钻井液中固相含量对钻井液的影响及控制(精)

合集下载

钻井液对钻井效率的影响因素分析

钻井液对钻井效率的影响因素分析
1 4 切 力 .
因此 , 钻井过程 中, 应根据地层岩石 的特点 , 井深、 井身结构 、 钻井液等类型来确定一个 比较现实的失水
量, 既能保持较高钻速又不引起井眼危险。坚持在井壁 允许的情况下, 当放宽失水量的要求 , 适 以最大限度地 提高钻井速度的原则。如井浅时可放宽 , 裸眼时间长从 严, 胶结致密的砂岩、 石灰岩和白云岩等地层 , 失水量不 作要求 , 对易吸水膨胀 、 垮塌 的页岩和易垮塌的其它地 层, 失水量应严格控制 , 使用盐水钻井液应放宽 , 使用淡 水 钻井 液应从 严等 。
由于几乎 不可 能改 变 钻 井 液 的一 个 性 能而 不 影 响
其他性能, 且最好的钻井液应该能在清洗井筒所必须的
流量下产生适当的水功率 , 用以与钻压和转速相配合而 清洗钻头 , 并使作业费用最低 , 这些变量的组合还应 能 使井壁稳定, 满足地层评价的要求而安全顺利钻达 目的
层。因此 , 要结合具体条件 , 对这些性能进行综合评价 分析 , 从邻近井的资料 中分析影响施工效率的各项 因 素, 了解钻 遇 的复杂情 况 和 处理 方 法 , 以取 得成 功 的经 验, 确定改进钻井液陛能的方案 , 优化钻井液设计, 减少
4 1 日常性 能维护 .
2 1 年第 l 期 01 2
物通常有双重作用 , 它能使 阳离子交换能力弱的页岩相 互结合 , 并有 效地 中和 其 电性 而 呈 絮凝 状 态 ; 于 阳离 对
子交换 能力 强 的膨 润 土 , 聚合 物 不 能 中和 其 所 有 的 电
针对 不 同的构造 、 层及 钻 井 性 质 等 , 据 钻 井 过 地 依 程 中出现 的不 同情况 , 钻 井 液进 行 灵 活合 理 的维 护 , 对

钻井液体系配方及井下复杂情况处理对策1

钻井液体系配方及井下复杂情况处理对策1

滤失量大,说明地层渗
透性强,也说明钻井液 形成封堵渗透层泥饼的 能力差。 在水敏性泥、页岩地层 、渗透性强的砂岩地层 都要严格控制API滤失 量。
滤失量概念
滤失量的意义
二、钻井液性能及测量仪器
(三)API滤失量
二、钻井液性能及测量仪器
(三)API滤失量
测定方法 该仪器是将泥浆用惰性气体 (二氧化碳、氮气或压缩空气) 加压的情况下,测量泥浆的失水 量。当泥浆在0.69MPa压力的作 用下,30分钟内通过截面为 45.6±0.5㎝2过滤面渗透出的水 量,以毫升表示。同时,可以测 按逆时针方向缓缓旋转放空阀5手 柄,同时观察压力表指示。当压力 表稍有下降或听见泥浆杯有进气声 响时,即停止旋转放空阀手柄,微 调减压阀3手柄,使压力表指示为 0.69MPa,泥浆杯内保持0.69MPa的
定义
是指钻井液中 不能通过200 目筛网,即粒 径大于74微米 的砂粒占钻井 液总体积的百 分数。在现场 应用中,该数 值越小越好, 一般要求控制 在0.5%以下。
意义
含砂量高 密度大,对提 高钻速不利; 泥饼松软,导 致滤失量增大, 不利于井壁稳 定; 摩擦系数增大, 容易造成压差 卡钻; 增加对钻头和 钻具的磨损
(6)邻井钻井情况。
一、钻井液简介
(五)钻井液施工需要的资料、数据 2、重点探井、非常规井、深井、超深井
(1)范围
①重点探井:河南油田、集团公司重点探井、风险探井; ②非常规井:页岩油水平井、致密砂岩水平井、其它气井; ③深井、超深井: 深井:指井深大于4500米的井。 超深井:指井深大于6000米的井。
7、钻井液维护处理要点
10、钻井液材料汇总
8、钻井液材料
11、其它要求
一、钻井液简介

钻井液参数测定及维护

钻井液参数测定及维护

钻井液流变模式
钻井液流变性与钻井的关系
1、流变性与悬浮携带岩屑和净化井眼的关 系。钻井液粘度的作用是将井底的钻屑有 效地携带到地面,这是关系到能否安全快 速钻井的问题。实践表明:钻井液粘度、 切力越大,钻井液悬浮和携带岩屑的能力 越强,井眼的净化效果越好。反之钻井液 粘度、切力降低,钻井液悬浮和携带岩屑 的能力变差,井眼的净化效果差。
3.动切力
• 钻井液的动切应力反映的是钻井液在层流 时,粘土颗粒之间及高聚物分子之间相互 作用力的大小,即钻井液内部形成的网状 结构能力的强弱。用YP或者τ0表示,单位 是Pa(帕)。
4.表观粘度
• 钻井液的表观粘度又称有效粘度或视粘度, 是钻井液在某一速度梯度下,剪切应力与 速度梯度的比值,用AV表示,单位是 mPa·S(毫帕·秒)。
2、钻井液流变性与机械钻速的关系。实践 表明:在钻井过程中,钻井液粘度、切力 升高,钻速下降。原因是:一钻井液粘度、 切力大,流动阻力大,消耗的功率也大, 在泵功率一定的情况下,钻井液泵的排量 相应降低,降低了钻井速度。二是钻井液 粘度大,钻头在破碎岩石时,高粘度钻井 液在井底形成一个粘性垫层,粘性垫层缓 和了钻头牙齿对井底岩石的冲击切削作用, 使机械钻速降低。
钻井液流变性是钻井液的一项基本性能, 它在解决下列钻井问题是起着十分重要的作用: (1)携带岩屑,保证井底和井眼的清洁; (2)悬浮岩屑; (3)提高机械钻速; (4)保持井眼的规则和保证井下安全。
钻井液的流变性对钻井工作的影响主要体 现在悬浮岩屑、护壁、减阻、提高钻速和冷却钻 具5个方面。
液体的基本流型通过实验研究,归纳 为四种基本流型:牛顿流型、塑性流型、 假塑性流型和膨胀流型。一般钻井液属于 塑性流型。
按照API推荐的钻井液 性能测试标准, 需检测的钻井液常规性能包括:密度、漏 斗粘度、塑性粘度、动切力、静切力、API 滤失量、HTHP滤失量、pH值、碱度、含砂 量、固相含量、膨润土含量和滤液中各种 离子的质量浓度等。

钻井液固相控制技术及设备(钻机厂)

钻井液固相控制技术及设备(钻机厂)

钻井液固相控制技术及设备第一章钻井液中的固相及其影响第一节概论钻井液是钻井过程中使用的循环流体,它是液体固体和化学处理剂的混合物。

钻井液中的固体颗粒分为有害固相和有用固相,岩屑是钻井中的最主要的有害固相。

有害固相在钻井过程中将影响钻井液的物理性能,使钻井液的密度、粘度、动切力、失水、泥饼、研磨性、粘滞性、流动阻力增加,其结果导致损害油气层,降低钻速,增加钻盘扭矩,起下钻遇阻,粘附卡钻,井漏井喷等井下复杂情况,对钻井液循环系统造成磨损。

第二节钻井液的作用与组成一、 作用:1、清洗井底2、携带岩屑3、冷却和润滑钻头及钻柱4、形成泥饼保护井壁5、控制与平衡地层压力6、悬浮钻屑和加重剂沉砂7、提供地层资料保护油气储层防止伤害8作为动力液传递水功率。

二、 钻井液组成1、水-淡水、盐水、咸水和饱和盐水2、膨润土-钠膨润土,钙膨润土3、化学处理剂-无机类、有机类、表面活性剂类、高分子聚合物类4、油-轻质油或厚油类5、加重剂-重晶石类、赤铁矿6、气-空气、天然气,三、 液相选择的原则选择何种液相主要取决于对所钻地层需要的抑制作用。

液相抑制能力强可防止流体减少和活性固体的膨胀,抑制地层的造浆。

第三节固相颗粒粒度的影响(固相颗粒粒度通常指颗粒的大小尺寸)一、固相颗粒粒度对钻速的宏观影响宏观上钻井液中不同性质的固相颗粒对钻速影响不同,小于1微米的胶体要比粗颗粒的影响更严重,在固相量大于6%时,分散性钻井液细颗粒与不分散钻井液细颗粒固相对钻速的影响几乎一样,当固相含量低于6%时,不分散钻井液比分散钻井液的钻速要高,固相含量越低,钻速差别越大,这是因为固相含量低于6%时,分散性钻井液中的胶体颗粒所占的百分比越大。

二、 固体颗粒粒度的微观影响任何水基钻井液中的颗粒,其表面都吸附水分子,自由液体受到约束。

钻井液中的钻屑在钻井循环中不断破裂,其表面积不断增加,因而增加了吸附的水分子。

一个小颗粒被立体型分裂后,颗粒变为多少倍,表面积就增加多少倍。

钻井液性能对钻井的影响

钻井液性能对钻井的影响

钻井液性能对钻井的影响一、钻井液的稳定性钻井液是一种分散体系,即粘土分散在水中。

钻井液中的粘土颗粒多数在悬浮体范围(0.1~0.2µm)内,少数在溶液范围(0.1µm~1nm)内,所以钻井液是溶胶与悬浮体的混合物。

钻井液中胶体颗粒含量的大小,对钻井液的稳定性影响很大。

胶体含量的大小主要取决于粘土在钻井液中的分散状态——分散、絮凝和聚结。

粘土的造浆率高,颗粒分散得细,钻井液相对来讲就稳定;若泥土造浆率低,颗粒分散得粗,钻井液相对来讲就不稳定,易呈絮凝或聚结状态。

因此,钻井液稳定的首要条件是钻井液中粘土颗粒要细,即从粘土在水中的稳定角度来看,分散得越细越好(胶体含量越高越好)。

这种稳定性称为沉降稳定性。

然而,即使很细的颗粒,因它具有极大的表面积和很高的表面能,根据表面能自发减少的原理,其发展趋势必然是小颗粒自行聚结变大,最后下沉。

由于某种原因分散相颗粒具有对抗小颗粒自行粘结变大所具有的性质称为聚结稳定性。

沉降稳定性和聚结稳定性是互相联系的。

只有保持聚结稳定性,使小颗粒不聚结为大颗粒,钻井液才能有沉降稳定性,才不至于因聚结而下沉。

所以,聚结稳定性是矛盾的主要方面。

二、钻井液几个重要的流变参数τ⑴动切应力(屈服值)。

动切力(τ。

)反映钻井液在层流流态时,粘土颗粒之间及高聚物分子之间的相互作用力(形成空间网架结构之力)。

影响动切应力的因素有钻井业的固相含量、固体分散度、粘土的水化程度、粘土吸附处理剂的情况及聚合物的使用等。

⑵表观粘度。

又称有效粘度或视粘度。

它的定义是在某一速度梯度下,用流速梯度去除相应的切应力所得的商。

表面粘度不仅与流体本身性质有关,还受测定仪器的几何形状和尺寸、速度梯度的变化及测量方法的影响。

⑶塑性粘度。

塑性粘度是指钻井液在层流时,钻井液中的固体颗粒与固体颗粒之间,固体颗粒与液体分子之间,液体分子与液体分子之间三种内摩擦力的总和。

⑷触变性。

钻井液的触变性是指搅拌后变稀(切力降低),静置后变稠(切力升高)的特性。

钻井液性能要求及处理剂类型和作用

钻井液性能要求及处理剂类型和作用

钻井液性能要求及处理剂类型和作用一般而言,煤田地质勘探采用金刚石绳索取芯钻进在稳定岩层可使用清水作钻井液。

而对各种不稳定岩层,如各种水敏岩层、破碎岩层、特别是对于深孔、长孔段的不稳定岩层,则必须采用泥浆作钻井液。

由于金刚石岩心钻探内外管间隙小、钻头转速高、钻头价格贵,因此对泥浆提出了一些特殊要求。

金刚石绳索取芯钻进用钻井液,主要要求润滑性、流变性、滤失性、固相含量等项指标。

并据此来选择钻井液类型、添加剂种类和工艺措施。

金刚石钻进要求钻井液有好的润滑性是不言而喻的。

为发挥钻头的破岩效率,特别是使用孕镶钻头,要求高转速,只有泥浆润滑性能好,才能减少钻头磨损,提高钻头进尺;减少钻杆磨损和钻杆折断事故,降低功率消耗。

不管用清水还是用泥浆作钻井液,都要重视其润滑性指标。

为保护孔壁和有效排除钻屑,要求钻井液有较好的流变性。

以前用漏斗粘度来衡量流动性能是不够的。

金刚石钻探的特点,要求钻井液通过小间隙处流动阻力小,即粘度小;而在大断面处粘度高,对孔壁冲刷小。

我们在金刚石绳索取芯钻探中应用流变学的理论解决生产实际问题,选择流变性能好的泥浆,取得较好满意的效果。

要使泥浆有较好的护壁能力,必须注意其滤失性能。

失水量过大是造成泥页岩,盐类地层、破碎地层的膨胀、溶蚀、剥蚀、坍塌的主要根源。

在这些地层要求失水量低,金刚石钻进环空间隙很小,泥饼厚度过大是很不利的。

此外,滤液的成分对护壁有重要影响。

滤液中含有盐类离子、高分子材料等抑制性成分,即使失水量大一些,护壁能力也很好。

因此,对滤失性能要注意失水量、泥饼厚度及滤液成分三个方面。

为控制失水常加入多种降失水剂。

固相含量过高,尤其是钻屑含量过高,给钻进工作带来很多问题,如钻速下降、钻头寿命降低,设备磨损加快、孔内事故多。

固相含量的多少和类型,直接影响到钻井液的流变性、滤失性和润滑性。

煤田金刚石绳索取钻进通常用低固相泥浆,固相含量可由比重观测。

一般要求固相含量(体积)在4%以内,泥浆比重在1.06以下。

钻井液的固相及其含量的控制

钻井液的固相及其含量的控制

钻井液的固相及其含量的控制舒儒宏(渤海钻探钻井技术服务公司泥浆公司)摘要钻井液的固相含量是指单位体积钻井液中固相物质的质量。

钻井液的固相控制,就是使用一切可以利用的手段,最经济地、最大限度的清除在钻井液中的钻屑,目的是维护钻井液性能,减少钻井事故,提高钻速,降低成本。

认识钻井液的固相类型、掌握它在钻井液中作用及对它的要求、控制方法等,对今后的工作意义重大。

关键词类型作用要求方法钻井液中的固相,包括人为加入的粘土和加重材料以及钻屑。

前两者是钻井液的主要成分,使钻井液具有所需要的性能,后者属于有害成分,使钻井液的性能变坏,如果钻井液中的钻屑过多,将会引起一系列问题。

例如:钻井液密度升高,粘切增大,泥饼变厚,会加剧设备的磨损,会影响固井质量,影响测井,损害油气层;也可能引起卡钻,、井漏等井下复杂情况;还会使钻速降低,钻井液维护处理费用增加和钻井总成本增加等。

可见,搞好钻井液固相含量的控制,维持有用的固相含量,清除钻屑,对于保证钻井工艺的顺利进行,对于提高钻速和降低成本都是至关重要的。

如果将钻井液中的有害固相控制在适当的范围,可以有以下几方面的好处:降低钻井的扭矩和摩阻;减小抽吸压力和压力激动;减小压差卡钻的可能性;减小测井工具的阻卡;可以改善下套管的条件;提高固井质量;延长钻头寿命;减轻设备磨损;增强井眼稳定性;提高钻速;降低钻井液和钻井成本等11方面。

一、钻井液中固相的类型1、按照作用可分为(1)有用固相:例如粘土和加重材料以及非水溶性或油溶性的化学处理剂。

(2)有害固相:例如钻屑、劣质土和砂粒等。

2、按照尺寸大小(1)砂:不能通过200目筛网,即大于74微米的固体。

(2)淤泥:即2--74微米的固体。

(3)粘土:即小于2微米的固体。

3、按照固体的密度可分为(1)低密度固体,即密度小于2.7的固体,如粘土和钻屑。

(2)高密度固体,即密度大于4.2的固体,也就是平时说的加重剂。

4、按照反应活性可分为(1)活性固体,即容易与水发生反应的或相互之间易发生反应的固体。

钻井液基础知识[管理资料]

钻井液基础知识[管理资料]

钻井液基础知识钻井液的概念:钻井液是由粘土、水(或油)以及各种化学处理剂组成的一种溶胶悬浮体的混合体系。

粘土是具有可塑性的、软、有各种颜色的泥土。

一般是含水氧化铝的硅酸盐,由长石和其它硅酸盐分解而成,颗粒直径约在0.1-100μm之间,在水中有分散性,带电性、离子交换性,属于多级分散体系。

简单地说,钻井液是粘土分散在水中形成的溶胶悬浮体(颗粒直径小于2μm)为使钻井液满足钻井工艺要求,常加入各种化学处理剂及惰性物质来调节钻井液的性能,使钻井液“由稀变稠,由稠变稀”。

因此钻井液的性能变化受粘土、水和化学处理剂三方面因素的影响。

我国标准化委员会钻井液分委会将钻井液分为八种:1、淡水钻井液:由淡水、粘土和一般的降粘剂、降滤失剂配制而成。

2、钙处理钻井液;3、不分散低固相聚合物钻井液;4、盐水钻井液(包括海水及咸水钻井液)5、饱和盐水钻井液;6、钾基钻井液;7、油基钻井液;8、气体(包括一般气体及气泡)钻井液。

各类新型钻井液体系:正电胶(MMH)钻井液体系、聚合物-铵盐钻井液体系、两性离子聚合物钻井液体系、大小阳离子钻井液体系、水基无粘土相钻井液。

我国于1986年经钻井液标准化委员会研究决定,把钻井液材料分为16类:1、粘土类:主要用来配制原浆,亦有正反增加粘切、降低漏失量作用,常用的膨润土、抗盐土及有机土等;2、加重材料:主要用来提高钻井液的密度,以控制地层压力,防塌防喷;3、降滤失剂:主要用来降低钻井液的漏失量,常用的有CMC、预先胶化淀粉,聚丙烯酸盐等;4、降粘剂:改善钻井液的流动特性,如粘度、切力,以增加可泵性,减少摩阻。

常用的有单宁、各种磷酸盐、褐煤制品、木质素磺酸盐等5、增粘剂:主要用来促进钻井液中粘土颗粒网状结构的形成,增加胶凝强度以形成高流阻。

常用的有CMC、高聚物、预先胶化淀粉等。

6、润滑剂:主要用来降低摩阻系数,减小扭矩,增加钻头的水马力以及防止粘卡。

常用的有某些油类、石墨、塑料小球及表面活性剂。

钻井液固含及其控制

钻井液固含及其控制
优点:处理时间短、效果好、 而且本较低。
五、固相控制方法
五、固相控制方法
(2)稀释法
稀释法既可用清水或其它较稀的流体直接稀释循环系 统中的钻井液 。
如果用机械方法清除有害固相仍达不到要求,可用 稀释的方进一步降低固相含量,有时是在固控设备缺乏 或出现故障的情况下不得不采用这种方法。
五、固相控制方法
优点:操作简便、见效快。
缺点:在稀释的同时必须补充足够的处理剂,如果是 加重钻井液还需补充大 的加重材料,因而使钻 井液成本显著增加。此外还有一部分被废弃旧 浆的排放问题需要考虑。
五、固相控制方法
为了尽可能降低稀释费用, 有以下几个般原则应该遵循: (1)钻井液总体积不宜保留过大。 (2)部分旧浆的排放应在加水稀释前进行,不要边稀释
吸附
膨润土 (负电)
不吸附
PAM 吸附
钻屑 (不带电或少量负电)
HPAM
吸附
钻井液工艺原理电子教案—第八章
絮凝过程:吸附→架桥→蜷曲→絮凝成团 CPAM含有阳离子链节和非离子链节,比 PAM、HPAM具有更好的絮凝作用。
钻井液工艺原理电子教案—第八章
4、影性絮凝作用的主要因素 (1)相对分子质量 分子量>3×106 (2)水解度 α= 30% (3)浓度 饱和吸附量的一半 (4)pH HPAM作为絮凝剂的pH为7-8
钻井液工艺原理电子教案—第八章
(1)絮凝剂 定义:通过桥连吸附将一些细颗粒聚结在一起的化 学物质。
钻井液工艺原理电子教案—第八章
类型: 全絮凝剂:即絮凝有用固相又絮凝无用固相 选择性絮凝剂:只絮凝无用固相
钻井液工艺原理电子教案—第八章
全絮凝作用
选择性絮凝作用
钻井液工艺原理电子教案—第八章

钻井液和完井液化学—第八章 钻井液固相控制

钻井液和完井液化学—第八章 钻井液固相控制

固控工艺和原理
一、钻井液中固相物质的分类
钻井液中的固相(或称固体)物质,除按其作用分为有用固相和无用固相外, 还有以下几种不同的分类方法:
1.按固相密度分类:可分为高密度固相和低密度固相两种类型。
2.按固相性质分类:可分为活性固相和惰性固相。凡是容易发生水化作 用或与液相中其它组分发生反应的均称为活性固相,反之则称为惰性 固相。 3.按固相粒度分类:按照美国石油学会(API)制订的标准,钻井液中的固 相可按其粒度大小分三大类:(1)粘土(或称胶粒) 粒径<2µm;(2)泥 粒径2—73 µm ;(3)砂(或称API砂) 粒径>74 µm 。
固控设备概述
四、离心机
工业用离心机有多种类型.但用于钻井液固控的主要是倾注式离心机,其 结构如图8—9所示。
固控设备概述
倾注式离心机又称做沉陷式离心机,其核心部件有滚简、螺旋输送器和变 速器。离心机工作时,钻井液通过一固定的进浆管进入离心机,然后在输送器 轴筒上被加速,并通过在轴筒上开的进浆孔流人滚筒内。由于滚筒的转速极高, 在离心力作用下,密度或体积较大的颗粒被甩向滚筒内壁.使固液两相发生分 离。其固体被输送器送至滚筒的小端,经底流口排出;而含有细颗粒的流体以 相反方向流向滚筒大端.从送流口排出。 离心机可用于处理加重钻井液以回收重晶石和清除细小的钻屑颗粒。离心 机还常用于处理非加重钻井液以清除粒径很小的钻屑颗粒,以及对旋流器的 底流进行二次分离,回收液相,排除钻屑。
加重钻井液的固相控制
1、加重钻井液固控的特点
加重钻井液又称为重泥浆。加重钻井液中同时含有高密度的加重材料和低密 度的膨润土及钻屑。加重钻井液固控的主要特点是,既要避免重品石的损失,又 要尽量减少体系中钻屑的含量。 2.加重钻井油的固控流程 加重钻井液固控系统的基本流程见图8—l 6。 从图8—16可以看出,含大量回收重 晶石的高密度液流从离心机底流口返 回在用的钻井液体系,而将从离心机 溢流口流出的低密度液流废弃。离心 机主要用于清除粒径小于重晶石粉的 钻屑颗粒。

钻井液的固相含量

钻井液的固相含量
活性固相:凡是容易发生水化作用或易与液相中某些组分发生反应的
主要指膨润土
惰性固相:凡不容易发生水化作用或易与液相中某些组分发生反应的
包括石英、长石、重晶石以及造浆率极低的粘土等
有害固相:除重晶石外其余的惰性固相(须尽可能加以清除)
2、钻井液固相含量对与井下安全的关系(过高的固相含量往往对井下安全造成很大危害)
②将蒸馏器的引流管插入冷凝器的孔中,然后将量筒放在引流嘴下方,以接收冷凝成液体的油和水
③接通电源,使蒸馏器开始工作,直至冷凝器引流嘴中不再有液体流出时为止(这段时间一般需20~30min)
④待蒸馏器和加热棒完全冷却后,将其卸开。用铲刀刮去蒸馏器内和加热棒上被烘干的固体。用天平称取固体的质量,并分别读取量简中水、油的体积。
使钻井液流变性能不稳定,粘度、切力偏高,流动性和携岩效果变差
使井壁上形成厚的泥饼,而且质地松散,摩擦系数大,从而导致起下钻遏阻,容易造成粘附卡钻
泥饼质量不好会使钻井液滤失量增大,常造成井壁泥页岩水化膨胀、井径缩小、井壁剥落或坍塌
钻井液易发生盐钙侵和粘土侵,抗温性能变差,维护其性能的难度明显增大
3、钻井液固相含量对钻速的影响
钻井液的固相含量
含义:钻井液中全部固相的体积占钻井液总体积的百分数
重要性:固相含量的高低以及这些固相颗粒的类型、尺寸和性质均对钻井时的井下安全、钻井速度及油气层损害程度等有直接的影响
1、钻井液中固相的类型
根据性质不同,可将钻井液中的固相分为两种类型,活性固相(Active Solids)和惰性固相(Inert So1ids)
固相含量为零(即清水钻进)时,钻速最高
固相含量增大,钻速显著下降;尤其较低固相含量范围时下降更快
固相含量超过10%(体积分数)后,固相含量对钻速影响就相对小了

钻井液固相控制

钻井液固相控制
清洁器的效果十分显著,如果对通过筛网的回收重晶石和 细粒低密度固相适当稀释并添加适量降粘剂,可基本上达 到固控的要求;
• 当密度超过1.8 g/cm3时,清洁器的使用效果会逐渐变差。
可使用离心机将粒径在重晶石范围内的颗粒从液体中分离 出来。含大量回收重晶石的高密度液流(密度约为1.8 g/cm3)从离心机底流口返回在用的钻井液体系,而将从 离心机溢流口流出的低密度液流(密度约为1.15 g/cm3) 废弃;
• 离心机主要用于清除粒径小于重晶石粉的钻屑颗粒。
加重钻井液固控一般流程
钻井液中固相含量的测定与计算
低密度固相含量的确定:
flg = [rw fw + (1 fo fw) rb + ro fo rm] / (rb rlg)
只要测得钻井液密度rm,并用蒸馏实验测得fw
和fo,便可由上式求出低密度固相的体积分数flg。
与钻井液有关的常见矿物和岩石 的阳离子交换容量
名称
凹凸棒石 氯泥石 粘性页岩 伊利石 高岭石 蒙脱石 砂岩 页岩
CEC
15~25 10~40 20~40 10~40 3~15 70~150 0~5 0~20
(meq/100 g)
钻井液塑性粘度的适宜范围
水基钻井液动切力的适宜范围
钻井液中膨润土含量的确定
泥浆清洁器(Mud Cleaner)
• 是一组旋流器和一台细目振动筛的组合。上部为旋流器,
下部为细目振动筛;
• 泥浆清洁器处理钻井液的过程分为两步:第一步是旋流器
将钻井液分离成低密度的溢流和高密度的底流,其中溢流 返回钻井液循环系统,底流落在细目振动筛上;第二步是 细目振动筛将高密度的底流再分离成两部分,一部分是重 晶石和和其它小于网孔的颗粒透过筛网,另一部分是大于 网孔的颗粒从筛网上被排出。

钻井液对钻井的影响及对策(毕业论文)

钻井液对钻井的影响及对策(毕业论文)

钻井液对石油钻井的影响及对策1.绪论石油钻井是一项复杂的技艺工程,需要诸多方面的工种协调密切配合才能使钻井顺利完成。

钻井主要的工种有钻井、内燃机、石油泥浆。

这是紧密联系的三兄弟。

有人形象比喻说:“石油内燃机犹如人的心脏、钻井液(泥浆)犹如人的血液、石油钻井犹如人的骨骼。

”我认为这种比喻有一定的道理。

石油钻井就是由这三种主要的工种组成的一个完整的钻井体系。

钻井技术不断发展,对钻井液要求越来越高。

钻井液性能好坏在很大程度上决定了钻井的成败。

而钻井液性能的好坏是靠处理剂来调节的。

最早使用的钻井液处理剂是天然高分子化合物,例如丹宁、栲胶和无机物来处理钻井液。

后来引进聚丙烯酰胺钻井液。

现在又使用了阳离子、两性离子和正电胶钻井液等,这些都借用了化学学科特别是高分子化学的发展。

钻井液处理剂材料更是和高分子化学密不可分。

因此,钻井液对石油钻井影响很大。

2. 什么是钻井液钻井液就是在钻井过程中的其多种功能满足钻井工作需要的各种循环流体总称。

钻井液的循环是通过钻井泵来维持的,从钻井泵排出的高压钻井液,经过地面高压管、立管、水龙带、水龙头、方钻杆、钻杆、钻铤到达钻头,从钻头水眼上的喷嘴喷出,从清洗井底、携带钻屑。

然后由沿环形空间(钻柱与井壁形成的空间)向上流动。

到达地面后,经地面,低压管汇流入钻井液池,再经各种固控设备进行处理后返回上水池,最后进入钻井泵循环再用。

钻井液经流的各种管件、设备构成了一整套钻井液循环系统。

要深入了解钻井液对钻井的影响还要知道钻井液的作用。

3.钻井液的作用3.1携带和悬浮岩屑是钻井液首要和最基本的功能在悬浮中,沿钻杆向下或从钻孔中向上流动的钻井液有时会停止运动。

出现这种情况只能有两种原因:一是出现了故障,二是在更换钻头时将钻杆提出了钻孔。

钻探停止时,悬浮在钻井液中的钻屑就会沉入钻孔的底部,将钻孔堵塞。

钻井液被设计为具有一种非常有趣的特性,而该特性可以解决这一问题。

钻井液的稠度(或粘度)随钻井液流速降低而增加。

钻井液 第2章 聚合物钻井液20100304

钻井液 第2章  聚合物钻井液20100304

钻井液体系则应注意保持重晶石的悬浮。
(6)滤失量以保持井壁稳定,井下正常为宜。 (7)在整个钻井过程中,基本不用有机分散剂。
三、不分散低固相聚合物钻井液组成和性能指标
3、不分散钻井液体系处理剂的选用原则
(1)采用单一的处理剂是不可能满足不分散性钻井液所需
性能的要求,应将处理剂复配使用; (2)复配的基本原则应该是大分子(分子量为200万以上) 与中、小分子(分子量为60万以内)相结合。
二、达到不分散低固相的措施
(3)絮凝效果评价
a、形成一定清液所需要的时间; b、找最佳絮凝值C佳。
V1 d 1 D V 2 d 2 V1
式中:V1絮凝剂溶液体积; d1絮凝剂溶液比重; D絮凝剂百分含量; V2钻井液体积; d2钻井液比重。
C 佳
相同聚合物不同盐基絮凝能力大小为:K+>NH4+>Na+>Ca2+ 如:K-PAM>Na-PAM等。

类型
除砂器(Desander) 除泥器(Desilter) 超级旋流器


工作原理 影响因素

流量(压力) 尺寸 处理量 底流密度 底流形状

主要参数


3)离心机(Decanting centrifuges)
结构组成
外筒、内筒、离心泵、电机
类型
标准离心机 高速离心机
只要C和保持很低,即使使用低B,仍能获得大的钻速。
一、钻井液组成、性能对钻速的影响
4、固相含量
固含 、P液钻速。 (1)惰性固相(加重剂),对钻速影响小; (2)岩屑、劣质土,对钻速影响居中; (3)活性土、高造浆率土(粘土类),对钻速的影响大。 小于1微米的固相颗粒对钻速影响为粗颗粒的13倍,故钻井 液中亚微米颗粒越多,钻速降低得越严重。

钻井液处理工艺中几项重要的参数指标

钻井液处理工艺中几项重要的参数指标

钻井液处理工艺中几项重要的参数指标钻井液处理工艺中几项重要的参数指标艾潽固控研究室密度钻井液密度是确保安全、快速钻井和保护油气层的一个十分重要的参数,对钻井的主要影响是平衡地层油、气、水层压力,防止井喷,保护和巩固井壁。

钻井对钻井液的基本要求是“压而不死,活儿不喷”,及密度打,但不能把油气层压死,密度小,但是不能发生井喷。

黏度在钻井过程中,粘度升高,钻速降低。

粘度升高会增加流动阻力与功率消耗,泵功率一定的情况下,排量就会降低。

另外,高粘度的钻井液在井底岩石表面形成是个粘性垫子,缓和了钻头牙齿对井底岩石的冲击切削作用。

但粘度高有利于钻井液携带岩西屑,保持井底亲姐。

所以,钻井液粘度计不能太高,也不能太低,应根据钻井速度、设备功率以及所钻底层的特点确定合适的钻井液粘度。

切力钻井液具有切力,有利于携带和悬浮岩屑、重晶石等,不会因停泵而发生沉砂卡钻,也不至于因重晶石沉淀而难于加重。

若切力太大,则清除砂粒和钻屑困难,泥饼质量也差,易引起缩径、井漏、卡钻等事故。

若切力太小,则携带和悬浮岩屑能力降低,停泵易造成沉砂,下钻不到底甚至沉砂卡钻。

所以,钻井液切力太大或太小都对钻井不利,必须根据实际情况选择适当的切力。

滤失性能滤失性能包括滤失量和滤饼质量。

滤失是指在压差作用下,钻井液中的部分液体向井壁岩石的裂隙或孔隙中渗透,滤失的多少就是滤失量,常用单位:mL。

滤饼以厚度来衡量,单位:mm。

钻井液滤失量过大,滤饼厚而疏松,会引起一系列问题。

但是,滤失量也不是越小越好。

因为一方面瞬时滤失量大可增加钻井速度,有利于钻头破碎岩石,提高机械效率,延长钻头使用寿命;另一方面,过分降低滤失量会消耗大量处理剂,增加成本。

滤饼质量高,具有润滑作用,有利于防止粘附卡钻、井壁稳定、防止地层坍塌与剥蚀掉块。

滤饼摩擦系数越小对钻井越有利,为降低滤饼摩擦系数可加入润滑剂,如钻井液中混入一定量原油、液体润滑剂、高分子聚合物PH值钻井实践表明,各种类型的钻井液都有其一定的pH范围,许多处理剂在使用时也要求某一个pH范围。

钻井液与钻井的关系

钻井液与钻井的关系

4.影响滤矢量与滤饼质量的因素 影响因素有:膨润土的含量;固相颗粒 的水化分散性;滤液的粘度;地层岩石的孔 隙度与渗透性;液柱压力与地层压力的差值; 井下温度;滤失时间。 5.滤饼的摩擦系数 滤饼表面有一定的粘滞性,当物体在其 表面产生相对运动时,将受到一定的摩擦阻 力。滤饼的摩擦系数越大,钻具靠近井壁时 产生的摩擦阻力也越大,容易造成粘附卡钻 或起下钻遇阻、遇卡等现象。同时,对钻具 的磨损也越严重,钻具容易产生早期疲劳。 因此,钻井液中通常要加入润滑剂来降低滤 饼的摩擦系数。
6.钻井工艺对滤失量和滤饼质量的要求 滤饼质量高,摩擦系数低,有利于防止粘附卡钻, 有利于井壁稳定,能够防止井壁坍塌与剥蚀掉块。 钻井液虑矢量过大,滤饼质量差(厚而松软)的危 害: (1)易造成地层孔隙堵塞而损害油气层。滤液大 量进入油气层,会导致油气层渗透率等物性变化,损 害油气层,降低产能。 (2)滤饼在井壁堆积太厚,使环空间隙变小,导 致泵压升高。 (3)易使钻头泥包,造成下钻遇阻、遇卡或堵死 水眼。 (4)在高渗透地层易造成滤饼过厚而引起遇卡, 甚至发生粘附卡钻。 (5)导致电测不顺利和电测结果失真。 (6)易导致松软易垮塌地层的坍塌,形成不规则 的井眼,引起井漏等。
初切力是钻井液静止1分钟后所测得的 切力,用θ1表示。 终切力是钻井液静止10分钟后所测得的 切力,用θ10表示。 初切力与终切力的差值表示了钻井液的 另一特征——触变性,即网状结构随静止 时间的长短恢复的程度。差值越大触变性 越强;反之,触变性越弱。
2.钻井液粘度、切力与钻井关系 钻井液粘度对钻井的影响主要是钻井 液从钻头水眼处喷射至井底粘度对钻速的 影响,钻井液粘度高,在井底易形成一个 类似粘性垫子的液层,它降低和减缓了钻 头对井底的冲击力和切削作用,使钻速降 低。若清水钻进钻速提高,由于它的密度 低,形成的液柱压力小,而且粘度小,液 流对井底的冲击力强,使钻头冲击和切削 岩石的阻力小,不分散低固相钻井液具有 很好的剪切稀释效应,

泥浆材料检测与应用:钻井液固相含量对钻井作业的影响及其控制

泥浆材料检测与应用:钻井液固相含量对钻井作业的影响及其控制
通常将钻井液固相控制简称为固控(solids control)。 1.沉降法
指钻井液循环至地面时,通过一个面积较大 的尺子,使较大的固相颗粒沉降下来的方法。 在上部地层钻井时,常用此方法控制固相含 量。
2.稀释法:
指向钻井液加入分散介质(如水、油),使 钻井液固相含量降低的方法。由于分散介质 的加入还会影响钻井液的其他性能,所以很 少使用此法。
5.化学控制法:
指加入絮凝剂使钻井液中的固相颗粒聚集变大而有利于沉降法或者机械设 备法出去固相的方法。此方法可以除去5μm以下的固相颗粒,而单纯的沉 降法和机械设备法则只能除去5μm以上的固相颗粒。
化学控制法(钻井液中的絮凝剂)
8
钻井液絮凝剂是指能使钻井液中的固相颗粒聚集变大的化学剂。
根据聚合物絮凝剂与泥浆中固相作用的情况,聚合物絮凝剂的类型分 为下列两种:
结语
钻井液固相控制是实现优化钻井的重要手段之一。 正确、有效地进行固控可以降低钻井扭矩和摩阻,减小 环空抽吸的压力波动,减少压差卡钻的可能性,提高钻 井速度,延长钻头寿命,减轻设备磨损,改善下套管件, 增强井壁稳定性,保护油气层,降低钻井费用,从而为 科学钻井的必要条件。钻井液固控是现场钻井液维护和 管理工作中最重要的环节之一。
钻井液固相含量对钻井作业 的影响及其控制
钻井液中的固相及固相的分类
• 钻井液中加重剂、岩屑及黏土等固体颗粒所组成的体系称 为固相。
• 按其作用可分为有用固相和无用固相(也叫有害固相)。 有用固相是指有助于改善钻井液性能的固相,如膨润土、 加重剂(青石粉、重晶石及钛铁矿)等;无用固相是指不 能改善钻井液性能,甚至影响钻井液性能,危害钻井正常 进行的固相。
钻井液固相含量对钻井作业的影响
1.高固相含量的危害

钻井液固相控制方法与原理

钻井液固相控制方法与原理

钻井液固相含量对钻井作业的影响及其控制—钻井液固相控制工艺及原理钻井液中的固相含量是指单位体积钻井液中的固相含量的质量,单位用kg.m-3或g.cm-3表示。

固相含量对钻井液性能有重要影响,如粘土含量过高,是钻井液的年粘度和切力增加;岩屑含量过高,是滤饼的渗透率增加,滤矢量增大,滤饼增厚,易发生卡钻事故。

因此,钻井液的固相含量必须严格控制。

控制工艺原理如下:固相控制主要是有四种形式1 自然沉降法2 稀释法3 替代法4 机械法一、钻井液液相选择的原则选择何种液相主要取决于对所钻地层需要的抑制作用。

液相抑制能力强可防止流体减少和活性固体的膨胀,抑制地层的造浆。

二、固控设备的工作体系和原理1、固控原理分级清除钻屑是固控设备体系工作原理,大体上分有四级:振动筛、除砂清洁器、除泥清洁器、离心机(两台)2、固控体系分离点----有这样一种固相颗粒,经过固控设备处理后,有50%在底流中,有50%在溢流中,我们把这个固相颗粒粒度点叫分离点,这主要指非全过流处理设备。

理论上除砂清洁器分离点74μm除泥清洁器分离点43μm离心机分离点15μm高速离心机分离点2μm分离点不是一个定数,根据不同振动筛筛网目数以及泥浆体系不同而不同。

离心机的分离能力取决于固、液相的密度差及沉降区长度,固液两相密度差越相近,也就是进料的浆液年度越大,则分离沉降就越难以进行。

在实际生产中工艺条件影响离心机分离效果的因素主要有三个:进料温度,进料速率,异常工艺条件。

三、固液分离基本原理1.沉降原理当固体和液体(或两个液相)间存在着密度差时,便可采用离心沉降方法莱实现固液分离。

在离心场中,当颗粒重于液体时离心力会使其沿径向向外运动;当颗粒轻于液体时,离心力将使其沿径向向内运动。

因此,离心沉降可以认为是较轻颗粒中立沉降法的一种延伸,并且能够分离通常在重力场中稳定的浑浊液。

任何一种分离过程的机理,均依赖于两种组分间是否存在相对运动。

因而存在两种可能性:固体通过流体床沉降;液体通过固体床沉降。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钻井液中固相含量对钻井作业的影响及其控制摘要钻井液中的固相含量是指固相物质体积占中的循环钻井液体积的百分比。

钻井液中固相的含量对钻井液的性能及钻井工艺有着重要影响, 通过调整钻井液中固相的含量可以控制钻井液密度, 使其与地层保持相同压力,避免井喷,井涌等事故。

清除有害的岩屑,可以减小钻井液与设备之间的摩擦力,减小设备的受损程度,提高钻速,减少成本。

关键词固相含量影响控制
钻井液中的固相物质一般是指粘土, 调节钻井液密度的材料 (如重晶石和岩屑。

前者可以调节钻井液的性能,加入粘土可以提高钻井液的粘度和切力;后者属
于有害固相,使钻井液性能变坏,岩屑含量过高,会使滤饼的渗透率增加,滤失量增大,滤饼增厚,易发生卡钻事故,此外还会降低钻速,增大设备的磨损程度,钻井成本增高。

可见,钻井液中的固相含量必须加以控制,清除有害固相,保持一定量有用固相。

如果将钻井液中的有害固相控制在合适范围内, 会有一下几个方面的好处:降低钻井液的扭矩和摩阻; 减小抽吸压力和压力激动;减小压差卡钻的可能性;减小测井工具的阻卡;改善下套管的条件;提高固井质量;延长钻头寿命;减轻设备磨损;增强井眼稳定性;提高钻速;降低钻井及钻井液成本等。

一、钻井液中的固相物质
钻井液中的固相可按不同的标准分类:
(1 若按来源分类, 固相可分为配浆粘土、岩屑、密度调整材料和
处理剂中的固相物质等。

(2 若按密度分类,固相可分为高密度(>=2.7g/cm^3固相和低密度(<2.7g/cm^3
固相。

前者如重晶石(密度在 4.2~ 4.6g/cm^3范围 , 后者如膨润土和钻屑 (密度在 2.4~ 2.7g/cm^3范围。

(3 若按表面的化学活性分类, 固相可分为表面活性固相和表面惰性固相。

前者如膨润土, 它的表面易与水和一些处理剂发生作用;后者如重晶石,它的表面不与
水和处理剂发生作用。

(4 若按在钻井液中是否有用分类, 固相可分为有用固相和无用固相。

粘土和密度调整材料为有用固相,岩屑为无用固相。

(5 若按颗粒直径分类,固相又可分为胶体粒子(<2µm 、泥(2~ 74µm 、砂(>74µm等。

二、钻井液中固相含量对钻井液及其钻井工艺的影响对钻井液性能的影响
(1影响钻井液密度。

(2影响造壁性;随着钻井液固相含量的增加,相同失水量条件下,对应得泥饼增厚。

(3影响钻井液流变性。

影响途径
1、增加颗粒之间、颗粒与液相之间的摩擦;
2、固体表面吸收水分,使钻井液自由水减少;
3、形成空间网架结构。

随着固相含量的增加,钻井液粘度增大,
切力上升, 其影响程度主要取决于固相含量、颗粒直径和固相表面活性。

影响因素
1、固相含量:随着固相含量的增加,钻井液流动阻力增大,粘切力升高。

2、颗粒尺寸:在固相含量相同的情况下,固体颗粒直径越小, 数目越多,所产生的阻力越大,因而钻井液的粘切就越高。

3、固体的活性:惰性固体只产生纯摩擦,所以对塑性粘度影响较大,对其他影响较小。

然而活性固体不仅产生摩擦,而且液相之间相互作用,所以它不但影响塑性粘度,对其它钻井液性能也有影响。

(4影响滤液性能:由于活性固体表面要发生水解、电离和离子交换等作用,就会使钻井液 PH 、电解质浓度等发生变化。

对钻井工艺的影响
(1影响钻速,由于固相含量增加时易产生“压持效应”,造成重复破碎,从而使机械钻速下降。

(2引起井下复杂情况,由于固相含量增加,摩阻增大、密度增大、泥饼增厚、粘切升高等,就容易造成压差卡钻,还易造成压力激动和抽吸压力,进而引起井漏或井喷。

(3其它:由于固相含量增加,容易造成下套管、电测等困难容易堵塞油气管道,损害油气层。

三、钻井液固相含量的要求
钻井液中固相含量主要包括膨润土、加重剂和钻屑。

膨润土含量要求
钻井液的膨润土含量,主要取决于钻井液流变性、造壁性和悬浮能力的要求。

如果膨润土含量太低,不能使钻井液具有一定的粘度、切力,而且不易形成泥饼,因而不能满足携岩、悬浮加重材料和稳定井壁的要求;如果膨润土含量过高,则会导致
泥饼过厚、粘度、切力过大,容易引起井下复杂情况。

所以, 膨润土含量不能过高,也不能过低,优质膨润土的最佳含量在 0.5~3.5%之间。

影响膨润土含量的因素
(1膨润土的质量
膨润土造浆率越高,对膨润土的需求越少。

(2钻井液密度
当钻井液密度高时, 总固相含量大, 钻井液粘切高, 为保证井下安全, 膨润土含量应低点, 只要有足够悬浮加重材料的膨润土含量即可;当密度低时,应保持适当高点的膨润土含量
(3钻井液矿化度:
钻井液矿化度高时,膨润土易凝结,不易水化造浆,此时膨
润土含量应适当高点;当矿化度低时,膨润土含量应适当低点
(4钻井液使用的温度
由于高温有助于膨润土的水化扩散。

因此在深井高温处使用钻
井液,膨润土含量应低点,在浅井低温处,膨润土含量应高点加重剂含量要求
加入加重材料是为了满足井下对钻井液密度的需求, 所以加重材料的含量是由钻井液密度决定的。

钻屑含量的要求
钻屑是被认为有害固相, 过多会影响钻井液性能, 因此, 钻井液中的钻屑应越少越好, 但考虑到现场实际工艺, 钻屑不可能被彻底清除, 同时, 作为低固相钻井液, 如果含有少量钻屑作架桥离子, 对钻井液的造壁性是有利的, 所以, 现场允许钻井液含有少量钻屑,但其含量不能超过膨润土含量的两倍。

四、钻井液中固相含量的控制方法
1、沉降法
沉降法是指钻井液循环至地面时,通过一个面积较大的池子, 使颗粒较大的固相沉降下来的方法。

在上部地层钻井时, 常用此方法控制固相含量
2、稀释法
稀释法是指向钻井液加入分散介质 (如水、油 , 使钻井液固相含量降低的方法。

由于分散介质的加入还会影响钻井液的其他性能,所以很少使用此法。

3、机械设备法
机械设备法是指通过机械设备 (如振动筛、除砂器、离心机等将较大的固体颗粒分离出去的方法。

4、化学控制法化学控制法是指加入絮凝剂使钻井液中的固相颗粒聚集变大而有利于用沉降法或机械设备法除去固相的方法。

此方法可除去 5µm 以下的固相颗粒,而单纯的沉降法和机械设备法则只能除去 5µm 以上的颗粒。

参考文献:【1】赵福麟《油田化学 2》中国石油大学出版社;【2】黄汉仁,杨坤鹏,罗平亚。

《泥浆工艺原理》石油工业出版社【3】鄢捷年《钻井液工艺学》石油大学出版社 6。

相关文档
最新文档