运筹学应用问题举例

合集下载

简单的运筹学实际应用案例

简单的运筹学实际应用案例

简单的运筹学实际应用案例运筹学(Operations Research)是一门研究如何有效利用有限资源进行决策的学科,它通过数学、统计学和经济学等方法,帮助管理者做出最佳决策。

下面将介绍几个简单的运筹学实际应用案例。

1.生产线优化假设一公司拥有多条生产线,每条生产线对应不同的产品。

公司希望通过优化生产线的调度,以达到最大的产出和利润。

运筹学可以通过数学模型和算法,对生产线进行优化调度。

例如,可以使用线性规划模型来确定每条生产线的产量和调度,以最大化总利润;也可以使用整数规划模型来考虑生产线的限制和约束条件。

2.物流网络设计一家物流公司需要设计其物流网络,以最小化成本并满足客户对快速物流的需求。

运筹学可以通过数学模型和算法,帮助物流公司优化物流网络的设计。

例如,可以使用网络流模型来确定货物在物流网络中的最佳路线和节点,以最小化总运输成本;也可以使用线性规划模型来决定在不同节点上的仓库和货物库存量,以满足客户的需求。

3.航班调度问题一家航空公司需要制定最佳航班调度计划,以最大化航班利润并排除延误风险。

运筹学可以通过数学模型和算法,帮助航空公司优化航班调度。

例如,可以使用线性规划模型来决定不同航班的起降时间和机型,以最大化航班利润;也可以使用排队论模型来评估航班的延误风险,并制定相应的调度策略。

4.人员调度问题一家超市需要制定最佳的员工调度计划,以最大化服务质量和节约人力成本。

运筹学可以通过数学模型和算法,帮助超市优化员工调度。

例如,可以使用整数规划模型来决定不同时间段需要多少员工,并考虑员工的技能匹配和工作时间的合理安排;也可以使用模拟仿真方法来评估不同调度策略的效果,并做出相应的决策。

以上是几个简单的运筹学实际应用案例,运筹学在实际生产和管理中有着广泛的应用。

通过数学模型和算法的应用,可以帮助企业优化资源配置、提高效率和决策质量,从而实现最佳的经济效益。

运筹学实例 含解析

运筹学实例 含解析

案例1. 工程项目选择问题某承包企业在同一时期内有八项工程可供选择投标。

其中有五项住宅工程,三项工业车间。

由于这些工程要求同时施工,而企业又没有能力同时承担,企业应根据自身的能力,分析这两类工程的盈利水平,作出正确的投标方案。

有关数据见下表:表1 可供选择投标工程的有关数据统计工程类型 预期利润/元 抹灰量/m 2混凝土量/ m 3砌筑量/ m 3住宅每项 50011 25 000 280 4 200 工业车间每项 80 000480 880 1 800 企业尚有能力108 0003 68013 800试建立此问题的数学模型。

解:设承包商承包X 1项住宅工程,X 2项工业车间工程可获利最高,依题意可建立如下整数模型:目标是获利最高,故得目标函数为21X 80000X 50011z Max +=根据企业工程量能力限制与项目本身特性,有约束:利用WinSQB 建立模型求解:1080002X 4801X 25000≤+3680X 880X 28021≤+13800X 1800X 420021≤+为整数,;,2121X X 3X 5X ≤≤综上,承包商对2项住宅工程,3项车间工程进行投标,可获利最大,目标函数Max z=340022 元。

案例2. 生产计划问题某厂生产四种产品。

每种产品要经过A,B两道工序加工。

设该厂有两种规格的设备能完成A工序,以A1 ,A2表示;有三种规格的设备能完成B工序,以B1 ,B2,B3 表示。

产品D可在A,B任何一种规格的设备上加工。

产品E可在任何规格的A设备上加工,但完成B工序时只能在B1设备上加工。

产品F可在A2及B2 ,B3上加工。

产品G可在任何一种规格的A设备上加工,但完成B工序时只能在B1 ,B2设备上加工。

已知生产单件产品的设备工时,原材料费,及产品单价,各种设备有效台时如下表,要求安排最优的生产计划,使该厂利润最大?设设产品设备有效台时1 2 3 4A1 A2 B1 B2 B357647109812111068108601110000400070004000原料费(元/件)单价(元/件)0.251.250.352.000.502.800.42.4解:设Xia(b)j为i产品在a(b)j设备上的加工数量,i=1,2,3,4;j=1,2,3,得变量列表设备产品设备有效台时Ta(b)j1 2 3 4A1 A2 B1 B2 B3X1a1X1a2X1b1X1b2X1b3X2a1X2a2X2b1X3b2X3b3X3a1X3a2X3b1X3b2X3b3X4a1X4a2X4b1X4b2X4b3601110000400070004000原料费Ci (元/件) 单价Pi (元/件) 0.25 1.25 0.352.00 0.50 2.80 0.4 2.4其中,令X 3a 1,X 3b 1,X 3b 2,X 3b 3,X 4b 3=0 可建立数学模型如下: 目标函数: ∑∑==-=4121)](*[Maxi j iaj Ci Pi X z=1.00*(X 1a 1+X 1a 2)+1.65*(X 2a 1+X 2a 2)+2.30* X 3a 2+2.00*( X 4a 1+X 4a 2)约束条件:利用WinSQB 求解(X1~X4,X5~X8,X9~X12,X13~X17,X18~X20分别表示各行变量):4,3,2,1X21j 31==∑∑==i X j ibjiaj2,1T X 41iaj=<=∑=j Taj i iaj 3,2,141=<=∑=j TbjT Xi ibj ibj2,1;4,3,2,10X iaj ==>=j i 且为整数32,1;4,3,2,10X ibj ,且为整数==>=j i 0X X X X X 4b33b33b23b13a1=====综上,最优生产计划如下:设备产品1 2 3 4A1 A2 B1 B2 B3774235004004008732875目标函数zMax=3495,即最大利润为3495案例3. 高校教职工聘任问题 (建摸)由校方确定的各级决策目标为:P 1 要求教师有一定的学术水平。

运筹学案例集

运筹学案例集

运筹学案例集常州宝菱重工机械有限公司孔念荣收集整理运筹学的一些典型性应用•合理利用材料问题:如何在保证生产的条件下,下料最少•配料问题:在原料供应量的限制下,如何获取最大收益•投资问题:从投资项目中选取最佳组合,使投资回报最大•产品生产计划:合理利用人力、物力、财力等,使获利最大•劳动力安排:用最少的劳动力来满足工作的需要•运输问题:如何制定最佳调运方案,使总运费最少一、生产计划问题案例1(2-4)、某工厂用A、B、C、D四种原料生产甲、乙两种产品,生产甲和乙所需各种原料的数量以及在一个计划期内各种原料的现有数量见下表所示。

又已知每单位产品甲、乙的售价分别为400元和600元,问应如何安排生产才能获得最大收益?已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?案例3(2-25)、某公司面临一个是外包协作还是自行生产的问题。

该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。

甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量,数据如下表所示。

问题:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?案例4(2-28)、永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。

设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成B 工序。

Ⅰ可在A、B的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工,数据如下表所示。

问题:为使该厂获得最大利润,应如何制定产品加工方案?案例5、某造纸厂用原材料白坯纸生产原稿纸、笔记本和练习本三种产品。

该厂现有工人100人,每月白坯纸供应量为3万公斤。

已知工人的劳动生产率为:每人每月生产原稿纸30捆,或生产日记本30打,或练习本30箱。

运筹学案例集

运筹学案例集

运筹学案例集常州宝菱重工机械有限公司孔念荣收集整理运筹学的一些典型性应用•合理利用材料问题:如何在保证生产的条件下,下料最少•配料问题:在原料供应量的限制下,如何获取最大收益•投资问题:从投资项目中选取最佳组合,使投资回报最大•产品生产计划:合理利用人力、物力、财力等,使获利最大•劳动力安排:用最少的劳动力来满足工作的需要•运输问题:如何制定最佳调运方案,使总运费最少一、生产计划问题案例1(2-4)、某工厂用A、B、C、D四种原料生产甲、乙两种产品,生产甲和乙所需各种原料的数量以及在一个计划期内各种原料的现有数量见下表所示。

又已知每单位产品甲、乙的售价分别为400元和600元,问应如何安排生产才能获得最大收益?已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?案例3(2-25)、某公司面临一个是外包协作还是自行生产的问题。

该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。

甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量,数据如下表所示。

问题:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?案例4(2-28)、永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。

设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成 B 工序。

Ⅰ可在A、B的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工,数据如下表所示。

问题:为使该厂获得最大利润,应如何制定产品加工方案?案例5、某造纸厂用原材料白坯纸生产原稿纸、笔记本和练习本三种产品。

该厂现有工人100人,每月白坯纸供应量为3万公斤。

已知工人的劳动生产率为:每人每月生产原稿纸30捆,或生产日记本30打,或练习本30箱。

运筹学产品配套问题应用题

运筹学产品配套问题应用题

运筹学产品配套问题应用题
1.工地派48人去控土和运输如果每人每天垩均挖土5方或运土3方;那么应该怎样合理规划人员,正好能使挖出的土及时运走?
2.一套仪器由一个A部件和三个B部件构成.用10m钢材可以做40个A部件或240个B部件,现要用6m钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好配成这种仪器多少套?
3.用铁皮做罐头盒,每张铁皮可制作盒身16个或制作盒底43个,一个盒身与两个盒底配成一套罐头盒。

现有100张白铁皮,用多少张制盒身,多少张制盒底,才能使做出的盒身和盒底配套,又能充分利用铁皮?
4.某车间每天能生产甲种配件120个,或者乙种零件100个。

甲、乙两种零件分别取3个、2个才能配成一套。

要在30天内生产最多的成套产品,问怎样规划甲、乙两种零件的天数?
5.服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米。

现已做了80套成人服装,用余下的布还可以做几套儿童服装?。

运筹学在工业领域的应用案例

运筹学在工业领域的应用案例

运筹学在工业领域的应用案例运筹学是一门研究如何通过数学模型和优化方法来解决实际问题的学科。

它广泛应用于工业领域,帮助企业提高生产效率、优化资源利用以及优化决策。

本文将以一些实际案例来展示运筹学在工业领域的应用。

案例一:物流调度在现代物流中心,卡车调度是一个重要而复杂的问题。

一家物流企业面临着如何合理安排卡车的运输路线以及如何将货物分配给不同的卡车的问题。

运筹学通过建立数学模型和优化算法,可以帮助企业快速找到最佳的调度方案。

通过考虑货物的重量、体积、运输距离等因素,运筹学能够帮助企业节省时间和成本,提高物流效率。

案例二:生产计划在工业生产中,合理的生产计划对企业的运营至关重要。

运筹学可以通过建立生产计划的数学模型,考虑原材料、人力资源、设备利用率等因素,制定最优的生产计划。

这种方法可以帮助企业合理安排生产任务、减少生产成本,并确保产品按时交付。

案例三:库存管理有效的库存管理对于企业的正常运营非常重要。

过多的库存会增加企业的成本,而库存不足则会导致订单无法及时完成。

运筹学可以利用数学模型和优化算法,预测需求并制定合理的库存策略。

通过运筹学的方法,企业可以实时调整库存水平,减少库存成本,同时确保生产进度和客户需求之间的平衡。

案例四:供应链优化供应链优化是一个复杂的问题,涉及到多个环节和多个参与者之间的协调。

运筹学可以帮助企业建立供应链的数学模型,考虑供应商、生产商、分销商等各个环节的需求和约束,通过优化算法找到最佳的供应链配置方案。

通过运筹学的方法,企业可以提高供应链的响应速度和灵活性,降低整体成本,提供更好的服务。

案例五:设备维护与优化在工业领域,设备的维护和优化是保证生产连续性和降低成本的关键。

运筹学可以利用数据分析和模型建立,制定设备的维护计划和优化方案。

通过预测设备故障、制定维护策略和排班方案,运筹学可以帮助企业降低设备故障率,最大限度地提高设备利用率,进而提高生产效率和降低成本。

综上所述,运筹学在工业领域有着广泛的应用。

2.6-运筹学应用实例汇总

2.6-运筹学应用实例汇总

一、生产计划问题例:某工厂拥有A、B、C三种类型的设备,生产甲、乙、丙、丁四种产品。

每件产品在生产中需要占用的设备机时数,每件产品可以获得的利润以及三种设备每月可利用的时数如下表所示,求使总利润最大的月度生产计划。

建模思路■用线性规划制订使总利润最大的生产计划。

■设变量X1为第i种产品的生产件数(i=1, 2, 3, 4),目标函数z为相应的生产计划可以获得的总利润。

在加工时间以及利润与产品产量成线性关系的假设下,可以建立如下的线性规划模型:建模max z= 5.24X1 +7.30x2 +8.34x3 +4.18x4目标函数1.5Xj +1.0x2+2.4X3+1.0X4<2000LOX1 +5.0X2+1.0X3+3.5X4<8000 约束条件1・5X] +3.0X2+3.5X3+1.0X4<5000Xp X2, X3, X4 >0 变量非负约束练习:某公司面临一个是外包协作还是自行生产的问题。

该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。

甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量。

数据如下表。

问:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?甲 .乙丙资源限制铸造工时(小时/件)51078000机加工工时(小时/件)64812000装配工时(小时/件)32210000自产铸件成本(兀/件)354外协铸件成本(兀/件)56一机加工成本(元/件)213装配成本(元/件)322产品售价(元/件)231816解:设孙孙寺分别为三道工序都由本公司加工的甲、乙、丙三种产品的件数,同,幅分别为由外协铸造再由本公司加工和装配的甲、乙两种产品的件数。

求占的利润:利润二售价-各成本之和产品甲全部自制的利润产品甲铸造外协,其余自制的利润产品乙全部自制的利润产品乙铸造外协,其余自制的利润产品丙的利润可得到毛(i = 1,2, 3,4,5)的利润分别为15、10、7、13、9=23-(3+2+3)=15 =23-(5+2+3)=13 =18-(5+1+2)=10 =18-(6+1+2)=9 =16-(4+3+2)=7通过以上分析,可建立如下的数学模型:目标函数:Max 15百+ 10电+ 7两+ 13题+ 9不约束条件:5为+ 10西+ 7玛<80006为+ 4出+ 8^ + 6々+ 4不3百+ 2X2 + 2均+ 3局+ 2不毛,演,传,演,与12000 10000二、混合配料问题例:某工厂要用四种合金T1, T2, T3和T4为原料,经熔炼成为一种新的不锈钢G。

运筹学运输问题生活案例

运筹学运输问题生活案例

运筹学运输问题生活案例运筹学是一门研究如何在有限资源下做出最佳决策的学科,其中运输问题是其中一个重要的应用领域。

下面我将从多个角度给出一些关于运筹学运输问题的生活案例。

1. 物流配送,物流公司面临着如何合理安排货物的运输路线和运输方式的问题。

运筹学可以通过优化算法来确定最佳的配送路线,以最小化成本和时间。

例如,一个快递公司可以利用运筹学方法来确定每辆送货车的最佳路线,以便在最短的时间内将包裹送达目的地。

2. 交通拥堵,城市交通拥堵是一个普遍存在的问题。

运筹学可以帮助城市交通管理部门优化交通流量,减少拥堵。

例如,通过调整交通信号灯的配时,可以最大程度地减少交叉口的等待时间,提高交通效率。

3. 航空航班调度,航空公司需要合理安排航班的起降时间和航线,以最大程度地利用飞机资源并提高乘客的满意度。

运筹学可以通过航班调度算法来帮助航空公司做出最佳决策。

例如,考虑到飞机的燃油消耗、乘客的转机需求和机场的容量限制等因素,可以确定最佳的航班起降时间和航线。

4. 供应链管理,供应链中的物流运输是一个重要的环节。

运筹学可以帮助企业优化供应链中的物流运输安排,以最小化库存成本和运输成本。

例如,通过运筹学方法,可以确定最佳的运输路径和运输模式,以确保产品按时到达目的地,同时最大程度地降低成本。

5. 城市垃圾收集,城市垃圾收集也是一个需要合理安排的运输问题。

通过运筹学方法,可以确定最佳的垃圾收集路线和收集车辆的分配,以最小化运输成本和提高垃圾收集的效率。

以上是一些关于运筹学运输问题的生活案例。

运筹学在各个领域都有广泛的应用,通过优化算法和决策模型,可以帮助解决各种运输问题,提高效率,降低成本。

运筹学应用范例与解法

运筹学应用范例与解法

运筹学应用范例与解法以运筹学应用范例与解法为题,我们将探讨一些实际问题,并介绍如何运用运筹学的方法来解决这些问题。

一、生产调度问题假设某工厂有多条生产线,每条生产线可以生产不同种类的产品。

每个产品的生产时间、成本和销售价格都不同。

我们需要确定每条生产线的生产计划,以最大化总利润。

解决方案:可以使用线性规划模型来解决这个问题。

首先,我们需要列出每条生产线的生产时间、成本和销售价格表。

然后,我们将每条生产线的生产计划表示为决策变量,并设置约束条件,如生产时间不能超过工作时间,每个产品的生产数量不能为负数等。

最后,我们通过求解线性规划模型,得到最佳的生产计划。

二、配送路线问题假设某物流公司需要将货物从若干个仓库送往多个客户,每个仓库和客户之间的距离和货物数量都不同。

我们需要确定最佳的配送路线,以最小化总运输成本。

解决方案:可以使用旅行商问题(TSP)模型来解决这个问题。

首先,我们需要计算每个仓库和客户之间的距离,并列出距离矩阵。

然后,我们将每个客户的配送路线表示为决策变量,并设置约束条件,如每个客户只能被访问一次,每个仓库的货物数量不能超过容量等。

最后,我们通过求解TSP模型,得到最佳的配送路线。

三、项目调度问题假设某公司有多个项目需要进行调度,每个项目都有不同的工期、资源需求和利润。

我们需要确定最佳的项目调度方案,以最大化总利润。

解决方案:可以使用动态规划模型来解决这个问题。

首先,我们需要列出每个项目的工期、资源需求和利润表。

然后,我们将每个项目的调度方案表示为决策变量,并设置约束条件,如资源不能超过容量,每个项目的工期不能延迟等。

最后,我们通过求解动态规划模型,得到最佳的项目调度方案。

四、库存管理问题假设某零售商需要决定每个产品的订货量,以满足客户需求并最小化库存成本。

每个产品的需求量、订货时间和库存成本都不同。

解决方案:可以使用库存模型来解决这个问题。

首先,我们需要列出每个产品的需求量、订货时间和库存成本表。

运筹学最优化原理的例子

运筹学最优化原理的例子

运筹学最优化原理的例子
运筹学中的最优化原理有很多应用,以下是其中一些例子:
1. 背包问题:这是一个经典的连续最优化问题。

给定一组物品,每个物品都有自己的重量和价值,目标是选择一些物品放入背包中,使得背包内物品的总价值最大,同时不超过背包的重量限制。

2. 生产计划问题:在生产计划中,需要确定生产哪些产品、生产多少以及如何分配资源。

最优化原理可以用来制定最优的生产计划,使得某种目标函数(如总利润)达到最大或最小。

3. 路径规划问题:在物流和交通运输领域,最优化原理可以用来找到最优的路径规划方案,例如在给定一系列节点和边的情况下,找到一条从起点到终点的最短路径或最低成本路径。

4. 投资组合优化问题:在金融领域,投资者需要决定如何分配他们的资金以最大化收益或最小化风险。

最优化原理可以用来确定最优的投资组合,即在一组可能的投资组合中选择一个最优的组合,使得某个目标函数(如预期收益或风险)达到最优。

5. 调度问题:在生产或服务行业中,需要确定任务的顺序和时间安排以最小化成本或最大化效率。

最优化原理可以用来找到最优的调度方案,使得某个目标函数(如总完成时间或总成本)达到最小或最大。

以上例子只是运筹学中最优化原理的一些应用,实际上还有很多其他的应用领域,如医疗、农业、能源等。

运筹学经典案例

运筹学经典案例

运筹学经典案例
运筹学是一门研究如何有效地组织、管理和优化资源的学科,它在现代管理中
起着至关重要的作用。

在实际应用中,我们可以通过一些经典案例来了解运筹学的具体运用,下面就介绍几个经典案例。

第一个案例是关于生产调度的。

在一个工厂中,有多条生产线,每条生产线上
有不同的产品需要生产。

如何合理安排生产顺序,以最大程度地提高生产效率,是一个典型的运筹学问题。

通过运筹学的方法,可以建立数学模型,考虑到各种约束条件,最终得出一个最优的生产调度方案,从而实现生产效率的最大化。

第二个案例是关于物流配送的。

在物流配送中,如何合理规划配送路线,以最
大程度地降低成本,提高配送效率,也是一个典型的运筹学问题。

通过对各种因素的分析和考虑,可以利用运筹学方法建立配送优化模型,从而得出最优的配送路线和方案。

第三个案例是关于库存管理的。

在企业的库存管理中,如何合理控制库存水平,以最大程度地降低库存成本,同时又能够保证供应链的稳定性,也是一个典型的运筹学问题。

通过对需求的预测和供应链的优化,可以利用运筹学方法建立库存管理模型,从而实现库存水平的最优控制。

通过以上几个经典案例的介绍,我们可以看到,运筹学在实际应用中发挥着重
要作用。

通过建立数学模型,考虑各种约束条件,运用运筹学方法进行优化,可以帮助企业提高生产效率,降低成本,提高配送效率,优化供应链,从而实现经济效益的最大化。

总的来说,运筹学经典案例的研究和实践对于企业的管理和运营具有重要的指
导意义。

希望通过对运筹学经典案例的深入学习和研究,可以更好地应用运筹学理论,解决实际管理中的问题,实现企业的可持续发展。

运筹学案例素材

运筹学案例素材

例题1 合金制造问题有一家钢铁公司收到一份500吨造船用钢的订单.对这些造船用钢有如下要求:此公司储存有七种再现的原材料,都可以用于制造这种钢。

表6.2列出了这些析材料的品质,可用库存量,以及价格表6.2 原材料品质,可用库存量,与价格例题2 露天采矿探测发现了一个露天铀矿。

根据一些探测钻探的结果,发现这个矿可以分为若干个可开采区。

矿坑需要挖掘成阶梯形,以方便卡车开到矿坑底部。

铀矿呈东西方向分布。

在西面有一个村庄,在东面是山脉,因此矿坑大小要受到它们限制。

考虑了这些限制之后,确定有18个可开采区,呈三层分布。

总储蓄所量为10000吨,如下图,为挖掘一个可开采区,首露天矿山结构图挖开第一层的区块每吨需要耗费100欧元,挖开的二层的区块每吨需要耗费200欧元,挖开的二层的区块每吨需要耗费300欧元。

但是如果有区块是由含很多石英的石头组成(显示为斜线区域),那么由于这些石头非常硬,因此每吨需要耗费1000欧元。

只有以灰色显示的区块才含有铀(1,7,10,12,17,18)。

其市场价值分别为200,300,500,1000,和1200欧元/吨。

第18区块,尽管也含有大量矿石,但是此区块也和其他绘有斜线的区块一样,含水量有大量非常硬的石头。

为使总收益达到最大,应掘开那些区块?例题3 电力生产为满足每日电力需求(单位为兆瓦),可以选用四种不同类型的发电机。

每日电力需求如下表所示。

所有发电机都存在一个启动成本,以及工作于最小功率状态时势固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。

这些数据均列于下表中。

表4 发电机描述出任何代价。

在任意时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。

问题是:在每个时段应分别作用哪些发电机才能够使每天的总成本电小?例题4 汽车租赁有一家小型汽车租赁公司,此公司有94辆可供出租的汽车,分布于10个代理点中。

生活中的运筹学案例

生活中的运筹学案例

生活中的运筹学案例生活中的运筹学案例无处不在,它们展现了运筹学在实际生活中的应用和重要性。

运筹学是一门研究如何有效地组织和管理资源,以最大化效益的学科。

通过分析、建模和优化,运筹学可以帮助人们在生活中做出更加明智的决策,提高效率,节约资源,降低成本,提高生活质量。

下面我们将通过几个生活中的案例来看看运筹学是如何应用的。

首先,我们可以看看购物中的运筹学。

在购物过程中,我们需要考虑如何在有限的预算下购买最多的商品。

这就涉及到了“多重背包问题”,即在有限的背包容量下,如何选择商品来使得总价值最大化。

运筹学可以帮助我们建立数学模型,通过优化算法来解决这个问题,从而使我们在购物时可以更加理性地选择商品,最大化利益。

其次,生活中的旅行也是一个充满运筹学的场景。

在旅行中,我们需要考虑如何安排行程、选择交通工具和酒店,以及如何合理安排时间和预算。

这就涉及到了“旅行商问题”和“背包问题”。

运筹学可以帮助我们制定最佳的旅行计划,通过优化算法来确定最短的旅行路线和最合适的行程安排,使得旅行更加高效和愉快。

另外,生活中的排队问题也是一个典型的运筹学案例。

在超市、银行、医院等场所,我们经常需要排队等候。

如何合理安排队伍,减少等待时间,提高服务效率,是一个重要的问题。

运筹学可以帮助我们通过排队理论和优化算法来设计更加合理的排队系统,从而提高服务质量和顾客满意度。

最后,生活中的日常安排也离不开运筹学的帮助。

比如,如何合理安排工作和学习时间,如何有效规划饮食和锻炼计划,如何管理个人财务和投资等等,都可以通过运筹学的方法来进行优化和改进,使得生活更加有序和高效。

总之,生活中的运筹学案例无处不在,它们展现了运筹学在实际生活中的应用和重要性。

通过分析、建模和优化,运筹学可以帮助人们在生活中做出更加明智的决策,提高效率,节约资源,降低成本,提高生活质量。

希望大家能够在日常生活中更加关注和运用运筹学的方法,使得生活更加美好。

运筹学在实际问题中的应用

运筹学在实际问题中的应用

运筹学在实际问题中的应用运筹学是一门研究如何通过数学模型和方法来解决实际问题的学科。

它的应用领域非常广泛,涉及到物流管理、生产计划、供应链优化、交通规划等多个方面。

本文将以几个实际问题为例,介绍运筹学在这些问题中的应用。

一、物流管理物流管理是一个关系到企业运作效率和成本的重要领域。

通过合理的运筹学方法,可以解决货物运输路线的优化、库存管理的最佳化等问题。

例如,运筹学可以帮助企业确定最佳的调度策略,以最小化运输成本,并保证货物能够按时到达目的地。

通过运筹学方法,物流企业可以优化仓储布局,提高货物的存储效率,降低仓储成本。

二、生产计划生产计划是企业生产管理的核心环节。

通过运筹学的方法,可以帮助企业合理安排生产计划,提高生产效率,降低生产成本。

例如,在生产计划中,可以使用线性规划模型来确定最佳生产数量和生产时机,以最大化产出,并满足市场需求。

此外,运筹学还可以帮助企业在不同的订单需求下,灵活调整生产计划,以适应市场变化。

三、供应链优化供应链是一个跨企业的复杂系统,其中涉及到原材料采购、生产、配送等多个环节。

通过运筹学的方法,可以优化供应链中各个环节的规划与决策,提高整体供应链的效率和响应速度。

例如,通过网络流模型,可以帮助企业确定最佳的配送路径,以减少运输成本和时间。

另外,通过运筹学方法,还可以建立供应链的风险管理模型,帮助企业应对供应链中的不确定性因素。

四、交通规划在城市化进程不断加速的今天,交通拥堵已经成为一个全球性难题。

运筹学方法可以帮助城市规划者合理规划道路、公共交通线路,并设计交通信号灯的时间分配。

例如,在道路规划中,可以运用图论模型,确定最佳的道路网络结构,以缓解交通拥堵。

此外,在公共交通线路的规划中,运筹学方法可以帮助确定最佳的线路和站点设置,以提高乘客出行的效率。

综上所述,运筹学在物流管理、生产计划、供应链优化和交通规划等实际问题中都有着重要的应用。

通过运筹学的方法,可以优化决策,提高效率,降低成本,为企业和社会创造更大价值。

运筹学应用实例

运筹学应用实例
如下图A、B、C、D、E、F分别表达陆地和岛屿,若河旳两岸 分别被敌对两方部队占领,问至少切断哪几座桥梁才干阻止对 方部队过河?
A
B
C
D
E
F
陆地、河流及桥梁示意图
解:
将A,B,C,D,E,F分别用一种点表达,相互之间有桥相连 旳连一条弧;弧旳容量就是两点间旳桥梁数;设一种方向,得 到网络图如下:
A
例3.设备更新问题
某单位使用一台生产设备,在每年年底,单位领导都要决 策下年度是购置新设备还是继续使用旧设备。
若购置新设备,需要支付一笔购置费;假如继续使用旧旳, 则要支付一定旳维修费用。
一般说来,维修费随设备使用年限旳延长而增长。根据以 往旳统计资料,已经估算出设备在各年年初旳价格和不同 使用年限旳年维修费用,分别示于表1和表2。
相应旳开门方案如图所 示,共开10个门。
B C IJ
H
A
D GK
E
F
开门方案
例5:选址问题
有六个居民点v1,v2,v3,v4,v5,v6,拟定建一夜校,已知 各点参加学习旳人数为25、20、30、10、35、45人,其道路 如图所示,试拟定学校位于哪一种居民点,才干使学习者 所走旳总旅程至少?(图中边旁旳数字为路段长度)
用一条边把代表这两个项目
v2
旳顶点连接起来。这么得到
v3
下图
v1
为了处理这个问题,只需
找到一条包括全部顶点旳
v4
初等链。
v5
如:{v4,v1,v2,v3,v5}是一条初等链,相应旳比赛是: 100m自由泳,50m仰泳,50m蛙泳,100m碟泳,200m自由泳。
此问题旳方案不唯一。
例 2.线路铺设问题
0 50 150 175 200 275 40 0 80 100 120 180 180 120 0 30 60 150 D= 70 50 10 0 10 40 280 210 70 35 0 105 495 405 225 180 135 0

运筹学案例集

运筹学案例集

运筹学案例集常州宝菱重工机械有限公司孔念荣收集整理运筹学的一些典型性应用•合理利用材料问题:如何在保证生产的条件下,下料最少•配料问题:在原料供应量的限制下,如何获取最大收益•投资问题:从投资项目中选取最佳组合,使投资回报最大•产品生产计划:合理利用人力、物力、财力等,使获利最大•劳动力安排:用最少的劳动力来满足工作的需要•运输问题:如何制定最佳调运方案,使总运费最少一、生产计划问题案例1(2-4)、某工厂用A、B、C、D四种原料生产甲、乙两种产品,生产甲和乙所需各种原料的数量以及在一个计划期内各种原料的现有数量见下表所示.又已知每单位产品甲、乙的售价分别为400元和600元,问应如何安排生产才能获得最大收益?已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?案例3(2—25)、某公司面临一个是外包协作还是自行生产的问题。

该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间.甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量,数据如下表所示。

问题:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?案例4(2-28)、永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。

设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成B 工序。

Ⅰ可在A、B的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工,数据如下表所示。

问题:为使该厂获得最大利润,应如何制定产品加工方案?案例5、某造纸厂用原材料白坯纸生产原稿纸、笔记本和练习本三种产品。

该厂现有工人100人,每月白坯纸供应量为3万公斤。

已知工人的劳动生产率为:每人每月生产原稿纸30捆,或生产日记本30打,或练习本30箱。

四个运筹学案例

四个运筹学案例

1、年度配矿计划优化——线性规划j(单位:万吨)2 约束条件:包括三部分1)供给(资源)约束:x1 ≤70 x2≤7 x3≤17 x4≤23 x5≤3 x6≤9.5 x7≤1 x8≤15.4 x9≤ 2.7 x10≤7.6 x11≤13.5 x12≤2.7 x13≤1.2 x14≤7.22)品位约束3)非负约束: x j ≥ 0 j = 1,2,3, … ,143 目标函数:此题目要求“效益最佳”有一定的模糊性,由于配矿后的混合矿石将作为后面 工序的原料而产生利润,故在初始阶段,可将目标函数选作配矿总量的极大化。

三、计算结果及分析1 计算结果利用单纯形法可得出该问题的最优解为:x1 = 31.121 x2 = 7 x3 = 17 x4 = 23 x5 = 3 x6 = 9.5 x7 = 1 x8 = 15.4 x9 = 2.7 x10 = 7.6 x11 = 13.5 x12 = 2.7 x13 = 1.2 x14 = 7.2 最优值:Z* = 141.921(万吨)2 分析与讨论1)计算结果是否可被该公司接受?——回答是否定因为:①在最优解中,除第1个采矿点有富裕外,其余13个采矿点的出矿量全部参与了配矿。

而矿点1在配矿以后尚有富余量 70 -31.12 =38.879 (万吨),但矿点1的矿石品位仅为37.16%,属贫矿。

②该公司花费了大量人力、物力、财力后,在矿点1生产的贫矿中却有近39万吨矿石被闲置,而且在大量积压的同时,还会对环境造成破坏,作为该公司的负责人或公司决策者是难以接受这样的生产方案的。

———原因何在?出路何在?2)解决问题的思路经过分析后可知:在矿石品位T Fe 及出矿量都不可变更的情况下,只能把注意力集中在 混合矿石的品位T Fe 要求上。

——不难看出,降低T Fe 的值,可以使更多的低品位矿石参与配矿。

问题:T Fe 的值有可能降低吗?在降低T Fe 的值,使更多的贫矿入选的同时,会产生什么影响?——以上问题就属于运筹学的灵敏度分析(优化后分析)3)经调查,以及与现场操作人员、工程技术人员、管理人员学习、咨询,拟定了三个T Fe 的新值:44% 、43% 、42%3 变动参数之后再计算,结果如下表所示:∑==+++++++++++++14114131211109875432145.0502.04073.05692.05271.04022.0408.04834.05141.064996.04200.04700.0400.05125.03716.0j jx x x x x x x x x x x x x x x ∑==141max j jx zFe境的破坏,故不予以考虑。

运筹学运输问题应用实例

运筹学运输问题应用实例

运筹学运输问题应用实例运筹学是一门研究企业决策问题的学科,包括线性规划、整数规划、网络优化、排队论、决策理论等多个分支。

运筹学可以应用于许多领域,其中之一就是运输问题。

运输问题是指在给定的供应和需求条件下,如何合理地安排物资或者人员的调度和运输,使得运输成本最小、效率最高。

以下是几个运输问题的实例,展示了运筹学在现实生活中的应用:1.货物运输问题:某物流公司需要将若干货物从不同的供应地点运送到不同的需求地点,运输成本根据不同的供应-需求对有所差异。

如何设计最优的运输方案,使得总运输成本最小?解决方法:可以使用线性规划模型来描述这个问题。

将各个供需点之间的距离、运输成本等作为变量,建立一个目标函数和一系列约束条件,并通过求解线性规划问题来得到最优的运输方案。

2.配送车辆路径问题:某公司有若干辆配送车辆,需要将货物按照一定的规则分配到不同的配送点,并且保证每个配送点都能得到及时的配送。

如何合理地安排车辆的路径,使得配送成本最小、效率最高?解决方法:可以使用网络优化模型来描述这个问题。

将配送点、车辆、交通网络等抽象成一个图,其中每个节点表示一个配送点或者车辆,边表示两个节点之间的路径。

然后通过求解网络优化问题,找到最优的车辆路径。

3.乘客调度问题:某出租车公司需要根据乘客的叫车需求,合理地调度出租车,以提高乘客的满意度,并最大化车辆的利用率。

如何在不同的时间和地点调度出租车,使得乘客的等待时间最小、出租车的行驶里程最小?解决方法:可以使用排队论模型来描述这个问题。

根据乘客到达的服从分布,建立一个排队论模型,模拟乘客叫车的过程。

然后根据这个模型,确定最佳的出租车调度策略。

4.航班调度问题:某航空公司需要合理地调度飞机的起飞和降落时间,以提高航班的准点率和乘客的满意度。

如何在不同的起降时间和航线之间进行合理的安排,并考虑飞机的机场停靠时间和维修等因素?解决方法:可以使用决策理论和整数规划模型来描述这个问题。

运筹学应用例题

运筹学应用例题

线性规划在工商管理中的应用一、人力资源分配的问题例1某昼夜服务的公交线路每天各时间段内所需司机和乘务人员人数如下表所示:设司机和乘务人员分别在各时间段开始时上班;并连续工作8小时,问该公交线路应怎样安排司机和乘务人员,既能满足工作需要,又使配备司机和乘务人员的人数最少?例2 一家中型的百货商场对售货员的需求经过统计分析如下表所示:为了保证售货员充分休息,要求售货员每周工作五天,休息两天,并要求休息的两天是连续的,问应该如何安排售货员的休息日期,既能满足工作需要,又使配备的售货员的人数最少?二、生产计划问题例3 某公司面临一个是外包协作还是自行生产的问题。

该公司有甲、乙、丙三种产品,这三种产品都要经过铸造、机械加工和装配三道工序。

甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须由本厂铸造才能保证质量。

有关情况如下表所示,公司中可利用的总工时为:铸造8000小时,机械加工12000小时和装配10000小时。

为了获得最大利润,甲、乙、丙三种产品各应生产多少件?甲、乙两种产品的铸件有多少由本公司铸造?有多少为外包协作?三、套裁下料问题例4 某工厂要做100套钢架,每套钢架需要长度分别为2.9米、2.1米、和1.5米的圆钢各一根。

已知原料每根长7.4米,问应如何下料,可使所用原料最省?四、配料问题例5某工厂要用三种原料1、2、3混合调配出三种不同规格的产品甲、乙、丙,产品的规格要求、产品的单价、每天能供应的原材料数量及原材料单价如下表所示:问该厂应如何安排生产,才能使利润最大?五、投资问题例6 某部门现有资金200万元,今后五年内考虑给以下的项目投资:项目A :从第一年到第五年每年年初都可以投资,当年末能收回本利110%; 项目B :从第一年到第四年每年年初都可以投资,次年末能收回本利125%,但规定每年最大投资额不能超过30万元;项目C :第三年初需要投资,到第五年末能收回本利140%,但规定每年最大投资额不能超过80万元;项目D :第二年初需要投资,到第五年末能收回本利155%,但规定每年最大投资额不能超过100万元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注: 本题结果不唯一, 例如还有如下的解.
星期一 星期二 星期三 星期四 星期五 星期六 星期日 200 200 200 200 200 200 200 7 0 6 2 4 0 3 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 4400 12 15 16 14 16 18 19 12 15 12 14 16 18 19
首先,问题可以自然地按时间分为五个阶段。
第一 年 第二 年 第三 年 第四 年 第五 年
5 6
5 6
5 6
5 6
5 6
7 8
7 8
7 8
7 8
7 8
第一 年
第二 年
2
第三 年
4
第四 年
5
第五 年
8
5
9 7 8
5
8
5
2
5
1
5 6
4
6
2 5
4
6
4 9
8
6
5 6
2
6
8 4
1
7 8
4 7
5
7 8
8 1 9
x3 x4 x5 x6 12 二、 x3 x4 x5 x6 x7 15 三、 x4 x5 x6 x7 x1 12 四、 x5 x6 x7 x1 x2 14 五、 x6 x7 x1 x2 x3 16 六、 x7 x1 x2 x3 x4 18 日、 x1 x2 x3 x4 x5 19
星期一 星期二 星期三 星期四 星期五 星期六 星期日
例(动态投资问题)宏银公司承诺为某建设项目资 金管理。该项目可以在2002年底筹得所需要的贷款, 而工程所需要的资金为: 2003年—100万元,2004年—150万元,2005年— 120万元,2006年—110万元。 为了有效地使用所筹得的资金,在满足每年的资金 需求的情况下,可以将多余的资金用于以下的投资 项目:
(1)于2003年初购买A种债券,期限3年,到期后 可以得到140%的回报;
(2)于2003年初购买B种债券,期限2年,到期可 获125%的回报; (3)于2004年初购买C种债券,期限2年,到期后 可以得到130%的回报; (4)于每年初将任意数额的多余资金存入银行, 期限1年,到期利率为4%
问题是宏银公司应如何选择这些投资项目,使得 2002年底筹集的贷款额最小。
求解结果
星期一 星期二 星期三 星期四 星期五 星期六 星期日 星期一 星期二 星期三 星期四 星期五 星期六 星期日 200 200 200 200 200 200 200 3 4 6 2 4 0 3 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 4400 16 15 12 14 16 18 19 12 15 12 14 16 18 19
一、 x2
3.变量非负约束:
xi 0且为整数, i 1,2,...,7
目标函数:总费用最小,总费用与使
用的总人数成正比。由于每个人必然在
且仅在某一天开始休息,所以总人数等

x
i 1
7
i
模 型
min 200 xi
i 1 7
x2 x3 x4 x5 x6 12 x x x x x 15 3 4 5 6 7 x4 x5 x6 x7 x1 12 x1 x2 x5 x6 x7 14 s.t. x1 x2 x3 x6 x7 16 x1 x2 x3 x4 x7 18 x1 x2 x3 x4 x5 19 x 0且为整数, i 1,2,...,7 i
1万元收益 2万元收益 3万元收益 4万元收益 实际投入 可投入 各项目收益 总收益
A 15 28 40 51 x 1 4 15 60
B 13 29 43 55 y 0 3 0
C 11 30 45 58 z 3 3 45
例 某公司正在研究确定某种新产品今后五年的销售 价格,根据调查,由于各种因素的影响,对该产品 的销售,今后可能有四种价格,按此四种价格销售 每件产品的预期利润见表
利用Excel可以得到最优解为(单位:万元):
x 418.8022 y1 144.2308 y 2 y3 0, , , w1 78.57143 w2 96, w3 0 ,
变量 x y1 y2 目标 1 0 变量的值 418.8022 144.2308 约束 1 -1 约束 1.04 约束 约束
y3 0 0 -1 1.04
w1 0 0 0 78.57143 -1 -1 1.04
w2 0 96 -1 1.25 1.4
w3 0 418.8022 0 100 -1 150 120 1.3 110
100 150 120 110
注:在建立此类型数学模型时若需要决策变量取整数,约束条 件用大于等于号比用等于号要好。此时若采用过于苛刻的约束 条件,很可能就得不到可行解;要获得可行解可能需要约束条 件一定的松弛度。
8
4 3
8
第二阶段的优化
第一 年 第二 年
2 4 2 5 4 7 5 7 5 4
第三 年
4 8 4 9 8 1 9 1 9 8
第四 年
5 2
第五 年
8 1
5 9
9 7 8
5 11 6 13 7 13 8 15
5 6 7 8
5 6 5 7 6
5 6 7 8
8 4
5 6 7 8
6 7 7 8 8 6
2
8 4 1 3 4
5 6 7 8
6 7 7 8 8 6
1
4
6
3
第四阶段的优化
第一 年 第二 年
2 4 2 5 4 7 5 7 5 4
第三 年
4 8 4 9 8 1 9 1 9 8
第四 年
5 2 5 6 5 7 6 7 6 2
第五 年
8 1 8 4 1 3 4 3 4 1
5 9
9 7 8
5 11 6 13 7 13 8 15
记2002年底筹集的贷款总数为x。
记2003,2004,2005存入银行的余款分别为y1, y2, y3。 记购买债券A,B,C的投资额分别为w1, w2, w3。 则该问题的目标函数为:min x 约束条件为各年的所需资金限制 2003:可以使用的资金为x-y1-w1-w2;所需资金100万 元 2004:可以使用的资金为1.04y1-y2-w3;所需资金150 万元 2005:可以使用的资金为1.04y2+1.25w2-y3;所需资 金120万元 2006:可以使用的资金为1.04y3+1.40w1+1.30w3;所 需资金110万元
模 型 假 设
• 每天工作8小时,不考虑夜班的情况; • 每个人的休息时间为连续的两天时间; • 每天安排的人员数不得低于需求量, 但可以超过需求量
问 题 分 析
因素:不可变因素:需求量、休息时间、单位费用; 可变因素:安排的人数、每人开始工作的时间、总 费用; 方案:确定每天工作的人数,由于连续休息2天,当 确定每个人开始休息的时间就等于知道工作的时间, 因而确定每天开始休息的人数就知道每天开始工作 的人数,从而求出每天工作的人数。 变量:第i天开始休息的人数 x i , i 1, 2,...,7 约束条件 : 1.每人休息时间2天。 2. 每天工作人数不低于需求量,第i天工作的人数 就是除了该天在休息的所有人,即除了第i-1天及第i 天开始休息的人以外的所有人,所以有约束:
故所求模型为
min x x y1 w1 w2 100 1.04 y1 y2 w3 150 1.04 y2 1.25w2 y3 120 1.04 y3 1.40w1 1.30w3 110 x, y1 , y2 , y3 , w1 , w2 , w3 0
1
6
1 3 4
4
6
7
3
第三阶段的优化
第一 年 第二 年
2 4 2 5 4 7 5 7 5 4
第三 年
4 8 4 9 8 1 9 1 9 8
第四 年
5 2 5 6 5 7 6 7 6 2
第五 年
8 1
5 9
9 7 8
5 11 6 13 7 13 8 15
5 17 6 21 7 24 8 16
5 6 7 8
在下面的计算中假设各阶段投资的项目依次是A、B、 C。
k=4,f4(x4)=0 k=3,0≤d3≤x3,x4=x3-d3
k=2,0≤d2≤x2,x3=x2-d2
k=1,0≤d1≤x1,x2=x1-d1
最优解为
x1=4, d1*=1, x2=x1-d1=3, d2*=0, x3=x2-d2*=3, d3=3, x4=x3-d3=0,
9
7 8
5 7 6
6
7 8
1 3 4
4
7 8
65 717来自3第一阶段的优化
第一 年 第二 年
2
第三 年
4
第四 年
5
第五 年
8
5 9
9 7 8
5
8
5
2
5
1
5 6 7
4
2 5 4 7 5 7 5 4
6 7 7 8
6 7
4 9 8 1
8
6 7
5 6
2
6 7
8 4
相关文档
最新文档