电力系统潮流计算课程设计

合集下载

电力系统课程设计潮流计算

电力系统课程设计潮流计算

电力系统课程设计潮流计算潮流计算是电力系统非常重要的分析计算,用以研究系统规划和运行中提出的各种问题。

对规划中的电力系统,通过潮流计算可以检验所提出的电力系统规划方案能否满足各种运行方式的要求;对运行中的电力系统,通过潮流计算可以预知各种负荷变化和网络结构的改变会不会危及系统的安全,系统中所有母线的电压是否在允许的范围以内,系统中各种元件(线路、变压器等)是否会出现过负荷,以及可能出现过负荷时应事先采取哪些预防措施等。

潮流计算是电力系统分析最基本的计算。

除它自身的重要作用之外,潮流计算还是网损计算、静态安全分析、暂态稳定计算、小干扰静态稳定计算、短路计算、静态和动态等值计算的基础。

实际电力系统的潮流计算主要采用牛顿-拉夫逊法。

按电压的不同表示方法,牛顿-拉夫逊潮流计算分为直角坐标形式和极坐标形式两种。

本次计算采用直角坐标形式下的牛顿-拉夫逊法,牛顿-拉夫逊法有很好的收敛性,但要求有合适的初值。

传统的潮流计算程序缺乏图形用户界面,结果显示不直接难与其他分析功能集成。

网络原始数据输入工作大量且易于出错。

本文采用MATLAB 语言运行WINDOWS操作系统的潮流计算软件。

目前MATLAB已成为国际控制界最流行、使用最广泛的语言了。

它的强大的矩阵处理功能给电力系统的分析、计算带来很多方便,而且采用MATLAB界面直观,运行稳定,计算准确。

所以本次课程设计程序设计采用MATLAB计算。

1.1.2设计要求1.程序源代码;2.给定题目的输入,输出文件;3.程序说明;4.给定系统的程序计算过程;5.给定系统的手算过程(至少迭代2次)。

1.2设计题目电力系统潮流计算(牛顿-拉夫逊法、P-Q分解法)1.3设计内容1.根据电力系统网络推导电力网络数学模型,写出节点导纳矩阵;2.赋予各节点电压变量(直角坐标系形式)初值后,求解不平衡量;3.形成雅可比矩阵;4.求解修正量后,重新修改初值,从2开始重新循环计算;5.求解的电压变量达到所要求的精度时,再计算各支路功率分布、功率损耗和平衡节点功率;6.上机编程调试;7.计算分析给定系统潮流分析并与手工计算结果做比较分析;8.书写课程设计说明书。

实验一电力系统潮流计算

实验一电力系统潮流计算

实验一电力系统潮流计算
一、实验背景
潮流计算是电力系统的基础,也是电力系统优化设计的前提。

它是一种求解受非线性条件制约的线性方程组的数值方法,能够求解电力系统的稳态潮流,即电力系统在其中一种操作或运行状态下的电压、电流大小和方向。

潮流计算可以为电力系统的综合分析、可靠性分析、功率调度、故障分析、电压控制、电源接入分析、调节器诊断、可调装置分析等提供重要的输入参数。

二、实验步骤
(1)系统参数设置:确定潮流计算模型中的系统参数,包括拓扑结构、主变参数以及节点馈电和负荷数据。

(2)特性参数选择:确定潮流计算模型中特性参数,包括电抗器、变压器的损耗参数、电容器的补偿方式以及可调节装置参数等。

(3)潮流程序的编制:根据模型结构,以及确定的参数,编制潮流计算程序。

(4)潮流计算的运行:运行潮流计算程序,得到电力系统中的线路电流、电压、有功、无功等参数。

(5)潮流计算结果分析:分析潮流计算结果,验证潮流计算模型和输入参数的准确性,对电力系统的可靠性进行评价和优化设计。

三、实验过程
此次实验采用PSCAD/EMTDC软件。

电力系统分析课程设计——电力系统潮流计算

电力系统分析课程设计——电力系统潮流计算

信息工程学院课程设计报告书题目: 电力系统潮流计算专业:电气工程及其自动化班级:0310406学号:031040635学生姓名:陈代才指导教师:钟建伟2013年 4 月15 日信息工程学院课程设计任务书2013年4月15日目录1 任务提出与方案论证 (2)2 总体设计 (3)2.1潮流计算等值电路 (3)2.2建立电力系统模型 (3)2.3模型的调试与运行 (3)3 详细设计 (4)3.1 计算前提 (4)3.2手工计算 (7)4设计图及源程序 (11)4.1MA TLAB仿真 (11)4.2潮流计算源程序 (11)5 总结 (19)参考文献 (20)1 任务提出与方案论证潮流计算是在给定电力系统网络结构、参数和决定系统运行状态的边界条件的情况下确定系统稳态运行状态的一种基本方法,是电力系统规划和运营中不可缺少的一个重要组成部分。

可以说,它是电力系统分析中最基本、最重要的计算,是系统安全、经济分析和实时控制与调度的基础。

常规潮流计算的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。

潮流计算的结果是电力系统稳定计算和故障分析的基础。

在电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。

同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。

因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。

在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算。

是电力系统研究人员长期研究的一个课题。

它既是对电力系统规划设计和运行方式的合理性、可靠性及经济性进行定量分析的依据,又是电力系统静态和暂态稳定计算的基础。

潮流计算经历了一个由手工到应用数字电子计算机的发展过程,现在的潮流算法都以计算机的应用为前提用计算机进行潮流计算主要步骤在于编制计算机程序,这是一项非常复杂的工作。

电力系统课程设计-牛顿拉夫逊法潮流计算

电力系统课程设计-牛顿拉夫逊法潮流计算

课程设计说明书题目电力系统分析系 ( 部)专业( 班级 )姓名学号指导教师起止日期电力系统分析课程设计任务书系(部): 专业:指导教师:目录一、潮流计算基本原理1.1 潮流方程的基本模型1.2 潮流方程的讨论和节点类型的划分1.3、潮流计算的意义二、牛顿一拉夫逊法2.1 牛顿-拉夫逊法基本原理2.2节点功率方程2.3修正方程2.4 牛顿法潮流计算主要流程三、收敛性分析四、算例分析总结参考文献电力系统分析潮流计算一、潮流计算基本原理1.1潮流方程的基本模型电力系统是由发电机、变压器、输电线路及负荷等组成,其中发电机及负荷是非线性元件,但在进行潮流计算时,一般可以用接在相应节点上的一个电流注入量来代表。

因此潮流计算所用的电力网络系由变压器、输电线路、电容器、电抗器等静止线性元件所构成,并用集中参数表示的串联或并联等值支路来模拟。

结合电力系统的特点,对这样的线性网络进行分析,普通采用的是节点法,节点电压与节点电流之间的关系I=YV (1—1)其展开式为(i=1,2,3, …,n) (1—2)在工程实际中,已经的节点注入量往往不是节点电流而是节点功率,为此必须应用联系节点电流和节点功率的关系式 (i=1,2,3, …,n) (1—3)将 式 ( 1 - 3 ) 代 入 式 ( 1 - 2 ) 得 到 (i=1,2,3, …,n) (1-4)交流电力系统中的复数电压变量可以用两种极坐标来表示V =Vei8. (1-5)或 V=e+jf (1-6)而复数导纳为Y=G+jB (1-7)将式(1-6)、式(1- 7)代入以导纳矩阵为基础的式(1-4),并将实部与虚部分开,可以得到以下两种形式的潮流方程。

潮流方程的直角坐标形式为潮流方程的极坐标形式为(1—10)(1-11)以上各式中,j∈i表示乙号后的标号j的节点必须直接和节点i相联,并包括j=i的情况。

这两种形式的潮流方程通常称为节点功率方程,实牛顿一拉夫逊等潮流算法所采用的主要数学模型。

powergui潮流计算课程设计

powergui潮流计算课程设计

powergui潮流计算课程设计一、课程目标知识目标:1. 让学生理解潮流计算的基本概念、原理及在电力系统中的应用。

2. 掌握使用PowerGUI软件进行潮流计算的操作步骤。

3. 了解潮流计算结果的分析方法及其在电力系统运行中的应用。

技能目标:1. 学会使用PowerGUI软件进行电力系统的潮流计算。

2. 能够分析潮流计算结果,判断电力系统的运行状态。

3. 能够运用所学知识解决实际电力系统运行中遇到的问题。

情感态度价值观目标:1. 培养学生对电力系统运行管理的兴趣,激发学习热情。

2. 增强学生的团队合作意识,培养沟通协调能力。

3. 使学生认识到电力系统安全、稳定运行的重要性,树立正确的价值观。

课程性质:本课程为电力系统自动化专业课程,旨在帮助学生掌握潮流计算的基本方法,提高实际操作能力。

学生特点:学生已具备一定的电力系统基础知识,对实际操作有较高的兴趣。

教学要求:结合实际案例,注重理论与实践相结合,提高学生的实际操作能力。

通过本课程的学习,使学生能够将所学知识应用于电力系统运行管理中。

教学过程中,将目标分解为具体的学习成果,便于教学设计和评估。

二、教学内容1. 潮流计算基本概念:介绍潮流计算的定义、作用及其在电力系统中的应用。

教材章节:第二章第一节2. 潮流计算原理:讲解潮流计算的基本原理,包括潮流方程的建立与求解方法。

教材章节:第二章第二节3. PowerGUI软件介绍:介绍PowerGUI软件的功能、特点及其在潮流计算中的应用。

教材章节:第三章第一节4. 潮流计算操作步骤:详细讲解使用PowerGUI软件进行潮流计算的操作流程。

教材章节:第三章第二节5. 潮流计算结果分析:分析潮流计算结果,包括电压、电流、功率等参数,判断电力系统运行状态。

教材章节:第三章第三节6. 实际案例分析:结合实际电力系统案例,分析潮流计算在电力系统运行中的应用。

教材章节:第四章7. 教学进度安排:共8学时,分配如下:- 潮流计算基本概念与原理(2学时)- PowerGUI软件介绍与操作步骤(3学时)- 潮流计算结果分析(2学时)- 实际案例分析及讨论(1学时)三、教学方法1. 讲授法:在讲解潮流计算基本概念、原理及PowerGUI软件操作步骤时,采用讲授法,结合多媒体课件,使抽象的理论知识形象化、具体化,便于学生理解和掌握。

潮流计算课程设计

潮流计算课程设计

潮流计算课程设计一、课程目标知识目标:1. 理解潮流计算的基本概念,掌握潮流计算的基本原理和数学模型;2. 学会使用标准算例进行电力系统潮流计算,并能够分析计算结果;3. 掌握影响潮流计算精度的因素,了解提高计算精度的方法。

技能目标:1. 能够运用所学软件或工具进行电力系统潮流计算;2. 培养学生解决实际电力系统问题的能力,能够根据计算结果提出优化方案;3. 提高学生的团队协作能力和沟通表达能力,通过小组讨论和报告形式展示学习成果。

情感态度价值观目标:1. 激发学生对电力系统分析和优化工作的兴趣,培养其探索精神;2. 培养学生严谨的科学态度,注重实际问题的解决;3. 增强学生的环保意识,使其认识到优化电力系统运行对环境保护的重要性。

课程性质:本课程为电力系统分析领域的专业课程,旨在帮助学生掌握潮流计算的基本理论和实践方法。

学生特点:学生具备一定的电力系统基础知识,具有一定的数学和编程能力。

教学要求:结合实际案例,采用理论教学与实践操作相结合的方式,注重培养学生的实际操作能力和问题分析解决能力。

通过分解课程目标,使学生在完成本课程学习后能够达到上述具体学习成果。

二、教学内容1. 潮流计算基本概念:介绍潮流计算的定义、作用和数学模型,包括功率方程、电压方程和相角方程。

教材章节:第一章 潮流计算概述2. 潮流计算方法:讲解常用的潮流计算方法,如牛顿-拉夫逊法、快速分解法和P-Q分解法。

教材章节:第二章 潮流计算方法3. 潮流计算软件及应用:介绍常用的潮流计算软件,如PSS/E、DIgSILENT PowerFactory等,并讲解软件的操作方法和应用案例。

教材章节:第三章 潮流计算软件及其应用4. 影响潮流计算精度的因素:分析影响潮流计算精度的各种因素,如测量误差、模型误差等,并提出相应的解决方法。

教材章节:第四章 影响潮流计算精度的因素5. 提高潮流计算精度的方法:讲解提高潮流计算精度的方法,如参数优化、模型修正等。

电力系统潮流计算课程设计总结

电力系统潮流计算课程设计总结

电力系统潮流计算课程设计总结
电力系统潮流计算课程设计是电力系统相关专业的一门重要课程。

通过本次课程设计,我深入学习了电力系统潮流计算的原理、方法和技术,在实践中提高了自己的动手能力和问题解决能力。

首先,本次课程设计中我学习了电力系统潮流计算的基本原理。

潮流计算是电力系统运行和规划的基础,通过对系统中每个节点的功率和电压进行计算,可以判断系统的运行状态和潜在问题。

我了解了功率平衡方程的推导过程,掌握了优化潮流计算的目标和方法。

这些基本原理为后续的潮流计算提供了理论支持。

其次,本次课程设计中我学习了潮流计算的具体方法和技术。

我学会了使用潮流方程和节点电流方程进行潮流计算,掌握了潮流计算中的迭代算法和收敛准则。

我还学习了如何利用潮流计算结果进行系统状态估计和故障分析。

通过实践操作,我熟练掌握了潮流计算软件的使用,能够进行系统数据的输入和结果的分析。

最后,本次课程设计中我还学习了潮流计算在电力系统规划和运行中的应用。

潮流计算可以用于电力系统的负荷分配、可靠性评估、输电能力计算等方面。

我了解了潮流计算在电力系统规划和运行中的重要性,以及其与其他工程的关联和协作。

通过实际案例的分析,我感受到了潮流计算在电力系统实际工程中的应用和意义。

总的来说,本次课程设计让我对电力系统潮流计算有了深入的了解,并提高了我的实践能力。

我通过理论学习和实验操作,掌握了潮流计算的原理、方法和技术,并对其在电力系统规划和运行中的应用有了清晰的认识。

我相信这些知识和能力将对我今后的专业发展产生积极的影响。

电力系统电力系统潮流计算

电力系统电力系统潮流计算

《电力系统分析》前言电力工业在社会主义现代化建设中占有十分重要的地位,而且电力的应用已经在人们的日常生活中已经成为了不可缺少的一部分,而在建设大型电力系统时,合理的主接线是十分重要的,它对于电网的可靠性、经济性和安全性都有重要的作用。

电力系统的出现,使高效、无污染、使用方便、易于调控的电能得到广泛应用,推动了社会生产各个领域的变化,开创了电力时代,发生了第二次技术革命。

电力系统的规模和技术水准已成为一个国家经济发展水平的标志之一,因此,建立结构合理的大型电力系统不仅便于电能生产与消费的集中管理、统一调度和分配,减少总装机容量,节省动力设施投资,且有利于地区能源资源的合理开发利用,更大限度地满足地区国民经济日益增长的用电需要。

电力系统潮流计算属于稳态分析范畴,不涉及系统元件的动态特性和过渡过程。

因此其数学模型不包含微分方程,是一组高阶非线性方程, 人们普遍采用以节点导纳矩阵为基础的N—L法。

这个方法的原理比较简单,要求的数字计算机的内存量也比较小,适应电子数字计算机制作水平和电力系统理论水平,于是电力系统计算人员转向以阻抗矩阵为主的逐次代入法N—L法是数学中求解非线性方程式的典型方法,有较好的收敛性。

解决电力系统潮流计算问题是以导纳矩阵为基础的,因此,只要在迭代过程中尽可能保持方程式系数矩阵的稀疏性,就可以大大提高牛顿潮流程序的计算效率。

自从20世纪60年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了阻抗法,成为直到目前仍被广泛采用的方法。

近年来,潮流算法的研究仍然非常活跃,但是大多数研究都是围绕改进N—L法和P-Q分解法进行的。

此外,随着人工智能理论的发展,遗传算法、人工神经网络、模糊算法也逐渐被引入潮流计算。

但是,到目前为止这些新的模型和算法还不能取代牛顿法和P-Q分解法的地位。

由于电力系统规模的不断扩大,对计算速度的要求不断提高,计算机的并行计算技术也将在潮流计算中得到广泛的应用,成为重要的研究领域。

潮流计算的课程设计

潮流计算的课程设计

潮流计算的课程设计一、教学目标本课程旨在让学生掌握潮流计算的基本理论、方法和应用,培养学生运用电力系统潮流计算解决实际问题的能力。

具体目标如下:1.知识目标:(1)掌握电力系统的基本概念、结构和参数。

(2)理解潮流计算的基本原理和方法。

(3)熟悉电力系统中常用的潮流计算算法及其特点。

(4)了解潮流计算在电力系统规划、设计和运行中的应用。

2.技能目标:(1)能够运用潮流计算软件进行电力系统潮流计算。

(2)具备分析电力系统潮流计算结果的能力。

(3)能够针对实际问题,运用所学知识进行潮流计算方法的选取和应用。

3.情感态度价值观目标:(1)培养学生对电力系统的兴趣,激发学生学习电力系统潮流计算的积极性。

(2)培养学生团队合作精神,提高学生解决实际问题的责任感。

二、教学内容本课程的教学内容主要包括以下几个部分:1.电力系统基本概念、结构和参数。

2.潮流计算基本原理和方法。

3.电力系统中常用的潮流计算算法及其特点。

4.潮流计算在电力系统规划、设计和运行中的应用。

5.潮流计算软件的使用和结果分析。

三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:用于传授电力系统基本知识和潮流计算原理。

2.案例分析法:通过实际案例,让学生掌握潮流计算的方法和应用。

3.实验法:引导学生运用潮流计算软件进行实际操作,提高学生的动手能力。

4.讨论法:学生分组讨论,培养学生的团队合作精神和分析问题能力。

四、教学资源本课程所需教学资源包括:1.教材:《电力系统潮流计算》。

2.参考书:相关电力系统潮流计算的学术论文和专著。

3.多媒体资料:电力系统潮流计算的课件、视频等。

4.实验设备:潮流计算软件、计算机等。

教学资源应根据教学内容和教学方法的需求进行选择和准备,以支持教学的顺利进行,提高学生的学习效果。

五、教学评估本课程的教学评估采用多元化评价方式,全面客观地评价学生的学习成果。

评估方式包括:1.平时表现:通过课堂参与、提问、回答问题等方式,评价学生的学习态度和积极性。

东北电力大学电力系统潮流计算课程设计

东北电力大学电力系统潮流计算课程设计

东北电力大学电力系统潮流计算课程设计一、课程设计目的本课程设计旨在通过电力系统潮流计算的原理和方法,使学生掌握电力系统潮流计算的基本理论和方法,能够熟练地使用相应的软件进行电力系统潮流计算,解决实际电力系统运行中的电压稳定性、线路功率负载分配、网损分配等问题。

二、课程设计基本内容1. 电力系统潮流计算的基本原理和方法。

2. 电力系统潮流计算的数学模型和基本方程。

3. 电力系统潮流计算的常用算法和软件。

4. 电力系统潮流计算在电力系统运行中的应用。

5. 电力系统潮流计算中的实际问题。

三、课程设计要求1. 确定实验对象:根据实际情况,选择一座电力系统进行潮流计算。

2. 搜集资料:搜集电力系统的拓扑结构、参数数据等资料。

3. 撰写实验报告:根据实验结果,撰写实验报告,包括潮流计算结果分析、各种潮流计算算法的比较和评价等内容。

四、主要学习步骤1. 熟悉电力系统潮流计算的基本原理和方法。

2. 学习电力系统潮流计算的数学模型和基本方程。

3. 掌握电力系统潮流计算常用算法和软件。

4. 对电力系统进行拓扑分析,确定潮流计算的输入数据。

5. 进行电力系统潮流计算,分析计算结果。

6. 对潮流计算的不同算法进行比较和评价,选择最适合实际情况的算法。

7. 撰写实验报告,反映实验结果和分析。

五、课程设计评分要点1. 实验报告撰写质量。

2. 对电力系统潮流计算原理和方法的理解和掌握程度。

3. 对电力系统潮流计算常用算法和软件的掌握程度。

4. 对实际问题的分析和解决能力。

5. 对潮流计算结果的分析和解释能力。

6. 对不同潮流计算算法的比较和评价。

7. 学生的表现和实验思路。

电力系统潮流计算课设

电力系统潮流计算课设

电力系统潮流计算课设课程设计报告学生姓名:学号:学院:电气工程学院班级:电自1012题目:电力系统潮流计算指导教师:职称:副教授2022年1月9日1.题目分析1.1节点设置及分类根据系统图可知此系统为两端供电网路,将母线1,2设为节点1,2,将变电所1、2、3、4的高压侧分别设为节点3、4、5、6,低压侧为7、8、9、10。

并且,将节点1设为平衡节点,将节点2设为PV节点,其余节点设为PQ节点。

参数求取(1)运用下列公式计算变压器参数:采用变压器参数为折算至高压侧的数值,其变比K1,其中:2PkUNU%URT2某100S1000SN2KNTNZTRT某TZT计算变压器分接头变比变压器有5个抽头,电压调节范围为UN122.5%,UN对应的分接头开始时设为变压器高压侧接主接头。

(2)计算线路参数:ZRj某(rj某)LYjbLZZTB将参数整理,见下表:表1支路首端号1114223456支路末端号34555678910各支路阻抗即及对地电纳标幺值支路对地电纳标幺值(3)变电所负荷分别为:变电所1:变电所2:1.2求解方法利用牛顿-拉夫逊法进行求解,用MATLAB软件编程,可以求解系统潮流分S10.7j0.434S20.4j0.248变电所3:变电所4:S30.5j0.31S40.6j0.372布根据题目的不同要求对参数进行调整,通过调节变压器变比和发电厂的电压,求解出合理的潮流分布,最后用PSAT进行潮流分析,将两者进行比较。

2.题目求解对题目中所给定的电力系统接线图,画出如下等值电路图。

其中的数据参数已在问题分析中给出。

379524681012.2牛顿-拉夫逊法的流程图232.3根据题目所给变电所负荷数据求解2.3.1B1、B2矩阵的生成及约束条件根据所求参数,以及B1矩阵的含义,列写B1矩阵如下(以下数据均为标幺值):1、支路首端号;2、末端号;3、支路阻抗;4、支路对地电纳5、支路的变比;6、支路首端处于K侧为1,1侧为0。

电力系统潮流计算课程设计

电力系统潮流计算课程设计
%生成电导矩阵
YG=YG+sparse(branch(i,1),branch(i,2),-yg(i,1),n,n)+sparse(branch(i,2),branch(i,1),-yg(i,1),n,n); %互电导
YG=YG+sparse(branch(i,1),branch(i,1),yg(i,1),n,n)+sparse(branch(i,2),branch(i,2),yg(i,1),n,n); %自电导
%% 计算功率不平衡量
%计算ΔPi有功的不平衡量
Pi=sparse(1,n);
Qi=sparse(1,n);
dP=sparse(P(1:n-1)-Pi(1:n-1)); %dP有n-1个
%计算ΔQi无功的不平衡量
for i=1:n
Qn=sparse(1,n);
for ii=1:size(xy,1)
if xy(ii,1)==i
break;
end
k=k+1; %若不满足继续迭代,迭代次数+1
%% 计算雅克比矩阵
H=sparse(n-1,n-1);
N=sparse(n-1,nPQ);
function Newton(cases)
%% 读取数据参数
bus=cases.bus; %读取母线参数
branch=cases.branch; %读取支路参数
gen=cases.gen; %读取发电机参数
n=size(bus,1); %获得结点数,即bus矩阵行数
baseMVA=cases.baseMVA; %功率基准值
P(i)=bus(i,3)/baseMVA;
Q(i)=bus(i,4)/baseMVA;

电力系统分析课程设计——电力系统潮流计算

电力系统分析课程设计——电力系统潮流计算

信息工程学院课程设计报告书题目: 电力系统潮流计算专业:电气工程及其自动化班级: 0310406学号: 031040635学生姓名:陈代才指导教师:钟建伟2013年 4 月 15 日信息工程学院课程设计任务书2013年4月15日目录1 任务提出与方案论证 (2)2 总体设计 (3)2.1潮流计算等值电路 (3)2.2建立电力系统模型 (3)2.3模型的调试与运行 (3)3 详细设计 (4)3.1 计算前提 (4)3.2手工计算 (7)4设计图及源程序 (11)4.1MA TLAB仿真 (11)4.2潮流计算源程序 (11)5 总结 (19)参考文献 (20)1 任务提出与方案论证潮流计算是在给定电力系统网络结构、参数和决定系统运行状态的边界条件的情况下确定系统稳态运行状态的一种基本方法,是电力系统规划和运营中不可缺少的一个重要组成部分。

可以说,它是电力系统分析中最基本、最重要的计算,是系统安全、经济分析和实时控制与调度的基础。

常规潮流计算的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。

潮流计算的结果是电力系统稳定计算和故障分析的基础。

在电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。

同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。

因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。

在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算。

是电力系统研究人员长期研究的一个课题。

它既是对电力系统规划设计和运行方式的合理性、可靠性及经济性进行定量分析的依据,又是电力系统静态和暂态稳定计算的基础。

潮流计算经历了一个由手工到应用数字电子计算机的发展过程,现在的潮流算法都以计算机的应用为前提用计算机进行潮流计算主要步骤在于编制计算机程序,这是一项非常复杂的工作。

电力系统潮流计算

电力系统潮流计算

电力系统潮流计算The final revision was on November 23, 2020电力系统课程设计题目: 电力系统潮流计算院系名称:电气工程学院专业班级:电气F1206班学生姓名:学号:指导教师:张孝远12节点的分类 (5)3 计算方法简介 (6)牛顿—拉夫逊法原理 (6)牛顿—拉夫逊法概要 (6)牛顿法的框图及求解过程 (8)MATLAB简介 (9)4 潮流分布计算 (10)系统的一次接线图 (10)参数计算 (10)丰大及枯大下地潮流分布情况 (14)该地区变压器的有功潮流分布数据 (15)重、过载负荷元件统计表 (17)5 设计心得 (17)参考文献 (18)附录:程序 (19)原始资料一、系统接线图见附件1。

二、系统中包含发电厂、变电站、及其间的联络线路。

500kV变电站以外的系统以一个等值发电机代替。

各元件的参数见附件2。

设计任务1、手动画出该系统的电气一次接线图,建立实际网络和模拟网络之间的联系。

2、根据已有资料,先手算出各元件的参数,后再用Matlab表格核算出各元件的参数。

3、潮流计算1)对两种不同运行方式进行潮流计算,注意110kV电网开环运行。

2)注意将电压调整到合理的范围110kV母线电压控制在106kV~117kV之间;220kV母线电压控制在220 kV~242kV之间。

附件一:72水电站2水电站1303x40C20+8B 2x8A2x31.5D4x7.5水电站5E2x1090+120H12.5+31.5FG1x31.5水电站324L2x150火电厂1x50M110kV线路220kV线路课程设计地理接线示意图110kV变电站220kV变电站牵引站火电厂水电站500kV变电站附件二:1、变压器:两个220kV变电站均采用参数一致的三绕组变压器,具体参数如下。

220kV变电站参数表110kV及以下的变电站的变压器省略,即可将负荷直接挂在110kV母线上。

电力系统潮流计算

电力系统潮流计算

课程设计任务书内容摘要潮流计算是电力系统最基本最常用的计算。

根据系统给定的运行条件,网络接线及元件参数,通过潮流计算可以确定各母线的电压(幅值和相角),各元件流过的功率,整个系统的功率损耗。

潮流计算是实现电力系统安全经济发供电的必要手段和重要工作环节。

因此,潮流计算在电力系统的规划计算,生产运行,调度管理及科学计算中都有着广泛的应用。

潮流计算在数学上是多元非线性方程组的求解问题,牛顿—拉夫逊Newton-Raphson法是数学上解非线性方程组的有效方法,有较好的收敛性。

运用电子计算机计算一般要完成以下几个步骤:建立数学模型,确定解算方法,制订计算流程,编制计算程序。

这次课程设计主要是给定网络接线图,和各个变电所的负荷以及对个别节点的电压和功率的要求,需要我们画出等效电路图,在计算出各元件参数的基础上,运用牛顿---拉夫逊法,通过调节各变压器的非标准变比,求解出符合题中要求的各个节点电压,各元件流过的功率以及各条支路的功率损耗等参数。

本次课程设计学到的知识1.电力系统潮流计算的基本概念,对电力系统、网络的构成,网络的已知参量以及网络需要求解的未知量等有基本的了解,了解电网各母线类型。

2. 方程和导纳矩阵的形成,掌握网络的基本方程式,非标准变比变压器的模拟实验方法及导纳矩阵的形成。

3.线性代数方程组的解算方法:高斯消去法.4.电力系统潮流求解算法:了解用于电力系统潮流计算的牛顿—拉夫逊法,及实现框图。

5.实验(上机)内容(1)学会形成导纳阵(2)学会形成B1阵B2阵(3)学会用Matlab调试程序(4)学会由结果分析问题(5)学会减小网络损耗的方法关键词牛顿-拉夫逊法(Newton-Raphson)变压器及非标准变比无功调节潮流计算Matlab PSAT仿真的应用一 .电力系统潮流计算的概述在电力系统的正常运行中,随着用电负荷的变化和系统运行方式的改变,网络中的损耗也将发生变化。

要严格保证所有的用户在任何时刻都有额定的电压是不可能的,因此系统运行中个节点出现电压的偏移是不可避免的。

电网潮流计算课程设计

电网潮流计算课程设计

电网潮流计算课程设计一、教学目标本课程旨在让学生掌握电网潮流计算的基本理论、方法和应用,培养学生分析和解决电力系统中潮流计算问题的能力。

1.理解电网潮流计算的基本概念、原理和方法。

2.掌握电网潮流计算的基本公式和计算步骤。

3.了解电网潮流计算在电力系统中的应用。

4.能够运用电网潮流计算方法分析和解决实际问题。

5.具备利用相关软件进行电网潮流计算的能力。

6.能够阅读和理解相关电力系统的技术文献。

情感态度价值观目标:1.培养学生对电力系统的兴趣和热情,提高学生学习电力系统的积极性。

2.培养学生严谨的科学态度,提高学生分析和解决问题的能力。

3.培养学生团队合作意识,提高学生沟通与协作的能力。

二、教学内容本课程的教学内容主要包括电网潮流计算的基本理论、方法和应用。

1.电网潮流计算的基本概念、原理和方法。

2.电网潮流计算的基本公式和计算步骤。

3.电网潮流计算在电力系统中的应用。

4.相关软件的使用和操作方法。

三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,如讲授法、讨论法、案例分析法、实验法等。

1.讲授法:通过教师的讲解,使学生掌握电网潮流计算的基本理论、方法和应用。

2.讨论法:引导学生进行自主学习和思考,提高学生分析和解决问题的能力。

3.案例分析法:通过分析实际案例,使学生更好地理解和掌握电网潮流计算的方法和技巧。

4.实验法:让学生亲自动手进行实验,培养学生的实践能力和团队合作意识。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:选择权威、实用的电网潮流计算教材,为学生提供系统的学习资料。

2.参考书:提供相关的电力系统、电网潮流计算等方面的参考书,拓展学生的知识面。

3.多媒体资料:制作精美的课件、教学视频等,提高学生的学习兴趣和效果。

4.实验设备:准备相应的实验设备,让学生能够亲自动手进行实验,增强实践能力。

五、教学评估本课程的教学评估将采用多元化的评估方式,包括平时表现、作业、考试等,以全面、客观、公正地评估学生的学习成果。

电力系统分析课程设计--PQ分解法潮流计算

电力系统分析课程设计--PQ分解法潮流计算

电力系统分析课程设计之P-Q分解法潮流计算程序编程及相应数据、图形和结果编程:n=5;nl=5;isb=1;pr=0.00001;B1=[1 2 0.03i 0 1.05 0;2 3 0.08+0.3i 0.5i 1 0;2 4 0.1+0.35i 0 1 0;3 4 0.04+0.25i 0.5i 1 0;3 5 0.015i 0 1.05 1];B2=[0 0 1.05 1.05 0 1;0 3.7+1.3i 1.05 0 0 2;0 2+1i 1.05 0 0 2;0 1.6+0.8i 1.05 0 0 2;5 0 1.05 1.05 0 3];X=[1 0;2 0;3 0;4 0;5 0];na=3;Y=zeros(n);YI=zeros(n);e=zeros(1,n);f=zeros(1,n);V=zeros(1,n);O=zeros(1,n);for i=1:nif X(i,2)~=0;p=X(i,1);Y(p,p)=1./X(i,2);endendfor i=1:nlif B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endY(p,q)=Y(p,q)-1./(B1(i,3)*B1(i,5));YI(p,q)=YI(p,q)-1./B1(i,3);Y(q,p)=Y(p,q);YI(q,p)=YI(p,q);Y(q,q)=Y(q,q)+1./(B1(i,3)*B1(i,5)^2)+B1(i,4)./2;YI(q,q)=YI(q,q)+1./B1(i,3);Y(p,p)=Y(p,p)+1./B1(i,3)+B1(i,4)./2;YI(p,p)=YI(p,p)+1./B1(i,3);endG=real(Y);B=imag(YI);BI=imag(Y);for i=1:nS(i)=B2(i,1)-B2(i,2);BI(i,i)=BI(i,i)+B2(i,5);endP=real(S);Q=imag(S);for i=1:ne(i)=real(B2(i,3));f(i)=imag(B2(i,3));V(i)=B2(i,4);endfor i=1:nif B2(i,6)==2V(i)=sqrt(e(i)^2+f(i)^2);O(i)=atan(f(i)./e(i));endendfor i=2:nif i==nB(i,i)=1./B(i,i);else IC1=i+1;for j1=IC1:nB(i,j1)=B(i,j1)./B(i,i);endB(i,i)=1./B(i,i);for k=i+1:nfor j1=i+1:nB(k,j1)=B(k,j1)-B(k,i)*B(i,j1);endendendendp=0;q=0;for i=1:nif B2(i,6)==2p=p+1;k=0;for j1=1:nif B2(j1,6)==2k=k+1;A(p,k)=BI(i,j1);endendendendfor i=1:naif i==naA(i,i)=1./A(i,i);else k=i+1;for j1=k:naA(i,j1)=A(i,j1)./A(i,i);endA(i,i)=1./A(i,i);for k=i+1:nafor j1=i+1:naA(k,j1)=A(k,j1)-A(k,i)*A(i,j1);endendendendICT2=1;ICT1=0;kp=1;kq=1;K=1;DET=0;ICT3=1;while ICT2~=0|ICT3~=0ICT2=0;ICT3=0;for i=1:nif i~=isbC(i)=0;for k=1:nC(i)=C(i)+V(k)*(G(i,k)*cos(O(i)-O(k))+BI(i,k)*sin(O(i)-O(k)));endDP1(i)=P(i)-V(i)*C(i);DP(i)=DP1(i)./V(i);DET=abs(DP1(i));if DET>=prICT2=ICT2+1;endendendNp(K)=ICT2;if ICT2~=0for i=2:nDP(i)=B(i,i)*DP(i);if i~=nIC1=i+1;for k=IC1:nDP(k)=DP(k)-B(k,i)*DP(i);endelsefor LZ=3:iL=i+3-LZ;IC4=L-1;for MZ=2:IC4I=IC4+2-MZ;DP(I)=DP(I)-B(I,L)*DP(L);endendendendfor i=2:nO(i)=O(i)-DP(i);endkq=1;L=0;for i=1:nif B2(i,6)==2C(i)=0;L=L+1;for k=1:nC(i)=C(i)+V(k)*(G(i,k)*sin(O(i)-O(k))-BI(i,k)*cos(O(i)-O(k)));endDQ1(i)=Q(i)-V(i)*C(i);DQ(L)=DQ1(i)./V(i);DET=abs(DQ1(i));if DET>=prICT3=ICT3+1;endendendelse kp=0;if kq~=0;L=0;for i=1:nif B2(i,6)==2C(i)=0;L=L+1;for k=1:nC(i)=C(i)+V(k)*(G(i,k)*sin(O(i)-O(k))-BI(i,k)*cos(O(i)-O(k)));endDQ1(i)=Q(i)-V(i)*C(i);DQ(L)=DQ1(i)./V(i);DET=abs(DQ1(i));endendendendNq(K)=ICT3;if ICT3~=0L=0;for i=1:naDQ(i)=A(i,i)*DQ(i);if i==nafor LZ=2:iL=i+2-LZ;IC4=L-1;for MZ=1:IC4I=IC4+1-MZ;DQ(I)=DQ(I)-A(I,L)*DQ(L);endendelseIC1=i+1;for k=IC1:naDQ(k)=DQ(k)-A(k,i)*DQ(i);endendendL=0;for i=1:nif B2(i,6)==2L=L+1;V(i)=V(i)-DQ(L);endendkp=1;K=K+1;elsekq=0;if kp~=0K=K+1;endendfor i=1:nDy(K-1,i)=V(i);endenddisp('迭代次数')disp(K);disp('每次没有达到精度要求的有功功率个数为'); disp(Np);disp('每次没有达到精度要求的无功功率个数为'); disp(Nq);for k=1:nE(k)=V(k)*cos(O(k))+V(k)*sin(O(k))*j;O(k)=O(k)*180./pi;enddisp('各节点的电压标么值E为');disp(E);disp('各节点的电压V大小');disp(V);disp('各节点的电压相角O');disp(O);for p=1:nC(p)=0;for q=1:nC(p)=C(p)+conj(Y(p,q))*conj(E(q));endS(p)=E(p)*C(p);enddisp('各节点的功率为');disp(S);disp('各条支路的首端功率为');for i=1:nlif B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endSi(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)*B1(i,5))-conj(E(q)))*conj(1./(B1(i,3)*B1(i,5))));disp(Si(p,q));enddisp('各条支路的末端功率为');for i=1:nlif B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endSj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)./B1(i,5))-conj(E(p)))*conj(1./(B1(i,3)*B1(i,5))));disp(Sj(q,p));enddisp('各条支路的功率损耗为');for i=1:nlif B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endDS(i)=Si(p,q)+Sj(q,p);disp(DS(i));endfor i=1:KCs(i)=i;for j=1:nDy(K,j)=Dy(K-1,j);endenddisp('每次迭代后各节点的电压值如图所示');plot(Cs,Dy)xlabel('迭代次数')ylabel('电压')title('电压迭代次数曲线');运行结果:迭代次数10每次没有达到精度要求的有功功率个数为4 4 4 4 4 4 4 4 3 0每次没有达到精度要求的无功功率个数为3 3 3 3 3 3 3 3 1 0各节点的电压标么值E为1.0500 0.64662.6784 0.5001 2.9280各节点的电压V大小1.0500 1.0364 1.0779 0.8622 1.0500各节点的电压相角O0 -4.2819 17.8535 -4.7785 21.8433各节点的功率为0 +15.1965i -1.0187 -12.8552i 8.1568 -28.0336i -0.7350 - 4.5044i 0 +73.6194i各条支路的首端功率为0 +15.1965i-1.0902 - 4.1929i0.0715 + 0.2503i3.6408 +20.9613i0 +73.6194i各条支路的末端功率为0 - 8.9126i4.5160 +15.1416i-0.0553 - 0.1936i-0.6797 - 4.3109i0 -64.1365i各条支路的功率损耗为0 + 6.2839i3.4258 +10.9487i0.0162 + 0.0567i2.9610 +16.6505i0 + 9.4829i每次迭代后各节点的电压值如图所示:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、问题重述1.1 课程设计要求1、在读懂程序的基础上画出潮流计算基本流程图2、通过输入数据,进行潮流计算输出结果3、对不同的负荷变化,分析潮流分布,写出分析说明。

4、对不同的负荷变化,进行潮流的调节控制,并说明调节控制的方法,并列表表示调节控制的参数变化。

5、打印利用DDRTS 进行潮流分析绘制的系统图,以及潮流分布图。

1.2 课程设计题目1、系统图:两个发电厂分别通过变压器和输电线路与四个变电所相连。

2、发电厂资料:母线1和2为发电厂高压母线,发电厂一总装机容量为(400MW ),母线3为机压母线,机压母线上装机容量为(100MW ),最大负荷和最小负荷分别为50MW 和30MW ;发电厂二总装机容量为(200MW )。

3、变电所资料: (1)变电所1、2、3、4低压母线的电压等级分别为:10KV 35KV 10KV 35KV (2)变电所的负荷分别为:50MW 40MW 50MW 60MW变电所1 变电所2母线电厂一 电厂二(3)每个变电所的功率因数均为cos φ=0.85;(4)变电所2和变电所4分别配有两台容量为75MVA 的变压器,短路损耗414KW ,短路电压(%)=16.7;变电所1和变电所3分别配有两台容量为63MVA 的变压器,短路损耗为245KW ,短路电压(%)=10.5; 4、输电线路资料:发电厂和变电所之间的输电线路的电压等级及长度标于图中,单位长度的电阻为Ω17.0,单位长度的电抗为Ω0.402,单位长度的电纳为S -610*2.78。

1.3 课程设计基本内容1. 对给定的网络查找潮流计算所需的各元件等值参数,画出等值电路图。

2. 输入各支路数据,各节点数据利用给定的程序进行在变电所在某一负荷情况下的潮流计算,并对计算结果进行分析。

3. 跟随变电所负荷按一定比例发生变化,进行潮流计算分析。

1) 4个变电所的负荷同时以2%的比例增大; 2) 4个变电所的负荷同时以2%的比例下降3) 1和4号变电所的负荷同时以2%的比例下降,而2和3号变电所的负荷同时以2%的比例上升;4. 在不同的负荷情况下,分析潮流计算的结果,如果各母线电压不满足要求,进行电压的调整。

(变电所低压母线电压10KV 要求调整范围在9.5-10.5之间;电压35KV 要求调整范围在35-36之间) 5. 轮流断开环网一回线,分析潮流的分布。

6. 利用DDRTS 软件,进行绘制系统图进行上述各种情况潮流的分析,并进行结果的比较。

7. 最终形成课程设计成品说明书。

二、问题分析2.1 节点设置及分类根据系统图可知此系统为两端供电网路,将母线1,2设为节点1,10,将变电所1、2、3、4的高低压侧分别设为节点2、3、4、5、6、7、8、9。

并且,将节点1设为平衡节点,将节点10设为PV 节点,其余节点设为PQ 节点。

2.2 参数求取设定基准值MVA S B 100=,KV U B 220=,所以4842==BB B U S Z Ω根据题目原始资料,计算发电厂、变压器及线路的参数。

(1)运用下列公式计算变压器参数:SU P R NNkT221000=SU U X NNKT1002%=X R ZTT T+= Z Z ZBT T=*(2)计算线路参数L jx r jX R Z )(+=+= (3)变电所负荷分别为:变电所1 L S =50+j30.987 变电所2 L S =40+j27.79 变电所3 L S =50+j30.987 变电所4 L S =60+j37.18(4)计算变压器分接头变比变压器有5个抽头,电压调节范围为N U ±2*2.5%, N U 对应的分接头开始时设变压器高压侧接主接头,降压变压器5个分接头时的非标准变比*k 以备调压时选用955.02201110%)51(2201*=⨯⨯+⨯=k932.02201110%)5.21(2202*=⨯⨯+⨯=k909.022011102203*=⨯⨯=k886.02201110%)5.21(2204*=⨯⨯-⨯=k864.02201110%)51(2205*=⨯⨯-⨯=k对变电所低压母线为35KV 时,非标准变比与10KV 时相同。

2.3 计算方法利用牛顿拉夫逊法进行求解,用MATLAB 软件编程,可以求解系统潮流分 布根据题目的不同要求对参数进行调整,通过调节变压器变比和发电厂的电压,求解出合理的潮流分布,最后用PSAT 进行潮流分析,将两者进行比较。

2.4 牛顿—拉夫逊法 1、牛顿—拉夫逊法概要首先对一般的牛顿—拉夫逊法作一简单的说明。

已知一个变量X 函数为:0)(=X f到此方程时,由适当的近似值)0(X出发,根据:,......)2,1()()()()()()1(='-=+n X f X f XX n n n n 反复进行计算,当)(n X 满足适当的收敛条件就是上面方程的根。

这样的方法就是所谓的牛顿—拉夫逊法。

这一方法还可以做下面的解释,设第n 次迭代得到的解语真值之差,即)(n X 的误差为ε时,则:0)()(=+εn X f把)()(ε+n Xf 在)(n X附近对ε用泰勒级数展开0......)(!2)()()()(2)()()(=+''+'+=+n n n n X f X f Xf Xf εεε上式省略去2ε以后部分0)()()()(≈'+n n X f X f ε)(n X 的误差可以近似由上式计算出来。

)()()()(n n X f X f '-≈ε 比较两式,可以看出牛顿—拉夫逊法的休整量和)(n X 的误差的一次项相等。

用同样的方法考虑,给出n 个变量的n 个方程:⎪⎪⎩⎪⎪⎨⎧===0),,,(0),,,(0),,,(21212211n n nn X X X f X X X f X X X f ΛΛΛΛΛΛK Λ 对其近似解1X '得修正量1X '∆可以通过解下边的方程来确定:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∆∆∆⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡'''''''''n n n n nn n n n n n X X X x f x f x f x f x f x f x f x f xf X X X f X X X f X X X f M ΛM KΛM M ΛΛ2121222121211121212211),,,(),,,(),,,( 式中等号右边的矩阵nnx f ∂∂都是对于n X X X ''',,,21Λ的值。

这一矩阵称为雅可比(JACOBI )矩阵。

按上述得到的修正向量n X X X '∆'∆'∆,,,21Λ后,得到如下关系 n n nX X X ∆+'='' 这比n X X X ''',,,21Λ更接近真实值。

这一步在收敛到希望的值以前重复进行,一般要反复计算满足{}ε<---++++++1112121111,,,max n nn nn n n n X X X X X X Λε为预先规定的小正数,1+n n X 是第n 次迭代n X 的近似值。

2、牛顿法的框图及求解过程(1)用牛顿法计算潮流时,有以下的步骤:①给这各节点电压初始值)0()0(,fe ;②将以上电压初始值代入公式,求修正方程的常数项向量)0(2)0()0()(,,V Q P ∆∆∆;③将电压初始值在带入上述公式,求出修正方程中系数矩阵的各元素。

④解修正方程式)0()0(,f e ∆∆;⑤修正各节点电压)0()0()1(e e e ∆+=,)0()0()1(f f f ∆+=; ⑥将)1(e ,)1(f 在带入方程式,求出)1(2)1()1()(,,V Q P ∆∆∆; ⑦检验是否收敛,即{}ε<∆∆)()(,max k ik i Q P如果收敛,迭代到此结束,进一步计算各线路潮流和平衡节点功率,并打印输出结果。

如果不收敛,转回②进行下次迭代计算,直到收敛为止。

(2)程序框图如下:三、问题求解3.1 等值电路的计算电压是衡量电力系统电能质量的标准之一。

电压过高或过低,都将对人身及其用电设备产生重大的影响。

保证用户的电压接近额定值是电力系统调度的基本任务之一。

当系统的电压偏离允许值时,电力系统必须应用电压调节技术调节系统电压的大小,使其维持在允许值范围内。

本文经过手算形成了等值电路图,并编写好了程序得出节点电压标幺值,使其满足所要求的调整范围。

我们首先对给定的程序输入部分作了简要的分析,程序开始需要我们确定输入节点数、支路数、平衡母线号、支路参数矩阵、节点参数矩阵。

(1)为了保证整个系统潮流计算的完整性,我们把凡具有母线及发电机处均选作节点,这样,可以确定有10个节点,节点号见等值电路图。

(2)确定完节点及编号后,各条支路也相应确定了,网络中总计有13条支路,我们对各支路参数进行了计算。

根据所给实际电路图和题中的已知条件,有以下公式计算各输电线路的阻抗和对地支路电容的标幺值和变压器的阻抗标幺值。

选择电压基准值为220B U KV =和功率基准值100B S MVA = 所以484BB BU Z S ==Ω 3.2 依据题目要求及原始资料画出系统等值电路图:图1 系统等值电路利用psat 软件可得计算所需系统图如图2所示。

j图23.3 潮流计算3.3.1 B1、B2矩阵的形成:根据所求参数,以及B1矩阵的含义,列写B1矩阵如下:B1=[1 2 8.5+20.1i 0.000556i 1 0;1 4 13.6+32.16i 0.0002224i 1 0;1 6 13.6+32.16i 0.0002224i 1 0;2 3 1.495+40.335i 0 1 1;4 5 1.78+53.885i 0 1 1;4 6 10.2+24.12i 0.0001668i 1 0;6 7 1.495+40.335i 0 1 1;6 8 6.8+16.08i 0.0004448i 1 0;8 9 1.78+53.885i 0 1 1;8 10 8.5+20.1i 0.000556i 1 0];由各个变电所负荷功率可以计算出总功率为200MW,而发电厂一、二的总装机容量分别为400 MW和200 MW。

令发电厂二的功率为200 MW,为了减小线路上的损耗,令发电机的电压为额定电压的1.05倍。

根据前面叙述的节点分类,形成B2矩阵如下:B2=[0 0 231 231 0 1;0 0 220 0 0 2;0 50+30.987i 220 0 0 2;0 0 220 0 0 2;0 40+27.79i 220 0 0 2;0 0 220 0 0 2;0 50+30.987i 220 0 0 2;0 0 220 0 0 2;0 60+37.18i 220 0 0 2;200 0 231 231 0 3];3.3.2 编写程序并运行相比偏高,因此调节变压器分接头和发电厂电压,通过对系统进行多次调整,最终得到合理结果,调整结果如下:由上表观察到,进行最后一次调节时节点3,5,7,9的电压均在题目允许的范围内,况,而最终调节使得电压在规定范围内时,有功损耗增加了0.4756MW,相对与实际损耗12.29MW小很多,可以认为是合理的。

相关文档
最新文档