和 {b }的前 n 项和分别为 A 和 BnnnnB n + 3 b n 7)17D .15【答案】B771131313(a + a )1 131 13= 2 b 2b b + b 13(b + b ) B 13 + 3 2,故答案选 B .9.已知数列{ }的前 n 项和为 , , ( ),则 ( )A.32B.64C.128D.25613,∴ S B .C . 1a - 1 a - 1,n⎧B . 2019 ) =+ = + = + =2 ,1 1 + 1 + a 2a 2【答案】B【解析】由,得,又,∴- 1 n +1 S - 1n= 2 ,即数列{则∴10.数列1}是以 1 为首项,以 2 为公比的等比数列,,则 ..故选 B .满足: ,若数列 是等比数列,则 的值是()A .1 【答案】B2 D .【解析】数列为等比数列 ⇒ a- 1λa - 2上式恒成立,可知 ⎨λ =q⎩-2 = -q⇒ λ = 2 ,本题正确选项 B .11.已知函数 f (x ) =2( 1 + x 2x ∈ R ),若等比数列满足 a a1 2019= 1 ,则A .2019【答案】A ( )2 C .2D . 1 2【解析】∴ f (a )+ f (a12019,1 + a2 1 + a 2 1 + a 2 1 + a 21 2019 1 1 1为等比数列,则,14b b3B . 16 C . 115D . 2b b= = - ⎭ 数列 的前 项和 T = - + - ⎪ ⎪ , 2 ⎝ 3 5 5 72n + 1 2n + 3 ⎭ 2 ⎝ 3 2n + 3 ⎭可得 λ ≤ 12,即12.已知是公比不为 1 的等比数列,数列.满足: , , 成等比数列,c =1n2n 2n +2,若数列的前 项和对任意的恒成立,则 的最大值为( )A .115【答案】C【解析】由 , ,成等比数列得 a 2 =a a ,2 2nb n又是公比不为 1 的等比数列,设公比为 q ,则 a 2 q2b n-2 = a 2 q 2n ,整理得 b = n + 1,c =111n n2n 2n +21 1 ⎛ 1 1 ⎫ (2n + 1)(2n + 3)2 ⎝ 2n + 1 2n +3 ⎪ ,1 ⎛ 1 1 1 11 1 ⎫ 1 ⎛ 1 1 ⎫+ ⋅⋅⋅ +- = - n数列 是单调递增数列,则当 n =1 时取到最小值为1151 ,即 的最大值为,故选 C .1515,第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 ,则 S 9 = _________.【答案】36【解析】{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 , a 2 + a 8 = a 4 + a 6 = 2a 5 ,得出 a 5 = 4 ,又由 S = 9 ⋅ (a 1 + a 9 )9 = 9a = 36 .514.在数列 {a }中, a n 1= 1,an +1- a = 2n + 1 ,则数列的通项 a = ________.n n15x【答案】 n 2【解析】当 n ≥ 2 时,a = (a - a ) + (ann n -1n -1- a n -2) + (an -2- a n -3) + L + (a - a ) + (a - a ) + a ,3 2 2 1 1⇒ a = (2n - 1) + (2n - 3) + (2 n - 5) + L + 5 + 3 + 1 = n当 n = 1 , a 也适用,所以 a = n 2 .1nn (2n - 1 + 1) 2= n 2 ,15.设数列{a n } 的前 n 项和为 S n ,且 ∀n ∈ N *, a n +1a = ________.n【答案】 n - 6(n ∈ N * ) (答案不唯一)> a , S ≥ S .请写出一个满足条件的数列{a } 的通项公式n n 6 n【解析】 ∀n ∈ N * , a n +1> a ,则数列{a } 是递增的, ∀n ∈ N * , S ≥ S ,即 S 最小,n n n 6 6只要前 6 项均为负数,或前 5 项为负数,第 6 项为 0,即可,所以,满足条件的数列{a n } 的一个通项公式 a n = n - 6(n ∈ N * ) (答案不唯一).16.已知函数 f ( x ) = x 2 cosπx2,数列 {a }中, a = f (n )+ f (n + 1)(n ∈ N * ) ,则数列{a }的n n n前 40 项之和 S 40 = __________.【答案】1680【解析】函数 f (x ) = x 2 cos π 2且数列 {a }中, a = f (n )+ f (n +1),n n可得 a = f (1)+ f (2) = 0 - 4 = -4 ; a = f (2)+ f (3) = -4 + 0 = -4 ;12a = f (3)+ f (4) = 0 +16 = 16 ; a = f (4)+ f (5) = 16 ;3 4a = f (5)+ f (6) = 0 - 36 = -36 ; a = f (6)+ f (7) = -36 ;…,5 6可得数列 {a n 即有数列 {a n}为 -4 , -4 , 16 ,16 , -36 , -36 , 64 , 64 , -100 , -100 ,…, }的前 40 项之和:S = (-4 - 4 +16 +16)+ (-36 - 36 + 64 + 64)+ (-100 -100 +144 +144)+ 40⋅⋅⋅+ (-1444 -1444 +1600 +1600) = 24 + 56 + 88 +⋅⋅⋅+ 31216= ⨯10 ⨯ (24 + 312 ) = 1680 , ( a b a 1 - 22n 2 + n (n ∈ N * ).2 2 222212本题正确结果1680 .三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.10 分)已知数列{a n}是等比数列,数列 {b }是等差数列,且满足: n 1= b = 1 , + b = 4a , - 3b = -5 .1 2 3 2 3 2(1)求数列{a n }和 {b }的通项公式;n(2)设 c n = a n + b n ,求数列 {c n}的前 n 项和 S n .【答案】(1) a = 2n -1 , n ∈ N * , b = 2n - 1,n ∈ N * ;(2) S = 2n + n 2 - 1 .nn n【解析】(1)设 {an}的公比为 q , {b }的公差为 d ,由题意 q > 0 ,n⎧(1+ d ) + (1+ 2d ) = 4q ⎧-4q + 3d = -2由已知,有 ⎨ ,即 ⎨⎩q 2 - 3(1+ d ) = -5 ⎩ q 2 - 3d = -2⇒ q 2 - 4q + 4 = 0 ⇒ d = q = 2 ,所以 {a n }的通项公式为 an= 2n -1 , n ∈ N * , {b }的通项公式为 b = 2n - 1,n ∈ N * .n n(2) c = a + b = 2n -1 + 2n - 1 ,分组求和,分别根据等比数列求和公式与等差数列求和公式得到nnn1 - 2nn (1+ 2n - 1)S =+= 2n + n 2 - 1 .n18.(12 分)己知数列{a }的前 n 项和为 S n(1)求 {a}的通项公式;nn且 S = n 1 12 2(2)设 b n =1a an n +1,求数列 {b n}的前 100 项和.【答案】(1) a n = n ;(2) T100 =100 101.【解析】(1)当 n ≥ 2 时, S =n两式相减得 a n = S n - S n -1 = n , n 2 + n , S = (n - 1)2 + (n - 1)= n 2 + n- n ,17当 n =1时, a = S = + = 1,满足 a = n ,\ a = n . 2 2骣 1 骣 1 骣1 1 1 1 1001 - + - +L + - +2 = - , n +1 =2 n∈ N * ). ⎧⎬(2)若数列{b }满足: ba + 1 3n4 4 == 3 +n⎩ a n +1⎭a + 1 = 3n ,所以 a =1 - 1 . 3n ( )⇒ S = 2n - 144(2)令 b = 2n + 1,求数列 {b }的前 n 项和 T 及 T 的最小值.a + 2 nn1 11 1 n n(2)由(1)可知 b n =1 1 1= - ,n (n + 1) n n + 1所以数列 {b n}的前 100 项和 T100= b +b +?1 2b100= 琪 琪 琪 琪 - = 1 - = .桫 2桫 3 ? 99 100100 101 101 10119.(12 分)已知数列{a }满足: a n 1 3a -2a n - 3 ( 3a + 4 n(1)证明数列 ⎨ 1 ⎫ 为等差数列,并求数列{a n }的通项公式;⎩ a n + 1⎭nn =3n (n ∈ N * ),求 {b }的前 n 项和 S . nn n【答案】(1)证明见解析, a = n1 2n - 1 9- 1;(2) S = ⨯ 3n +2 + .n【解析】(1)因为 an +1+ 1 = -2a - 3 a + 1 1 3a + 4 1 n + 1 = n ,所以 , 3a + 4 3a + 4 a + 1 a a + 1 n n n +1 n +1 n⎧ 1 ⎫所以 ⎨ ⎬ 是首项为 3,公差为 3 的等差数列,所以n1 n(2)由(1)可知: a =n 1 3n- 1,所以由 b = n 3n a + 1 nn ∈ N * ⇒ b = n ⋅ 3n +1 , nS = 1 ⨯ 32 + 2 ⨯ 33 + L + (n - 1) ⨯ 3n + n ⨯ 3n +1 ①;n3S = 1 ⨯ 33 + 2 ⨯ 34 + L + (n - 1) ⨯ 3n +1 + n ⨯ 3n +2 ②,n①-②得 -2S = 32 + 33 + L + 3n +1 - n ⨯ 3n +2 = n 32 (3n - 1)3 - 1 - n ⨯ 3n +2n9⨯ 3n +2+ .20.(12 分)已知数列{a n}的前 n 项和为 Sn,且 S n = 2a n - 2n -1 .(1)求数列{a n}的通项公式;n nn185 ⨯ 2n -1 (2)Q b = 2n + 1 1 1 1 ⎛ 3 5 7 2n + 1 ⎫ ,则 T n = ⎪ , a + 2 52n -1 5 ⎝ 20 21 22 2n -1 ⎭ T = ⎪ 两式作差得 1 - T = ⨯ ⎢3 + ⎛ 1 ⎫ 1 ⎡ ⎛ 2 2 2 ⎫ 2n + 1⎤ 2n + 5 + +⋅⋅⋅+ - = 1 -2n ⎥⎦ ⎝ 2 ⎭ n 5 ⎣21 22 2n -1 ⎭ 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⎧( ⎧ n - 1)2n + , n 是奇数 3 - 3n ⎪b n = 2 2 , n 是奇数2 , b = ⎨ ;(2) T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数 n -2 ⎪b = 2 2 , n 是偶数n n【答案】(1)a = 5 ⨯ 2n -1- 2 (n ∈ N *);(2) T = 2 - 2n +5 3,最小值 . 5【解析】(1)当 n =1 时, a 1 = S 1 = 2a 1 - 2 - 1 ,解得 a 1 = 3 ,当 n ≥ 2 时, a n = S n - S n -1 = 2a n - 2a n -1 - 2 ,解得 a n = 2 a n -1 + 2 .则 a + 2 = 2 (an n -1+ 2),故 {a n + 2}是首项为 a 1 + 2 = 5 ,公比为 2 的等比数列,∴ a = 5 ⨯ 2n -1 - 2 (n ∈ N * ). n = ⨯ (2n + 1)⨯ + + + ⋅⋅⋅ +nn1 1 ⎛2 n 5 ⎝3 5 7 2n - 1 2n + 1 ⎫+ + + ⋅⋅⋅ + +21 22 23 2n -1 2n ⎭⎪ ⎪⎝,所以 T = 2 - n 2n + 5 5 ⨯ 2n -1,2n + 5 2n + 7 2n + 5 -2n - 3令 c = ,有 c - c =- = < 0 ,对 n ∈ N * 恒成立, n n +1 n则数列{c n }是递减数列,故{T n } 为递增数列,则 (T n )min 3= T = . 121.(12 分)已知正项数列且.的前 项和为 ,且 , ,数列 满足 ,(1)求数列(2)令【答案】(1), 的通项公式;,求数列 的前 项和 .n +1 ⎪⎪ n n⎩ n ⎪⎩ 2【解析】(1)当时, ,即 ,,19⎧⎪S + S = a 2 由 ⎨ ,可得= a 2 (n ≥ 2) ,⎪⎩ n由 ⎨ 两式相除,得 n +1 = 2 (n ≥ 2 ),⎧b b = 2n b⎪⎩b n -1b n = 2n -1 (n ≥ 2)综上:b = ⎨ n ⎪b = 2 n -22 , n 是偶数 ⎩ ⎧ 3n ⎪⎪ 2 , 的前 项和为 B ,∴ B = ⎨ , -3n + 1 ⎪ , n 是奇数 ⎧(n - 1)2n + , n 是奇数 ⎪⎪ 2综上: T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数n +1 n n +1 S + S n -1 n即,又是公差为 ,首项为 的等差数列,,由题意得:,n n +1 b n -1是奇数时,是公比是 ,首项 的等比数列,∴ b = 2nn +1 2 ,同理 是偶数时是公比是 ,首项的等比数列,∴ b = 2nn -2 2 ,n ⎧ n +1⎪b = 2 2 , n 是奇数n.(2)令,即 ,⎧⎪ A = 1⋅ 20 + 2 ⋅ 21 + 3 ⋅ 22 + ⋅⋅⋅ + n ⋅ 2n -1的前 项和为 ,则 ⎨ n⎪⎩2 A n = 1⋅ 21 + 2 ⋅ 22 + 3 ⋅ 23 + ⋅⋅⋅ + n ⋅ 2n,两式相减得 - A = 20 + 21 + 22 + 2n -1 - n ⋅ 2n = n,1 - 2n 1 - 2- n ⋅ 2n ,令n n⎪⎩ 2n 是偶数3 - 3nn⎪⎩ 220ln 22 ln 32 ln n 2 (n - 1)(2n + 1) (当 x ≥ a 时, f '( x ) = 1 - = ,此时要考虑 a 与 1 的大小.(2)由(1)可知当 a = 1 , x > 1 时, x -1 - ln x > 0 ,即 ln x > 1 - x ,所以 ln x = n - 1 - = n - 1 - - ⎪ < n - 1 - + + L + ⎝ 2 n 2 ⎭ ⎝ 2 ⨯ 3 3 ⨯ 4 n(n + 1) ⎭ 1 ⎫ n - 1 = (n - 1) - n + 1 ⎭ 2(n + 1) ⎛ 122.(12 分)已知函数 f ( x ) =| x - a | - ln x(a > 0) .(1)讨论 f ( x ) 的单调性;(2)比较 + +⋯+ 与 的大小 n ∈ N * 且 n > 2) ,并证明你的结论.22 32 n 2 2(n + 1)【答案】(1)见解析;(2)见解析.⎧ x - ln x - a, 【解析】(1)函数 f ( x ) 可化为 f ( x ) = ⎨⎩a - x - ln x,x ≥ a0 < x < a ,当 0 < x < a 时, f '( x ) = -1 - 1 x< 0 ,从而 f ( x ) 在 (0, a) 上总是递减的,1 x - 1x x①若 a ≥ 1 ,则 f '( x ) ≥ 0 ,故 f ( x ) 在 [a, +∞ ) 上递增;②若 0 < a < 1 ,则当 a ≤ x < 1 时, f '( x ) < 0 ;当 x > 1 时, f '( x ) > 0 ,故 f ( x ) 在 [a,1) 上递减,在 (1, +∞) 上递增,而 f ( x ) 在 x = a 处连续,所以当 a ≥ 1 时, f ( x ) 在 (0, a) 上递减,在[a, +∞ ) 上递增;当 0 < a < 1 时, f ( x ) 在 (0,1) 上递减,在[1, +∞ ) 上递增.1< 1 - .x x所以 ln 22 ln 32 ln n 2 1 1 1+ + L + < 1 - + 1 - + L 1 -22 32 n 2 22 32 n 2⎛ 1 1 + ⎝ 22 32 + L + 1 ⎫ 1 1 ⎫ ⎛ 1 ⎪ ⎪2n 2 - 2 - n + 1 (n - 1)(2n + 1) = = .2(n + 1) 2(n + 1)21。

名校高三数学理科数列解答题提升精练试题

名校高三数学理科数列解答题提升精练试题

1.已知214)(x x f +-=,数列}{n a 的前n 项和为n S , 点11(,)n n n P a a +-在曲线)(x f y =上)(*N n ∈,且11a =,0n a > (1)求数列}{n a 的通项公式;(2)数列}{n b 的前n 项和为n T ,且满足212211683n n n n T Tn n a a ++=+--,11=b ,求数列}{n b 的通项公式; (3)求证:*,11421N n n S n ∈-+>. 2.已知数列{}n a 的前n 项和为n S 满足2()n n S a n N *=-∈.(1)函数()y f x =与函数2x y =互为反函数,令()n n b f a =,求数列{}n n a b ⋅的前n 项和n T ; (2)已知数列{}n c 满足12[(1)]34n nn a c -=+-,证明:对任意的整数4k >,有4511189k c c c +++<. 3.设数列{}n a 的前n 项和为n S ,已知122n n n S a +=-(n ∈N*). (1)求数列{}n a 的通项公式; (2)求证:当x>0时,ln(1)1xx x +>+ (3)令11(1)l o g2nn n a n c ++=-,数列{}n c 的前2n 项和为2n T .利用(2)的结论证明:当n ∈N*且n ≥2时,22In T n <.4.设数列{}n a 的各项都是正数,且对任意*n N ∈都有33332123+2n n n a a a a S S ++++=,其中n S 为数列{}n a 的前n 项和.(1)求12a a ,;(2)求数列{}n a 的通项公式;(3)设13(1)2na nn n b λ-=+-⋅,对任意的*n N ∈,都有1n n b b +>恒成立,求实数λ的取值范围.5.已知数列{a n }为等差数列,且满足a n +1=a n 2-na n +1,n =1,2,3,…(1)求数列{a n }的通项公式; (2)求证:123211111ln 2.n n n n a a a a ++++++++<(3)当01λ<<时,设1(),(1)2n n n n b a c a λλ=-=-,数列1n n b c ⎧⎫⎨⎬⎩⎭的前n 项和为n T , 求证:9143n n T n ->+. 6.已知数列{}n a 的前n 项和为n S ,且满足)(2121+∈--=N n a S n n (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足1+=n n a nb ,证明:对于一切正整数n ,不等式!2321n b b b b n ⨯<⋅⋅⋅恒成立。

高三复习专题3——数列练习

高三复习专题3——数列练习

专题3——数列数列通项公式的求法一、定义法 —— 直接利用等差或等比数列的定义求通项。

特征:适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.二、公式法求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解。

特征:已知数列的前n 项和n S 与n a的关系例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。

三、由递推式求数列通项法 类型1 特征:递推公式为)(1n f a a n n +=+对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例3. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

类型2 特征:递推公式为 n n a n f a )(1=+ 对策:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例4. 已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。

类型3 特征:递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq ) 对策:把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。

例5. 已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .类型4 特征:递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。

对策:先把原递推公式转化为)(112n n n n sa a t sa a -=-+++ 其中s ,t 满足⎩⎨⎧-==+qst pt s ,再应用前面类型3的方法求解。

高考数学数列大题训练50题含答案解析

高考数学数列大题训练50题含答案解析

高考数学《数列》大题训练50题1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+.(1)求{n a }的通项公式; (2)求和T n =1211123(1)na a n a ++++.2 .已知数列}{n a ,a 1=1,点*))(2,(1N n a a P n n ∈+在直线0121=+-y x 上. (1)求数列}{n a 的通项公式;(2)函数)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 ,求函数)(n f 最小值. 3 .已知函数xab x f =)( (a ,b 为常数)的图象经过点P (1,81)和Q (4,8)(1) 求函数)(x f 的解析式;(2) 记a n =log 2)(n f ,n 是正整数,n S 是数列{a n }的前n 项和,求n S 的最小值。

4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求n S =f (1)+f (2)+…+f (n )的表达式.5 .设数列{}n a 的前n 项和为n S ,且1n n S c ca =+-,其中c 是不等于1-和0的实常数.(1)求证: {}n a 为等比数列;(2)设数列{}n a 的公比()q f c =,数列{}n b 满足()()111,,23n n b b f b n N n -==∈≥,试写出1n b ⎧⎫⎨⎬⎩⎭的通项公式,并求12231n n b b b b b b -+++的结果.6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量1+n n A A 与向量n n C B 共线,且点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上. (1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322a a a +++ (1)2n n a -+8n =对任意的∈n N*都成立,数列1{}n n b b +-是等差数列.(1)求数列{}n a 与{}n b 的通项公式;(2)问是否存在k ∈N *,使得(0,1)k k b a -∈?请说明理由.8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数}3{,nn a λλ+使得为等差数列,试求λ的值. 9 .已知数列{}n a 的前n 项和为n S ,若()1,211++=⋅=+n n S a n a n n ,(1)求数列{}n a 的通项公式;(2)令n nn S T 2=,∈当n 为何正整数值时,1+>n n T T :∈若对一切正整数n ,总有m T n ≤,求m 的取值范围。

高三数学专题训练《数列》解析版

高三数学专题训练《数列》解析版

一、选择题(每小题5分,共60分)1.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=( )A .138B .135C .95D .23解析:由a 2+a 4=4,a 3+a 5=10可得d =3,a 1=-4,所以S 10=-4×10+10×92×3=95.答案:C2.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列解析:设{a n }的公差为d ,则d =1,设c n =a 2n -1+2a 2n ,则c n +1=a 2n +1+2a 2n +2,c n +1-c n =a 2n +1+2a 2n +2-a 2n -1-2a 2n =6d =6,选择C.答案:C3.在等差数列{a n }中,已知a 1=13,a 1+a 2+a 3+a 4+a 5=20,那么a 3等于( )A .4B .5C .6D .7解析:a 1+a 2+a 3+a 4+a 5=5a 3=20,a 3=4.答案:A4.等差数列{a n }的公差d ≠0,a 1≠d ,若这个数列的前40项和是20m ,则m 等于( )A .a 1+a 20B .a 5+a 17C .a 27+a 35D .a 15+a 26解析:S 40=40(a 1+a 40)2=20(a 1+a 40)=20m ,m =a 1+a 40=a 15+a 26.答案:D5.在等比数列{a n }中,若a 5+a 6=a (a ≠0),a 15+a 16=b ,则a 25+a 26的值是( )A.b aB.b 2a2C.b 2aD.ba2解析:记等比数列{a n }的公比为q ,依题意得a 15+a 16=a 5q 10+a 6q 10=(a 5+a 6)q 10,q 10=a 15+a 16a 5+a 6=b a,a 25+a 26=a 5q 20+a 6q 20=(a 5+a 6)q 20=a ×(b a)2=b 2a,选C. 答案:C6.在等比数列{a n }中,若a 1+a 2+a 3+a 4=158,a 2a 3=-98,则1a 1+1a 2+1a 3+1a 4=( )A.53B.35 C .-53D .-35解析:依题意,设公比为q ,则q ≠1,因此⎩⎪⎨⎪⎧a 1(1-q 4)1-q =158①a 21q 3=-98 ②,又1a 1,1a 2,1a 3,1a 4构成以1a 1为首项,以1q 为公比的等比数列,所以1a 1+1a 2+1a 3+1a 4=1a 1[1-(1q)4]1-1q=(1-q 4)a 1q 3(1-q ),①÷②得(1-q 4)a 1q 3(1-q )=-53,即1a 1+1a 2+1a 3+1a 4=-53,选择C.答案:C7.(2010·江西九校联考)设{a n }是等比数列,S n 是{a n }的前n 项和,对任意正整数n ,有a n +2a n +1+a n +2=0,又a 1=2,则S 101=( )A .200B .2C .-2D .0解析:设等比数列{a n }的公比为q ,因为对任意正整数,有a n +2a n +1+a n+2=0,a n +2a nq +a n q 2=0,因为a n ≠0,所以1+2q +q 2=0,q =-1,S 101=2×(1+1)1+1=2,选择B.答案:B8.(2010·西安八校二联)已知等比数列{a n }的公比q <0,其前n 项和为S n ,则a 9S 8与a 8S 9的大小关系是( )A .a 9S 8>a 8S 9B .a 9S 8<a 8S 9C .a 9S 8=a 8S 9D .a 9S 8与a 8S 9的大小关系与a 1的值有关 解析:依题意得,a 9S 8-a 8S 9=a 1q 8·a 1(1-q 8)1-q-a 1q 7·a 1(1-q 9)1-q=-a 21q 7>0,因此a 9S 8>a 8S 9,选A.答案:A9.已知等比数列{a n }的各项均为正数,数列{b n }满足b n =ln a n ,b 3=18,b 6=12,则数列{b n }前n 项和的最大值等于( )A .126B .130C .132D .134解析:∵{a n }是各项不为0的正项等比数列, ∴b n =ln a n 是等差数列.又∵b 3=18,b 6=12,∴b 1=22,d =-2, ∴S n =22n +n (n -1)2×(-2)=-n 2+23n ,∴(S n )max =-112+23×11=132. 答案:C10.(2009·安徽蚌埠测验)数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项等于( )A .42B .45C .48D .51解析:将数列分段,第1段1个数,第2段2个数,…,第n 段n 个数,设a 1000=k ,则a 1000在第k 个数段,由于第k 个数段共有k 个数,则由题意k 应满足1+2+…+(k -1)<1000≤1+2+…+k ,解得k =45.答案:B11.(2010·湖北八校联考)在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”.下列是对“等差比数列”的判断:①k 不可能为0②等差数列一定是等差比数列 ③等比数列一定是等差比数列 ④等差比数列中可以有无数项为0 其中正确的判断是( )A .①②B .②③C .③④D .①④解析:依题意,∵a n +2-a n +1a n +1-a n=k (n ∈N *),∴k ≠0,①正确,排除B ,C 选项,又由于公差是0的等差数列不是等差比数列,②错误,排除A ,选择D.答案:D12.(2009·湖北高考)设x ∈R ,记不超过x 的最大整数为[x ],令{x }=x -[x ],则{5+12},[5+12],5+12( )A .是等差数列但不是等比数列B .是等比数列但不是等差数列C .既是等差数列又是等比数列D .既不是等差数列也不是等比数列 解析:由题意,记a 1={5+12}=5+12-[5+12]=5+12-1=5-12,a 2=[5+12]=1,a 3=5+12,若为等差数列,则2a 2=a 1+a 3,不满足;若为等比数列,则(a 2)2=a 1a 3,有12=5-12×5+12,∴是等比数列但非等差数列,选B.答案:B二、填空题(每小题4分,共16分)13.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差d =__________.解析:由a 4+a 6=6,得a 5=3,又S 5=5(a 1+a 5)2=10,∴a 1=1.∴4d =a 5-a 1=2,d =12.答案:1214.(2009·重庆一诊)已知数列{a n }是等比数列,且a 4·a 5·a 6·a 7·a 8·a 9·a 10=128,则a 15·a 2a 10=__________.解析:设等比数列{a n }的公比为q ,则依题意得a 71·q 42=128,a 1·q 6=2,a 7=2,a 15·a 2a 10=a 2·q 5=a 7=2.答案:215.把100个面包分给5个人,使每人所得的面包数成等差数列,且使较多的三份之和的13等于较少的两份之和,则最少的一份面包个数是__________.解析:设构成等差数列的五个数为a -2d ,a -d ,a ,a +d ,a +2d ,则⎩⎨⎧5a =1003(a +d )=3(2a -3d )解得⎩⎨⎧a =20d =5,则最少的一份为a -2d =10.答案:1016.数列{a n }中,a 1=3,a n -a n a n +1=1(n =1,2,…),A n 表示数列{a n }的前n 项之积,则A 2005=__________.解析:可求出a 1=3,a 2=23,a 3=-12,a 4=3,a 5=23,a 6=-12,…,数列{a n }每3项重复一次,可以理解为周期数列,由2005=668×3+1且a 1×a 2×a 3=-1,则A 2005=(a 1×a 2×a 3)…(a 2002×a 2003×a 2004)×a 2005=(a 1×a 2×a 3)668a 1=3. 答案:3三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.(12分)S n 是无穷等比数列{a n }的前n 项和,公比q ≠1,已知1是12S 2和13S 3的等差中项,6是2S 2和3S 3的等比中项. (1)求S 2和S 3的值; (2)求此数列的通项公式; (3)求此数列的各项和S . 解:(1)由题意知⎩⎨⎧12S 2+13S 3=22S 2·3S 3=36,解得S 2=2,S 3=3.(2)⎩⎨⎧a 1+a 1q =2a 1+a 1q +a 1q 2=3,解得⎩⎨⎧a 1=4q =-12或⎩⎨⎧a 1=1q =1(舍去).∴a n =4·(-12)n -1.(3)∵|q |=|-12|=12<1.∴S =41-(-12)=83.18.(12分)已知函数f (x )=x3x +1,数列{a n }满足a 1=1,a n +1=f (a n )(n ∈N *).(1)求证:数列{1a n}是等差数列;(2)记S n (x )=x a 1+x 2a 2+…+eq \f(x n ,a n ),求S n (x ).(1)证明:∵a n +1=f (a n ),∴a n +1=a n3a n +1.∴1a n +1=1a n +3,即1a n +1-1a n=3.∴{1a n}是以1a 1=1为首项,3为公差的等差数列.∴1a n=1+3(n -1)=3n -2.(2)解:S n (x )=x +4x 2+7x 3+…+(3n -2)x n ,① 当x =1时,S n (x )=1+4+7+…+(3n -2)=n (1+3n -2)2=n (3n -1)2.当x ≠1时,xS n (x )=x 2+4x 3+…+(3n -5)x n +(3n -2)x n +1,②①-②,得(1-x )S n (x )=x +3x 2+3x 3+…+3x n -(3n -2)x n +1=3(x +x 2+…+x n )-2x -(3n -2)x n +1=3x (1-x n )1-x-2x -(3n -2)x n +1,S n (x )=3x -3x n +1(1-x )2-2x +(3n -2)x n +11-x.19.(12分)(2010·东城一模)已知递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2、a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =log 2a n +1,S n 是数列{b n }的前n 项和,求使S n >42+4n 成立的n 的最小值.解:(1)设等比数列{a n }的公比为q ,依题意有2(a 3+2)=a 2+a 4,① 又a 2+a 3+a 4=28,将①代入得a 3=8.所以a 2+a 4=20.于是有⎩⎨⎧a 1q +a 1q3=20,a 1q 2=8,解得⎩⎨⎧a 1=2,q =2,或⎩⎨⎧a 1=32,q =12.又{a n }是递增的,故a 1=2,q =2. 所以a n =2n .(2)b n =log 22n +1=n +1,S n =n 2+3n2.故由题意可得n 2+3n2>42+4n ,解得n >12或n <-7.又n ∈N *,所以满足条件的n 的最小值为13.20.(12分)商学院为推进后勤社会化改革,与桃园新区商定:由该区向建设银行贷款500万元在桃园新区为学院建一栋可容纳一千人的学生公寓,工程于2002年初动工,年底竣工并交付使用,公寓管理处采用收费还建行贷款(年利率5%,按复利计算),公寓所收费用除去物业管理费和水电费18万元,其余部分全部在年底还建行贷款.(1)若公寓收费标准定为每生每年800元,问到哪一年可偿还建行全部贷款?(2)若公寓管理处要在2010年底把贷款全部还清,则每生每年的最低收费标准是多少元?(精确到元)(参考数据:lg1.7343=0.2391,lg1.05=0.0212,1.058=1.4774)解:依题意,公寓2002年底建成,2003年开始使用.(1)设公寓投入使用后n 年可偿还全部贷款,则公寓每年收费总额为1000×800元=800000元=80万元,扣除18万元,可偿还贷款62万元.依题意有62[1+(1+5%)+(1+5%)2+…+(1+5%)n -1]≥500(1+5%)n +1. 化简得62(1.05n -1)≥25×1.05n +1, ∴1.05n ≥1.7343.两边取对数整理得n ≥lg1.7343lg1.05=0.23910.0212=11.28,∴取n =12(年).∴到2014年底可全部还清贷款. (2)设每生每年的最低收费标准为x 元, ∵到2010年底公寓共使用了8年,依题意有(1000x10000-18)[1+(1+5%)+(1+5%)2+…+(1+5%)7]≥500(1+5%)9.化简得(0.1x -18)1.058-11.05-1≥500×1.059.∴x ≥10(18+25×1.0591.058-1)=10(18+25×1.05×1.47741.4774-1)=10×(18+81.2)=992(元)故每生每年的最低收费标准为992元.21.(12分)若公比为c 的等比数列{a n }的首项a 1=1,且a n =a n -1+a n -22(n=3,4,…).(1)求c 的值.(2)求数列{na n }的前n 项和S n .解:(1)由题设,当n ≥3时,a n =c 2a n -2, a n -1=ca n -2,a n =a n -1+a n -22=1+c 2a n -2, ∴c 2=1+c 2. 解得c =1或c =-12. (2)当c =1时{a n }是一个常数数列,a n =1.此时S n =1+2+3+…+n =n (n +1)2.当c =-12时,a n =(-12)n -1(n ∈N *). 此时S n =1+2(-12)+3(-12)2+…+n (-12)n -1.① -12S n =-12+2(-12)2+3(-12)3+…+(n -1)(-12)n -1+n (-12)n .② ①-②,得(1+12)S n =1+(-12)+(-12)2+…+(-12)n -1-n (-12)n =1-(-12)n 1+12-n (-12)n .∴S n =19[4-(-1)n 3n +22n -1]. 22.(14分)(2009·陕西高考)(理)已知数列{x n }满足x 1=12,x n +1=11+x n,n ∈N *.(1)猜想数列{x 2n }的单调性,并证明你的结论;(2)证明:|x n +1-x n |≤16(25)n -1. (文)已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列;(2)求{a n }的通项公式.解:(理)(1)由x 1=12及x n +1=11+x n得x 2=23,x 4=58,x 6=1321. 由x 2>x 4>x 6猜想,数列{x 2n }是递减数列.下面用数学归纳法证明:①当n =1时,已证命题成立.②假设当n =k 时命题成立,即x 2k >x 2k +2,易知x n >0,那么x 2k +2-x 2k +4=11+x 2k +1-11+x 2k +3=x 2k +3-x 2k +1(1+x 2k +1)(1+x 2k +3)=x 2k -x 2k +2(1+x 2k )(1+x 2k +1)(1+x 2k +2)(1+x 2k +3)>0,即x 2(k +1)>x 2(k +1)+2, 也就是说,当n =k +1时命题也成立.结合①和②知,命题成立.(2)当n =1时,|x n +1-x n |=|x 2-x 1|=16,结论成立; 当n ≥2时,易知0<x n -1<1,∴1+x n -1<2,x n =11+x n -1>12, ∴(1+x n )(1+x n -1)=(1+11+x n -1)(1+x n -1) =2+x n -1≥52, ∴|x n +1-x n |=|11+x n -11+x n -1|=|x n -x n -1|(1+x n )(1+x n -1)≤25|x n -x n -1|≤(25)2|x n -1-x n -2|≤…≤(25)n -1|x 2-x 1|=16(25)n -1. (文)(1)b 1=a 2-a 1=1,当n ≥2时,b n =a n +1-a n =a n -1+a n 2-a n =-12(a n -a n -1)=-12b n -1, ∴{b n }是以1为首项,-12为公比的等比数列. (2)由(1)知b n =a n +1-a n =(-12)n -1, 当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+(-12)+…+(-12)n -2 =1+1-(-12)n -11-(-12)=1+23[1-(-12)n -1]=53-23(-12)n -1,当n =1时,53-23(-12)1-1=1=a 1.∴a n =53-23(-12)n -1(n ∈N *).。

高三数学数列模块专题训练

高三数学数列模块专题训练

高三数学数列模块专题训练1.数列{a n }的前n 项和记为S n ,()111,211n n a a S n +==+≥(1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且315T =,又112233,,a b a b a b +++成等比数列,求T n2. 设{}n a 是一个公差为)0(≠d d 的等差数列,它的前10项和11010=S 且1a ,2a ,4a 成等比数列。

(1)证明d a =1;(2)求公差d 的值和数列{}n a 的通项公式. 3. 已知等比数列{}n x 的各项为不等于1的正数,数列{}n y 满足)1,0(l o g 2≠>=a a x y na n ,y 4=17, y 7=11(1) 证明:{}n y 为等差数列;(2)问数列{}n y 的前多少项的和最大,最大值为多少? 4.已知数列{}n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(R x x a b nn n ∈=求数列{}n b 前n 项和的公式.5. 假设你正在某公司打工,根据表现,老板给你两个加薪的方案: (Ⅰ)每年年末....加1000元; (Ⅱ)每半年...结束时加300元。

请你选择。

(1)如果在该公司干10年,问两种方案各加薪多少元? (2)对于你而言,你会选择其中的哪一种?6、在数列{}n a 中,11a =,2112(1)n n a a n+=+.(Ⅰ)求{}n a 的通项公式; (Ⅱ)令112n n n b a a +=-,求数列{}n b 的前n 项和n S .(Ⅲ)求数列{}n a 的前n 项和n T .7、数列{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式;(Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T , 且315T =,又112233,,a b a b a b +++成等比数列,求n T8. 设数列}{n a 、}{n b 、}{n c 满足:2+-=n n n a a b ,2132++++=n n n n a a a c (n =1,2,3,…),证明:}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…) 9. 已知数列3021,,,a a a ,其中1021,,,a a a 是首项为1,公差为1的等差数列;201110,,,a a a 是公差为d 的等差数列;302120,,,a a a 是公差为2d 的等差数列(0≠d ).(1)若4020=a ,求d ;(2)试写出30a 关于d 的关系式,并求30a 的取值范围;(3)续写已知数列,使得403130,,,a a a 是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?10.某市去年11份曾发生流感,据统计,11月1日该市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30日内感染该病毒的患者总共8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数.11.等差数列{}n a 中,12a =,公差d 是自然数,等比数列{}n b 中,1122,b a b a ==. (Ⅰ)试找出一个d 的值,使{}n b 的所有项都是{}n a 中的项;再找出一个d 的值,使{}n b的项不都是{}n a 中的项(不必证明);(Ⅱ)判断4d =时,是否{}n b 所有的项都是{}n a 中的项, 并证明你的结论;(Ⅲ)探索当且仅当d 取怎样的自然数时,{}n b 的所有项都是{}n a 中的项,并说明理由.12.已知数列{n a }中,112--=n n a a (n ≥2,+∈N n ),(1)若531=a ,数列}{nb 满足11-=n n a b (+∈N n ),求证数列{n b }是等差数列;(2)若531=a ,求数列{n a }中的最大项与最小项,并说明理由;(3)若211<<a ,试证明:211<<<+n n a a .答 案1.(1)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥又21213a S =+= ∴213a a = 故{a n }是首项为1,公比为3得等比数列 ∴13n n a -=. (2)设{b n }的公差为d ,由315T =得,可得12315b b b ++=,可得25b =,故可设135,5b d b d =-=+又1231,3,9a a a ===由题意可得()()()2515953d d -+++=+解得122,10d d == ∵等差数列{b n }的各项为正,∴0d >,∴2d = ∴()213222n n n T n n n-=+⨯=+2. 证明:因1a ,2a ,4a 成等比数列,故4122a a a =,而{}n a 是等差数列,有d a a +=12,d a a 314+=,于是 21)(d a +)3(11d a a +=,即d a a d d a a 121212132+=++,化简得 d a =1(2)解:由条件11010=S 和d a S 291010110⨯+=,得到11045101=+d a ,由(1),d a =1,代入上式得11055=d ,故 2=d ,n d n a a n 2)1(1=-+=, ,3,2,1=n3. (1){}0q q,,1x n >≠则设公比为成等比数列且n x y 常数q x x x x y a nn a n n a n n log 2log 2log 2log 21a 11==-=-+++∴{}.x n 成等差数列(2)y 11,1774==y ∴3d=-6 d=-2 y 231={}n n n n n d n n y y n 24)1(332)1(S n 21n+-=--=-+=项和前当n=12时,S n 有最大值144. ∴{}n y 前12项和最大为144.4.(Ⅰ)解:设数列}{n a 公差为d ,则 ,12331321=+=++d a a a a 又.2,21==d a 所以.2n a n =(Ⅱ)解:令,21n n b b b S +++= 则由,2nnn n nx x a b ==得,2)22(4212n n n nx x n x x S +-++=- ①,2)22(42132++-+++=n n n nx x n x x xS ②当1≠x 时,①式减去②式,得 ,21)1(22)(2)1(112++---=-++=-n n n nn nx xx x nxx x x S x所以.12)1()1(212xnx x x x Sn n n----=+当1=x 时, )1(242+=+++=n n n S n综上可得当1=x 时,)1(+=n n S n ;当1≠x 时,.12)1()1(212xnx x x x Sn n n----=+5. 设方案一第n 年年末加薪a n ,因为每年末加薪1000元,则a n =1000n ; 设方案二第n 个半年加薪b n ,因为每半年加薪300元,则b n =300n ;(1)在该公司干10年(20个半年),方案1共加薪S 10=a 1+a 2+……+a 10=55000元。

高中数学数列经典题型专题训练试题(含答案)

高中数学数列经典题型专题训练试题(含答案)

高中数学数列经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间120分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共15小题,每题2分,共30分)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-12.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-39.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.9910.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.52212.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项二.填空题(共10小题,每题2分,共20分)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.17.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.18.数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.22.设正项等比数列{an}的公比为q,且,则公比q=______.23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.第Ⅱ卷(非选择题)三.简答题(共5小题,50分)26.(10分)已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.27.(8分)已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.28.(7分)已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.29.(12分)已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.30.(12分)在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.参考答案一.单选题(共__小题)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-1答案:C解析:解:∵a1+a2+a3+…+a n=2n-1…①∴a1+a2+a3+…+a n-1=2n-1-1…②,①-②得a n=2n-1,∴a n2=22n-2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选C.2.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-答案:C解析:解:∵{a n}为等比数列a5•a11=3,∴a3•a13=3①∵a3+a13=4②由①②得a3=3,a13=1或a3=1,a13=3∴q10=或3,∴=或3,故选C.3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.答案:A解析:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.答案:D解析:解:∵数列{a n}是等差数列,a1=1,a3=4,∴a3=a1+2d,即4=1+2d,解得d=.故选:D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()A.12B.13C.14D.15答案:A解析:解:令a n=<0,解得n≤6,当n>7时,a n>0,且a6+a7=a5+a8=a4+a9=a3+a10=a2+a11=a1+a12=0,所以S12=0,S13>0,即使S n≥0的最小正整数n=12.故选A.6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列答案:A解析:解:∵S n=2n2-2n,则S n-S n-1=a n=2n2-2n-[2(n-1)2-2(n-1)]=4n-4故数列{a n}是公差为4的等差数列故选A.7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.答案:C解析:解:当n=1时,a1=S1=21-1=1,当n≥2时,a n=Sn-Sn-1=2n-1-(2n-1-1)=2•2n-1-2n-1=2n-1,对n=1也适合∴a n=2n-1,∴数列{a n}是等比数列,此数列奇数项也构成等比数列,且首项为1,公比为4.∴此数列奇数项的前n项和为==故选C8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-3答案:C解析:解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.9.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99答案:A解析:解:当n为奇数时,a n+2-a n=1+(-1)n=0,可得a1=a3=…=a59=2.当n为偶数时,a n+2-a n=1+(-1)n=2,∴数列{a2n}为等差数列,首项为2,公差为2,∴a2+a4+…+a60=30×2+=930.∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)=30×2+930=990.故选:A.10.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列答案:A解析:解:∵数列{a n}是公差为2的等差数列∴a n=a1+2(n-1)∴∴数列是公比为4的等比数列故选A11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.522答案:B解析:解:由a n=4a n-1+3可得a n+1=4a n-1+4=4(a n-1+1),故可得=4,由题意可得a1+1=1即数列{a n+1}为首项为1,公比为4的等比数列,故可得a5+1=44=256,故a5=255故选B12.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.答案:B解析:解:∵a n•b n=1∴b n==∴s10==(-)+=-=故选项为B.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()A.20B.18C.10D.8答案:B解析:解:设等比数列{a n}的公比为q,∵a1+a2=8,a3-a1=16,∴,解得,∴=2×32=18.故选:B.14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.答案:C解析:解:∵a4=2S3+3,a5=2S4+3,即2S4=a5-3,2S3=a4-3∴2S4-2S3=a5-3-(a4-3)=a5-a4=2a4,即3a4=a5∴3a4=a4q解得q=3,故选C15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项答案:D解析:解:由题意得=,∵n是正整数,∴=当且仅当时取等号,此时,∵当n=9时,=19;当n=9时,=19,则当n=9或10时,取到最小值是19,而取到最大值.故选D.二.填空题(共__小题)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.答案:-40解析:解:设等差数列{a n}的公差为d,∵a1+a2+a3=8,a4+a5+a6=-4,∵a4+a5+a6=(a1+3d)+(a2+3d)+(a3+3d)=a1+a2+a3+9d,∴-4=8+9d,解得d=-,∴a13+a14+a15=a1+a2+a3+36d=8-×36=-40,故答案为:-4017.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.答案:8解析:解:由等差数列的性质可得a3+a5+a7+a9+a11=(a3+a11)+a7+(a5+a9)=2a7+a7+2a7=5a7=20∴a7=4∴a1+a13=2a7=8故答案为:818.(2015秋•岳阳校级月考)数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.答案:2n+n2-1解析:解:数列a n的前n项和S n=(2+22+23+…+2n)+[1+3+5+…+(2n-1)]=+=2n-1+n2.故答案为:2n-1+n2.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.答案:2n-1解析:解:由题可得,a n+1+1=2(a n+1),则=2,又a1=1,则a1+1=2,所以数列{a n+1}是以2为首项、公比的等比数列,所以a n+1=2•2n-1=2n,则a n=2n-1.故答案为:2n-1.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.答案:3解析:解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以==.故答案为3.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.答案:1023解析:解:由题意,两边同加1得:a n+1+1=2(a n+1),∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n-1=2n∴a n=2n-1∴a10=1024-1=1023.故答案为:1023.22.设正项等比数列{an}的公比为q,且,则公比q=______.答案:解析:解:由题意知得∴6q2-q-1=0∴q=或q=-(与正项等比数列矛盾,舍去).故答案为:23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.答案:2n+1-1解析:解:由题意知a n+1=2a n+1,则a n+1+1=2a n+1+1=2(a n+1)∴=2,且a1+1=4,∴数列{a n+1}是以4为首项,以2为公比的等比数列.则有a n+1=4×2n-1=2n+1,∴a n=2n+1-1.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.答案:=5解析:解:等差数列{a n}中,∵a3+2a8+a9=20,∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d=4(a1+6d)=4a7=20,∴a7=5.故答案为:5.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.答案:解析:解:由题设条件知a1+a1q=a1q2,∵a1>0,∴q2-q-1=0解得,∵数列{a n}为正项等比数列,∴.故答案:.三.简答题(共__小题)26.已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.答案:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+1解析:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+127.已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.解析:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.28.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.解析:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.29.已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.答案:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)解析:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)30.在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.答案:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.解析:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.。

高三专题数列试题及答案

高三专题数列试题及答案

高三专题数列试题及答案一、选择题1、已知等比数列的各项均为正数,前项之积为,若=,则必有〔 〕A .=1B .=1C .=1D .=11a 3a 4a 5a2、已知数列的前项和,是等比数列的充要条件是〔 〕A. B C. D.1=p 2=p 1-=p 2-=p3、已知等差数列的公差为,且成等比数列,则等于〔 〕A 、-4B 、-6C 、-8D 、84、记等比数列{an }的前n 项和为Sn ,若S3=2,S6=18,则等于〔 〕A. - 3 B ·5 C 一31 D. 335、在等差数列中,,表示数列的前项和,则}{n a 69327a a a -=+n S }{n a n =11SA .B .C .D .1899198297二、填空题6、已知数列{an}的前n 项和为Sn ,对任意n ∈N*都有,且1<Sk<9,则a1的值为______,k 的的值为________.n n 21S =a 33-7、是等差数列的前项和,若,,则 .n S {}n a n 11=S 42=S =n a8、在由正数组成的等比数列中,则___.{}n a 12341,4,a a a a +=+=56a a +=三、解答题.9、,是方程的两根,数列的前项和为,且2a 5a 2x 02712=+-x {}n b n n T n T 211-=n b ()*∈N n 〔1〕求数列,的通项公式;〔2〕记=,求数列的前项和.10、在等比数列{an }中,an >0 〔nN *〕,公比q 〔0,1〕,且a1a5 + 2a3a5 +a 2a8=25,a3与as 的等比中项为2.〔1〕求数列{an }的通项公式;〔2〕设bn =log2 an ,数列{bn }的前n 项和为Sn 当最大时,求n 的值.11、已知函数,为函数的导函数.若数列满足:,〔〕,求数列的通项;12、设数列的前项和为,,且对任意正整数,点在直线上. 求数列的通项公式;{}n a n n S 11=a n ()n n S a ,1+022=-+y x {}n a数列小测参考答案选择题:1-5、B D D D B填空题:6、-1,4 7、 8、1612-n解答题:9、解:〔1〕由.且得 2分2325=-=∴a a d , 4分 11=a ()*∈-=∴N n n a n 12 在中,令得当时,T=,n n b T 211-=,1=n .321=b 2≥n n ,211n b -11211---=n n b T 两式相减得, 6分n n n b b b 21211-=-()2311≥=∴-n b b n n ()*-∈=⎪⎭⎫ ⎝⎛=∴N n b n n n 3231321. 8分 〔2〕, 9分⎪⎭⎫ ⎝⎛-++++=∴n n n S 312353331232 ,, 10分⎪⎭⎫ ⎝⎛-+-+++=+132312332333123n n n n n S ⎥⎦⎤⎢⎣⎡--⎪⎭⎫ ⎝⎛++++=∴+132312313131231232n n n n S =2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⎪⎭⎫ ⎝⎛-⨯++-1131231131191231n n n =, 13分11344343123131312+++-=⎪⎭⎫ ⎝⎛---+n n n n nn n n S 3222+-=∴ 14分 10、解:〔1〕因为a1a5 + 2a3a5 +a 2a8=25,所以, + 2a3a5 +=25 又an >o ,…a3+a5=5,…………………………2分又a3与a5的等比中项为2,所以,a3a5=4而q 〔0,1〕,所以,a3>a5,所以,a3=4,a5=1,,a1=16,所以,1511622n n n a --⎛⎫=⨯= ⎪⎝⎭…………………………6分〔2〕bn =log2 an =5-n ,所以,bn +1-bn =-1,所以,{bn}是以4为首项,-1为公差的等差数列.........9分所以, (9),2n n n S -=92n S n n -= 所以,当n ≤8时,>0,当n =9时,=0,n >9时,<0,n S n n S n n S n当n =8或9时,最大. …………………………12分 11、解, …………………………1分1()22f x x '=- 111(2)(2)22122n n n a a n a n +∴=-+-=+- 即. …………………………3分12(1)12(21)n n a n a n ++++=++11a =, 数列是首项为,公比为的等比数列.∴{21}n a n ++4212142n n a n -∴++=⋅ ,即. …………………………5分1221n n a n +=--12、解:由题意可得: ①.0221=-++n n S a 2≥n 时, ② …… 1分.0221=-+-n n S a①─②得, …………………… 3分()22102211≥=⇒=+-++n a a a a a n n n n n 2122,12121=⇒=+=a a a a ∴{}n a 是首项为,公比为的等比数列, ……………… 4分121.211-⎪⎭⎫ ⎝⎛=∴n n a。

高三一轮复习 数列 周测卷

高三一轮复习 数列  周测卷

高三理科数学周测卷(数列)(11.7)一、选择题:(本大题共12小题,每小题5分,共60分)1.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是 ( )A .15B .30C .31D .642. 数列{a n }为等差数列,a 10=33,a 2=1,S n 为数列{a n }的前n 项和,则S 20-2S 10等于( )A .40B .200C .400D .203.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于 ( )A .3×44B .3×44+1C .45D .45+1 4.等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则 ( )A .a 1=1B .a 3=1C .a 4=1D .a 5=15.由a 1=1,a n +1=a n3a n +1给出的数列{a n }的第34项( )A.34103B .100C.1100D.11046.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于 ( )A .9B .8C .7D .67.已知数列{a n }的通项公式是a n =2n -12n ,其前n 项和S n =32164,则项数n 等于 ( )A .13B .10C .9D .68.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于 ( )A .6B .7C .8D .99. 已知数列{a n }中,a 3=2,a 5=1,若⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( )A .0B.16C.13D.1210. 已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为 ( )A.100101B.99101C.99100D.10110011.在△ABC 中,tan A ,tan B ,tan C 依次成等差数列,则B 的取值范围是 ( )A.⎝⎛⎦⎤0,π3∪⎝⎛⎦⎤π2,2π3B.⎝⎛⎦⎤0,π6∪⎝⎛⎦⎤π2,5π6C.⎣⎡⎭⎫π6,π2D.⎣⎡⎭⎫π3,π212.设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成 立的是 ( )A .X +Z =2YB .Y (Y -X )=Z (Z -X )C .Y 2=XZD .Y (Y -X )=X (Z -X ) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二.填空题(本大题共4小题,每小题5分,共20分)13.数列{a n }的通项公式a n =1n +n +1,若{a n }的前n 项和为24,则n =________.14.在等差数列{a n }中,已知log 2(a 5+a 9)=3,则等差数列{a n }的前13项的和S 13=________.15.数列{a n }满足a 1=0,a n +1=a n +2n ,则{a n }的通项公式a n =________.16.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n =_______时,S n 取得最大值,三.解答题(本大题共6小题,共70分)17.(10分)在等差数列{a n }中,若a 3+a 8+a 13=12,a 3a 8a 13=28,求数列{a n }的通项公式.18.(12分)已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1 (n ≥2),且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式.19.(12分)已知数列{a n }的前n 项和为S n ,且向量a =(n ,S n ),b =(4,n +3)共线.(1)求证:数列{a n }是等差数列;(2)求数列 ⎩⎨⎧⎭⎬⎫1na n 的前n 项和T n .20.(12分)设数列{a n}满足a1+3a2+32a3+…+3n-1a n=n3,n∈N*.(1)求数列{a n}的通项;(2)设b n=na n,求数列{b n}的前n项和S n.21.(12分)已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.(1)求a n及S n;(2)令b n=1a2n-1(n∈N*),求数列{b n}的前n项和T n.22.(12分)已知数列{a n }的前n 项和S n 与通项a n 满足S n =12-12a n .(1)求数列{a n }的通项公式;(2)设f (x )=log 3x ,b n =f (a 1)+f (a 2)+…+f (a n ),T n =1b 1+1b 2+…+1b n ,求T 2 012;(3)若c n =a n ·f (a n ),求{c n }的前n 项和U n .参考答案:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 ACCBCBDAAADD13.624 解析 a n =1n +n +1=n +1-n .∴(2-1)+(3-2)+…+(n +1-n )=24, ∴n +1=25,∴n =624. 14.52解析 ∵ log 2(a 5+a 9)=3,∴a 5+a 9=23=8.15.答案 n (n -1)解析 由已知,得a n +1-a n =2n ,故a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =0+2+4+…+2(n -1)=n (n -1).∴S 13=13×(a 1+a 13)2=13×(a 5+a 9)2=13×82=52.16.解 (1)方法一 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.∴a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653. ∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0,方法二 同方法一求得d =-53.∴S n =20n +n (n -1)2·⎝⎛⎭⎫-53=-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.∴当n =12或13时,S n 取得最大值,且最大值为S 13=S 12=12×20+12×112×⎝⎛⎭⎫-53=130.17.解 ∵a 3+a 13=2a 8,a 3+a 8+a 13=12,∴a 8=4,…………………………………………………………………………………(2分)则由已知得⎩⎪⎨⎪⎧a 3+a 13=8,a 3a 13=7,解得⎩⎪⎨⎪⎧a 3=1,a 13=7,或⎩⎪⎨⎪⎧a 3=7,a 13=1.…………………………………………………………(7分)由a 3=1,a 13=7,可知d =a 13-a 313-3=7-110=35.故a n =a 3+(n -3)·35=35n -45;……………………………………………………………(9分)由a 3=7,a 13=1,可知d =a 13-a 313-3=1-710=-35.故a n =a 3+(n -3)·⎝⎛⎭⎫-35 =-35n +445.……………………………………………………………………………(11分)综上可得,a n =35n -45,或a n =-35n +445.……………………………………………(12分)18. 思维启迪:(1)由a n +S n =n 及a n +1+S n +1=n +1转化成a n 与a n +1的递推关系,再构造数列{a n -1}.(2)由c n 求a n 再求b n .(1)证明 ∵a n +S n =n ,① ∴a n +1+S n +1=n +1.②②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列. 又a 1+a 1=1,∴a 1=12,∵首项c 1=a 1-1,∴c 1=-12,公比q =12.又c n =a n -1,∴{c n }是以-12为首项,12为公比的等比数列.(2)解 由(1)可知c n =⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n , ∴a n =c n +1=1-⎝⎛⎭⎫12n.∴当n ≥2时,b n =a n -a n -1=1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 =⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12代入上式也符合,∴b n =⎝⎛⎭⎫12n . 19.(1)证明 ∵a =(n ,S n ),b =(4,n +3)共线,∴n (n +3)-4S n =0,∴S n =n (n +3)4.……………………………………………………(3分)∴a 1=S 1=1,当n ≥2时,a n =S n -S n -1=n +12,……………………………………………………(5分)又a 1=1满足此式,∴a n =n +12.………………………………………………………(6分)∴a n +1-a n =12为常数,∴数列{a n }为首项为1,公差为12的等差数列.………………………………………(7分)(2)解 ∵1na n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,…………………………………………………(9分)∴T n =1a 1+12a 2+…+1na n.=2⎝⎛⎭⎫1-12+2⎝⎛⎭⎫12-13+…+2⎝⎛⎭⎫1n -1n +1=2n n +1.……………………………………(12分)20. 思维启迪:(1)由已知写出前n -1项之和,两式相减.(2)b n =n ·3n 的特点是数列{n }与{3n }之积,可用错位相减法.解 (1)∵a 1+3a 2+32a 3+…+3n -1a n =n 3,①∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,②①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n .(2)∵b n =na n,∴b n =n ·3n .∴S n =3+2×32+3×33+…+n ·3n ,③∴3S n =32+2×33+3×34+…+n ·3n +1.④④-③得2S n =n ·3n +1-(3+32+33+…+3n ),即2S n =n ·3n +1-3(1-3n)1-3,∴S n =(2n -1)3n +14+34.21. 解 (1)设等差数列{a n }的首项为a 1,公差为d .因为a 3=7,a 5+a 7=26,所以⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得⎩⎪⎨⎪⎧a 1=3,d =2.[4分]所以a n =3+2(n -1)=2n +1,S n =3n +n (n -1)2×2=n 2+2n .[6分](2)由(1)知a n =2n +1,所以b n =1a 2n -1=1(2n +1)2-1=14·1n (n +1) =14·⎝⎛⎭⎫1n -1n +1,[8分] 所以T n =14·(1-12+12-13+…+1n -1n +1)[10分]=14·(1-1n +1)=n 4(n +1), 即数列{b n }的前n 项和T n =n4(n +1).[12分]22.解 (1)当n =1时,a 1=13,当n ≥2时,a n =S n -S n -1,又S n =12-12a n ,所以a n =13a n -1,即数列{a n }是首项为13,公比为13的等比数列,故a n =⎝⎛⎭⎫13n.(2)由已知可得f (a n )=log 3⎝⎛⎭⎫13n=-n ,则b n =-1-2-3-…-n =-n (n +1)2,故1b n =-2⎝⎛⎭⎫1n -1n +1,又T n =-2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =-2⎝⎛⎭⎫1-1n +1,所以T 2 012=-4 0242 013.(3)由题意得c n =(-n )·⎝⎛⎭⎫13n , 故U n =c 1+c 2+…+c n=-⎣⎡⎦⎤1×⎝⎛⎭⎫131+2×⎝⎛⎭⎫132+…+n ·⎝⎛⎭⎫13n , 则13U n =-⎣⎡⎦⎤1×⎝⎛⎭⎫132+2×⎝⎛⎭⎫133+…+n ·⎝⎛⎭⎫13n +1,两式相减可得 23U n =-⎣⎡⎦⎤⎝⎛⎭⎫131+⎝⎛⎭⎫132+…+⎝⎛⎭⎫13n -n ·⎝⎛⎭⎫13n +1 =-12⎣⎡⎦⎤1-⎝⎛⎭⎫13n +n ·⎝⎛⎭⎫13n +1 =-12+12·⎝⎛⎭⎫13n +n ·⎝⎛⎭⎫13n +1, 则U n =-34+34·⎝⎛⎭⎫13n +32n ·⎝⎛⎭⎫13n +1.。

高三数列专题练习30道带答案复习课程

高三数列专题练习30道带答案复习课程

高三数列专题练习30道带答案高三数列专题训练二学校:___________姓名:___________班级:___________考号:___________一、解答题1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列.(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,记292n nb S =,求数列{}n b 的前n 项和n T .2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .3.设等比数列{}n a 的前n 项和为n S ,218a =,且1116S +,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式;(2)设n n n c a b =⋅,若对任意*n N ∈,不等式121212n n c c c S λ+++≥+-…恒成立,求λ的取值范围.4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =,24b a =,313b a =.(Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列{1nS }的前n 项和为n T ,求n T . 5.设数列(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T . 6.已知差数列等{}n a 的前n 项和n S ,且对于任意的正整数n满足1n a =+.(1)求数列{}n a的通项公式;(2)设11n n n b a a +=, 求数列{}n b 的前n 项和n B .7.对于数列}{n a 、}{n b ,n S 为数列}{n a 的前n 项和,且n a S n S n n n ++=+-+)1(1,111==b a ,231+=+n n b b ,*∈N n .(1)求数列}{n a 、}{n b 的通项公式; (2)令)1()(2++=n n n b n n a c ,求数列}{n c 的前n 项和n T .8.已知{}n a 是各项均为正数的等比数列,且1212112()a a a a +=+, 34534511164()a a a a a a ++=++. (1)求{}n a 的通项公式; (2)设21()n n nb a a =+,求数列{}n b 的前n 项和n T . 9.已知数列{}n a 的首项11a =,前n 项和为nS ,且1210n n S S n +---=(*n ∈N ).(Ⅰ) 求证:数列{1}n a +为等比数列; (Ⅱ) 令n n b na =,求数列{}n b 的前n 项和n T .10.已知各项都为正数的等比数列{}n a 满足312a 是13a 与22a 的等差中项,且123a a a =.(Ⅱ)设3log n n b a =,且n S 为数列{}n b 的前n 项和,求数列12{}nnS S +的前n 项和n T .11.已知数列{}n a 的前n 项和为n S ,2121,2n n n a S a a ==+. (1)求数列{}n a的通项公式;(2)若2n a n b =,求13521...n b b b b +++++.12.设公差不为0的等差数列{}n a 的首项为1,且2514,,a a a 构成等比数列. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足*121211,2n n n b b b n N a a a +++=-∈,求{}n b 的前n 项和n T .13.已知数列{}n a 是等比数列,满足143,24a a ==,数列{}n b 满足144,22b b ==,且{}n n b a -是等差数列.(I )求数列{}n a 和{}n b 的通项公式; (II )求数列{}n b 的前n 项和。

高三理科数学二轮复习专题能力提升训练:数列的综合应用问题(含答案解析).pdf

高三理科数学二轮复习专题能力提升训练:数列的综合应用问题(含答案解析).pdf

训练 数列的综合应用问题 一、选择题(每小题5分,共25分) 1.设{an}是等比数列,则“a1<a2<a3是递增数列”的( ). A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.在等差数列{an}中,若a1,a2 011为方程x2-10x+16=0的两根,则a2+a1 006+a2 010=( ). A.10 B.15 C.20 D.40 3.已知正项组成的等差数列{an}的前20项的和为100,那么a6·a15的最大值为( ). A.25 B.50 C.100 D.不存在 4.已知数列{an}的前n项和为Sn,过点P(n,Sn)和Q(n+1,Sn+1)(nN*)的直线的斜率为3n-2,则a2+a4+a5+a9的值等于( ). A.52 B.40 C.26 D.20 5.已知各项都是正数的等比数列{an}中,存在两项am,an(m,nN*)使得=4a1,且a7=a6+2a5,则+的最小值是( ). A. B. C. D. 二、填空题(每小题5分,共15分) 6.为了解某校高三学生的视力情况,随机地抽查了该校200名高三学生的视力情况,得到频率分布直方图,如图.由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到4.9之间的学生数为b,则a,b的值分别为________. 7.在等比数列{an}中,首项a1=,a4=(1+2x)dx,则公比q为________. 8.已知数列{an}中,a1=1,且P(an,an+1)(nN*)在直线x-y+1=0上,若函数f(n)=+++…+(nN*,且n≥2),函数f(n)的最小值是________. 三、解答题(本题共3小题,共35分) 9.(11分)已知数列{an}是等差数列,满足a2=5,a4=13.数列{bn}的前n项和是Tn,且Tn+bn=3. (1)求数列{an}及数列{bn}的通项公式; (2)若cn=an·bn,试比较cn与cn+1的大小. 10.(12分)首项为正数的数列{an}满足an+1=(a+3),nN*. (1)证明:若a1为奇数,则对一切n≥2,an都是奇数; (2)若对一切nN*都有an+1>an,求a1的取值范围. 11.(12分)等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列. 第一列第二列第三列第一行3 2 10第二行6 4 14第三行9 8 18(1)求数列{an}的通项公式; (2)若数列{bn}满足:bn=an+(-1)nln an,求数列{bn}的前n项和Sn.参考答案 1.C [“a1<a2<a3”“数列{an}是递增数列”.] 2.B [由题意,知a1+a2 011=a2+a2 010=2a1006=10,所以a2+a1 006+a2 010=15,故选B.] 3.A [S20==10(a1+a20)=100,故a6+a15=a1+a20=10,a6·a15≤)2=25.] 4.B [由题意得,=3n-2,Sn+1-Sn=3n-2,即an+1=3n-2,an=3n-5,因此数列{an}是等差数列,a5=10,而a2+a4+a5+a9=2(a3+a7)=4a5=40,故选B.] 5.A [记等比数列{an}的公比为q(q>0),依题意有a5q2=a5q+2a5,由a5≠0,得q2-q-2=0,解得q=2, 又(a1·2m-1)·(a1·2n-1)=16a, 即2m+n-2=24,m+n-2=4,m+n=6, +=(+)(m+n)=[5++)]≥ (5+4)=.] 6.解析 第一组的频数为:0.1×0.1×200=2, 第二组的频数为:0.3×0.1×200=6,故第三组的频数为:18,第四组的频数为:54. a==0.27.后五组的频数共有:200-80=120. 又后六组成等差数列,所以第七组的频数为24,第五、六组的频数共为78,故b=54+78=132. 答案 0.27,132 7.解析 a4==(4+42)-(1+12)=18,∴q3==27,∴q=3. 答案 3 8.解析 由题意知,an-an+1+1=0,即an+1-an=1,数列{an}是等差数列,公差d=1,an=n,当n≥2时,f(n)=+++…+,∵f(n+1)-f(n)=+++…+-+++…+=+-=->0,∴f(2)<f(3)<…,∴[f(n)]min =f(2)=+=. 答案 9.解 (1)a2=5,a4=13,a4=a2+2d,即13=5+2d. d=4,a1=1,an=4n-3. 又Tn+bn=3,Tn+1+bn+1=3, 2bn+1-bn=0,即bn+1=bn. b1+b1=3,b1=, 数列{bn}为首项是,公比是的等比数列, bn=)n-1=. (2)cn=anbn=,cn+1=, cn+1-cn=-=. 当n=1时,cn+1-cn>0,cn+1>cn;当n≥2(nN*)时,cn+1-cn<0,cn+1<cn. 10.(1)证明 已知a1是奇数,假设ak=2m-1是奇数,其中m为正整数,则由递推关系得ak+1==m(m-1)+1是奇数. 根据数学归纳法,对任何nN*,an都是奇数. (2)解 法一 由an+1-an=(an-1)·(an-3)知,an+1>an当且仅当an<1或an>3. 另一方面,若0<ak<1,则0<ak+1<=1; 若ak>3,则ak+1>=3. 根据数学归纳法,0<a1<10<an<1,n∈N*,a1>3an>3,n∈N*. 综上所述,对一切nN*都有an+1>an的充要条件是0<a1<1或a1>3. 法二 由a2=>a1,得a-4a1+3>0,于是0<a1<1或a1>3.an+1-an=-=, 因为a1>0,an+1=,所以所有的an均大于0,因此an+1-an与an-an-1同号. 根据数学归纳法,n∈N*,an+1-an与a2-a1同号. 因此,对一切nN*都有an+1>an的充要条件是0<a1<1或a1>3. 11.解 (1)当a1=3时,不合题意; 当a1=2时,当且仅当a2=6,a3=18时,符合题意; 当a1=10时,不合题意.因此a1=2,a2=6,a3=18. 所以公比q=3.故an=2·3n-1. (2)因为bn=an+(-1)nln an=2·3n-1+(-1)nln(2·3n-1) =2·3n-1+(-1)n[ln 2+(n-1)ln 3]=2·3n-1+(-1)n(ln 2-ln 3)+(-1)nnln 3, 所以Sn=2(1+3+…+3n-1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn]ln 3. 所以当n为偶数时, Sn=2×+ln 3=3n+ln 3-1; 当n为奇数时, Sn=2×-(ln 2-ln 3)+·ln 3 =3n-ln 3-ln 2-1. 综上所述,Sn=。

高中数学数列专题训练6套含答案

高中数学数列专题训练6套含答案

目录第一套:等比数列例题精讲第二套:等差等比数列基础试题一第三套:等差等比数列基础试题二第四套:等差等比数列提升试题一第五套:等差等比数列提升试题二第六套:数列的极限拓展等比数列·例题解析【例1】 已知S n 是数列{a n }的前n 项和,S n =p n (p ∈R ,n ∈N*),那么数列{a n }.[ ]A .是等比数列B .当p ≠0时是等比数列C .当p ≠0,p ≠1时是等比数列D .不是等比数列分析 由S n =p n (n ∈N*),有a 1=S 1=p ,并且当n ≥2时, a n =S n -S n-1=p n -p n-1=(p -1)p n-1但满足此条件的实数p 是不存在的,故本题应选D .说明 数列{a n }成等比数列的必要条件是a n ≠0(n ∈N*),还要注【例2】 已知等比数列1,x 1,x 2,…,x 2n ,2,求x 1·x 2·x 3·…·x 2n . 解 ∵1,x 1,x 2,…,x 2n ,2成等比数列,公比q ∴2=1·q 2n+1x 1x 2x 3...x 2n =q .q 2.q 3...q 2n =q 1+2+3+ (2)式;(2)已知a 3·a 4·a 5=8,求a 2a 3a 4a 5a 6的值.故-,因此数列成等比数列≠-≠a =(p 1)p {a }p 0p 10(p 1)p 2n n 1⇔--=-⎧⎨⎪⎪⎪⎩⎪⎪⎪--()()p pp p p n 212意对任∈,≥,都为同一常数是其定义规定的准确含义.n *n 2N a a nn -1=q2n(1+2n)2==+q n n n ()212【例3】 {a }(1)a =4a n 25等比数列中,已知,=-,求通项公12解 (1)a =a q q =5252-∴-12∴a 4=2【例4】 已知a >0,b >0且a ≠b ,在a ,b 之间插入n 个正数x 1,x 2,…,x n ,使得a ,x 1,x 2,…,x n ,b 成等比数列,求证明 设这n +2个数所成数列的公比为q ,则b=aq n+1【例5】 设a 、b 、c 、d 成等比数列,求证:(b -c)2+(c -a)2+(d -b)2=(a -d)2.证法一 ∵a 、b 、c 、d 成等比数列∴b 2=ac ,c 2=bd ,ad =bc∴左边=b 2-2bc +c 2+c 2-2ac +a 2+d 2-2bd +b 2 =2(b 2-ac)+2(c 2-bd)+(a 2-2bc +d 2) =a 2-2ad +d 2 =(a -d)2=右边证毕.证法二 ∵a 、b 、c 、d 成等比数列,设其公比为q ,则: b =aq ,c =aq 2,d=aq 3∴==-=∵·=··=a a q 4()()(2)a a a a a a a =8n 2n 2n 2n 4354234543----1212又==∴a a a a a a a a a a =a =322635423456452证…<.x x x a bn n 122+∴∴……<q b ax x x aqaq aq aqab a bn n n nn n ++====+1122122∴a b b c c d==∴左边=(aq -aq 2)2+(aq 2-a)2+(aq 3-aq)2 =a 2-2a 2q 3+a 2q 6 =(a -aq 3)2 =(a -d)2=右边证毕.说明 这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b 、c 的特点,走的是利用等比的条件消去左边式中的b 、c 的路子.证法二则是把a 、b 、c 、d 统一化成等比数列的基本元素a 、q 去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性.【例6】 求数列的通项公式:(1){a n }中,a 1=2,a n+1=3a n +2(2){a n }中,a 1=2,a 2=5,且a n+2-3a n+1+2a n =0 思路:转化为等比数列.∴{a n +1}是等比数列 ∴a n +1=3·3n-1 ∴a n =3n -1∴{a n+1-a n }是等比数列,即 a n+1-a n =(a 2-a 1)·2n-1=3·2n-1再注意到a 2-a 1=3,a 3-a 2=3·21,a 4-a 3=3·22,…,a n -a n-1=3·2n-2,这些等式相加,即可以得到说明 解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n +1}是等比数列,(2)中发现{a n+1-a n }是等比数列,这也是通常说的化归思想的一种体现.解 (1)a =3a 2a 1=3(a 1)n+1n n+1n +++⇒(2)a 3a 2a =0a a =2(a a )n+2n+1n n+2n+1n+1n -+--⇒a =3[1222]=3=3(21)n 2n-2n 1+++…+·-21211n ----证 ∵a 1、a 2、a 3、a 4均为不为零的实数∴上述方程的判别式Δ≥0,即又∵a 1、a 2、a 3为实数因而a 1、a 2、a 3成等比数列∴a 4即为等比数列a 1、a 2、a 3的公比.【例8】 若a 、b 、c 成等差数列,且a +1、b 、c 与a 、b 、c +2都成等比数列,求b 的值.解 设a 、b 、c 分别为b -d 、b 、b +d ,由已知b -d +1、b 、b +d 与b -d 、b 、b +d +2都成等比数列,有整理,得∴b +d=2b -2d 即b=3d 代入①,得9d 2=(3d -d +1)(3d +d) 9d 2=(2d +1)·4d 解之,得d=4或d=0(舍) ∴b=12【例7】 a a a a (a a )a 2a (a a )a a a =0a a a a 1234122242213422321234若实数、、、都不为零,且满足+-+++求证:、、成等比数列,且公比为.∴+-+++为实系数一元二次方程等式+-+++说明上述方程有实数根.(a a )x 2a (a a )x a a =0(a a )a 2a (a a )a a a =0a 122222132232122242213422324[2a (a a )]4(a a )(a a )=4(a a a )0(a a a )02132122222322213222132-+-++--≥∴-≤∴-≥必有-即(a a a )0a a a =0a =a a 2213222132213又∵a =2a 42()()()a a a a a a a a a a a a 1312222131213212++=++=b =(b d 1)(b d)b =(b d)(b d 2)22-++①-++②⎧⎨⎪⎩⎪b =b d b db =b d 2b 2d 222222-++-+-⎧⎨⎪⎩⎪【例9】 已知等差数列{a n }的公差和等比数列{b n }的公比都是d ,又知d ≠1,且a 4=b 4,a 10=b 10:(1)求a 1与d 的值; (2)b 16是不是{a n }中的项? 思路:运用通项公式列方程(2)∵b 16=b 1·d 15=-32b 1∴b 16=-32b 1=-32a 1,如果b 16是{a n }中的第k 项,则 -32a 1=a 1+(k -1)d ∴(k -1)d=-33a 1=33d∴k=34即b 16是{a n }中的第34项.解 设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d解 (1)a =b a =b 3d =a d a 9d =a da (1d )=3d a (1d )=9d4410101131191319由++----⎧⎨⎩⇒⎧⎨⎪⎩⎪⇒⎧⎨⎪⎩⎪a ⇒⇒==-=-==-d d 2=063+-舍或∴d d a d d 1231331222()且+·--∴a =a 3d =22=b b =b d =2b =22b =a =2413441313113-【例10】 {a }b =(12)b b b =218b b b =18n n a n 123123设是等差数列,,已知++,,求等差数列的通项.∴·b =(12)b b =(12)(12)=(12)b n a 13a a +2d 2(a +d)221111+-()n d1解这个方程组,得∴a 1=-1,d=2或a 1=3,d=-2∴当a 1=-1,d=2时,a n =a 1+(n -1)d=2n -3 当a 1=3,d=2时,a n =a 1+(n -1)d=5-2n【例11】 三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数.解法一 按等比数列设三个数,设原数列为a ,aq ,aq 2 由已知:a ,aq +4,aq 2成等差数列 即:2(aq +4)=a +aq 2①a ,aq +4,aq 2+32成等比数列 即:(aq +4)2=a(aq 2+32)解法二 按等差数列设三个数,设原数列为b -d ,b -4,b +d由已知:三个数成等比数列 即:(b -4)2=(b -d)(b +d)b -d ,b ,b +d +32成等比数列由,解得,解得,代入已知条件整理得+b b b =18b =18b =12b b b =18b b =14b b =1781232321231313b b b 123218++=⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎩⎪⎪b =2b =18b =18b =21313,或,⇒aq 2=4a +②①,②两式联立解得:或-∴这三数为:,,或,,.a =2q =3a =29q =52618⎧⎨⎩⎧⎨⎪⎩⎪-29109509⇒8b d =162-①即b 2=(b -d)(b +d +32)解法三 任意设三个未知数,设原数列为a 1,a 2,a 3 由已知:a 1,a 2,a 3成等比数列a 1,a 2+4,a 3成等差数列 得:2(a 2+4)=a 1+a 3②a 1,a 2+4,a 3+32成等比数列 得:(a 2+4)2=a 1(a 3+32)③说明 将三个成等差数列的数设为a -d ,a ,a +d ;将三个成简化计算过程的作用.【例12】 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.分析 本题有三种设未知数的方法方法一 设前三个数为a -d ,a ,a +d ,则第四个数由已知条⇒32b d 32d =02--②①、②两式联立,解得:或∴三数为,,或,,.b =269d =83b =10d =82618⎧⎨⎪⎪⎩⎪⎪⎧⎨⎩-29109509得:①a =a a 2213①、②、③式联立,解得:或a =29a =109a =509a =2a =6a =18123123-⎧⎨⎪⎪⎪⎩⎪⎪⎪⎧⎨⎪⎩⎪等比数列的数设为,,或,,是一种常用技巧,可起到a aq aq (a aq)2aq方法二 设后三个数为b ,bq ,bq 2,则第一个数由已知条件推得为2b -bq . 方法三 设第一个数与第二个数分别为x ,y ,则第三、第四个数依次为12-y ,16-x .由这三种设法可利用余下的条件列方程组解出相关的未知数,从而解出所求的四个数,所求四个数为:0,4,8,16或15,9,3,1.解法二 设后三个数为:b ,bq ,bq 2,则第一个数为:2b -bq所求四个数为:0,4,8,16或15,9,3,1.解法三 设四个数依次为x ,y ,12-y ,16-x .这四个数为0,4,8,16或15,9,3,1.【例13】 已知三个数成等差数列,其和为126;另外三个数成等比数列,把两个数列的对应项依次相加,分别得到85,76,84.求这两个数列.解 设成等差数列的三个数为b -d ,b ,b +d ,由已知,b -d +b +b +d=126 ∴b=42这三个数可写成42-d ,42,42+d .再设另三个数为a ,aq ,aq 2.由题设,得件可推得:()a d a+2解法一 a d a a d 设前三个数为-,,+,则第四个数为.()a d a+2依题意,有-+++a d =16a (a d)=12()a d a+⎧⎨⎪⎩⎪2解方程组得:或-a =4d =4a =9d =61122⎧⎨⎩⎧⎨⎩依题意有:-++2b bq bq =16b bq =122⎧⎨⎩解方程组得:或b =4q =2 b =9q =131122⎧⎨⎩⎧⎨⎪⎩⎪依题意有+-·--x (12y)=2yy (16x)=(12y)2⎧⎨⎩解方程组得:或x =0y =4x =15y =91122⎧⎨⎩⎧⎨⎩解这个方程组,得 a 1=17或a 2=68当a=17时,q=2,d=-26从而得到:成等比数列的三个数为17,34,68,此时成等差的三个数为68,42,16;或者成等比的三个数为68,34,17,此时成等差的三个数为17,42,67.【例14】 已知在数列{a n }中,a 1、a 2、a 3成等差数列,a 2、a 3、a 4成等比数列,a 3、a 4、a 5的倒数成等差数列,证明:a 1、a 3、a 5成等比数列.证明 由已知,有 2a 2=a 1+a 3①即 a 3(a 3+a 5)=a 5(a 1+a 3)所以a 1、a 3、a 5成等比数列.a 42d =85ap 42=76aq 42d =842+-+++⎧⎨⎪⎩⎪整理,得-①②+③a d =43aq =34aq d =422⎧⎨⎪⎩⎪当时,,a =68q =12d =25a =a a 3224·②③211435a a a =+由③,得·由①,得代入②,得··a =2a a a +a a =a +a 2a =a +a 243535213321323535a a a a +整理,得a =a (a +a )a +a 351235a a a =a a a a a =a a 323515353215++∴·【例15】已知(b-c)log m x+(c-a)log m y+(a-b)log m z=0.(1)设a,b,c依次成等差数列,且公差不为零,求证:x,y,z成等比数列.(2)设正数x,y,z依次成等比数列,且公比不为1,求证:a,b,c成等差数列.证明(1)∵a,b,c成等差数列,且公差d≠0∴b-c=a-b=-d,c-a=2d代入已知条件,得:-d(log m x-2log m y+log m z)=0∴log m x+log m z=2log m y∴y2=xz∵x,y,z均为正数∴x,y,z成等比数列(2)∵x,y,z成等比数列且公比q≠1∴y=xq,z=xq2代入已知条件得:(b-c)log m x+(c-a)log m xq+(a-b)log m xq2=0变形、整理得:(c+a-2b)log m q=0∵q≠1 ∴log m q≠0∴c+a-2b=0 即2b=a+c即a,b,c成等差数列高一数学数列练习【同步达纲练习】 一、选择题1.已知数列1,21,31,…,n1…,则其通项的表示为( ) A.{a n }B.{n 1}C. n1D.n2.已知数列{a n }中,a n =4n-13·2n+2,则50是其( )A.第3项B.第4项C.第5项D.不是这个数列的项3.已知数列的通项公式a n =2n-1,则2047是这个数列的( ) A.第10项 B.第11项 C.第12项 D.第13项 4.数列-1,58,-715,924,…的通项公式是( ) A.a n =(-1)n 122++n nnB.a n =(-1)n12)3(++n n nC.a n =(-1)n1222-+n nnD.a n =(-1)n12)2(++n n n5.在数列a 1,a 2,a 3,…,a n ,…的每相邻两项中插入3个数,使它们与原数列构成一个新数列,则新数列的第29项( )A.不是原数列的项B.是原数列的第7项C.是原数列的第8项D.是原数列的第9项6.已知数列的通项公式为a n =1213+-n n ,则a n 与a n+1的大小关系是( ) A.a n <a n+1 B.a n >a n+1C.a n =a n+1D.大小不能确定7.数列{a n }中,a n =-2n 2+29n+3,则此数列的最大项的值是( ) A.107B.108C.10881 D.1098.数列1,3,6,10,15,…的通项公式a n ,等于( ) A.n 2-(n-1) B.2)1(-n n C.2)1(+n n D.n 2-2n+2二、填空题1.数列-31,91,-271,…的一个通项公式是 .2.数列1,1,2,2,3,3,…的一个通项公式是 .3.数列1×3,2×4,3×5,…,n(n+2),…,问120是否是这个数列的项 .若是,120是第 项.4.已知数列{a n }满足a 1=1,a n+1=pa n +q ,且a 2=3,a 4=15,则p= ,q= .5.一个数列的前n 项之和是n n,则此数列的第4项为 .6.-1103,4203,-7403,10803,-131603,…的一个通项公式为 . 三、解答题1.已知数列{a n }的通项a n =)1(1+-n n n ,207、1207是不是这个数列的项?如果是,则是第几项?2.写出以下数列的一个通项公式.①-31,256,-499,274,-12115…; ②9,99,999,9999,99999,….3.已知下列数列{a n }的前n 项和S n ,求数列{a n }的通项公式.①S n =3+2n ; ②S n =2n 2+n+3【素质优化训练】1.已知数列的前4项如下,试写出下列各数列的一个通项公式:(1) 21,61,121,201; (2)-1,23,-45,87;(3)0.9,0.99,0.999,0.9999; (4)35,810,1517,2426.2.已知数列的通项公式为a n =-0.3n 2+2n+732,求它的数值最大的项.3.若数列{a n }由a 1=2,a n+1=a n +2n(n ≥1)确定,求通项公式a n .【生活实际运用】参加一次国际商贸洽谈会的国际友人居住在西安某大楼的不同楼层内,该大楼共有n 层,每层均住有参会人员.现要求每层指派一人,共n 人集中到第k 层开会,试问k 如何确定,能使n 位参加会议人员上、下楼梯所走路程总和最少?(假定相邻两层楼楼长都相等)【知识探究学习】某人从A 地到B 地乘坐出租车,有两种方案:第一种方案:利用起步价10元,每千米价为1.2元的汽车.第二种方案:租用起步价是8元,每千米价为4元的汽车.按出租车管理条例,在起步价内,不同型号车行驶的里程是相等的.则此人从A 地到B 地选择哪一种方案比较合适.解:设起步价内行驶里程为a 千米,A 地到B 地的距离是m 千米. 当m ≤a 时,选起步价8元的出租车比较合适. 当m >a 时,设m=a+x(x >0)乘坐起步价10元的出租车费用为P(x)元,乘坐起步价为8元的费用为Q(x)元, 则:P(x)=10+1.2x Q(x)=8+1.4x令P(x)=Q(x)得10+1.28+1.4x 解得x=10(千米) 此时两种出租车任选.当x >10时,P(x)-Q(x)=2-0.2x <0,故P(x)<Q(x) 此时选起步价为10元合适.当x <10时,P(x)-Q(x)=2-0.2x >0,故P(x)>Q(x) 此时选起步价为8元的出租车合适.参考答案:【同步达纲练习】一、1.C 2.B 3.B 4.D 5.C 6.A 7.B 8.C二、1.a n =nn3)1(- 2.a n =⎪⎪⎩⎪⎪⎨⎧+为偶数为奇数n n n n ,2,213.是,104.2或-3,1或65.2296.a n =(-1)n[(3n-2)+12103-∙n ] 三、1.207不是{a n }中的项,1207是{a n }中的第15项. 2.①a n =(-1)n2)12(3+n n ;②a n =10n-1.3.①a n =⎪⎩⎪⎨⎧≥=2)(n 21)(n 51-n ②a n =⎩⎨⎧≥-=2)(n 1n 41)(n 6。

高三理科数列专题训练

高三理科数列专题训练

高三数列专题复习题型一 : 等差等比的基本计算、裂项相消与错位相减求和例 1. 已知等差数列 { a n } 满足: a3 7, a5 a726.{ a n } 的前 n 项和为S n .(Ⅰ)求 a4及S n ;(Ⅱ)令 b n 1 (n N * ) ,求数列 { b n } 的前 n 项和 T n .a n2 1能力训练 :1.已知数列 { a n } 满足 a11, a n 13a n ,数列 {b n} 的前 n 项和 S n n22n 1 .(1)求数列 { a n } ,{b n } 的通项公式 ;(2) 设 c n a n b n ,求数列 { c n } 的前 n 项和 T n .1题型二 : 已知 a n与 S n的递推关系 , 求 a n ( 或 S n )例 2.已知数列 { a } 的各项均为正数,其前 n 项和为S,满足a S 4n n nn (1) 求数列 { a n } 的通项公式 ;(2) 设b n( 1 )2,数列 { b n } 的前 n 项和为 T n ,求证 : 当 n2 时 ,T n2n 1 .2 log2 a n n能力训练 :1.已知数列 { a n } 各项均为正数,其前 n 项和为 S n ,点 ( a n , S n ) 在曲线 ( x 1)2 4 y 上 .(1)求 { a n } 的通项公式 ;(2) 设数列 { b n } 满足 b13,b n 1a b nb n b n 1 2,c n1 b n 1,求数列 { c n} 的前 n 项和T n .b n 12题型三 : 可转换为等差或等比的递推关系例 3.已知各项均为正数的数列{ a n } 满足 2a n21 3a n 1 a n 2a n20 , n 为正整数 ,且 a31是 a , a 的等差中项 .322 4(1)求数列 { a n } 的通项公式 ;log 1 a n2 , Tn c1c2c n ,求使 T n n2n1125 成立的正整数n 的最小值 .(2) 若c na n能力训练 :1.设数列 { a n} 的前 n 项和为 S n ,已知 a11, S n 14a n 2 .(1) 若 b n a n 12a n ,证明数列 { b n } 是等比数列 ;(2)求数列 { a n } 的通项公式 ;(3) 若c n2n, T n为数列 { c n } 的前 n 项和 ,求证 : T n2 a n (3n 2) 33题型四 : 分组求和 , 分奇偶项的讨论 .例 4 等比数列a n中, a1 ,a2 , a3分别是下表第一、二、三行中的某一个数,且a1 , a2 , a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行 3 2 10第二行 6 4 14第三行9 8 18 (Ⅰ)求数列a n的通项公式;(Ⅱ)若数列b n满足: b n a n( 1)n ln a n,求数列b n的前n项和 S n.4题型五 : 数学归纳法证明不等式例5 已知各项均为正数的的数列{ a n} 满足 a n21 2a n2a n a n1 ,且 a2a42a3 4 ,其中n N *(1) 求数列 { a n } 的通项公式 ;(2) {b n} 的前 n 项和为 T n ,令b n a n2 ,试比较Tn 112与2log 2 b n 1 2的大小 ,并加以证明 .4T n2log 2 b n 1 能力训练 :1.已知数列 { a n } 是各项均不为 0的等差数列 , S n为其前 n 项和 ,且满足S2 n 1 1 a n2 ,2n 1为奇数n N * .数列 {b n} 满足b n 2 , n ,T n为数列 { b n } 的前 n 项和 .1 an 1 ,n为偶数2n的大小 .(1) 求 a n , b n ; (2) 试比较T2n与 2n235。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数列专题复习
题型一:等差等比的基本计算、裂项相消与错位相减求和
例1. 已知等差数列}{n a 满足:}.{26,7753n a a a a =+=的前n 项和为.n S (Ⅰ)求4a 及n S ;
(Ⅱ)令1
1
2
-=n n a b )(*N n ∈,求数列}{n b 的前n 项和.n T 能力训练:
1.已知数列{}n a 满足111,3n n a a a +==,数列{}n b 的前n 项和2
21n S n n =++.
(1)求数列{}n a ,{}n b 的通项公式;
(2)设n n n c a b =⋅,求数列{}n c 的前n 项和n T .
题型二:已知n a 与n S 的递推关系,求n a (或n S )
例2.已知数列{}n a 的各项均为正数,其前n 项和为n S ,满足4n n a S += (1)求数列{}n a 的通项公式;
(2)设221()2log n n b a =-,数列{}n b 的前n 项和为n T ,求证:当2n ≥时,21
n n T n
-<.
能力训练:
1.已知数列{}n a 各项均为正数,其前n 项和为n S ,点(,)n n a S 在曲线2
(1)4x y +=上.
(1)求{}n a 的通项公式;
(2)设数列{}n b 满足11112
3,,11
n n n n b n n n b b b b a c b b +++-===
+--,求数列{}n c 的前n 项和n T . 题型三:可转换为等差或等比的递推关系
例3.已知各项均为正数的数列{}n a 满足22
112320n n n n a a a a +++⋅-=,n 为正整数,
且31
32
a +是24,a a 的等差中项.
(1)求数列{}n a 的通项公式;
(2)若12
log n
n n
a c a =-,12n n T c c c =+++,求使12125n n T n ++⋅>成立的正整数n 的最小值.
能力训练:
1.设数列{}n a 的前n 项和为n S ,已知11a =,142n n S a +=+. (1)若12n n n b a a +=-,证明数列{}n b 是等比数列; (2)求数列{}n a 的通项公式;
(3)若2(32)
n
n n c a n =+,n T 为数列{}n c 的前n 项和,求证:23n T <
题型四:分组求和,分奇偶项的讨论.
例4等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中
(Ⅰ)求数列n a 的通项公式;
(Ⅱ)若数列{}n b 满足:(1)ln n
n n n b a a =+-,求数列{}n b 的前n 项和n S .
题型五:数学归纳法证明不等式
例5已知各项均为正数的的数列{}n a 满足22
112n n n n a a a a ++=+⋅,且24324a a a +=+,其中
*n N ∈
(1)求数列{}n a 的通项公式;
(2){}n b 的前n 项和为n T ,令2
n n b a =,试比较
1124n n T T ++与2122log 2
2log 1
n n b b ++-的大小,并加以证明. 能力训练:
1.已知数列{}n a 是各项均不为0的等差数列,n S 为其前n 项和,且满足2
2112
n n S a -=
, *n N ∈.数列{}n b 满足112,1,2
n n n n b a n --⎧⎪
=⎨⎪⎩为奇数为偶数,n T 为数列{}n b 的前n 项和.
(1)求,n n a b ; (2)试比较2n T 与2
23
n n +的大小.。

相关文档
最新文档