复习专题:平面向量及其应用
高考数学(文)《平面向量》专题复习
第1节 平面向量的概念及线性运算、 平面向量基本定理
600分基础 考点&考法
❖考点29 平面向量的基本概念及线性运算 ❖考点30 平面向量的坐标运算
返回
考点29 平面向量的基本概念及线性运算
❖考法1 平面向量的有关概念 ❖考法2 平面向量的线性运算
返回
考点29 平面向量的基本概念及线性运算
【注意】①向量数乘的特殊情况:当λ=0时,λa=0;当a=0时,λa=0.②实数和向量可 以求积,但不能求和、求差.③正确区分向量数量积与向量数乘的运算律.
返回
考法2 平面向量的线性运算
返回
考点30 平面向量的坐标运算
❖考法3 平面向量基本定理的应用 ❖考法4 平面向量的共线问题 ❖考法5 平面向量的坐标表示与运算
1.向量的有关概念
2.向量的线性运算
考法1 平面向量的有关概念
解决平面向量的有关概念的问题时,应注意以下两点: 1.应正确理解向量的概念 ①向量既有大小,又有方向,任意两个向量不能比较大小,只可以 判断它们是否相等,但它们的模可以比较大小;②大小与方向是向 量的两个要素,分别是向量的代数特征与几何特征;③向量可以自 由平移,任一组平行向量都可以移到同一直线上. 2.正确理解共线向量与平行向量 共线向量就是平行向量,其要求是几个非零向量的方向相同或相反, 当然向量所在直线可以平行,也可以重合,其中“共线”的含义不 同于平面几何中“共线”的含义.
(2)b在a方向上的投影是 一个数量,当0°≤θ< 90°时为正;当90°<θ ≤180°时为负;当θ= 90°时为0.
考点31 平面向量的数量积
【注意】x1y2-x2y1=0与x1x2+y1y2=0不同,前者是两向量a=(x1,y1), b=(x2,y2)共线的充要条件,后者是它们垂直的充要条件.
【三轮复习】回归课本-专题6 平面向量及其应用
专题6 平⾯向量及其应⽤1.如图,O 是平⾏四边形ABCD 外⼀点,⽤表示.【答案】【解析】【详解】由,,,即可得到结论.解:.向量的线性运算向量运算定义法则(或⼏何意义)运算律加法求两个向量和的运算交换律:a +b =b +a ;结合律:(a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算a -b =a +(-b )数乘求实数λ与向量a 的积的运算|λ a |=|λ||a |,当λ>0时,λa 与a 的⽅向相同;当λ<0时,λa 与a 的⽅向相反;当λ=0时,λa =0λ(μ a )=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b )=λa +λb平⾯向量线性运算问题的求解策略:(1)进⾏向量运算时,要尽可能地将它们转化到三⻆形或平⾏四边形中,充分利⽤相等向量、相反向量,三⻆形的中位线及相似三⻆形对应边成⽐例等性质,把未知向量⽤已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形⼿段在线性运算中同样适⽤.(3)⽤⼏个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三⻆形或多边形;③运⽤法则找关系;④化简结果.(2022·新⾼考Ⅰ卷T3),,OA −⇀OB −⇀OC −⇀−OD −⇀−=−+OD −⇀−OA −⇀OB −⇀OC−⇀−=+OD −→−OA −→−AD −→−=AD −→−BC −→−=−BC −→−OC −→−OB −→−=+=+=+−=−+OD −→−OA −→−AD −→−OA −→−BC −→−OA −→−OC −→−OB −→−OA −→−OB −→−OC −→−在中,点D 在边AB 上,.记,则( )A .B .C .D .【⼀题多变4】7.已知是两个不共线的向量,,e 1⇀e 2⇀⇀A .1B .在平⾏四边形中,分别,则的值为______.【⼀题多变4】13.已知,,(1);(2).解:(1)由平⾯向量的数量积运算=1∣∣a ⇀∣∣=2∣∣b ⇀∣∣|c |=(⋅)a⇀b ⇀c ⇀(⋅)a ⇀b⇀c ⇀A .B .如图,在中,,的⾯积为,的最⼩A.2【⼀题多变4】已知O为坐标原点,点A.C.−→−26.已知中,【分析】利⽤勾股定理判的夹⻆的取值的最⼤值.解:如图,作,垂△ABC AC ,CM −→−CN −→−∵AC =1,BC =∴A +B =A C 2C 2B CD ⊥AB A .C .若E 为线段AD 的中点【⼀题多变2】在中,在某海滨城市O附近海⾯有⼀台⻛,据监测,当前台⻛中⼼位于城市O(如图所示)的东偏南θ,cos θ=,θ∈(0°,90°)⽅向300 km的海⾯P处,并以20 km/h的速度向⻄偏北45°⽅向移动.台⻛侵袭的范围为圆形区域,当前半径为60 km,并以10 km/h的速度不断增⼤.问⼏⼩时后该城市开始受到台⻛的侵袭?注:cos(θ-45°)=A.的最⼩值为B.的范围为C.当时,D.当时,【⼀题多变3】骑⾏是⽬前很流⾏的⼀种绿⾊健身和环保它带给⼈们的不仅是简单的身体上的运动(前轮),圆(后轮)的半径均为,A.B【⼀题多变4】38.已知点H 在所在的平⾯内,且满⾜,求证:点H 是的垂⼼(即三条⾼的交点).【答案】证明⻅解析.【解析】【详解】解:由数量积运算的性质可整理得到,由此得到;同理可证得,,由此可证得结论.解:由得:由同理可得:由同理可得:是的垂⼼三⻆形“四⼼”常⻅的向量表示形式:(1)重⼼.若点G 是的重⼼,则或 (其中P 为平⾯内任意⼀点).反之,若,则点G 是的重⼼.(2)垂⼼.若H 是的垂⼼,则.反之,若,则点H 是的垂⼼.(3)内⼼.若点I 是的内⼼,则.反之,若,则点I 是的内⼼.(4)外⼼.若点O 是的外⼼,则或.反之,若,则点O 是的外⼼.结合“四⼼”性质与向量运算进⾏推演,得出结论.【⼀题多变1】ΔABC ⋅=⋅=⋅HA −⇀−HB −⇀−HB −⇀−HC −⇀−HC −⇀−HA −⇀−ΔABC ⋅=⋅HA −→−HB −→−HB −→−HC −→−⋅=0HB −→−CA −→−HB ⊥CA HC ⊥AB HA ⊥CB ⋅=⋅HA −→−HB −→−HB −→−HC −→−⋅−⋅=⋅(−)=⋅=0HA −→−HB −→−HB −→−HC −→−HB −→−HA −→−HC −→−HB −→−CA −→−∴HB ⊥CA⋅=⋅HB −→−HC−→−HC −→−HA −→−HC ⊥AB ⋅=⋅HA −→−HB −→−HC −→−HA −→−HA ⊥CB∴H ΔABC △ABC ++=0GA −→−GB −→−GC −→−=(++)PG −→−13PA −→PB −→PC −→−++=0GA −→−GB −→−GC −→−△ABC △ABC ⋅=⋅=⋅HA −→−HB −→−HB −→−HC −→−HC −→−HA −→−⋅=⋅=HA −→−HB −→−HB −→−HC −→−⋅HC −→−HA −→−△ABC △ABC ⋅+⋅+⋅=0∣∣∣BC −→−∣∣∣IA−→∣∣∣CA −→−∣∣∣IB −→∣∣∣AB −→∣∣∣IC −→⋅+⋅∣∣∣BC −→−∣∣∣IA −→∣∣∣CA −→−∣∣∣+⋅=0IB −→∣∣∣AB −→∣∣∣IC −→△ABC △ABC (+)⋅=(+)⋅=(+)⋅=0OA −→−OB −→−BA −→OB −→−OC −→−CB −→−OC −→−OA −→−AC −→−==∣∣∣OA −→−∣∣∣∣∣∣OB −→−∣∣∣∣∣∣OC −→−∣∣∣==∣∣∣OA −→−∣∣∣∣∣∣OB −→−∣∣∣∣∣∣OC −→−∣∣∣△ABC 已知正⽅形,边⻓为,动点⾃点出发沿运动,动点⾃点出发沿运动,且动点的速度是动点的2倍,若⼆者同时出发,且到达时停⽌,另⼀个点也停⽌,则该过程中的最⼤值是______.瑞⼠数学家欧拉在1765年发表的《三⻆形的⼏何学》⼀书中有这样⼀个定理:“三⻆形的外⼼、垂⼼和重⼼都在同⼀直线上,⽽且外⼼和重⼼的距离是垂⼼和重⼼距离之半,”这就是著名的欧拉线定理.设中,点O 、H 、G 分别是外⼼、垂⼼和重⼼,下列四个选项中结论正确的是( )A .B .C .D .。
2024届高考一轮复习数学教案(新人教B版):平面向量的综合应用
§5.4平面向量的综合应用题型一平面向量在几何中的应用例1(1)如图,在△ABC 中,cos ∠BAC =14,点D 在线段BC 上,且BD =3DC ,AD =152,则△ABC 的面积的最大值为________.答案15解析设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,因为BD =3DC ,AD →=14AB →+34AC →,又AD =152,cos ∠BAC =14,所以AD →214AB +34AC =116c 2+916b 2+38bc cos ∠BAC =116c 2+916b 2+332bc ,又154=116c 2+916b 2+332bc =14c 234b +332bc ≥2×14c ×34b +332bc =1532bc ,当且仅当c =3b 时,等号成立.所以bc ≤8,又sin ∠BAC =154,所以S △ABC =12bc sin ∠BAC ≤12×8×154=15.(2)(2022·天津)在△ABC 中,CA →=a ,CB →=b ,D 是AC 的中点,CB →=2BE →,试用a ,b 表示DE →为________,若AB →⊥DE →,则∠ACB 的最大值为________.答案32b -12a π6解析DE →=CE →-CD →=32b -12a ,AB →=CB →-CA →=b -a ,由AB →⊥DE →得(3b -a )·(b -a )=0,即3b 2+a 2=4a ·b ,所以cos ∠ACB =a ·b |a ||b |=3b 2+a 24|a ||b |≥23|a ||b |4|a ||b |=32,当且仅当|a |=3|b |时取等号,而0<∠ACB <π,所以∠ACB,π6.思维升华用向量方法解决平面几何问题的步骤平面几何问题――→设向量向量问题――→计算解决向量问题――→还原解决几何问题.跟踪训练1(1)在△ABCBC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为()A .等边三角形B .直角三角形C .等腰三角形D .三边均不相等的三角形答案A解析AB →|AB →|,AC →|AC →|分别表示AB →,AC →方向上的单位向量,AB →|AB →|+AC →|AC →|在∠A 的角平分线上,BC →=0,∴|AB →|=|AC →|,又AB →|AB →|·AC →|AC →|=12,∴cos 〈AB →,AC →〉=AB →|AB →|·AC →|AC →|=12,则AB →与AC →的夹角为60°,即∠BAC =60°,可得△ABC 是等边三角形.(2)在△ABC 中,AC =9,∠A =60°,D 点满足CD →=2DB →,AD =37,则BC 的长为()A .37B .36C .33D .6答案A解析因为CD →=2DB →,所以AD →=AB →+BD →=AB →+13BC→=AB →+13(AC →-AB →)=23AB →+13AC →,设AB =x ,则AD →2+13AC ,得37=49x 2+49×x ×9cos 60°+19×92,即2x 2+9x -126=0,因为x >0,故解得x =6,即AB =6,所以|BC →|=|AC →-AB →|=|AB →|2+|AC →|2-2|AB →|·|AC →|cos 60°=62+92-2×6×9×12=37.题型二和向量有关的最值(范围)问题命题点1与平面向量基本定理有关的最值(范围)问题例2如图,在△ABC 中,点P 满足2BP →=PC →,过点P 的直线与AB ,AC 所在的直线分别交于点M ,N ,若AM →=xAB →,AN →=yAC →(x >0,y >0),则2x +y 的最小值为()A .3B .32C .1 D.13答案A解析由题意知,AP →=AB →+BP →=AB →+BC →3=AB →+AC →-AB →3=2AB →3+AC →3,又AM →=xAB →,AN →=yAC →(x >0,y >0),∴AP →=2AM →3x +AN →3y,由M ,P ,N 三点共线,得23x +13y =1,∴2x +y =(2x +y =53+2x 3y +2y 3x ≥53+22x 3y ·2y3x=3,当且仅当x =y 时等号成立.故2x +y 的最小值为3.命题点2与数量积有关的最值(范围)问题例3已知在边长为2的正△ABC 中,M ,N 分别为边BC ,AC 上的动点,且CN =BM ,则AM →·MN→的最大值为________.答案-43解析建立如图所示的平面直角坐标系,则B (-1,0),C (1,0),A (0,3),则BC →=(2,0),CA →=(-1,3),设BM →=tBC →(0≤t ≤1),则CN →=tCA →(0≤t ≤1),则M (2t -1,0),N (1-t ,3t ),∴AM →=(2t -1,-3),MN →=(2-3t ,3t ),∴AM →·MN →=(2t -1)×(2-3t )+(-3)×(3t )=-6t 2+4t -2=--43,当t =13时,AM →·MN →取得最大值-43.命题点3与模有关的最值(范围)问题例4已知a ,b 是单位向量,a ·b =0,且向量c 满足|c -a -b |=1,则|c |的取值范围是()A .[2-1,2+1]B .[2-1,2]C .[2,2+1]D .[2-2,2+2]答案A解析a ,b 是单位向量,a ·b =0,设a =(1,0),b =(0,1),c =(x ,y ),|c -a -b |=|(x -1,y -1)|=(x -1)2+(y -1)2=1,∴(x -1)2+(y -1)2=1,|c |表示以(1,1)为圆心,1为半径的圆上的点到原点的距离,故12+12-1≤|c |≤12+12+1,∴2-1≤|c |≤2+1.思维升华向量求最值(范围)的常用方法(1)利用三角函数求最值(范围).(2)利用基本不等式求最值(范围).(3)建立坐标系,设变量构造函数求最值(范围).(4)数形结合,应用图形的几何性质求最值.跟踪训练2(1)已知平行四边形ABCD 的面积为93,∠BAD =2π3,E 为线段BC 的中点.若F 为线段DE 上的一点,且AF →=λAB →+56AD →,则|AF →|的最小值为()A.11B .3 C.7D.5答案D解析设|AB →|=x ,|AD →|=y ,则S =x ·y ·sin 2π3=32xy =93,∴xy =18.∵AF →=λAB →+56AD →=λ(AE →+EB →)+56AD →=λAE →,∵E ,F ,D 三点共线,∴λ+56-λ2=1⇒λ=13,∴AF →=13AB →+56AD →,∴|AF →|2=19|AB →|2+59AB →·AD →+2536|AD →|2=19x 2+59xy +2536y 2≥-5+219·2536·x 2·y 2=5,当且仅当x =52y 时,等号成立.∴|AF →|的最小值为5.(2)(2023·苏州模拟)已知△ABC 为等边三角形,AB =2,△ABC 所在平面内的点P 满足|AP →-AB →-AC →|=1,则|AP →|的最小值为()A.3-1B .22-1C .23-1D.7-1答案C解析因为|AB →+AC →|2=AB →2+AC →2+2AB →·AC→=|AB →|2+|AC →|2+2|AB →|·|AC →|cos π3=12,所以|AB →+AC →|=23,由平面向量模的三角不等式可得|AP →|=|(AP →-AB →-AC →)+(AB →+AC →)|≥||AP →-AB →-AC →|-|AB →+AC →||=23-1.当且仅当AP →-AB →-AC →与AB →+AC →方向相反时,等号成立.因此|AP →|的最小值为23-1.(3)(2022·北京)在△ABC 中,AC =3,BC =4,∠C =90°.P 为△ABC 所在平面内的动点,且PC =1,则PA →·PB →的取值范围是()A .[-5,3]B .[-3,5]C .[-6,4]D .[-4,6]答案D解析以C 为坐标原点,CA ,CB 所在直线分别为x 轴、y 轴建立平面直角坐标系(图略),则A (3,0),B (0,4).设P (x ,y ),则x 2+y 2=1,PA →=(3-x ,-y ),PB →=(-x ,4-y ),所以PA →·PB →=x 2-3x +y 2-4y+(y -2)2-254.又+(y -2)2表示圆x 2+y 2=1圆心(0,0)离为52,所以PA →·PB →-254,-254,即PA →·PB →∈[-4,6],故选D.课时精练1.四边形ABCD 中,AD →=BC →,(AB →+AD →)·(AB →-AD →)=0,则这个四边形是()A .菱形B .矩形C .正方形D .等腰梯形答案A解析由题意,AD →=BC →,即|AD |=|BC |且AD ∥BC ,故四边形ABCD 为平行四边形,又(AB →+AD →)·(AB →-AD →)=AC →·DB →=0,故AC ⊥BD 即四边形ABCD 为菱形.2.(多选)如图,点A ,B 在圆C 上,则AB →·AC →的值()A .与圆C 的半径有关B .与圆C 的半径无关C .与弦AB 的长度有关D .与点A ,B 的位置有关答案BC解析如图,连接AB ,过C 作CD ⊥AB 交AB 于D ,则D 是AB 的中点,故AB →·AC →=|AB →|·|AC →|·cos ∠CAD =|AB →|·|AC →|·12|AB →||AC →|=12|AB →|2,故AB →·AC →的值与圆C 的半径无关,只与弦AB 的长度有关.3.如图,在△ABC 中,BD →=23BC →,E 为线段AD 上的动点,且CE →=xCA →+yCB →,则1x +3y 的最小值为()A .8B .9C .12D .16答案D解析由已知得CB →=3CD →,∴CE →=xCA →+yCB →=xCA →+3yCD →,∵E 为线段AD 上的动点,∴A ,D ,E 三点共线,∴x +3y =1且x >0,y >0,∴1x +3y =1x +3y (x +3y )=10+3y x +3xy ≥10+23y x ·3xy=16,当且仅当x =y =14时,等号成立.故1x +3y的最小值为16.4.在△ABC 中,A =π3,G 为△ABC 的重心,若AG →·AB →=AG →·AC →=6,则△ABC 外接圆的半径为()A.3 B.433C .2D .23答案C解析由AG →·AB →=AG →·AC →,可得AG →·(AB →-AC →)=AG →·CB →=0,则有AG ⊥BC ,又在△ABC 中,A =π3,G 为△ABC 的重心,则△ABC 为等边三角形.则AG →·AB →=23×12(AB →+AC →)·AB→|2+|AB →|2cos =12|AB →|2=6,解得|AB →|=23,则△ABC 外接圆的半径为12×|AB →|sin π3=12×2332=2.5.在平行四边形ABCD 中,AB =1,AD =2,AB ⊥AD ,点P 为平行四边形ABCD 所在平面内一点,则(PA →+PC →)·PB →的最小值是()A .-58B .-12C .-38D .-14答案A解析建立如图所示的平面直角坐标系,设P (x ,y ),则A (0,0),B (1,0),C (1,2),所以PB →=(1-x ,-y ),PA →+PC →=(-x ,-y )+(1-x ,2-y )=(1-2x ,2-2y ),故(PA →+PC →)·PB →=(1-2x )(1-x )+(2-2y )(-y )=+-58,所以当x =34,y =12时,(PA →+PC →)·PB →取得最小值-58.6.设向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c ·(a +b -c )=0,则|c |的最大值等于()A .1B .2C .1+52D.5答案D解析向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,不妨设a =(1,0),b =(0,2),c =(x ,y ),∵c ·(a +b -c )=0,∴(x ,y )·(1-x ,2-y )=x (1-x )+y (2-y )=0,即x 2+y 2-x -2y =0,整理可得+(y -1)2=54,则|c |,半径为52的圆上的点到原点的距离,则|c |+52= 5.7.(多选)(2022·珠海模拟)已知点O 在△ABC 所在的平面内,则以下说法正确的有()A .若OA →+OB →+OC →=0,则点O 为△ABC 的重心B .若OA →OB →0,则点O 为△ABC 的垂心C .若(OA →+OB →)·AB →=(OB →+OC →)·BC →=0,则点O 为△ABC 的外心D .若OA →·OB →=OB →·OC →=OC →·OA →,则点O 为△ABC 的内心答案AC解析选项A ,设D 为BC 的中点,由于OA →=-(OB →+OC →)=-2OD →,所以O 为BC 边上中线的三等分点(靠近点D ),同理可证O 为AB ,AC 边上中线的三等分点,所以O 为△ABC 的重心,选项A 正确;选项B ,向量AC →|AC →|,AB →|AB →|分别表示在边AC 和AB 上的单位向量,设为AC ′—→和AB ′—→,则它们的差是向量B ′C ′———→,则当OA →0,即OA →⊥B ′C ′———→时,点O 在∠BAC 的角平分线上,同理由OB →0,知点O 在∠ABC 的角平分线上,故O 为△ABC 的内心,选项B 错误;选项C ,由(OA →+OB →)·AB →=0,得(OA →+OB →)·(OB →-OA →)=0,即OB →2=OA →2,故|OA →|=|OB →|,同理有|OB →|=|OC →|,于是O 为△ABC 的外心,选项C 正确;选项D ,由OA →·OB →=OB →·OC →,得OA →·OB →-OB →·OC →=0,所以OB →·(OA →-OC →)=0,即OB →·CA →=0,所以OB →⊥CA →,同理可证OA →⊥CB →,OC →⊥AB →,所以OB ⊥CA ,OA ⊥CB ,OC ⊥AB ,即点O 是△ABC 的垂心,选项D 错误.8.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,每逢新春佳节,我国许多地区的人们都有贴窗花的习俗,以此达到装点环境、渲染气氛的目的,并寄托着辞旧迎新、接福纳祥的愿望.图①是一张由卷曲纹和回纹构成的正六边形剪纸窗花,已知图②中正六边形ABCDEF 的边长为2,圆O 的圆心为正六边形的中心,半径为1,若点P 在正六边形的边上运动,MN 为圆的直径,则PM →·PN →的取值范围是()A .[1,2]B .[2,3]C.32,4 D.32,3答案B解析如图所示,取AF 的中点Q ,根据题意,△AOF 是边长为2的正三角形,易得|OQ |=3,又PM →·PN →=(PO →+OM →)·(PO →+ON →)=|PO →|2+PO →·ON →+PO →·OM →+OM →·ON →=|PO →|2+PO →·(ON →+OM →)-1=|PO →|2-1,根据图形可知,当点P 位于正六边形各边的中点时,|PO |有最小值为3,此时|PO →|2-1=2,当点P 位于正六边形的顶点时,|PO |有最大值为2,此时|PO →|2-1=3,故PM →·PN →的取值范围是[2,3].9.(2022·晋中模拟)已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|2PA →+3PB →|的最小值为________.答案7解析以D 为坐标原点,DA →,DC →分别为x ,y 轴的正方向建立平面直角坐标系,如图所示,设C (0,a ),P (0,b ),B (1,a ),A (2,0),0≤b ≤a ,则2PA →+3PB →=2(2,-b )+3(1,a -b )=(7,3a -5b ),|2PA →+3PB →|=49+(3a -5b )2≥7,当且仅当b =3a 5时取得最小值7.10.已知P 是边长为4的正△ABC 所在平面内一点,且AP →=λAB →+(2-2λ)AC →(λ∈R ),则PA →·PC→的最小值为________.答案5解析取BC 的中点O ,∵△ABC 为等边三角形,∴AO ⊥BC ,则以O 为坐标原点建立如图所示的平面直角坐标系,则B (-2,0),C (2,0),A (0,23),设P (x ,y ),∴AP →=(x ,y -23),AB →=(-2,-23),AC →=(2,-23),∴AP →=λAB →+(2-2λ)AC →=(4-6λ,23λ-43)x =4-6λ,y =23λ-23,∴P (4-6λ,23λ-23),∴PA →=(6λ-4,43-23λ),PC →=(6λ-2,23-23λ),∴PA →·PC →=(6λ-4)(6λ-2)+(43-23λ)(23-23λ)=48λ2-72λ+32,由二次函数性质知,当λ=34时,PA →·PC →取得最小值5.11.(2022·广州模拟)在△ABC 中,D 为AC 上一点且满足AD →=13DC →,若P 为BD 上一点,且满足AP →=λAB →+μAC →,λ,μ为正实数,则λμ的最大值为________.答案116解析∵λ,μ为正实数,AD →=13DC →,故AC →=4AD →,∴AP →=λAB →+4μAD →,又P ,B ,D 三点共线,∴λ+4μ=1,∴λμ=14·λ·4μ=116,当且仅当λ=12,μ=18时取等号,故λμ的最大值为116.12.(2022·浙江)设点P 在单位圆的内接正八边形A 1A 2…A 8的边A 1A 2上,则PA →21+P A →22+…+PA →28的取值范围是______________.答案[12+22,16]解析以圆心为原点,A 7A 3所在直线为x 轴,A 5A 1所在直线为y 轴建立平面直角坐标系,如图所示,则A 1(0,1),AA 3(1,0),AA 5(0,-1),A-22A 7(-1,0),A -22,设P (x ,y ),于是PA →21+PA →22+…+PA →28=8(x 2+y 2)+8,因为cos 22.5°≤|OP |≤1,所以1+cos 45°2≤x 2+y 2≤1,故PA →21+PA →22+…+PA →28的取值范围是[12+22,16].。
平面向量应用
平面向量应用平面向量是解决几何问题的强大工具之一。
它广泛应用于各个领域,如物理、工程学、计算机图形学等。
本文将介绍平面向量的定义、运算以及它在实际问题中的应用。
一、定义平面向量是由有序数对(a, b)表示的几何对象。
其中,a和b分别表示向量在x和y轴上的分量。
平面向量通常记作a=i+bj,其中i和j是单位向量,分别表示x和y轴的方向。
例如,向量a=(2, 3)可以表示为a=2i+3j。
二、运算平面向量的运算主要包括加法、减法和数量乘法。
1. 加法:向量的加法满足交换律和结合律。
例如,向量a=(2, 3)和向量b=(1, 2)的和为a+b=(3, 5)。
2. 减法:向量的减法可以通过加法和数量乘法得到。
例如,向量a=(2, 3)减去向量b=(1, 2)可以表示为a-b=a+(-1)b=(2, 3)+(-1)(1, 2)=(2,3)+(-1, -2)=(1, 1)。
3. 数量乘法:向量的数量乘法即将向量的每个分量都乘以一个实数。
例如,向量a=(2, 3)乘以实数k的结果为ka=(2k, 3k)。
三、应用1. 位移和平移:平面向量可以描述物体的位移和平移。
例如,向量a=(3, 4)表示一个物体向右移动3个单位,向上移动4个单位。
如果一个图形绕(0,0)顺时针旋转90度,后者获得反方向的位移(4,-3),这是向量数量乘法的应用。
2. 力的合成:在物理学中,力可以表示为平面向量。
如果有两个力F1=(2, 3)和F2=(-1, 2),求合力F=F1+F2。
通过向量的加法可得,F=(2, 3)+(-1, 2)=(1, 5)。
合力F的大小可以通过向量的模来计算,即√(1^2+5^2)=√26。
3. 图形相似性:平面向量在计算机图形学中有广泛应用。
例如,两个多边形之间的相似性可以通过向量来判断。
如果两个多边形的对应边平行且长度成比例,那么它们是相似的。
通过向量运算可以计算多边形的平移、旋转、缩放等操作。
4. 线性方程组的解:线性方程组的解可以通过向量计算得到。
高中数学新教材高一下期末复习第一讲 平面向量及其应用(解析版)
平面向量及其应用单元复习一知识结构图二.学法指导1.向量线性运算的基本原则和求解策略(1)基本原则:向量的加法、减法和数乘运算统称为向量的线性运算.向量的线性运算的结果仍是一个向量.因此,对它们的运算法则、运算律的理解和运用要注意向量的大小和方向两个方面.(2)求解策略:向量是一个有“形”的几何量,因此在进行向量线性运算时,一定要结合图形,这是研究平面向量的重要方法与技巧.2. 向量数量积的求解策略(1)利用数量积的定义、运算律求解.在数量积运算律中,有两个形似实数的完全平方公式在解题中的应用较为广泛,即(a+b)2=a2+2a·b+b2,(a-b)2=a2-2a·b+b2,上述两公式以及(a+b)·(a-b)=a2-b2这一类似于实数平方差的公式在解题过程中可以直接应用.(2)借助零向量.即借助“围成一个封闭图形且首尾相接的向量的和为零向量”,再合理地进行向量的移项以及平方等变形,求解数量积.(3)借助平行向量与垂直向量.即借助向量的拆分,将待求的数量积转化为有垂直向量关系或平行向量关系的向量数量积,借助a⊥b,则a·b =0等解决问题.(4)建立坐标系,利用坐标运算求解数量积. 3.解三角形的一般方法(1)已知两角和一边,如已知A ,B 和c ,由A +B +C =π求C ,由正弦定理求a ,b .(2)已知两边和这两边的夹角,如已知a ,b 和C ,应先用余弦定理求c ,再应用正弦定理先求较短边所对的角,然后利用A +B +C =π,求另一角.(3)已知两边和其中一边的对角,如已知a ,b 和A ,应先用正弦定理求B ,由A +B +C =π求C ,再由正弦定理或余弦定理求c ,要注意解可能有多种情况.(4)已知三边a ,b ,c ,可应用余弦定理求A ,B ,C .三.知识点贯通知识点1 平面向量的线性运算首尾相接用加法的三角形法则,如AB →+BC →=AC →;共起点两个向量作差用减法的几何意义,如OB →-OA →=AB →.例题1.如图,梯形ABCD 中,AB ∥CD ,点M ,N 分别是DA ,BC 的中点,且DCAB =k ,设AD →=e 1,AB →=e 2,以e 1,e 2为基底表示向量DC →,BC →,MN →.【答案】DC →=k e 2.BC →=e 1+(k -1)e 2. MN →==k +12e 2.【解析】∵AB →=e 2,且DCAB=k ,∴DC →=kAB →=k e 2.∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-D A →=-AB →+DC →+AD →=e 1+(k -1)e 2.又∵MN →+NB →+BA →+AM →=0,且NB →=-12BC →,AM →=12AD →,∴MN →=-AM →-BA →-NB →=-12AD →+AB →+12BC →=k +12e 2.知识点二 平面向量数量积的运算2121cos ||||y y x x b a b a +==⋅θ例题2:如图,在梯形ABCD 中,AB ∥CD ,AB =4,AD =3,CD =2,AM →=2MD →.若AC →·BM →=-3,则AB →·AD →= .【答案】32【解析】因为AC →·BM →=⎝ ⎛⎭⎪⎫AD →+12AB →·⎝ ⎛⎭⎪⎫-AB →+23AD →=-2-23AB →·AD →=-3,所以AB →·AD →=32.知识点三 平面向量的坐标运算若a =(a 1,a 2),b =(b 1,b 2),则①a +b =(a 1+b 1,a 2+b 2); ②a -b =(a 1-b 1,a 2-b 2); ③λa =(λa 1,λa 2); ④a ·b =a 1b 1+a 2b 2; ⑤a ∥b ⇔a 1=λb 1,a 2=λb 2(λ∈R ),或a 1b 1=a 2b 2(b 1≠0,b 2≠0);⑥a ⊥b ⇔a 1b 1+a 2b 2=0; ⑦|a |=a ·a =a 21+a 22;⑧若θ为a 与b 的夹角,则 cos θ=a ·b |a ||b |=a 1b 1+a 2b 2a 21+a 22b 21+b 22.例题3 .设a =(2,0),b =(1,3).①若(λa -b )⊥b ,求λ的值;②若m =λa +μb ,且|m |=23,〈m ,b 〉=π6,求λ,μ的值.【答案】①λ=2.②λ=1,μ=1或λ=-1,μ=2.【解析】 ①因为a =(2,0),b =(1,3),所以λa -b =(2λ,0)-(1,3)=(2λ-1,-3).又(λa -b )⊥b ,所以(λa -b )·b =0,即(2λ-1,-3)·(1,3)=0, 所以2λ-1-3=0.所以λ=2.②因为a =(2,0),b =(1,3),m =λa +μb =λ(2,0)+μ(1,3)=(2λ+μ,3μ). 因为|m |=23,〈m ,b 〉=π6,所以⎩⎪⎨⎪⎧(2λ+μ)2+(3μ)2=(23)2,cos π6=(2λ+μ,3μ)·(1,3)23×2,即⎩⎪⎨⎪⎧ λ2+λμ+μ2=3,λ+2μ=3.解得⎩⎪⎨⎪⎧ λ=1,μ=1,或⎩⎪⎨⎪⎧λ=-1,μ=2, 所以λ=1,μ=1或λ=-1,μ=2. 知识点四 平面向量的平行与垂直问题 1.证明共线问题常用的方法(1)向量a ,b (a ≠0)共线⇔存在唯一实数λ,使b =λa . (2)向量a =(x 1,y 1),b =(x 2,y 2)共线⇔x 1y 2-x 2y 1=0. (3)向量a 与b 共线⇔|a ·b |=|a ||b |.(4)向量a 与b 共线⇔存在不全为零的实数λ1,λ2,使λ1a +λ2b =0. 2.证明平面向量垂直问题的常用方法a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0, 其中a =(x 1,y 1),b =(x 2,y 2).例题4. (1)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( )A .-4B .-3C .-2D .-1(2)设A ,B ,C ,D 为平面内的四点,且A (1,3),B (2,-2),C (4,1). ①若AB →=CD →,求D 点的坐标.②设向量a =AB →,b =BC →,若k a -b 与a +3b 平行,求实数k 的值. (1)【答案】B【解析】因为m +n =(2λ+3,3),m -n =(-1,-1),且(m +n )⊥(m -n ),所以(m +n )·(m -n )=-2λ-3-3=0,解得λ=-3.故选B 。
初中数学知识归纳平面向量的应用
初中数学知识归纳平面向量的应用初中数学知识归纳:平面向量的应用平面向量是初中数学中重要的概念之一,其应用领域非常广泛。
在本文中,我们将归纳总结平面向量的应用,并且探讨其在几何、物理和经济等领域中的具体应用。
一、平面向量在几何中的应用1. 平移变换:平面向量的加法运算可以用于描述平移变换。
假设有一个向量a表示某个点的位置,通过向量b可以将该点平移至另一个位置,新的位置可以表示为a+b。
平移变换在几何图形的移动和构造中有着重要的应用,例如平行四边形的构造、图形的镜像等。
2. 向量共线与线性组合:通过向量的共线性来判断线段的相似性和平面的共面性。
如果两个向量a和b共线,则可以表示为a=kb,其中k 为一个实数。
此外,通过向量的线性组合可以方便地表示平面内的任意一点。
这种方法在平面几何证明和计算中经常被使用。
3. 矢量运算:平面向量的乘法运算包括数量积和向量积。
数量积可以用于计算两个向量的夹角,通过计算a·b=|a||b|cosθ来得到。
而向量积则用于计算两个向量的面积,通过计算a×b=|a||b|sinθ来得到。
这些矢量运算在几何中常常用于求解角度、判断垂直、计算面积等问题。
二、平面向量在物理中的应用1. 力的合成与分解:平面向量可以用于描述物体所受到的力的合成与分解。
当一个物体受到多个力的作用时,可以将这些力的大小和方向表示为向量,并利用向量的运算求得它们的合力。
相反地,可以将一个力向量分解为多个力向量的和,以便更好地分析物体所受到的力的效果。
2. 平衡力与力的平衡:平面向量的概念在力的平衡问题中有着重要的应用。
当物体所受到的合力为零时,物体处于平衡状态。
利用平面向量,我们可以方便地求解力的平衡条件,并解决各种力的平衡问题。
3. 速度与加速度:平面向量可以用于描述物体的速度和加速度。
速度可以表示为物体位置矢量随时间的变化率,即v=d/dt[r(t)],其中r(t)为位置矢量。
利用平面向量的运算可以方便地计算物体的速度和加速度,并解决相关的运动学问题。
第六章 平面向量及其应用 复习参考题——高一数学人教A版(2019)必修第二册洞悉课后习题
第六章 平面向量及其应用 复习参考题——高一数学人教A 版(2019)必修第二册洞悉课后习题【教材课后习题】1.判断下列命题是否正确(正确的在括号内打“√”,错误的打“×”). (1)AB BA +=0.( ) (2)AB BC AC +=.( ) (3)AB AC BC -=.( ) (4)00AB =.( )2.选择题(1)如果a ,b 是两个单位向量,那么下列四个结论中正确的是( ). A.=a bB.1⋅=a bC.22≠a bD.22||||=a b(2)对于任意两个向量a 和b ,下列命题中正确的是( ). A.若a ,b 满足||||>a b ,且a 与b 同向,则>a b B.||||||+≤+a b a b C.||||||⋅≥a b a b D.||||||-≤-a b a b(3)在四边形ABCD 中,若AC AB AD =+,则( ). A.四边形ABCD 是矩形 B.四边形ABCD 是菱形 C.四边形ABCD 是正方形D.四边形ABCD 是平行四边形(4)设a 是非零向量,λ是非零实数,下列结论中正确的是( ). A.a 与λ-a 的方向相反 B.||||λ-≥a a C.a 与2λa 的方向相同D.||||λλ-=a a(5)设M 是ABCD 的对角线的交点,O 为任意一点,则OA OB OC OD +++=( )A.OMB.2OMC.3OMD.4OM(6)在下列各组向量中,可以作为基底的是( ). A.1(0,0)=e ,2(1,2)=-e B.1(1,2)=-e ,2(5,7)=eC.1(3,5)=e ,2(6,10)=eD.1(2,3)=-e ,213,24⎛⎫=- ⎪⎝⎭e3.已知六边形ABCDEF 为正六边形,且AC =a ,BD =b ,分别用a ,b 表示DE ,AD ,BC ,EF ,FA ,AB ,CE .4.已知平面直角坐标系中,点O 为原点,(3,4)A --,(5,12)B -. (1)求AB 的坐标及||AB 的值;(2)若OC OA OB =+,OD OA OB =-,求OC 与OD 的坐标; (3)求OA OB ⋅的值.5.已知点(1,1)A ,(1,0)B -,(0,1)C .若AB CD =,则点D 的坐标是什么?6.已知向量(1,0)=a ,(1,1)=b ,(1,0)=-c ,求满足λμ=+c a b 的λ和μ的值.7.已知ABC △的顶点坐标分别为(1,1)A ,(4,1)B ,(4,5)C ,求cos A ,cos B ,cos C 的值.8.已知向量(1,0)=a ,(1,1)=b .当λ为何值时,λ+a b 与a 垂直?9.已知向量a 与b 的夹角为30°,||=a ,||2=b ,求||+a b ,||-a b 的值. 10.如图,支座A 受1F ,2F 两个力的作用,已知1F 与水平线成θ角,140N =F ,2F 沿水平方向,270N =F ,1F 与2F 的合力F 的大小为100N ,求cos θ以及F 与2F 的夹角β的余弦值.11.在ABC △中,分别根据下列条件解三角形(角度精确到1′,边长精确到0.01cm ):(1)12cm a =,5cm b =,120A =︒; (2)6cm a =,8cm b =,30A =︒; (3)7cm a =,23cm b =,130C =︒; (4)2cm a =,3cm b =,4cm c =.12.海中有一座小岛,周围3nmile 内有暗礁.一艘海轮由西向东航行,望见该岛在北偏东75°;海轮航行8nmile 以后,望见该岛在北偏东55°.如果这艘海轮不改变航向继续前进,有没有触礁的危险? 13.选择题(1)已知a ,b 是不共线的向量,且5AB =+a b ,28BC =-+a b ,3()CD =-a b ,则( ).A.A ,B ,D 三点共线B.A ,B ,C 三点共线C.B ,C ,D 三点共线D.A ,C ,D 三点共线(2)已知正方形ABCD 的边长为1,AB =a ,BC =b ,AC =c ,则||++=a b c ( ).A.0B.3D.(3)已知OA =a ,OB =b ,OC =c ,OD =d ,且四边形ABCD 为平行四边形,则( ).A.0+++=a b c dB.0-+-=a b c dC.0+--=a b c dD.0--+=a b c d(4)若1e ,2e 是夹角为60°的两个单位向量,则122a =+e e 与1232=-+b e e 的夹角为( ). A.30°B.60°C.120°D.150°(5)已知等边三角形ABC 的边长为1,BC =a ,CA =b ,AB =c ,那么⋅+⋅+⋅=a b b c c a ( ).A.3B.-3C.32 D.32-(6)若平面向量a ,b ,c 两两的夹角相等,且||1=a ,||1=b ,||3=c ,则||++=a b c ( ).A.2B.5C.2或514.已知a ,b ,c ,d 为非零向量,证明下列结论,并解释其几何意义. (1)||||⊥⇔+=-a b a b a b ;(2)若+=a b c ,-=a b d ,则||||=⇔⊥a b c d .15.已知123PP P △,向量1OP ,2OP ,3OP 满足条件1230OP OP OP ++=,123OP OP OP ==.求证:123PP P △是等边三角形.16.如图,已知OA =a ,OB =b ,任意点M 关于点A 的对称点为S ,点S 关于点B 的对称点为N ,用a ,b 表示向量MN .(本题可以运用信息技术发现规律)17.一个人骑自行车由A 地出发向东骑行了9km 到达B 地,然后由B 地行了16km 到达D 地,求这个人由A 地到D 地的位移(角度精确到1°).【定点变式训练】18.在ABC △中,设,,AB AC D ==a b 为AC 边的中点,则BD =( ) A.12+a bB.12+a bC.12-a bD.12-b a19.已知向量,a b 不共线,若向量λ+a b 与λ+b a 的方向相反,则λ的值为( ) A.1B.0C.-1D.1±20.如图所示,在四边形ABCD 中,1,3DC AB E =为BC 的中点,且AE xAB y AD =+,则32x y -=( )A.12B.32C.1D.221.已知作用在点A 的三个力1(3,4)=f ,2(2,5)=-f ,3(3,1)=f ,且(1,1)A ,则合力123=++f f f f 的终点坐标为( )A.(9,1)B.(1,9)C.(9,0)D.(0,9)22.P 是 ABC 所在平面内一点,满足|||2|0PB PC PB PC PA --+-=,则ABC 的形状是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形23.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c .若60A =︒,1b =,其面积sin sin sin a b cA B C++=++( )A. 24.在ABC △中,2cos 3C =,4AC =,3BC =,则tan B =( )B. C. D.25.自古以来,人们对于崇山峻岭都心存敬畏,同时感慨大自然的鬼斧神工,一代诗圣杜甫曾赋诗《望岳》:“岱宗夫如何?齐鲁青未了.造化钟神秀,阴阳割昏晓.荡胸生层云,决毗入归鸟.会当凌绝顶,一览众山小.”然而,随着技术手段的发展,山高路远便不再人们出行的阻碍,伟大领袖毛主席曾作词:“一桥飞架南北,天堑变通途”.在科技腾飞的当下,路桥建设部门仍然潜心研究如何缩短空间距离方便出行,如港珠澳跨海大桥等.如图为某工程队将A 到D 修建一条隧道,测量员测得一些数据如图所示(A ,B ,C ,D 在同一水平面内),则A ,D 间的距离为( )kmkm26.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c .若()()3a b c b c a bc +++-=,且sin 2sin cos A B C =,则ABC △是( )A.直角三角形B.等边三角形C.等腰(非等边)三角形D.等腰直角三角形27.已知向量(3,4),(2,4)m =-=a b .若向量23-a b 与b 共线,则实数m =________. 28.平面向量(1,2),(4,2),()m m ===+∈R a b c a b ,且c 与a 的夹角等于c 与b 的夹角,则m =________.29.已知在ABC △中,内角,,A B C 所对的边分别为,,a b c ,且满足22sin sin sin 6sin 0A A B B +-=,且c a =,则cos B =____________.30.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100m BC =,则山高MN =__________m.31.设,a b 是不共线的两个非零向量.(1)若2,3,3OA OB OC =-=+=-a b a b a b ,求证:A ,B ,C 三点共线; (2)若8k +a b 与2k +a b 共线,求实数k 的值;(3)若,23,2AB BC CD k =+=-=-a b a b a b ,且A ,C ,D 三点共线,求实数k 的值.32.已知||=a ||=b 5⋅=-a b ,(1)x x =+-c a b . (1)当⊥b c 时,求实数x 的值;(2)当||c 取最小值时,求向量a 与c 的夹角的余弦值. 33.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2A Ca b A +=. (1)求B .(2)若ABC △为锐角三角形,且1c =,求ABC △面积的取值范围.34.如图,在海岸A 处,发现南偏东45°方向距A 为2)海里的B 处有一艘走私船,在A 处正北方向,距A 为C 处的缉私船立即奉命以海里/时的速度追截走私船.(1)刚发现走私船时,求两船的距离.(2)若走私船正以/时的速度从B 处向南偏东75°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间(精确到分钟,参考数据:2.5≈≈)35.已知在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,满足222sin sin sin sin A B C A B +-=.(1)求角C 大小.(2)若2c =b +的取值范围.答案以及解析1.答案:(1)√ (2)√ (3)× (4)×解析:(1)AB 与BA 是相反向量,它们的和为零向量.故正确.(2)当第一个向量的终点是第二个向量的起点时,这两个向量的和等于第一个向量的起点指向第二个向量的终点的向量.故正确.(3)当两个向量有共同的起点时,那么这两个向量的差等于减向量的终点指向被减向量的终点的向量.故不正确.(4)实数0与任意向量的数乘结果是零向量,而不是实数0.故不正确. 2.答案:(1)D (2)B (3)D (4)C (5)D (6)B解析:(1)因为a ,b 是两个单位向量,所以||||=a b ,因此22||||=a b ,也即22=a b ,故C 项错误,D 项正确;两个单位向量尽管长度相等,但方向不一定相同,故A 项错误;||||cos θ⋅=⋅a b a b ,只有a ,b 的夹角θ为0时,才有1⋅=a b ,故B 项错误.(2)A 项错误,向量不能比较大小;B 项正确;C 项错误,||||||⋅≤a b a b ;D 项错误,||||||-≤-a b a b .故选B.(3)AC AB AD =+是向量加法的平行四边形法则.(4)当0λ>时,a 与λ-a 的方向相反,当0λ<时,a 与λ-a 的方向相同,故A 项错误;||||||λλ-=a a ,只有当||1λ≥时,才有||||λ-≥a a ,故B 项错误;因为20λ>,所以a 与2λa 同向,故C 项正确;D 项错误.故选C.(5)因为2,2OA OC OM OB OD OM +=+=, 所以4OA OB OC OD OM +++=.(6)两个不共线的向量可以作为基底.A 项中12//e e ,故不能作为基底;B 项中1e ,2e 不共线,可以作为基底;C 项中1212=e e ,所以12//e e ,不能作为基底;D 项中124=e e ,不能作为基底,故选B.3.答案:2133DE =-+a b ,2233AD =+a b ,1133BC =+b a ,1133EF =--a b ,1233FA =-a b ,1233CD =-+a b ,CE =-+a b解析:如图,设ACBD M =.因为六边形ABCDEF 为正六边形, 所以120ABC BCD ∠=∠=︒, 且ABC DCB ≌△△. 又ABC △是等腰三角形, 所以30BAC BCA ∠=∠=︒, 从而可有90ACD DBA ∠=∠=︒,则1sin 302CM BM AM AM ==︒=, 则1sin 302CM BM AM AM ==︒=,所以13MC =a ,23AM =a ,同理有13BM =b ,23MD =b .所以2133DE BA MA MB ==-=-+a b ,2233AD AM MD =+=+a b ,1133BC BM MC =+=+b a .1133EF BC =-=--a b ,1233FA DC DM MC ==+=-a b ,1233CD FA =-=-+a b ,2133AB DE =-=-a b ,CE CD DE =+=-+a b .4.答案:(1)(8,8)AB =-,||82AB = (2)(2,16)OC =-,(8,8)OD =- (3)33解析:(1)(5,12)(3,4)(8,8)AB =----=-,2||8AB ==. (2)(3,4)(5,12)(2,16)OC OA OB =+=--+-=-,(3,4)(5,12)(8,8)OD OA OB =-=----=-.(3)(3,4)(5,12)154833OA OB ⋅=--⋅-=-+=. 5.答案:(2,0)-解析:设(,)D x y ,由(1,1)A ,(1,0)B -,(0,1)C 知(2,1)AB =--,(,1)CD x y =-,要使AB CD =,则有2,11,x y =-⎧⎨-=-⎩解得2,0.x y =-⎧⎨=⎩所以点D 的坐标为(2,0)-.6.答案:10λμ=-⎧⎨=⎩解析:由λμ=+c a b ,得(1,0)(1,0)(1,1)(,)λμλμμ-=+=+.即1,0,λμμ+=-⎧⎨=⎩解得1,0.λμ=-⎧⎨=⎩7.答案:3cos 5A =,cos 0B =,4cos 5C = 解析:由(1,1)A ,(4,1)B ,(4,5)C 可知(3,0)AB =,(0,4)BC =,所以0AB BC ⋅=,即AB BC ⊥,所以90B ∠=︒,||3AB =,||4BC =,所以||5AC =,故3cos 5A =,cos 0B =,4cos 5C =. 8.答案:1λ=-解析:(1,0)=a ,(1,1)=b ,(1,)λλλ∴+=+a b . 又λ+a b 与a 垂直,()0λ∴+⋅=a b a ,(1,)(1,0)0λλ∴+⋅=,即10λ+=,1λ∴=-.9.答案:||+=a b ,||1-=a b解析:||||cos3023⋅=︒==a b a b ,||∴+====a b||1-====a b . 10.答案:5cos 8θ=,19cos 20β=解析:12+=F F F ,()2212∴+=F F F ,即22212122++⋅=F F F F F .222407024070cos 100θ∴++⨯⨯⨯=,解得5cos 8θ=.又21-=F F F ,()2221∴-=F F F ,即2222212-⋅+=F F F F F , 222100210070cos 7040β∴-⨯⨯⨯+=,解得19cos 20β=. 11.答案:见解析解析:(1)在ABC △中,根据正弦定理,得219B '=︒,602193851C ''=︒-︒=︒,8.69cm c ≈(2)在ABC △中,根据正弦定理,得2sin 3B =,因为b a >,所以4149B '≈︒或13811B '≈︒;当4149B '=︒时,10811C '=︒,11.40cm c ≈; 当13811B '=︒时,1149C '=︒, 2.46cm c ≈.(3)在ABC △中,根据余弦定理,得28.02cm c ≈,根据正弦定理,得112A '≈︒,501123858B ''≈︒-︒=︒.(4)在ABC △中,根据余弦定理的推论,得cos 0.875A ≈,即2857A '≈︒,同理可得4634B '≈︒,10429C '≈︒. 12.答案:没有解析:设海轮在B 处望见小岛A 在北偏东75°,在C 处望见小岛A 在北偏东55°,从小岛A 向海轮的航线BC 作垂线,垂足为D .设垂线段AD 的长度为x nmile ,CD 为y nmile (如图),则tan 35,tan15,8x y x y ⎧=︒⎪⎪⎨⎪=︒⎪+⎩即,,tan 358,tan15xy x y ⎧=⎪⎪︒⎨⎪=+⎪︒⎩则8tan 35tan15x x =-︒︒,解得8tan15tan 35 3.473tan 35tan15x ︒︒=≈>︒-︒.所以这艘海轮不改变航向继续前进,没有触礁的危险.13.答案:(1)A (2)D (3)B (4)C (5)D (6)C解析:(1)283()5BD BC CD AB =+=-++-=+=a b a b a b ,∴A ,B ,D 三点共线.(2)因为AB BC AC +=,所以|||2|++=a b c c .因为||=c,所以||++=a b c 故选D.(3)易知OB OA AB -=,OC OD DC -=,而在平行四边形ABCD中,AB DC =,所以OB OA OC OD -=-,即-=-b a c d ,也即-+-=0a b c d =0,故选B.(4)12121cos602⋅=⋅︒=e e e e , ()()221212112217232626222a b ∴⋅=+⋅-+=-+⋅+=-++=-e e e e e e e e , ()222221211221||24444172==+=+⋅+=+⨯+=e a a e e e e e ,()222221211221||329124912472==-+=-⋅+=-⨯+=b b e e e e e e .设向量a 与向量b 的夹角为θ,则71cos ||2θ-⋅===-‖a b a b .又0180θ︒≤≤︒,所以120θ=︒,故选C.(5)311cos12011cos12011cos1202⋅+⋅+⋅=⨯⨯︒+⨯⨯︒+⨯⨯︒=-a b b c c a .(6)由向量a ,b ,c 两两所成的角相等,故向量a ,b ,c 两两所成的角都等于0或2π3.当a ,b ,c 两两所成的角为2π3时,2π111cos 32⋅=⨯⨯=-a b ,2π313cos 32⋅=⨯⨯=-b c ,2π331cos 32⋅=⨯⨯=-c a .则22222||()222c ++=++=+++⋅+⋅+⋅a b c a b a b c a b b c c a1331192224222⎛⎫⎛⎫⎛⎫=+++⨯-+⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,||2∴++=a b c .当a ,b ,c 唡两所成的角为0时,||||||||5++=++=a b c a b c .故选C. 14.答案:(1)见解析 (2)见解析解析:(1)先证||||⊥⇒+=-a b a b a b .||+==a b||-==a b .因为⊥a b ,所以,于是||||+=-a b a b . 再证||||+=-⇒⊥a b a b a b .由||||+=-a b a b ,两边平方得2222||2||||2||+⋅+=-⋅+a a b b a a b b , 所以0⋅=a b ,于是⊥a b .几何意义是矩形的两条对角线相等. (2)先证||||=⇒⊥a b c d .22()()||||⋅=+⋅-=-c d a b a b a b .又||||=a b ,所以0⋅=c d , 所以⊥c d .再证||||⊥⇒=c d a b , 由⊥c d 得0⋅=c d ,即22()()||||0+⋅-=-=a b a b a b , 所以||||=a b ,几何意义是菱形的对角线互相垂直,如图所示.15.答案:见解析解析:由已知,可得123OP OP OP +=-, 两边平方得222121232OP OP OP OP OP +⋅+=,令2311OP OP OP ===,2112OP OP ∴⋅=-, ()222212121121211232PP OP OP OP OP OP OP ⎛⎫∴=-=+-⋅=+-⨯-= ⎪⎝⎭,123PP ∴=. 同理233112OP OP OP OP ⋅=⋅=-,1223313PP P P P P ∴=== 故123PP P △是等边三角形.16.答案:22MN =-b a解析:连接AB (图略),由对称性可知,AB 是SMN △的中位线,22()2()22MN AB OB OA ==-=-=-b a b a .17.答案:这个人的位移是沿北偏东约67°方向前进了 解析:以A 为原点,AB 所在直线为x 轴建立直角坐标系如图.由题意可得(0,0)A ,(9,0)B ,(12,C -,D .AD AB BC CD ∴=++=,||20AD ==tan 204DOx ∠==, 23DOx ∴∠≈︒,902367DOy ∠≈-=︒︒︒.∴这个人的位移是沿北偏东约67°方向前进了.18.答案:D解析:因为,,AB AC D ==a b 为AC 边的中点,所以12AD AC =.由向量减法的三角形法则可得,1122BD AD AB AC AB =-=-=-b a ,故选D. 19.答案:C解析:向量λ+a b 与λ+b a 的方向相反,()//()λλ∴++a b b a .由向量共线的性质定理可知,存在一个实数m ,使得()m λλ+=+a b b a , 即(1)()m m λλ-=-a b .a 与b 不共线,10m m λλ∴-=-=,可得2.10,1m λλλ=∴-==±.当1λ=时,向量+a b 与+b a 是相等向量,其方向相同,不符合题意,故舍去.1λ∴=-.20.答案:C解析:由题意,得11()22AE AB BE AB BC AB AB AD DC =+=+=+-++11212332AB AB AD AB AB AD ⎛⎫=+-++=+ ⎪⎝⎭.21,32AE xAB yAD xAB yAD AB AD =+∴+=+. AB 与AD 不共线,∴由平面向量基本定理得2,31.2x y ⎧=⎪⎪⎨⎪=⎪⎩ 213232132x y ∴-=⨯-⨯=.故选C.21.答案:A解析:123(3,4)(2,5)(3,1)(8,0)=++=+-+=f f f f ,设合力f 的终点为(,)P x y ,O 为坐标原点,则(1,1)(8,0)(9,1)OP OA =+=+=f .故选A. 22.答案:B解析:P 是ABC 所在平面上一点,且||2|0,|||()()0PB PC PB PC PA CB PB PA PC PA --+-=∴--+-=∣∣,即||||,||||CB AB AC AB AC AB AC =+∴-=+,两边平方并化简得0,,90AC AB AC AB A ︒⋅=∴⊥∴=,即ABC 是直角三角形.故选B. 23.答案:C解析:设ABC △的面积为S ,由题意知1sin 2S bc A =1sin602c =⋅︒,解得4c =.由余弦定理得22212cos 1168132a b c bc A =+-=+-⨯=,即a =由正弦定理可得sin sin sin sin a b c a A B C A ++===++.故选C.24.答案:C解析:方法一:在ABC △中,由余弦定理可得22222cos 16924393AB AC BC AC BC C =+-⋅=+-⨯⨯⨯=,所以3AB =,则2221cos 29AB BC AC B AB BC +-==⋅.又因为(0,π)B ∈,所以sin B,所以sin tan cos BB B==.故选C.方法二:过点B 作BD AC ⊥交AC 于点D ,则1cos 22DC BC C AC ===,可得ABC △为等腰三角形,且AB BC =.在Rt BCD △中,BD ==,所以tan 2B DC BD ===,所以22tan2tan 1tan 2BB B ==-故选C. 25.答案:A解析:本题考查两角差的余弦公式以及余弦定理的应用.连接AC ,设ACB α∠=,ACD β∠=,则在ACB △中,4AB =,5BC =,90ABC ∠=︒,所以AC =sin α=cos α=,所以()1cos cos 1202βα=︒-=-+=2222cos 4192365AD AC CD AC CD β=+-⋅⋅=+-=-AD =故选A.26.答案:B解析:()()3a b c b c a bc +++-=,22()3b c a bc ∴+-=,222b bc c a -+=.根据余弦定理2222cos a b c bc A =+-,得222222cos b bc c a b c bc A -+==+-,即2cos bc bc A =,1cos 2A ∴=.0180A <<︒︒,60A ∴=︒.又sin 2sin cos A B C =,sin 2cos sin A C B∴=,即22222a a b c b ab+-=⋅,化简可得22b c =,即b c =,ABC ∴△是等边三角形.故选B.27.答案:32-解析:因为23(66,4)m -=---a b ,所以(66)42(4)m m --⨯=⨯-,故32m =-. 28.答案:2解析:由(1,2),(4,2)==a b ,得(4,22),|||m m m =+=++==c a b a b ,58,820m m ⋅=+⋅=+a c b c .c 与a 的夹角等于c 与b 的夹角,||||||||⋅⋅∴=c a c bc a c b ,即=,解得2m =.29.答案:78解析:根据正弦定理得2222sin sin sin 6sin 60A A B B a ab b +-=+-=,即(3)(2)0,2a b a b a b +-=∴=,则2c b =,根据余弦定理得2222222447cos 288a c b b b b B ac b +-+-===.30.答案:150解析:在ABC △中,45BAC ∠=︒,90ABC ∠=︒,100BC =,100sin 45AC ∴==︒在AMC △中,75MAC ∠=︒,60MCA ∠=︒,45AMC ∴∠=︒,由正弦定理可得sin sin AM ACACM AMC=∠∠,即sin 60sin 45AM =︒︒,解得AM =在Rt AMN △中,sin MN AM MAN =⋅∠sin 60=︒150(m)=. 故答案为150. 31.答案:(1)见解析 (2)值为4± (3)43k =解析:(1)2,2AB OB OA AC OC OA =-=+=-=--a b a b , 所以AC AB =-.又因为A 为公共点,所以A ,B ,C 三点共线.(2)设8(2),k k λλ+=+∈a b a b R ,则8,2, k k λλ=⎧⎨=⎩解得4,2k λ=⎧⎨=⎩或4,2,k λ=-⎧⎨=-⎩所以实数k 的值为4±.(3)()(23)32AC AB BC =+=++-=-a b a b a b . 因为A ,C ,D 三点共线,所以AC 与CD 共线. 从而存在实数μ使AC CD μ=,即32(2)k μ-=-a b a b ,得32,2,k μμ=⎧⎨-=-⎩解得3,24.3k μ⎧=⎪⎪⎨⎪=⎪⎩所以43k =.32.答案:(1)12x = (2解析:(1)⊥b c ,2[(1)](1)55(1)0x x x x x x ∴⋅=⋅+-=⋅+-=-+-=b c b a b b a b ,解得12x =.(2)222222||[(1)]2(1)(1)x x x x x x =+-=+-⋅+-=c a b a a b b 222221010(1)5(1)252052515x x x x x x x ⎛⎫--+-=-+=-+ ⎪⎝⎭.当25x =时,2||c 有最小值1,即||c 有最小值1.此时,2355=+c a b .223232310(5)1555555⎛⎫⋅=⋅+=+⋅=⨯+⨯-= ⎪⎝⎭a c a a b a a b ,设向量a ,c 的夹角为θ,则cos ||||θ⋅===a c a c . 33.答案:(1)60B =︒(2)⎝⎭解析:(1)由题设及正弦定理得sin sin sin sin 2A CA B A +=. 因为sin 0A ≠,所以sinsin 2A CB +=. 由180A BC ++=︒,可得sin cos 22A C B+=, 故cos2sin cos 222B B B =. 因为cos 02B≠,故1sin22B =,因此60B =︒.(2)由题设及(1)知ABC △的面积ABC S =△.由正弦定理得()sin 120sin 1sin sin 2C c A a C C ︒-===+. 由于ABC △为锐角三角形,故090,090A C ︒<<︒︒<<︒, 由(1)知120A C +=︒,所以3090C ︒<<︒,故122a <<,ABC S <<△.因此,ABC △面积的取值范围是⎝⎭. 34.答案:(1)4海里.(2)南偏东60°方向,需47分钟才能追上走私船.解析:(1)在ABC △中,因为2)AB =海里,AC =海里,135BAC ∠=︒,由余弦定理,得4BC =(海里). (2)根据正弦定理,可得sin1351sin 2AC ABC BC ︒∠==. 所以30ABC ∠=︒,易知15ACB ∠=︒,设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,如图所示.则有CD =(海里),BD =(海里).而120CBD ∠=︒,在BCD △中,根据正弦定理,可得sin sin BD CBD BCD CD ∠∠===所以45,15BCD BDC ∠∠=︒=︒,所以60ACD ∠=︒.在CBD △中根据正弦定理,得sin sin CB CD BDC CBD =∠∠,解得0.78t ≈小时≈47分钟. 故缉私船沿南偏东60°方向,需47分钟才能追上走私船.35.答案:(1)5π6C =. (2)取值范围是(2,.解析:(1)因为222sin sin sin sin A B C A B +-=,所以由正弦定理得222a b c +-=,所以222cos 2a b c C ab +-=== 因为(0,π)C ∈,所以5π6C =. (2)由正弦定理得24sin c R C==,2sin )b R A B +=+π4sin 6A A ⎤⎛⎫=+- ⎪⎥⎝⎭⎦14cos 2A A A ⎫=+⎪⎪⎭π4sin 6A ⎛⎫=+ ⎪⎝⎭,因为π0,6A ⎛⎫∈ ⎪⎝⎭, 所以πππ,663A ⎛⎫+∈ ⎪⎝⎭,所以π1sin 62A ⎛⎛⎫+∈ ⎪ ⎝⎭⎝⎭,b +的取值范围是(2,.。
第六章 平面向量及其应用【专项训练】-课件
2020-2021学年高一数学下学期期中专项复习(人教A 版2019)第六章平面向量及其应用专项训练考点一向量的基本概念一.选择题1.给出下列命题:①两个具有公共终点的向量,一定是共线向量②两个向量不能比较大小,但它们的模能比较大小③0(a λλ=为实数),则λ必为零④λ,μ为实数,若a b λμ=,则a 与b 共线其中正确的命题个数为A .1B .2C .3D .42.下列说法中正确的是A .平行向量不一定是共线向量B .单位向量都相等C .若a ,b 满足||||a b > 且a与b 同向,则a b > D .对于任意向量a,b ,必有||||||a b a b ++①两个相等向量,若它们的起点相同,终点也相同;②若||||a b = ,则a b = ;③若||||AB DC =,则四边形ABCD 是平行四边形;④若m n = ,n k =,则m k = ;⑤若//a b ,//b c ,则//a c ;⑥有向线段就是向量,向量就是有向线段.其中,假命题的个数是A .2B .3C .4D .54.(共线向量的概念)下列命题中,正确的是A .若//a b ,则a与b 方向相同或相反B .若//a b ,//b c ,则//a cC .若两个单位向量互相平行,则这两个单位向量相等D .若a b = ,b c = ,则a c=5.已知向量,a b 不共线,3c a b =+ ,(2)d ma m b =++ ,若//c d,则m =A .12-B .9-C .6-D .3-6.已知向量a,b不共线,且(32)c k a b =++,d a kb =+,若c与d方向相反,则实数k 的值为A .1-B .12-C .1或2-D .1-或13二.填空题7.给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同;②若||||a b = ,则a b =;③若AB DC =,则A ,B ,C ,D 四点构成平行四边形;④在平行四边形ABCD 中,一定有AB DC =;⑤若m n = ,n p = ,则m p = ;⑥若向//a b ,//b c ,则//a c.其中错误的命题有.(填序号)①两个有共同起点且相等的向量,其终点一定相同;②若||||a b = ,则|a b = ;③若非零向量,a b 共线,则a b =;④向量a b =,则向量,a b 共线;⑤由于零向量的方向不确定,故其不能与任何向量平行;其中正确的序号为.三.解答题9.已知向量(3,2)a = ,(1,2)b =- ,(4,1)c =.(Ⅰ)若c ma nb =+,求m ,n 的值;(Ⅱ)若向量d 满足()//()d c a b -+,||d c -= d 的坐标.10.设两个非零向量a与b不共线.(Ⅰ)若(1,2)a =,(1,1)b =-,且ka b +与2a b -平行,求实数k 的值;(Ⅱ)若AB a b =+,2()BC a b =-,5CD a b =+,求证:A ,B ,D 三点共线.考点二平面向量的线性运算平面向量线性运算问题的两种类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合平行四边形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.一.选择题1.已知等边三角形ABC 的边长为6,点P 满足320PA PB PC ++= ,则||AP =()A .79B .76C .7D .732.在平行四边形ABCD 中,设对角线AC 与BD 相交于点O ,则AB CB +=()A .2BOB .2DOC .BDD .AC3.已知点G 是正方形ABCD 的中心,点P 为正方形ABCD 所在平面外一点,则PA PB PC PD +++等于()A .4PGB .3PGC .2PGD .PG4.已知向量(,3)a m =,(3,)b n =-,若2(7,1)a b +=,则mn =()A .1B .0C .1-D .25.在平行四边形ABCD 中,AB a = ,AC b = ,若E 是DC 的中点,则AE =()A .12a b- B .32a b- C .12a b-+ D .32a b-+ 6.在等腰梯形ABCD 中,2AB CD =- ,M 为BC 的中点,则AM =()A .1122AB AD+B .3142AB AD+C .3144AB AD+D .1324AB AD+7.在ABC ∆中,AB c = ,AC b = .若点D 满足3BD DC = ,则AD =()A .3744b c-+ B .3144b c-C .3144b c+D .1344b c+8.如图,在ABC ∆中,点D 是BC 边上靠近B 的三等分点,则AD =()A .2133AB AC -B .1233AB AC+C .2133AB AC +D .1233AB AC-二.填空题9.在直角坐标系中,O 为原点,2xOA yOB AB +=,则x y +=.10.在ABC ∆中,已知D 是AB 边上一点,若2AD DB = ,13CD CA CB λ=+,则λ=.三.解答题11.如图,已知ABC ∆中,D 为BC 的中点,12AE EC =,AD ,BE 交于点F ,设AC a = ,AD b = .(1)用a,b 分别表示向量AB ,EB ;(2)若AF t AD =,求实数t 的值.12.如图所示,在ABO ∆中,14OC OA = ,12OD OB =,AD 与BC 相交于点M ,设OA a = ,OB b = .(1)试用向量a,b 表示OM ;(2)过点M 作直线EF ,分别交线段AC ,BD 于点E ,F .记OE a λ= ,OF b μ=,求证:13λμ+为定值.考点三平面向量数量积的运算向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b =|a ||b |cos 〈a ,b 〉.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.一.选择题1.已知||1a = ,||2b = ,且a 与b 的夹角为6π,则||a -=A B .C .D 2.已知向量,a b 满足||1a = ,||2b = ,a < ,3b π>= ,则||a b -=A .3B .7C .D3.已知向量a b = 是单位向量,若||a b +=,则a 与b 的夹角为A .6πB .3πC .23πD .56π4.若非零向量a ,b 满足||3||a b = ,(23)a b b +⊥,则a 与b 的夹角为A .6πB .3πC .23πD .56π5.已知向量a = ,||2b = ,||a b -=,则a 与b 的夹角为A .6πB .3πC .23πD .56π6.向量(2,1)a =,(3,4)b =-,(31,12)c m m =-- ,若(2)c b a +⊥,则实数m 等于A .1B .5?4C .7?4D .27.已知向量,a b ,满足||1a = ,||b = ,且||2a b -=,则a b ⋅=A .1-B .0C .1D .28.已知||2a = ,||1b = ,且1a b ⋅=- ,则(2)()a b a b -⋅+=A .6B .8C .3D .3-9.已知向量(2,3)a = ,(,5)b k = ,且3a b ⋅= ,则|2|a b +=A .B .C .D .二.填空题10.设非零向量,a b 满足()a a b ⊥- ,且||2||b a = ,则向量a与b 的夹角为.11.已知单位向量a,b 的夹角为6π,则||a =.三.解答题12.已知||4a =,||3b = ,(3)(23)31a b a b -⋅+=- .(1)求a与b 的夹角θ;(2)求||a b +的值..13.在平面直角坐标系中,(1,)a m =,(3,1)b = .(1)若2m =,求|2|a b +的值;(2)若向量a b ⊥,求m 的值.考点四平面向量数量积的性质应用平面向量数量积求解问题的三个策略(1)求两向量的夹角:cos θ=a·b|a |·|b |,要注意θ∈[0,π].(2)两向量垂直的应用:两非零向量垂直的充要条件是a ⊥b ⇔a ·b =0⇔|a -b |=|a +b |.(3)求向量的模:利用数量积求解长度问题的处理方法有:①a 2=a ·a =|a |2或|a |=a·a .②|a ±b |=(a ±b )2=a 2±2a·b +b 2.③若a =(x ,y ),则|a |=x 2+y 2.一.选择题1.在ABC ∆中,90C =︒,点D 在AB 上,3AD DB = ,||4CB =,则CB CD ⋅=A .8B .10C .12D .162.若ABC ∆的外心为O ,且60A ∠=︒,2AB =,3AC =,则OA BA OB CB OC AC ⋅+⋅+⋅等于A .5B .8C .10D .133.已知OA ,OB ,OC 均为单位向量,且满足220OA OB OC ++= ,则AB AC ⋅的值为A .38B .58C .78D .1984.在ABC ∆中,4AB =,2AC =,点M 是BC 的中点,则BC AM ⋅的值为A .6-B .6C .8-D .8,5.点P 是边长为2的正ABC ∆的边BC 上一点,且13CP CB = ,则()AP AB AC ⋅+=A .2B .4C .6D .86.在ABC ∆中,?5AB =,1CB =,2AC =,点M ,N 分别为CA ,CB 的中点,则AN MB ⋅=A .5?2-B .5?2C .2?5-D .2?57.已知O 为ABC ∆的外心,6AB =,4AC =,则AO BC ⋅=A .10B .5C .10-D .5-8.四边形ABCD 中,2AB DC = ,0AB BC ⋅= ,||2AB =,则AD DC ⋅=A .1-B .1C .2-D .2二.填空题9.已知矩形ABCD 中,2AB =,1AD =,设AC 与BD 交于点O ,则AO BO ⋅=.10.在ABC ∆中,O 为中线AM 上的中点,若2AM =,则()OA OB OC ⋅+等于.三.解答题11.(1)已知平面向量a、b ,其中2)a =- .若||b = //a b ,求向量b 的坐标表示;(2)已知平面向量a 、b 满足||2a = ,||1b = ,a与b 的夹角为23π,且()(2)a b a b λ+⊥- ,求λ的值.12.在ABC ∆中,若AB a = ,AC b = ,23BD BC =.(1)用a,b 表示AD ,BD ;(2)若2AB =,3AC =,3BAC π∠=,求AD BD ⋅ 的值.考点五平面向量基本定理及应用应用平面向量基本定理表示向量的实质应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用.当基底确定后,任一向量的表示都是唯一的.一.选择题1.正方形ABCD 中,点E ,F 分别是DC ,BC 的中点,那么EF =A .1122AB AD +B .1122AB AD--C .1122AB AD -D .1122AB AD-+2.在ABC ∆中,E 为AB 边的中点,D 为AC 边上的点,BD ,CE 交于点F .若31?77AF AB AC =+,则AC AD的值为A .2B .3C .4D .53.在ABC ∆所在平面中,点O 满足0OA OB OC ++= ,则BO =A .2133BA AC+B .2133BA AC-C .1233BA AC+D .4233BA AC+4.ABC ∆中,点M 为AC 上的点,且12AM MC = ,若BM BA BC λμ=+,则λμ-的值是A .1B .12C .13D .235.在五边形ABCDE 中,EB a = ,AD b = ,M ,N 分别为AE ,BD 的中点,则MN =A .3122a b+ B .2133a b+C .1122a b+D .3144a b+6.已知等边ABC ∆内接于O ,D 为线段OA 的靠近点A 的三等分点,则BD =A .2136BA BC+B .2139BA BC+C .7196BA BC+D .7199BA BC+7.在ABC ∆中,点D 在线段BC 上,且3BD DC =,若?AD mAB nAC =+ ,则?nm=A .1?3B .1?2C .2D .38.如图,在ABC ∆中,N 为线段AC 上靠近A 的三等分点,点P 在BN 上且22()1111AP m AB BC =++,则实数m 的值为A .1B .13C .911D .511二.填空题9.平行四边形ABCD 中,M 为CD 的中点,点N 满足2BN NC =,若AB AM AN λμ=+ ,则λμ+的值为.10.已知ABC ∆中,D 、E 分别为AB 、AC 的中点,DF tDE = ,AF xAB y AC =+,则xy 的最大值为.三.解答题11.如图,在平行四边形ABCD 中,4AB =,2AD =,60BAD ∠=︒,E 为CD 的中点,H 为线段BE 上靠近点E 的四等分点,记AB a = ,AD b =.(1)用a,b 表示AE ,AH ;(2)求线段AH 的长.12.如图,四边形ABCD 中,已知2AD BC =.(Ⅰ)用AB ,AD表示DC ;(Ⅱ)若2AE EB = ,DP DE λ=,当A ,P ,C 三点共线时,求实数λ的值.考点六利用正弦、余弦定理解三角形正、余弦定理的应用原则(1)正弦定理是一个连比等式,在运用此定理时,只要知道其比值或等量关系就可以通过约分达到解决问题的目的,在解题时要学会灵活运用.(2)运用余弦定理时,要注意整体思想的运用.一.选择题1.已知在ABC ∆角A 、B 、C 的对边分别是a 、b 、c ,且4a =,3b =,2c =.则ABC ∆的最大角的正弦值是A .14-B .152C .154-D .1542.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若222b c a bc +-=,3tan 2C =,则tan B 的值为A .33B .714C .32114D .393.ABC ∆的三内角A ,B ,C 对的边分别为a ,b ,c .若3sin 3sin 4sin 3sin a A b B a B c C ++=,则cos cos sin sin A B A B -=A .34B .23C .23-D .34-4.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .若3b =,33c =,30B =︒,则a =A .6B .3C .6或3D .6或45.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知5a =,2c =,35cos 10B =,则b =A .2B .3C .2D .36.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,点D 在边AC 上,已知3A π=,5AD =,7BD =,sin cos2Cc B b =,则BC =A .8B .10C .83D .1037.在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 的对边,且cos 2cos()a b A c c A C =++,则B 的大小为A .6πB .3πC .23πD .56π8.ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,满足a =,45B =︒,75C =︒,则b =A .2B C .D .二.填空题9.在ABC ∆中,内角A ,B ,C 对应的边分别是a ,b ,c ,若sin cos sin A B a C =,则B ∠的大小为.10.在ABC ∆中,1AB =,sin 5sin B C =,2cos 5A =,则BC =.三.解答题11.已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且3b =,cos 2cos()B A C =+,sin sin 6sin a A c C B +=.(1)求B ;(2)求ABC ∆的周长.12.在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos cos cos a A b C c B -=.(Ⅰ)求角A 的大小;(Ⅱ)若2a =,求b c +的取值范围.。
2023年新高考数学大一轮复习专题22 平面向量的数量积及其应用(解析版)
专题22 平面向量的数量积及其应用【考点预测】一.平面向量的数量积a (1)平面向量数量积的定义已知两个非零向量与b ,我们把数量||||cos θa b 叫做a 与b 的数量积(或内积),记作⋅a b ,即⋅a b =||||cos θa b ,规定:零向量与任一向量的数量积为0. (2)平面向量数量积的几何意义①向量的投影:||cos θa 叫做向量a 在b 方向上的投影数量,当θ为锐角时,它是正数;当θ为钝角时,它是负数;当θ为直角时,它是0.②⋅a b 的几何意义:数量积⋅a b 等于a 的长度||a 与b 在a 方向上射影||cos θb 的乘积. 二.数量积的运算律已知向量a 、b 、c 和实数λ,则: ①⋅=⋅a b b a ;②()()()λλλ⋅⋅=⋅a b =a b a b ; ③()+⋅⋅+⋅a b c =a c b c . 三.数量积的性质设a 、b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则 ①||cos θ⋅=⋅=e a a e a .②0⊥⇔⋅=a b a b .③当a 与b 同向时,||||⋅=a b a b ;当a 与b 反向时,||||⋅=-a b a b .特别地,2||⋅=a a a 或||=a . ④cos ||||θ⋅=a ba b (||||0)≠a b .⑤||||||⋅a b a b ≤. 四.数量积的坐标运算已知非零向量11()x y =,a ,22()x y =,b ,θ为向量a 、b 的夹角.(1)平面向量的数量积是一个实数,可正、可负、可为零,且||||||a b a b ⋅≤.(2)当0a ≠时,由0a b ⋅=不能推出b 一定是零向量,这是因为任一与a 垂直的非零向量b 都有0a b ⋅=. 当0a ≠时,且a b a c ⋅=⋅时,也不能推出一定有b c =,当b 是与a 垂直的非零向量,c 是另一与a 垂直的非零向量时,有0a b a c ⋅=⋅=,但b c ≠.(3)数量积不满足结合律,即a b c b c a ⋅≠⋅()(),这是因为a b c ⋅()是一个与c 共线的向量,而b c a ⋅()是一个与a 共线的向量,而a 与c 不一定共线,所以a b c ⋅()不一定等于b c a ⋅(),即凡有数量积的结合律形式的选项,一般都是错误选项.(4)非零向量夹角为锐角(或钝角).当且仅当0a b ⋅>且(0)a b λλ≠>(或0a b ⋅<,且(0))a b λλ≠< 【方法技巧与总结】(1)b 在a 上的投影是一个数量,它可以为正,可以为负,也可以等于0.(2)数量积的运算要注意0a =时,0a b ⋅=,但0a b ⋅=时不能得到0a =或0b =,因为a ⊥b 时,也有0a b ⋅=. (3)根据平面向量数量积的性质:||a a a =⋅,cos ||||a ba b θ⋅=,0a b a b ⊥⇔⋅=等,所以平面向量数量积可以用来解决有关长度、角度、垂直的问题.(4)若a 、b 、c 是实数,则ab ac b c =⇒=(0a ≠);但对于向量,就没有这样的性质,即若向量a 、b 、c 满足a b a c ⋅=⋅(0a ≠),则不一定有=b c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量. (5)数量积运算不适合结合律,即()()a b c a b c ⋅⋅≠⋅⋅,这是由于()a b c ⋅⋅表示一个与c 共线的向量,()a b c ⋅⋅表示一个与a 共线的向量,而a 与c 不一定共线,因此()a b c ⋅⋅与()a b c ⋅⋅不一定相等.【题型归纳目录】题型一:平面向量的数量积运算 题型二:平面向量的夹角 题型三:平面向量的模长题型四:平面向量的投影、投影向量 题型五:平面向量的垂直问题 题型六:建立坐标系解决向量问题 【典例例题】题型一:平面向量的数量积运算例1.(2022·全国·模拟预测(理))在ABC 中,π3ABC ∠=,O 为ABC 的外心,2BA BO ⋅=,4BC BO ⋅=,则BA BC ⋅=( )A .2B .C .4D .【答案】B 【解析】 【分析】设,AB BC 的中点为D,E ,将2BA BO ⋅=,变为2BD BO ⋅,根据数量积的几何意义可得||1BD =,同理求得||BC ,根据数量积的定义即可求得答案. 【详解】如图,设,AB BC 的中点为D,E ,连接OD,OE ,则,OD AB OE BC ⊥⊥ ,故2BA BO ⋅=,即22||||cos 2BD BO BD BO OBD ⋅=⋅∠= , 即2||1,||1BD BD ==,故||2BA =,4BC BO ⋅=,即22||||cos 4BE BO BE BO OBE ⋅=⋅∠= ,即2||2,||2BE BE ==,故||22BC =故1||||cos 22BA BC BA BC BAC ⋅=⋅∠=⨯=故选:B例2.(2022·河南安阳·模拟预测(理))已知AH 是Rt ABC △斜边BC 上的高,AH =,点M 在线段AH 上,满足()82+⋅=MB MC AH MB MC ⋅=( ) A .4- B .2- C .2 D .4【答案】A 【解析】 【分析】由()82+⋅=MB MC AH 2MH =,由AH 是Rt ABC △斜边BC 上的高,AH =,可得28HC HB AH ⋅==,然后对()()MB MC MH HB MH HC ⋅=+⋅+化简可求得结果因为AH 是Rt ABC △斜边BC 上的高,AH = 所以0,0AH HB AH HC ⋅=⋅=,28HC HB AH ⋅==, 因为()82+⋅=MB MC AH所以()82MH MH A HB HC H +⋅=++ 所以282MH AH HB AH HC AH ⋅+⋅+⋅= 所以42MH AH ⋅=, 所以42MH AH ⋅= 所以2MH =,所以()()MB MC MH HB MH HC ⋅=+⋅+ 2MH MH HC HB MH HC HB =+⋅+⋅+⋅2cos MH HC HB π=+⋅ 228(1)4=+⨯-=-,故选:A例3.(2022·全国·高三专题练习(理))已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅=( ) A .2- B .1- C .1 D .2【答案】C 【解析】 【分析】根据给定模长,利用向量的数量积运算求解即可. 【详解】解:∵222|2|||44-=-⋅+a b a a b b , 又∵||1,||3,|2|3,==-=a b a b ∴91443134=-⋅+⨯=-⋅a b a b ,故选:C.例4.(2022·四川省泸县第二中学模拟预测(文))如图,正六边形ABCDEF 中,2AB =,点P 是正六边形ABCDEF 的中心,则AP AB ⋅=______.【答案】2 【解析】 【分析】找到向量的模长和夹角,带入向量的数量积公式即可. 【详解】在正六边形中,点P 是正六边形ABCDEF 的中心,60PAB ︒=∴∠,且2AP AB ==, 1cos602222AP AB AP AB ︒∴⋅=⋅⋅=⨯⨯=. 故答案为:2.例5.(2022·安徽·合肥市第八中学模拟预测(理))已知向量,,a b c 满足0,||1,||3,||4a b c a b c ++====,则a b ⋅=_________.【答案】3 【解析】 【分析】由0a b c ++=,得a b c +=-,两边平方化简可得答案 【详解】由0a b c ++=,得a b c +=-, 两边平方,得2222a a b b c +⋅+=, 因为134a b c ===,,, 所以12916a b +⋅+=,得·3a b =. 故答案为:3.例6.(2022·陕西·模拟预测(理))已知向量()1,a x =,()0,1b =,若25a b +=,则⋅=a b __________ 【答案】0或4-##4-或0. 【解析】 【分析】由向量模长坐标运算可求得x ,由向量数量积的坐标运算可求得结果. 【详解】()21,2a b x +=+,(21a b x ∴+=+0x =或4x =-;当0x =时,()1,0a =,0a b ∴⋅=;当4x =-时,()1,4a =-,044a b ∴⋅=-=-; 0a b ∴⋅=或4-.故答案为:0或4-.例7.(2022·上海徐汇·二模)在ABC 中,已知1AB =,2AC =,120A ∠=︒,若点P 是ABC 所在平面上一点,且满足AP AB AC λ=+,1BP CP ⋅=-,则实数λ的值为______________. 【答案】1或14【解析】 【分析】根据平面向量的线性运算法则,分别把BP CP ,用AB AC ,表示出来,再用1BP CP ⋅=-建立方程,解出λ的值. 【详解】由AP AB AC λ=+,得AP AB AC λ-=,即BP AC λ=, (1)CP AP AC AB AC λ=-=+-,在ABC 中,已知1AB =,2AC =,120A ∠=︒, 所以2((1))(1))BP CP AC AB AC AC AB AC λλλλλ⋅=⋅+-=⋅+-22cos1204(1)451λλλλλ=+-=-=-, 即24510λλ-+=,解得1λ=或14λ= 所以实数λ的值为1或14. 故答案为:1或14. 例8.(2022·陕西·交大附中模拟预测(理))已知在平行四边形ABCD 中,11,,2,622DE EC BF FC AE AF ====,则AC DB ⋅值为__________. 【答案】94【解析】 【分析】由向量加法的几何意义及数量积运算律有22D AC DB C CB ⋅=-,再由1313AE BC DC AF DC BC⎧=+⎪⎪⎨⎪=+⎪⎩结合数量积运算律,即可得结果. 【详解】由题设可得如下图:,AC AD DC DB DC CB =+=+,而AD CB =-,所以22D AC DB C CB ⋅=-, 又11,,2,622DE EC BF FC AE AF ====, 所以1313AE AD DE BC DC AF AB BF DC BC ⎧=+=+⎪⎪⎨⎪=+=+⎪⎩,则22222143921639BC BC DC DC DC BC DC BC ⎧+⋅+=⎪⎪⎨⎪+⋅+=⎪⎩,故228()29DC BC -=,可得2294DC BC -=,即94AC DB =⋅. 故答案为:94例9.(2022·福建省福州第一中学三模)过点M 的直线与22:(3)16C x y -+=交于A ,B 两点,当M 为线段AB中点时,CA CB ⋅=___________. 【答案】-8 【解析】 【分析】由题意可得M 在C 内,又由M 为线段AB 中点AB CM ⊥,由两点间距离公式得2CM ==12AC ,进而求得120ACB ∠=︒,再由向量的数量积公式计算即可得答案. 【详解】解:因为点M 在22:(3)16Cx y -+=内, 所以当M 为线段AB 中点时,AB CM ⊥,又因为C 的半径为4,2CM ==12AC ,所以60ACM ∠=°, 所以120ACB ∠=︒,所以,CA CB ⋅=||||cos120CA CB ︒=144()82⨯⨯-=-.故答案为:-8.例10.(2022·全国·模拟预测(理))已知向量a 与b 不共线,且()2a a b ⋅+=,1a =,若()()22a b a b -⊥+,则()b a b ⋅-=___________. 【答案】3- 【解析】 【分析】由()2a a b ⋅+=得1a b ⋅=,由()()22a b a b -⊥+得2b =,即可求解结果. 【详解】由()212a a b a a b a b ⋅+=+⋅=+⋅=得1a b ⋅=由()()22a b a b -⊥+得()()222240a b a b a b -⋅+=-=,所以2b = 则()2143b a b b a b ⋅-=⋅-=-=- 故答案为:3-例11.(2022·全国·高三专题练习(理))设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11 【解析】 【分析】设a 与b 的夹角为θ,依题意可得1cos 3θ=,再根据数量积的定义求出a b ⋅,最后根据数量积的运算律计算可得. 【详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=.故答案为:11.例12.(2022·江苏·徐州市第七中学模拟预测)如图是第24届国际数学家大会的会标,它是根据中国古代数学家赵爽的弦图设计的,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形EFGH 组成的.若E 为线段BF 的中点,则AF BC ⋅=______.【答案】4 【解析】 【分析】利用数量积的几何意义求解. 【详解】 解:如图所示:设CF x =,由题可得2BF x =, 所以()2225x x +=, 解得1x =.过F 作BC 的垂线,垂足设为Q , 故24AF BC BQ BC BF ⋅=⋅==, 故答案为:4. 【方法技巧与总结】(1)求平面向量的数量积是较为常规的题型,最重要的方法是紧扣数量积的定义找到解题思路. (2)平面向量数量积的几何意义及坐标表示,分别突出了它的几何特征和代数特征,因而平面向量数量积是中学数学较多知识的交汇处,因此它的应用也就十分广泛.(3)平面向量的投影问题,是近几年的高考热点问题,应熟练掌握其公式:向量a 在向量b 方向上的投影为||a bb ⋅. (4)向量运算与整式运算的同与异(无坐标的向量运算)同:222()2a b a ab b ±=±+;a b ±()a b c ab ac +=+公式都可通用 异:整式:a b a b ⋅=±,a 仅仅表示数;向量:cos a b a b θ⋅=±(θ为a 与b 的夹角) 22222cos ma nb m a mn a b n b θ±=±+,使用范围广泛,通常是求模或者夹角.ma nb ma nb ma nb -≤±≤+,通常是求ma nb ±最值的时候用. 题型二:平面向量的夹角例13.(2022·甘肃·高台县第一中学模拟预测(文))已知非零向量a →,b →满足a b a →→→-=,a a b →→→⎛⎫⊥- ⎪⎝⎭,则a→与b →夹角为______. 【答案】4π##45 【解析】 【分析】根据已知求出2=a a b →→→,||b a →→,即得解. 【详解】解:因为a b a →→→-=,所以22222,2a b a b a b a b →→→→→→→→+-=∴=.因为a a b →→→⎛⎫⊥- ⎪⎝⎭,所以22=0,=aa b a a b a a b →→→→→→→→→⎛⎫--=∴ ⎪⎝⎭, 所以22=2||b a b a →→→→∴,.设a →与b →夹角为θ,所以22cos =2|||||a ba ba b a θ→→→→→→→==. 因为[0,]θπ∈,所以4πθ=.例14.(2022·安徽·合肥一六八中学模拟预测(文))已知向量||1b =,向量(1,3)a =,且|2|6a b -=,则向量,a b 的夹角为___________. 【答案】2π##90 【解析】【分析】由|2|6a b -=两边平方,结合数量积的定义和性质化简可求向量,a b 的夹角 【详解】因为(1,3)a =,所以(21+a =因为|2|6a b -=,所以2222+26a ab b -=,又||1b =,所以426b -⋅+=,所以0a b ⋅=, 向量,a b 的夹角为θ,则cos 0a b θ⋅= 所以cos 0θ=,则2πθ=.故答案为:2π. 例15.(2022·湖北武汉·模拟预测)两不共线的向量a ,b ,满足3a b =,且t R ∀∈,a tb a b -≥-,则cos ,a b =( )A .12 B C .13D 【答案】C 【解析】 【分析】由a tb a b -≥-两边平方后整理得一元二次不等式,根据一元二次函数的性质可判断0∆≤,整理后可知∆只能为0,即可解得答案. 【详解】 解:由题意得:t R ∀∈,a tb a b -≥-t R ∴∀∈,2222222a t b ta b a b a b +-⋅≥+-⋅即222226cos ,6cos ,0t b t b a b b b a b --+≥ 0b ≠t R ∴∀∈,26cos ,16cos ,0t t a b a b --+≥()221Δ36cos ,46cos ,136cos ,03a b a b a b ⎛⎫∴=--=-≤ ⎪⎝⎭1cos ,03a b ∴-=,即1cos ,3a b =故选:C例16.(2022·云南师大附中模拟预测(理))已知向量()2,2a t =,()2,5b t =---,若向量a 与向量a b +的夹角为钝角,则t 的取值范围为( ) A .()3,1- B .()()3,11,1---C .()1,3-D .111,,322⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】求出a b +的坐标,求得当a 与a b +共线时12t =,根据向量a 与向量a b +的夹角为钝角,列出相应的不等式,求得答案. 【详解】因为(23)a b t +=--,,又a 与a b +的夹角为钝角, 当a 与a b +共线时,162(2)0,2t t t ---==, 所以()0a a b ⋅+<且a 与a b +的不共线,即2230t t --<且12t ≠, 所以111322t ⎛⎫⎛⎫∈-⋃ ⎪ ⎪⎝⎭⎝⎭,,, 故选:D .例17.(2022·广东深圳·高三阶段练习)已知向量()cos30,sin 210a =︒-︒,(3,1)b =-,则a 与b 夹角的余弦值为_________. 【答案】12-【解析】 【分析】化简向量a ,根据向量的模的公式,数量积公式和向量的夹角公式求解. 【详解】由()cos30,sin210a =︒-︒知31,22a ⎛⎫= ⎪ ⎪⎝⎭,故31(1122a b ⋅=⨯+⨯=-,||1a =,||2b =,记a 与b 的夹角为θ,则11cos 122||||a b a b θ⋅-===-⨯⨯.故答案为:12-.例18.(2022·全国·高三专题练习)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例19.(2022·湖南·长沙市明德中学二模)已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-=,则向量b 与向量a b -夹角的余弦值为( )A .B .0C D 【答案】A 【解析】 【分析】根据0a b ⋅=,设(1,0)a =,(0,)b t =,根据()()0a b a b +⋅-=求出21t =,再根据平面向量的夹角公式计算可得解. 【详解】因为0a b ⋅=,所以可设(1,0)a =,(0,)b t =,则(1,)a b t +=,(1,)a b t -=-, 因为()()0a b a b +⋅-=,所以210t -=,即21t =.则()cos ,||||b a bb a b b a b ⋅-<->=⋅-2==,故选:A.例20.(2022·辽宁·大连市一0三中学模拟预测)已知单位向量a ,b 满足3a b a b -=+,则a 与b 的夹角为( ) A .30° B .60°C .120°D .150°【答案】C【解析】 【分析】根据数量积的运算律及夹角公式计算可得; 【详解】解:因为a ,b 为单位向量,所以1a b ==, 又3a b a b -=+,所以()()223a b a b -=+,即()2222232a a b b a a b b -⋅+=+⋅+,所以()22240a a b b +⋅+=,即()22240a a b b+⋅+=,所以12a b ⋅=-, 所以1cos ,2a ba b a b ⋅==-⋅,因为[],0,a b π∈,所以2,3a b π=;故选:C例21.(2022·北京市大兴区兴华中学三模)已知a 为单位向量,向量()1,2b =,且2a b ⋅=,则,a b a -=( ) A .π6B .π4C .π3D .3π4【答案】B 【解析】 【分析】先根据已知条件求出()a b a ⋅-和b a -,然后利用向量的夹角公式可求出结果 【详解】因为a 为单位向量,向量()1,2b =,且2a b ⋅=, 所以()2211a b a a b a ⋅-=⋅-=-=,222()252b a b a b a b a -=-=-⋅+=-=所以()1cos ,2a b a a b a a b a⋅--===-, 因为[],0,πa b a -∈, 所以π,4a b a -=, 故选:B例22.(2022·全国·模拟预测(理))已知平面向量a b +与a b -互相垂直,模长之比为2:1,若||5a =,则a 与a b +的夹角的余弦值为( )A B C D .12【答案】A 【解析】 【分析】利用向量a b +与a b -互相垂直,模长之比为2:1,利用数量积求得向量,a b 的模长及数量积,然后利用平面向量夹角公式求得结果. 【详解】平面向量a b +与a b -互相垂直,模长之比为2:1,则()()0a b a b +⋅-=且||2||a b a b +=-,得22a b =,又||5a =,则||||5a b ==,将||2||a b a b +=-平方得22222484a a b b a a b b +⋅+=-⋅+,解得=3a b ⋅,222|=216a b a a b b +|+⋅+=,则4a b +=,设a 与a b +的夹角为θ,则()25+3cos =54a ab aa ba a ba a bθ⋅++⋅===⨯++ 故选:A.例23.(多选题)(2022·福建省福州格致中学模拟预测)已知单位向量,a b 的夹角为120︒,则以下说法正确的是( ) A .||1a b += B .(2)a b a +⊥C .3cos ,2a b b 〈-〉= D .2a b +与2a b +可以作为平面内的一组基底【答案】ABD 【解析】 【分析】根据向量的模的公式,数量积的运算,向量的夹角公式,判断向量共线的条件逐项验证即可 【详解】据题意221,1,11cos1202a b a b ︒==⋅=⨯⨯=-因为2221()211212a b a b a b ⎛⎫+=++⋅=++⨯-= ⎪⎝⎭所以||1a b +=,所以A 对因为21(2)21202a b a a a b ⎛⎫+⋅=+⋅=+⨯-= ⎪⎝⎭,所以(2)a b a +⊥,所以B 对.因为222213()1,()2322a b b a b b a b a b a b -⋅=⋅-=--=--=++⋅=所以3()2cos ,||||31a b b a b b a b b --⋅〈-〉===-⋅⨯所以C 错因为2a b +与2a b +不共线,所以可以作为平面内的一组基底,所以D 正确 故选:ABD例24.(多选题)(2022·江苏·模拟预测)已知向量(3,2)a =-,(2,1)b =,(,1)c λ=-,R λ∈,则( ) A .若(2)a b c +⊥,则4λ= B .若a tb c =+,则6t λ+=- C .a b μ+的最小值为D .若向量a b +与向量2b c +的夹角为锐角,则λ的取值范围是(,1)-∞- 【答案】ABC 【解析】 【分析】利用向量的坐标运算及向量垂直的坐标表示判断A ,利用向量坐标的表示可判断B ,利用向量的模长的坐标公式及二次函数的性质可判断C ,利用向量数量积的坐标表示及向量共线的坐标表示可判断D. 【详解】对于A ,因为2(1,4)a b +=,(,1)c λ=-,(2)a b c +⊥,所以14(1)0λ⨯+⨯-=,解得4λ=,所以A 正确. 对于B ,由a tb c =+,得(3,2)(2,1)(,1)(2,1)t t t λλ-=+-=+-,则32,21,t t λ-=+⎧⎨=-⎩解得93t λ=-⎧⎨=⎩,故6t λ+=-,所以B 正确.对于C ,因为(3,2)(2,1)(23,2)a bμμμμ+=-+=-+,所以a b μ+==则当45μ=时,a b μ+取得最小值,为,所以C 正确. 对于D ,因为(1,3)a b +=-,2(4,1)b c λ+=+,向量a b +与向量2b c +的夹角为锐角, 所以()(2)1(4)310a b b c λ⋅+=-⨯+⨯++>,解得1λ<-;当向量a b +与向量2b c +共线时,113(4)0λ-⨯-⨯+=,解得133λ=-, 所以λ的取值范围是1313,,133⎛⎫⎛⎫-∞-⋃-- ⎪ ⎪⎝⎭⎝⎭,所以D 不正确.故选:ABC.例25.(2022·河南·通许县第一高级中学模拟预测(文))已知1e ,2e 是单位向量,122a e e =-,123b e e =+,若a b ⊥,则1e ,2e 的夹角的余弦值为( )A .35B .12C .13D .15【答案】D 【解析】 【分析】根据平面向量数量积的运算性质,结合平面向量夹角公式进行求解即可. 【详解】由题意知121e e ==,()()22121212122303250a b e e e e e e e e ⋅=-⋅+=⇒--⋅=,即1215e e ⋅=,所以121cos 5e e ⋅=. 故选:D.例26.(2022·安徽师范大学附属中学模拟预测(理))非零向量,a b 满足2a b a b a +=-=,则a b -与a 的夹角为( ) A .6π B .3π C .23π D .56π 【答案】B 【解析】 【分析】根据给定条件,求出a b ⋅,再利用向量夹角公式计算作答. 【详解】由a b a b +=-得:22()()a b a b +=-,即222222a a b b a a b b +⋅+=-⋅+,解得0a b ⋅=,因此,22()1cos ,2||||2||a b a a a b a b a a b a a -⋅-⋅〈-〉===-,而,[0,π]a b a 〈-〉∈,解得π,3a b a 〈-〉=, 所以a b -与a 的夹角为3π. 故选:B例27.(2022·内蒙古·海拉尔第二中学模拟预测(文))已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠,则a 与b 的夹角为( ) A .6πB .π3C .π2D .2π3【答案】C 【解析】 【分析】由题干条件平方得到()0a b λ⋅=,从而得到0a b ⋅=,得到a 与b 的夹角. 【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+,因为向量a ,b 为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅=. 因为0λ≠,所以0a b ⋅=,即a 与b 的夹角为π2. 故选:C【方法技巧与总结】 求夹角,用数量积,由||||cos a b a b 得121222221122cos||||x x y y a b a b xyx y ,进而求得向量,a b 的夹角.题型三:平面向量的模长例28.(2022·福建省厦门集美中学模拟预测)已知向量a 、b 、c 满足0a b c ++=,()()0a b a c -⋅-=,9b c -=,则a =______. 【答案】3 【解析】 【分析】由已知条件可得出a b c =--,根据平面向量的数量积可求得22b c +、b c ⋅的值,结合平面向量的数量积可求得a 的值. 【详解】由已知可得a b c =--,则()()()()()()22220a b a c b c b c b c b c -⋅-=--⋅--=+⋅+=, 即222250b c b c ++⋅=,因为9b c -=,则22281b c b c +-⋅=,所以,2245b c +=,18b c ⋅=-,因此,()2222229a a b c b c b c ==--=++⋅=,故3a =.故答案为:3.例29.(2022·辽宁沈阳·三模)已知平面向量,,a b c 满足1,1,0,1a c a b c a b ==++=⋅=-,则b =_______.【解析】【分析】由题意得c a b =--,直接平方即得结果. 【详解】由0a b c ++=可得c a b =--,两边同时平方得2222c a a b b =+⋅+,1,1,1a c a b ==⋅=-,2112b ∴=-+,解得2b =..例30.(2022·全国·高三专题练习(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+a b .故选:D例31.(2022·江苏·扬中市第二高级中学模拟预测)已知a 与b 为单位向量,且a ⊥b ,向量c 满足||2b c a --=,则|c |的可能取值有( )A .6B .5C .4D .3【答案】D 【解析】 【分析】建立平面直角坐标系,由向量的坐标计算公式可得(1,1)c a b x y --=--,进而由向量模的计算公式可得22(1)(1)4x y -+-=,分析可得C 在以(1,1)为圆心,半径为2的圆上,结合点与圆的位置关系分析可得答案. 【详解】根据题意,设OA a =,OB b =,OC c =,以O 为坐标原点,OA 的方向为x 轴正方向,OB 的方向为y 轴的正方向建立坐标系, 则(1,0)A ,(0,1)B ,设(,)C x y ,则(1,1)c a b x y --=--,若||2b c a --=,则有22(1)(1)4x y -+-=,则C 在以(1,1)为圆心,半径为2的圆上,设(1,1)为点M ,则||OM =||||||r OM OC r OM -+, 即22||22OC +,则||c 的取值范围为22⎡⎣;故选:D .例32.(2022·江苏·南京市天印高级中学模拟预测)已知平面向量a ,b 满足2a =,1b =,且a 与b 的夹角为3π,则a b +=( )AB C D .3【答案】C 【解析】 【分析】 由()2222a b a ba ab b +=+=+⋅+求解.【详解】解:因为2a =,1b =,且a 与b 的夹角为3π, 所以()2222a b a ba ab b +=+=+⋅+,==,故选:C例33.(2022·河南·开封市东信学校模拟预测(理))已知非零向量a ,b 的夹角为6π,()||3,a a a b =⊥-,则||b =___________. 【答案】2 【解析】 【分析】由平面向量的数量积的运算性质求解即可 【详解】由()a a b ⊥-得22π3()||||||||cos3||062a ab a a b a a b b ⋅-=-⋅=-⋅=-=, 解得||2b =. 故答案为:2例34.(2022·全国·高三专题练习)已知三个非零平面向量a ,b ,c 两两夹角相等,且||1a =,||2b =,||3c =,求|23|a b c -+.9 【解析】【分析】由三个非零平面向量a ,b ,c 两两夹角相等得 ,,,120a b b a c c 〈〉=〈〉=〈〉=︒或0,再分别计算求解即可 【详解】因为三个非零平面向量a ,b ,c 两两夹角相等,所以,,,120a b b a c c 〈〉=〈〉=〈〉=︒或0 .当,,,120a b b a c c 〈〉=〈〉=〈〉=︒时,2|23|(23)a b c a b c -+=-+222||||9||4126a b c b b c a c a =++-⋅+⋅-⋅==当,,,0a b b c c a 〈〉=〈〉=〈〉=︒,即a ,b ,c 共线时. |23|2||||3||2299a b c a b c -+=-+=-+=∣∣.9例35.(2022·全国·高三专题练习)已知2=a ,3b =,a 与b 的夹角为120,求a b +及a b -的值. 【答案】7a b +=,19a b -=. 【解析】 【分析】利用向量数量积定义可求得a b ⋅,由向量数量积的运算律可求得2a b +和2a b -,由此可得结果. 【详解】cos ,6cos1203a b a b a b ⋅=⋅<>==-,22224697a b a a b b ∴+=+⋅+=-+=,222246919a b a a b b -=-⋅+=++=,7a b ∴+=,19a b -=.例36.(2022·福建泉州·模拟预测)已知向量(0,1)=a ,(,3)b t =,若,a b 的夹角为π3,则||b =___________.【答案】【解析】 【分析】根据平面向量的夹角公式可求出结果. 【详解】 由πcos3||||a b a b ⋅=⋅,得132||b ,得||23b =.故答案为:【方法技巧与总结】 求模长,用平方,2||a a .题型四:平面向量的投影、投影向量例37.(2022·新疆克拉玛依·三模(理))设a ,b 是两个非零向量,AB a =,CD b =,过AB 的起点A 和终点B ,分别作CD 所在直线的垂线,垂足分别为1A ,1B ,得到11A B ,则11A B 叫做向量a 在向量b 上的投影向量.如下图,已知扇形AOB 的半径为1,以O 为坐标原点建立平面直角坐标系,()1,0OA =,12OB ⎛= ⎝⎭,则弧AB 的中点C 的坐标为________;向量CO 在OB 上的投影向量为________ .【答案】12⎫⎪⎪⎝⎭3()4- 【解析】 【分析】由已知,根据给到的OA ,OB 先求解OA 与OB 的夹角,然后再利用点C 是弧AB 的中点,即可求解出AOC ∠,从而求解点C 的坐标;根据前面求解出的点C 的坐标,写出OB 和CO ,先计算向量CO 在OB 上的投影,然后根据OB 即可写出向量CO 在OB 上的投影向量. 【详解】由已知,()1,0OA =,12OB ⎛= ⎝⎭,所以112cos ,112OA OB OA OB OA OB ===⨯, 所以π3AOB ∠=,因为点C 为弧AB 的中点,所以π6AOC ∠=, 扇形AOB 的半径为1,所以弧AB 满足的曲线参数方程为cos π()sin 3xy αααα=⎧≤≤⎨=⎩为参数,0, 所以中点C 的坐标为πcos 6π1sin 62x y ⎧==⎪⎪⎨⎪==⎪⎩,所以C的坐标为12⎫⎪⎪⎝⎭,12CO ⎛⎫=-- ⎪ ⎪⎝⎭,12OB ⎛=⎝⎭, 向量CO 在OB 上的投影为3441CO OB OB-== 因为12OB ⎛= ⎝⎭,所以向量CO 在OB 上的投影向量为3()4-.故答案为:12⎫⎪⎪⎝⎭;3()4- 例38.(2022·江西鹰潭·二模(文))已知向量,,(3,1),||2,(2)3a b a b a b b ==-⋅=,则b 在a 方向上的投影为_________ 【答案】54【解析】 【分析】根据向量数量积性质和向量投影定义求解即可. 【详解】因为(3,1)a =,||2b =,所以2||1(2a =+,22b =,因为(2)3a b b -⋅=,所以222223a b b b a b b a b ⋅-⋅=⋅-=⋅-=,所以52a b ⋅=, 所以b 在a 方向上的投影为5||4a b a ⋅=, 故答案为:54. 例39.(2022·江西·南昌市八一中学三模(理))已知向量()1,2a =-,()3,b t =,且a 在b 上的投影等于1-,则t =___________. 【答案】4 【解析】 【分析】根据投影定义直接计算可得,注意数量积符号. 【详解】因为a 在b 上的投影等于1-,即cos ,1a b a a b b⋅〈〉==-1=-,且320t -<,解得4t =.故答案为:4例40.(2022·江苏淮安·模拟预测)已知||2a =,b 在a 上的投影为1,则a b +在a 上的投影为( )A .-1B .2C .3D 【答案】C 【解析】 【分析】先利用b 在a 上的投影为1求出a b ⋅,然后可求a b +在a 上的投影. 【详解】因为||2a =,b 在a 上的投影为1,所以1||a ba ⋅=,即2ab ⋅=; 所以a b +在a 上的投影为()24232||||a b a aa b a a +⋅+⋅+===;故选:C.例41.(2022·四川成都·三模(理))在ABC 中,已知7π12A ∠=,π6C ∠=,AC =BA在BC 方向上的投影为( ).A .B .2CD .【答案】C 【解析】 【分析】利用三角形内角和及正弦定理求得4B π∠=、2AB =,再根据向量投影的定义求结果.【详解】由题设4B π∠=,则sin sin AB AC C B=,可得122AB ==, 所以向量BA 在BC 方向上的投影为||cos 2BA B ==故选:C例42.(2022·广西桂林·二模(文))已知向量(1,2),(0,1)==-a b ,则a 在b 方向上的投影为( ) A .1- B .2- C .1 D .2【答案】B 【解析】 【分析】利用向量的投影公式直接计算即可. 【详解】向量(1,2),(0,1)==-a b ,则a 在b 方向上的投影为2||cos ,21||a b a a b b ⋅-<>===-, 故选:B .例43.(2022·内蒙古呼和浩特·二模(理))非零向量a ,b ,c 满足()b a c ⊥-,a 与b 的夹角为6π,3a =,则c 在b 上的正射影的数量为( )A .12-B .C .12D 【答案】D 【解析】 【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答. 【详解】非零向量a ,b ,c 满足()b a c ⊥-,则()·0b a c a b c b -=⋅-⋅=,即c b a b ⋅=⋅,又a 与b 的夹角为6π,3a =, 所以c 在b 上的正射影的数量3||cos ,||cos 62||||c b a b c c b a b b π⋅⋅〈〉====故选:D例44.(2022·辽宁·渤海大学附属高级中学模拟预测)已知单位向量,a b 满足||1a b -=,则a 在b 方向上的投影向量为( )A .12bB .12b -C .12aD .12a -【答案】A 【解析】 【分析】根据投影向量公式,即可求解. 【详解】22221a b a a b b -=-⋅+=,因为1==a b ,所以12a b ⋅=, 所以a 在b 方向上的投影向量为12a b b b b b ⋅⋅=. 故选:A例45.(2022·海南华侨中学模拟预测)已知平面向量a ,b 的夹角为3π,且||2a =,(1,3)b =-,则a 在b 方向上的投影向量为( )A .12⎫⎪⎪⎝⎭B .21⎛⎫⎪ ⎪⎝⎭ C .12⎛- ⎝⎭D .12⎛ ⎝⎭【答案】C 【解析】 【分析】利用投影向量的定义求解. 【详解】解:因为平面向量a ,b 的夹角为3π,且||2a =,(1,3)b =-, 所以a 在b方向上的投影向量为22cos 13(1,3)(2a b a b b bbπ⋅⋅⋅⋅=⋅-=- ,故选:C题型五:平面向量的垂直问题例46.(2022·海南海口·二模)已知向量a ,b 的夹角为45°,2a =,且2a b ,若()a b b λ+⊥,则λ=______. 【答案】-2 【解析】 【分析】先利用数量积的运算求解b ,再利用向量垂直数量积为0即可求解. 【详解】因为cos 452a b a b ⋅=︒=得2b =, 又因为()a b b λ+⊥,所以()2240a b b a b b λλλ+⋅=⋅+=+=,所以2λ=-. 故答案为:-2.例47.(2022·广东茂名·二模)已知向量a =(t ,2t ),b =(﹣t ,1),若(a ﹣b )⊥(a +b ),则t =_____. 【答案】12±【解析】 【分析】由(a ﹣b )⊥(a +b ),由垂直向量的坐标运算可得出a b =,再由模长的公式即可求出t . 【详解】因为(a ﹣b )⊥(a +b ),所以()()0a b a b -⋅+=,所以220a b -=,则a b =,所以22241t t t +=+,所以12t =±.故答案为:12±.例48.(2022·青海玉树·高三阶段练习(理))已知向量()1,1a =-,()1,b m =,若()3a b a +⊥,则m =______.【答案】13【解析】 【分析】根据向量的坐标运算和数量积的坐标运算即可求解. 【详解】()()23,3030a b a a b a aa b +⊥∴+⋅=⇒+⋅= ,所以()123103m m +-+=⇒=故答案为:13例49.(2022·河南开封·模拟预测(理))已知两个单位向量1e 与2e 的夹角为3π,若122a e e =+,12b e me =+,且a b ⊥,则实数m =( ) A .45-B .45 C .54-D .54【答案】A 【解析】 【分析】由向量垂直及数量积的运算律可得221122(2)20e m e e m e ++⋅+=,结合已知即可求m 的值.【详解】由题意1222121122)()(220()2a b e me m e e m e e e e ⋅=⋅+=++⋅++=, 又1e 与2e 的夹角为3π且为单位向量, 所以22021m m +++=,可得45m =-.故选:A例50.(2022·河南安阳·模拟预测(文))已知向量(22,4),1,cos 2⎛⎫=-= ⎪⎝⎭a b θ,其中(0,π)θ∈,若a b ⊥,则sin θ=___________. 【答案】1 【解析】 【分析】根据平面向量垂直的性质,结合平面向量数量积的运算坐标表示公式、特殊角的三角函数值进行求解即可. 【详解】因为a b ⊥,所以0a b ⋅=,即14cos0cos22θθ-+=⇒=,因为(0,π)θ∈,所以π(0,)22θ∈,因此ππ242θθ=⇒=,所以sin 1θ=, 故答案为:1例51.(2022·全国·模拟预测(文))设向量()2,1a =,()1,b x =-,若()a b a ⊥-,则b =___________.【答案】【解析】 【分析】由平面向量数量积的坐标运算求解 【详解】()3,1b a x -=--,由题意得()0a b a ⋅-=,即610x -+-=,得7x =149b =+=.故答案为:【方法技巧与总结】121200a b a b x x y y ⊥⇔⋅=⇔+=题型六:建立坐标系解决向量问题例52.(2022·山东淄博·三模)如图在ABC 中,90ABC ∠=︒,F 为AB 中点,3CE =,8CB =,12AB =,则EA EB ⋅=( )A .15-B .13-C .13D .15【答案】C 【解析】 【分析】建立平面直角坐标系,利用坐标法求出平面向量的数量积; 【详解】解:建立如图所示的平面直角坐标系, 则(12,0)A ,(0,0)B ,(0,8)C ,(6,0)F , 又3CE =,8CB =,12AB =,则10CF =,即310CE FC =,即710FE FC =, 则()()9286,67710100,8,55BE BF FC ⎛⎫=+=+-= ⎪⎝⎭, 则,552851EA ⎛⎫=-⎪⎝⎭,928,55EB ⎛⎫=-- ⎪⎝⎭, 则25281355951EA EB ⎛⎫⎛⎫⋅=⨯-+-= ⎪ ⎪⎝⎭⎝⎭;故选:C .例53.(2022·贵州贵阳·模拟预测(理))在边长为2的正方形ABCD 中,E 是BC 的中点,则AC DE ⋅=( ) A .2 B .2-C .4-D .4【答案】A 【解析】 【分析】建立直角坐标系,用向量法即可 【详解】在平面直角坐标系中以A 为原点,AB 所在直线为x 轴建立坐标系,则()0,0A ,()0,2D ,()2,2C ,()2,1E ,所以()()2,22,1422AC DE ⋅=⋅-=-=, 故选:A例54.(2022·江苏·模拟预测)如图,在平面四边形ABCD 中,E ,F 分别为AD ,BC 的中点,(4,1)AB =,(2,3)DC =,(2,)AC m =-,若0E A F C =⋅,则实数m 的值是( )A .3-B .2-C .2D .3【答案】D 【解析】 【分析】根据题意得分别求出AD 和BC 的坐标,再分别求出AE 和BF 的坐标,EF EA AB BF =++,再利用数量积坐标运算求解即可. 【详解】根据题意得:(4,3)AD CD CA AC DC m =-=-=--,(6,1)BC AC AB m =-=--, 因为E ,F 分别为AD ,BC 的中点,所以13(2,)22m AE AD -==-,11(3,)22m BF BC -==-, 所以()3,2EF EA AB BF =++=,又0E A F C =⋅,即()2320m -⨯+⨯=,解得3m =. 故选:D.例55.(2022·四川南充·三模(理))在Rt ABC △中,90A ∠=︒,2AB =,3AC =,2AM MC =,12AN AB =,CN 与BM 交于点P ,则cos BPN ∠的值为( )A B .C .D 【答案】D 【解析】 【分析】将三角形放到直角坐标系当中,利用坐标法求向量夹角,即可求解. 【详解】解:建立如图直角坐标系,则(0,2),(0,1),(3,0),(2,0)B N C M , 得(3,1),(2,2)CN MB =-=-,所以co 10s CN MB CN P BB N M ⋅===⋅∠ 故选:D.例56.(多选题)(2022·山东聊城·三模)在平面四边形ABCD 中,1AB BC CD DA DC ===⋅=,12⋅=BA BC ,则( ) A .1AC = B .CA CD CA CD +=-C .2AD BC = D .BD CD ⋅=【答案】ABD 【解析】 【分析】根据所给的条件,判断出四边形ABCD 内部的几何关系即可. 【详解】因为1AB BC CD ===,1cos 2BA BC BA BC B ⋅==,可得3B π=,所以ABC 为等边三角形,则1AC = ,故A 正确;因为1CD =,所以21CD =,又1DA DC ⋅=,所以2CD DA DC =⋅ ,得()20DC DA DC DC DC DA DC AC -⋅=⋅-=⋅=,所以AC CD ⊥,则CA CD CA CD +=-,故B 正确; 根据以上分析作图如下:由于BC 与AD 不平行,故C 错误; 建立如上图所示的平面直角坐标系,则1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫⎪⎝⎭,12D ⎫⎪⎪⎝⎭,12BD ⎫=⎪⎪⎝⎭,3122CD ⎛⎫= ⎪ ⎪⎝⎭,所以BD CD ⋅=,故D 正确; 故选:ABD.例57.(多选题)(2022·湖南·长郡中学模拟预测)已知向量a b c ,,满足2222a b a b c c =-=-==,则可能成立的结果为( ) A .34b =B .54b =C .34b c ⋅= D .54b c ⋅=【答案】BCD 【解析】 【分析】不妨设()10C ,,动点A 在以原点为圆心2为半径的圆O 上,动点B 在以C 为圆心,1为半径的圆上,利用坐标法,即可求解. 【详解】对于选项A 、B ,由题意2=a ,1c =,1a b b c -=-=,设OA a =,OB b =,OC c =,不妨设()10C ,,如图,动点A 在以原点为圆心2为半径的圆O 上,动点B 在以C 为圆心,1为半径的圆上,且满足1AB =, 圆C 方程是22(1)1x y -+=.当B 在圆C 上运动时,由AB OB OA +≥,得1OB ≥,当且仅当O ,A ,B 三点共线时取等号,又由图易知2OB ≤,即12b ≤≤,故选项A 不满足,选项B 满足;对于选项C 、D ,设()B x y ,,则()()10b c x y x ⋅=⋅=,,, 由22221(1)1x y x y ⎧+=⎨-+=⎩,解得12x y ⎧=⎪⎪⎨⎪=⎪⎩,12B x ∴≥, 又2B x ≤.即122x ≤≤. 122b c ⎡⎤∴⋅∈⎢⎥⎣⎦,,选项C ,D 满足.故选:BCD例58.(多选题)(2022·湖南·长郡中学模拟预测)如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有眼,阴鱼的头部有个阳殿,表示万物都在相互转化,互相涉透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,其平面图形记为图乙中的正八边形ABCDEFGH ,其中2OA =,则( )A .20OB OE OG ++=B .22OA OD ⋅=- C .4AH EH += D .4+=+AH GH 【答案】ABC【分析】分别以,HD BF 所在的直线为x 轴和y 轴,建立的平面直角坐标系,作AM HD ⊥,结合向量的坐标运算,逐项判定,即可求解. 【详解】由题意,分别以,HD BF 所在的直线为x 轴和y 轴,建立如图所示的平面直角坐标系, 因为正八边形ABCDEFGH ,所以AOH HOG AOB EOF FOG ∠∠∠∠∠====DOE COB COD =∠=∠=∠360458==, 作AM HD ⊥,则OM AM =,因为2OA =,所以OM AM =(A ,同理可得其余各点坐标,()0,2B -,E ,(G ,()2,0D ,()2,0H -,对于A (02(2),2222)0OE OG ++=++--++=,故A 正确;对于B 中,(2(0OA OD ⋅=-⨯+⨯=-B 正确;对于C 中,(2AH =-,(2EH =-,(4,0)AH EH +=-,所以(4AH EH +=-=,故C 正确;对于D 中,(2AH =-,(2GH =-,(4AH GH +=-+,(4AH GH =-+=-D 不正确.故选:ABC.例59.(2022·江苏南京·模拟预测)在ABC 中,0AB AC ⋅=,3AB =,4AC =,O 为ABC 的重心,D 在边BC 上,且AD BC ⊥,则AD AO ⋅______. 【答案】9625【解析】根据O 为ABC 的重心,得到()13=+AO AB AC ,再由0AB AC ⋅=和AD BC ⊥,利用等面积法求得AD ,进而得到DB ,方法一:利用基底法求解;方法二:以A 坐标原点,AC 为x 轴,AB 为y 轴建立平面直角坐标系,利用坐标法求解. 【详解】解:因为O 为ABC 的重心, 所以()13=+AO AB AC , 因为0AB AC ⋅=,所以AB AC ⊥,则5BC =,因为AD BC ⊥,所以1122ABC S AB AC AD BC =⋅=⋅△, 即1134522AD ⨯⨯=⨯, 所以125AD =,在Rt ADB 中,95DB =. 方法一:因为925=+=+AD AB BD AB BC , ()9916252525=+-=+AB AC AB AC AB , 所以()191632525⎛⎫⋅=+⋅+ ⎪⎝⎭AD AO AB AC AC AB ,221916963252525⎛⎫=⨯+= ⎪⎝⎭AC AB . 方法二:以A 坐标原点,AC 为x 轴,AB 为y 轴建立平面直角坐标系,则()4,0AC =,()0,3AB =,由方法一可知9163648,25252525AD AC AB ⎛⎫=+= ⎪⎝⎭,()14,133AO AB AC ⎛⎫=+= ⎪⎝⎭, 所以136489513252525AD AO ⋅=⨯+⨯=.例60.(2022·北京·北大附中三模)已知正方形ABCD 的边长为2,E 是BC 的中点,点P 满足2AP AE AD =-,则PD =___________;PE PD ⋅=___________.【答案】 10 【解析】 【详解】解:以A 为原点,AB 为x 轴正方向建立平面直角坐标系, 所以()()()0,0,2,0,2,1A B E ,()0,2D ,设(),P x y ,所以()()(),,2,1,2,0AP x y AE AD ===,因为2AP AE AD =-,所以()()4,0,4,2P PD =-,所以25PD = 又()2,1PE =-,所以10PE PD ⋅=.故答案为:10.例61.(2022·天津市西青区杨柳青第一中学模拟预测)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,E ,F 分别为BC ,CD 上的点,2CE EB =,2CF FD =,若线段EF 上存在一点M ,使得5162AM AB AD =+,则||AM =__________,若点N 为线段BD 上一个动点,则AN MN ⋅的取值范围为__________.【答案】73 371,363⎡⎤-⎢⎥⎣⎦【解析】 【分析】以菱形的对角线为在不在建立平面直角坐标系,通过坐标运算先求M 坐标然后可得||AM ,再用坐标表示出AN MN ⋅,由二次函数性质可得所求范围. 【详解】因为ABCD 为菱形,所以AC BD ⊥,以BD 、AC 所在直线分别为x 、y 轴建立平面直角坐标系,因为2AB =,60BAD ∠=︒,所以1,OB OD OC OA ====则(0,(1,0),(1,0)A B D -,设((,0)M m N n 43(1,3),(1,3),(,),(,3),3AB AD AM m AN n ==-==因为5162AM AB AD =+,所以51((62m =+-解得13m =,所以17||93AM =又1(,3MN n =-所以21137()1()3636AN MN n n n ⋅=--=--因为11n -≤≤,所以当16n =时,AN MN ⋅有最小值3736-, 当1n =-时,AN MN ⋅有最大值13,所以AN MN ⋅的取值范围为371,363⎡⎤-⎢⎥⎣⎦故答案为:73,371,363⎡⎤-⎢⎥⎣⎦。
高考数学一轮复习3 第3讲 平面向量的数量积及应用举例
第3讲平面向量的数量积及应用举例最新考纲考向预测1.通过物理中的功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积.2.通过几何直观,了解平面向量投影的概念以及投影向量的意义.3.会用数量积判断两个平面向量的垂直关系.命题趋势平面向量数量积的概念及运算,与长度、夹角、平行、垂直有关的问题,平面向量数量积的综合应用仍是高考考查的热点,题型仍是选择题与填空题.核心素养数学运算、逻辑推理1.向量的夹角(1)条件:平移两个非零向量a和b至同一起点,结论:∠AOB=θ(0°≤θ≤180°)叫做a与b的夹角.(2)范围:0°≤θ≤180°.特殊情况:当θ=0°时,a与b共线同向.当θ=180°时,a与b共线反向.当θ=90°时,a与b互相垂直.2.向量的数量积(1)条件:两个向量a与b,夹角θ,结论:数量|a||b|cos_θ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos_θ.(2)数量积的几何意义条件:a的长度|a|,b在a方向上的投影|b|cos_θ(或b的长度|b|,a在b方向上的投影|a|cos_θ),结论:数量积a·b等于|a|与|b|cos_θ的乘积(或|b|与|a|cos_θ的乘积).3.平面向量数量积的运算律(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),θ=a,b.结论几何表示坐标表示向量的模|a|=a·a |a|=x21+y21夹角余弦cos θ=a·b|a||b|cos θ=x1x2+y1y2x21+y21x2+y2a⊥b充要条件a·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤x21+y21x22+y2常用结论1.求平面向量的模的公式(1)a2=a·a=|a|2或|a|=a·a=a2;(2)|a±b|=(a±b)2=a2±2a·b+b2;(3)若a=(x,y),则|a|=x2+y2.2.有关向量夹角的两个结论(1)两个向量a与b的夹角为锐角,则有a·b>0,反之不成立(因为夹角为0时不成立);(2)两个向量a与b的夹角为钝角,则有a·b<0,反之不成立(因为夹角为π时不成立).常见误区1.投影和两向量的数量积都是数量,不是向量.2.向量a在向量b方向上的投影与向量b在向量a方向上的投影不是一个概念,要加以区别.3.向量数量积的运算不满足乘法结合律,即(a·b)·c不一定等于a·(b·c),这是由于(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.1.判断正误(正确的打“√”,错误的打“×”)(1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )(3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )·c =a ·(b ·c ).( )(5)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(6)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( ) 答案:(1)√ (2)√ (3)× (4)× (5)× (6)×2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |为( ) A .12 B .6 C .33D .3解析:选B.a ·b =|a ||b |cos 135°=-122,所以|b |=-1224×⎝ ⎛⎭⎪⎫-22=6.3.(多选)已知向量a =(1,-2),b =(-2,4),则( ) A .a ∥b B .(a +b )·a =-5 C .b ⊥(a -b )D .2|a |=|b |解析:选ABD.因为1×4=-2×(-2),所以a ∥b ,又a +b =(-1,2),所以(a +b )·a =-5.a -b =(3,-6),b ·(a -b )≠0,所以C 错误,|a |=5,|b |=25,2|a |=|b |,故选ABD.4.已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ=________. 解析:cos θ=a·b |a||b|=-632×6=-32,又因为0≤θ≤π,所以θ=5π6. 答案:5π65.已知向量a 与b 的夹角为π3,|a |=|b |=1,且a ⊥(a -λb ),则实数λ=________.解析:由题意,得a ·b =|a ||b |cos π3=12,因为a ⊥(a -λb ),所以a ·(a -λb )=|a |2-λa ·b =1-λ2=0,所以λ=2.答案:2平面向量数量积的运算(1)(2021·内蒙古赤峰二中、呼市二中月考)已知向量a ,b 的夹角为π3,若c =a |a|,d =b |b|,则c ·d =( ) A.14B .12 C.32 D .34(2)(多选)已知△ABC 的外接圆的圆心为O ,半径为2,OA →+AB →+AC →=0,且|OA →|=|AB→|,下列结论正确的是( ) A.CA→在CB →方向上的投影长为- 3 B.OA →·AB →=OA →·AC →C.CA→在CB →方向上的投影长为 3 D.OB →·AB →=OC →·AC→ 【解析】 (1)c ·d =a |a|·b |b|=|a||b|cos a ,b |a||b|=cos π3=12.故选B.(2)由OA→+AB →+AC →=0得OB →=-AC →=CA →,所以四边形OBAC 为平行四边形.又O 为△ABC 外接圆的圆心,所以|OB→|=|OA →|,又|OA →|=|AB →|,所以△OAB 为正三角形.因为△ABC 的外接圆半径为2,所以四边形OBAC 是边长为2的菱形,所以∠ACB =π6,所以CA →在CB →上的投影为|CA →|cos π6=2×32=3,故C 正确.因为OA →·AB→=OA →·AC →=-2,OB →·AB →=OC →·AC→=2,故B ,D 正确.【答案】 (1)B (2)BCD计算向量数量积的三个角度(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.1.已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( )A.55 B .-55 C .-255D .-355解析:选D.由a =(1,2),可得|a |=5,由a ·(b +a )=2,可得a ·b +a 2=2,所以a ·b =-3,所以向量b 在a 方向上的投影为a·b |a|=-355.故选D.2.(2020·重庆第一中学月考)已知非零向量a ,b ,c 满足a +b +c =0,a ,b 的夹角为120°,且|b |=2|a |,则向量a ,c 的数量积为( )A .0B .-2a 2C .2a 2D .-a 2解析:选A.由非零向量a ,b ,c 满足a +b +c =0,可得c =-(a +b ),所以a ·c =a ·[-(a +b )]=-a 2-a ·b =-a 2-|a |·|b |·cosa ,b.由于a ,b 的夹角为120°,且|b |=2|a |,所以a ·c =-a 2-|a |·|b |cos 120°=-|a |2-2|a |2×⎝ ⎛⎭⎪⎫-12=0.故选A.3.(一题多解)(2020·武昌区高三调研)在等腰直角三角形ABC 中,∠ACB =π2,AC =BC =2,点P 是斜边AB 上一点,且BP =2P A ,那么CP →·CA →+CP →·CB→=( ) A .-4 B .-2 C .2D .4解析:选D.通解:由已知得|CA →|=|CB →|=2,CA →·CB→=0,AP →=13(CB →-CA →),所以CP →·CA →+CP →·CB →=(CA →+AP →)·CA →+(CA →+AP →)·CB →=|CA →|2+AP →·CA →+CA →·CB →+AP →·CB →=|CA →|2+13(CB →-CA →)·(CB→+CA →)=|CA →|2+13|CB →|2-13|CA →|2=22+13×22-13×22=4. 优解:由已知,建立如图所示的平面直角坐标系,则C (0,0),A (2,0),B (0,2),设P (x ,y ).因为BP =2P A ,所以BP →=2P A →,所以(x ,y -2)=2(2-x ,-y ),所以⎩⎪⎨⎪⎧x =43y =23,所以CP →·CA →+CP →·CB →=(43,23)·(2,0)+(43,23)·(0,2)=4.故选D.平面向量数量积的应用角度一 求两平面向量的夹角(1)(2020·高考全国卷Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos〈a ,a +b 〉=( )A .-3135B .-1935 C.1735D .1935(2)(2021·普通高等学校招生全国统一考试模拟)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉=( )A.73 B .23 C.79D .29【解析】 (1)由题意,得a ·(a +b )=a 2+a ·b =25-6=19,|a +b |=a2+2a·b +b2=25-12+36=7,所以cosa ,a +b=a·(a +b )|a||a +b|=195×7=1935,故选D.(2)因为a ,b 是单位向量,所以|a |=|b |=1.又因为a ·b =0,c =7a +2b ,所以|c |=(7a +2b )2=3,a ·c =a ·(7a +2b )=7, 所以cos 〈a ,c 〉=a·c |a||c|=73.因为〈a ,c 〉∈[0,π],所以sin 〈a ,c 〉=23.故选B. 【答案】 (1)D (2)B求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系.(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x1x2+y1y2x21+y 21·x 2+y 2.角度二 求平面向量的模(2020·四川双流中学诊断)如图,在△ABC 中,M 为BC 的中点,若AB =1,AC =3,AB →与AC →的夹角为60°,则|MA→|=________.【解析】 因为M 为BC 的中点,所以AM→=12(AB →+AC →),所以|MA→|2=14(AB →+AC →)2 =14(|AB →|2+|AC →|2+2AB →·AC →) =14(1+9+2×1×3cos 60°)=134, 所以|MA→|=132. 【答案】 132求向量的模或其范围的方法(1)定义法:|a |=a2=a·a ,|a ±b |=(a±b )2=a2±2a·b +b2. (2)坐标法:设a =(x ,y ),则|a |=x2+y2.(3)几何法:利用向量加减法的平行四边形法则或三角形法则作出向量,再利用解三角形的相关知识求解.[提醒] (1)求形如m a +n b 的向量的模,可通过平方,转化为数量的运算. (2)用定义法和坐标法求模的范围时,一般把它表示成某个变量的函数,再利用函数的有关知识求解;用几何法求模的范围时,注意数形结合的思想,常用三角不等式进行最值的求解.角度三 两平面向量垂直问题已知向量AB →与AC →的夹角为120°,且|AB→|=3,|AC →|=2.若AP →=λAB →+AC →,且AP→⊥BC →,则实数λ的值为________.【解析】 因为AP →⊥BC →,所以AP →·BC →=0.又AP→=λAB →+AC →,BC →=AC →-AB →, 所以(λAB →+AC →)·(AC →-AB →)=0, 即(λ-1)AC →·AB →-λAB →2+AC →2=0, 所以(λ-1)|AC →||AB →|cos 120°-9λ+4=0.所以(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12-9λ+4=0.解得λ=712.【答案】 712有关平面向量垂直的两类题型根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.1.已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|a +2b |=( ) A .22 B .25 C.17D .15解析:选 C.因为a -b =(3,2),所以|a -b |=5,所以|a -b |2=|a |2-2a ·b +|b |2=5-2a ·b =5,则a ·b =0,所以|a +2b |2=|a |2+4a ·b +4|b |2=17,所以|a +2b |=17.故选C.2.(多选)设a ,b 是两个非零向量,则下列命题为假命题的是( ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b | 解析:选ABD.对于A ,若|a +b |=|a |-|b |, 则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |,得a ·b =-|a ||b |≠0,a 与b 不垂直,所以A 为假命题;对于B ,由A 解析可知,若a ⊥b ,则|a +b |≠|a |-|b |,所以B 为假命题; 对于C ,若|a +b |=|a |-|b |, 则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |, 得a ·b =-|a ||b |,则cos θ=-1,则a 与b 反向,因此存在实数λ,使得b =λa ,所以C 为真命题. 对于D ,若存在实数λ,使得b =λa ,则a ·b =λ|a |2,-|a ||b |=λ|a |2,由于λ不能等于0, 因此a ·b ≠-|a ||b |,则|a +b |≠|a |-|b |, 所以D 不正确. 故选ABD.3.(一题多解)已知正方形ABCD ,点E 在边BC 上,且满足2BE →=BC →,设向量AE→,BD →的夹角为θ,则cos θ=________. 解析:方法一:因为2BE→=BC →,所以E 为BC 的中点.设正方形的边长为2,则|AE →|=5,|BD →|=22,AE →·BD →=⎝ ⎛⎭⎪⎫AB →+12AD →·(AD →-AB →)=12|AD →|2-|AB →|2+12AD →·AB →=12×22-22=-2,所以cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.方法二:因为2BE→=BC →,所以E 为BC 的中点.设正方形的边长为2,建立如图所示的平面直角坐标系xAy ,则点A (0,0),B (2,0),D (0,2),E (2,1),所以AE →=(2,1),BD →=(-2,2),所以AE →·BD →=2×(-2)+1×2=-2,故cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.答案:-1010向量数量积的综合应用在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.【解】 (1)由m·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35, 所以cos A =-35.因为0<A <π, 所以sin A =1-cos2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理a sin A =b sin B ,得sin B =bsin A a =5×4542=22,因为a >b ,所以A >B ,则B =π4,由余弦定理得()422=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1.故向量BA→在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.平面向量与三角函数的综合问题(1)题目条件给出的向量坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等. K在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知向量m =(cos B ,2cos 2 C2-1),n =(c ,b -2a ),且m·n =0.(1)求∠C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积.解:(1)因为m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0,所以c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得sin C cos B +(sin B -2sin A )cos C =0,sin A =2sin A cos C ,又sin A ≠0,所以cos C =12,而∠C ∈(0,π),所以∠C =π3. (2)由AD→=DB →知,CD →-CA →=CB →-CD →, 所以2CD→=CA →+CB →, 两边平方得4|CD→|2=b 2+a 2+2ba cos ∠ACB =b 2+a 2+ba =28.①又c 2=a 2+b 2-2ab cos ∠ACB , 所以a 2+b 2-ab =12.②由①②得ab =8,所以S △ABC =12ab sin ∠ACB =23.核心素养系列4 逻辑推理——平面向量与三角形的“四心”三角形的“四心”:设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A . (2)O 为△ABC 的重心⇔OA→+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →.(4)O 为△ABC 的内心⇔a OA→+b OB →+c OC →=0. 类型一 平面向量与三角形的“重心”问题已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP→=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC→],λ∈R ,则点P 的轨迹一定经过( )A .△ABC 的内心B .△ABC 的垂心 C .△ABC 的重心D .AB 边的中点【解析】 取AB 的中点D ,则2OD→=OA →+OB →, 因为OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], 所以OP→=13[2(1-λ)OD →+(1+2λ)OC →] =2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,所以P ,C ,D 三点共线,所以点P 的轨迹一定经过△ABC 的重心. 【答案】 C类型二 平面向量与三角形的“内心”问题在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP→=xOB →+yOC→,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B .1463 C .43D .62【解析】 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263, 所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 【答案】 B类型三 平面向量与三角形的“垂心”问题已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P满足OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( )A .重心B .垂心C .外心D .内心【解析】 因为OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C ,所以AP →=OP →-OA →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , 所以BC →·AP →=BC →·λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C =λ(-|BC→|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.【答案】 B类型四 平面向量与三角形的“外心”问题已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO→=xAB →+yAC →,则有序实数对(x ,y )为( ) A.⎝⎛⎭⎪⎫45,35 B .⎝⎛⎭⎪⎫35,45C.⎝⎛⎭⎪⎫-45,35 D .⎝⎛⎭⎪⎫-35,45【解析】 取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC→, OM →=AM →-AO →=12AB →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-x AB →-yAC →,ON →=AN →-AO →=12AC →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-y AC →-xAB→. 由OM →⊥AB →,得⎝⎛⎭⎪⎫12-x AB →2-yAC →·AB→=0,①由ON →⊥AC →,得⎝ ⎛⎭⎪⎫12-y AC →2-xAC →·AB→=0,② 又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB2→, 所以AC →·AB →=AC →2+AB →2-BC →22=-12,③把③代入①,②得⎩⎪⎨⎪⎧1-2x +y =0,4+x -8y =0,解得x =45,y =35.故实数对(x ,y )为⎝ ⎛⎭⎪⎫45,35.【答案】 A[A 级 基础练]1.设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( ) A .-32 B .-53 C.53D .32解析:选A.c =a +k b =(1,2)+k (1,1)=(1+k ,2+k ),因为b ⊥c ,所以b ·c =0,b ·c =(1,1)·(1+k ,2+k )=1+k +2+k =3+2k =0,所以k =-32.2.若向量OF1→=(1,1),OF2→=(-3,-2)分别表示两个力F 1,F 2,则|F 1+F 2|为( )A.10 B .25 C.5D .15解析:选 C.由于F 1+F 2=(1,1)+(-3,-2)=(-2,-1),所以|F 1+F 2|=(-2)2+(-1)2=5.3.(2020·贵阳市第一学期监测考试)在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.109 B .259 C.269D .89解析:选A.方法一:因为|AB→+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,所以AB →·AC →=0,即∠BAC =90°.所以AE →·AF →=⎣⎢⎡⎦⎥⎤AB →+13(AC →-AB →)·⎣⎢⎡⎦⎥⎤AC →-13(AC →-AB →)=⎝ ⎛⎭⎪⎫23AB→+13AC →·(23AC →+13AB →)=29AB →2+29AC →2=109,故选A.方法二:因为|AB →+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,所以AB →·AC →=0,即AB→⊥AC →,以A 为坐标原点,AB ,AC 所在的直线分别为x 轴、y 轴建立如图所示的平面直角坐标系,则A (0,0),B (2,0),C (0,1),E (23,23),F (43,13),所以AE →·AF →=(23,23)·(43,13)=89+29=109,故选A.4.(多选)在△ABC 中,下列命题正确的是( ) A.AB→-AC →=BC →B.AB→+BC →+CA →=0 C .若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形D .若AC→·AB →>0,则△ABC 为锐角三角形 解析:选BC.由向量的运算法则知AB →-AC →=CB →;AB →+BC →+CA →=0,故A 错,B对;因为(AB →+AC →)·(AB →-AC →)=|AB →|2-|AC →|2=0, 所以|AB→|2=|AC →|2,即AB =AC , 所以△ABC 为等腰三角形,故C 对;因为AC →·AB →>0,所以角A 为锐角,但三角形不一定是锐角三角形.故选BC. 5.(2020·安徽示范高中名校月考)已知a ,b ,c 均为单位向量,a 与b 的夹角为60°,则(c +a )·(c -2b )的最大值为( )A.32 B .3 C .2D .3解析:选B.设c 与a -2b 的夹角为θ.因为|a -2b |2=a 2-4a ·b +4b 2=3,所以|a -2b |=3,所以(c +a )·(c -2b )=c 2+c ·(a -2b )-2a ·b =1+|c ||a -2b |cos θ-1=3cos θ,所以(c +a )·(c -2b )的最大值为3,此时cos θ=1.故选B.6.(2020·湖南、河南、江西3月联考)设非零向量a ,b 满足|a |=3|b |,cos a ,b=13,a ·(a -b )=16,则|b |=________. 解析:因为|a |=3|b |,cos a ,b=13,所以a ·(a -b )=9|b |2-|b |2=8|b |2=16,所以|b |=2.答案:27.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为________. 解析:因为|a |=|a +2b |, 所以|a |2=|a |2+4a ·b +4|b |2, 所以a ·b =-|b |2, 令a 与b 的夹角为θ.所以cos θ=a·b |a||b|=-|b|23|b||b|=-13. 答案:-138.(2020·新高考卷改编)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB→的取值范围是________. 解析:AP →·AB →=|AP →|·|AB →|·cos ∠P AB =2|AP →|·cos ∠P AB ,又|AP →|cos ∠P AB 表示AP →在AB →方向上的投影,所以结合图形可知,当P 与C 重合时投影最大,当P 与F 重合时投影最小.又AC →·AB →=23×2×cos 30°=6,AF →·AB →=2×2×cos 120°=-2,故当点P 在正六边形ABCDEF 内部运动时,AP →·AB→∈(-2,6).答案:(-2,6)9.已知向量a =(2,-1),b =(1,x ). (1)若a ⊥(a +b ),求|b |的值;(2)若a +2b =(4,-7),求向量a 与b 夹角的大小. 解:(1)由题意得a +b =(3,-1+x ). 由a ⊥(a +b ),可得6+1-x =0, 解得x =7,即b =(1,7), 所以|b |=50=52.(2)由题意得,a +2b =(4,2x -1)=(4,-7), 故x =-3,所以b =(1,-3),所以cos 〈a ,b 〉=a·b |a||b|=(2,-1)·(1,-3)5×10=22,因为〈a ,b 〉∈[0,π], 所以a 与b 的夹角是π4.10.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC→=0,求t 的值.解:(1)由题设知,AB →=(3,5),AC →=(-1,1),则AB →+AC →=(2,6),AB →-AC →=(4,4).所以|AB→+AC →|=210,|AB →-AC →|=42. 故所求的两条对角线的长分别为42,210.(2)方法一:由题设知,OC→=(-2,-1),AB →-tOC →=(3+2t ,5+t ).由(AB →-tOC →)·OC →=0,得 (3+2t ,5+t )·(-2,-1)=0, 从而5t =-11, 所以t =-115.方法二:AB →·OC →=tOC →2,AB →=(3,5),t =AB →·OC →|OC →|2=-115. [B 级 综合练]11.(多选)(2020·山东九校联考)已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( )A.AB →·CE →=-1B.OE→+OC →=0 C .|OA→+OB →+OC →|=32 D.ED→在BC →方向上的投影为76 解析:选BCD.由题意知E 为AB 的中点,则CE ⊥AB ,以E 为原点,EA ,EC 所在直线分别为x 轴,y 轴建立平面直角坐标系,如图所示,所以E (0,0),A (1,0),B (-1,0),C (0,3),D ⎝ ⎛⎭⎪⎫13,233, 设O (0,y ),y ∈(0,3),则BO→=(1,y ),DO →=⎝ ⎛⎭⎪⎫-13,y -233,因为BO →∥DO →,所以y -233=-13y , 解得y =32,即O 是CE 的中点,则OE→+OC →=0,所以选项B 正确;|OA→+OB →+OC →|=|2OE →+OC →|=|OE →|=32,所以选项C 正确; 因为CE ⊥AB ,所以AB →·CE →=0,所以选项A 错误;ED→=⎝ ⎛⎭⎪⎫13,233,BC →=(1,3). 故ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确.故选BCD.12.(2020·山东济宁一中月考)如图,在△ABC 中,∠BAC =π3,AD →=2DB →,P 为CD 上一点,且满足AP→=m AC →+12AB →,若△ABC 的面积为23,则|AP →|的最小值为( )A. 2 B .43 C .3D . 3解析:选 D.令CP→=k CD →(0<k <1),则AP →=AC →+CP →=AC →+k CD →=AC →+k (AD →-AC →)=AC →+k ⎝ ⎛⎭⎪⎫23AB →-AC →=2k 3AB →+(1-k )AC→=m AC →+12AB →,所以1-k =m ,2k 3=12,所以m =14,因为△ABC 的面积为23,所以12|AC →|·|AB →|·32=23,所以|AC →|·|AB→|=8,所以|AP →|=116|AC →|2+14|AB →|2+18|AC →||AB →|=1+116|AC →|2+16|AC →|2≥3,当且仅当|AC→|=4时取“=”,所以|AP →|的最小值为 3.故选D.13.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝ ⎛⎭⎪⎫0≤θ≤π2.(1)若AB→⊥a ,且|AB →|=5|OA →|,求向量OB →; (2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →.解:(1)由题设知AB→=(n -8,t ), 因为AB→⊥a ,所以8-n +2t =0. 又因为5|OA →|=|AB →|,所以5×64=(n -8)2+t 2=5t 2,得t =±8. 当t =8时,n =24;当t =-8时,n =-8, 所以OB→=(24,8)或OB →=(-8,-8). (2)由题设知AC→=(k sin θ-8,t ),因为AC→与a 共线,所以t =-2k sin θ+16, t sin θ=(-2k sin θ+16)sin θ=-2k ⎝ ⎛⎭⎪⎫sin θ-4k 2+32k . 因为k >4,所以0<4k <1,所以当sin θ=4k 时,t sin θ取得最大值32k , 由32k =4,得k =8,此时θ=π6,OC →=(4,8), 所以OA →·OC →=(8,0)·(4,8)=32.14.在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC→|=1,且∠AOC =θ,其中O 为坐标原点.(1)若θ=34π,设点D 为线段OA 上的动点,求|OC→+OD →|的最小值;(2)若θ∈⎣⎢⎡⎦⎥⎤0,π2,向量m =BC →,n =(1-cos θ,sin θ-2cos θ),求m ·n 的最小值及对应的θ值.解:(1)设D (t ,0)(0≤t ≤1), 由题意知C ⎝ ⎛⎭⎪⎫-22,22, 所以OC→+OD →=⎝ ⎛⎭⎪⎫-22+t ,22, 所以|OC →+OD →|2=12-2t +t 2+12=t 2-2t +1=⎝⎛⎭⎪⎫t -222+12(0≤t ≤1),所以当t =22时,|OC→+OD →|有最小值,最小值为22.(2)由题意得C (cos θ,sin θ),m =BC→=(cos θ+1,sin θ),则m ·n =1-cos 2θ+sin 2θ-2sin θcos θ=1-cos 2θ-sin 2θ=1-2sin ⎝ ⎛⎭⎪⎫2θ+π4,因为θ∈⎣⎢⎡⎦⎥⎤0,π2,所以π4≤2θ+π4≤5π4,所以当2θ+π4=π2,即θ=π8时,sin ⎝ ⎛⎭⎪⎫2θ+π4取得最大值1. 所以当θ=π8时,m ·n 取得最小值,为1-2.[C 级 创新练]15.在Rt △ABC 中,∠C 是直角,CA =4,CB =3,△ABC 的内切圆与CA ,CB分别切于点D ,E ,点P 是图中阴影区域内的一点(不包含边界).若CP →=xCD →+yCE →,则x +y 的值可以是( )A .1B .2C .4D .8解析:选 B.设△ABC 内切圆的圆心为O ,半径为r ,连接OD ,OE ,则OD ⊥AC ,OE ⊥BC ,所以3-r +4-r =5,解得r =1,故CD =CE =1,连接DE ,则当x +y =1时,P 在线段DE 上,但线段DE 均不在阴影区域内,排除A ;在AC 上取点M ,在CB 上取点N ,使得CM =2CD ,CN =2CE ,连接MN ,所以CP→=x 2CM →+y2CN→,则当点P 在线段MN 上时,x 2+y 2=1,故x +y =2.同理,当x +y =4或x +y =8时,点P 不在△ABC 内部,排除C ,D ,故选B.16.定义两个平面向量的一种运算a ⊗b =|a |·|b |sin a ,b,则关于平面向量上述运算的以下结论中,①a ⊗b =b ⊗a ; ②λ(a ⊗b )=(λa )⊗b ; ③若a =λb ,则a ⊗b =0;④若a =λb 且λ>0,则(a +b )⊗c =(a ⊗c )+(b ⊗c ). 正确的序号是________.解析:①恒成立,②λ(a ⊗b )=λ|a |·|b |sin a ,b,(λa )⊗b =|λa |·|b |sina ,b,当λ<0时,λ(a ⊗b )=(λa )⊗b 不成立,③a =λb ,则sin a ,b=0,故a ⊗b =0恒成立,④a =λb ,且λ>0,则a+b=(1+λ)b,(a+b)⊗c=|1+λ||b|·|c|sin b,c,(a⊗c)+(b⊗c)=|λb|·|c|sin b,c+|b|·|c|sin b,c=|1+λ||b|·|c|sin b,c,故(a+b)⊗c=(a⊗c)+(b⊗c)恒成立.答案:①③④。
高中数学平面向量专题复习(知识要点+六大考试题型详解)
平面向量六大题型知识点:1.向量的有关概念(1)定义:即有大小,又有方向的量叫做向量. (2)表示:a AB(,)OA x y =2121(,)AB x x y y =--(3)向量的长度(模):a 或AB 的模记作||a 或||AB . (4)几种特殊向量: 定义备注0,方向任意||aa 即为单位向量记为ab ∥,规定0与任意向量共线a b =,相等一定平行,平行不一定相等a b =-,AB BA =-2.向量的运算 运算几何表示字母表示坐标表示加法a b AB BC AC +=+=三角形法则 类比“位移之和”首尾相连,首位连11(,)a x y =,22(,)b x y = 1212(,)a b x x y y +=++a b AB AD AC +=+= 平行四边形法则 类比“力的合成” 共起点,对角线减法a b AB AC CB -=-= 共起点,后指前11(,)a x y =,22(,)b x y = 1212(,)a b x x y y -=--数乘长度变为||λ倍0λ>,方向相同0λ<,方向相反 0λ=,0a λ=11(,)a x y =12(,)a x x λλλ=数量积||||cos a b a b θ⋅=11(,)a x y =,22(,)b x y =1212a b x x y y ⋅=+3.其他概念(1)平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ,2λ,使1122a e e λλ=+,我们把不共线的向量1e ,2e 叫做表示这一平面内所有向量的一组基底.(2)投影:||cos (||cos )a b θθ叫做向量a 在b 方向上(b 在a 方向上)的投影.常用投影计算公式:||cos ||||||a b a a a b θ⋅==||a bb ⋅. (3)向量不等式:||||||||||||a b a b a b -≤±≤+(等号在向量a ,b 共线时取得).4.重要结论ABC 中,的中点ABC 的重心(1)PC PA PB λλ=+-1()2AD AB AC =+GB GC ++5.常用性质设向量a 与b 夹角为θ,11(,)a x y =,22(,)b x y =.a b λ= ||||cos 0a b a b θ⋅==12a b x x ⋅=+2||a a = 21||a x y =+cos ||||a ba b θ⋅=122211cos x x x yθ+=+重要考试题型:题型一:向量概念1给出如下命题: ①若||||a b =,则a b =;②若A ,B ,C ,D 是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件; ③若a b =,b c =,则a c =; ④a b =的充要条件是||||a b =且a b ∥; ⑤若a b ∥,b c ∥,则a c ∥. 其中正确的命题的序号是______.解析:①两向量模相等,方向不一定相同,所以a b =不正确;②AB DC =说明AB 和DC 两条边即平行又相等,可以推出四边形为平行四边形,反之也成立,是充要条件,正确;③两个向量相等说明它们大小相等,方向相同,故满足此条件的都是相等向量,正确; ④两向量模相等,且平行,不能说明它们方向相同,故错误;⑤若0b =,根据0与任意向量平行的性质,则a b ∥且b c ∥,但a 与c 之间不一定平行,不排除0时,向量之间没有平行的传递性,故错误;主要考察向量定义,表示、以及特殊向量,属于基础题型,需要注意的是: (1)向量二要素(大小、方向)(2)加模后变为实数,去掉了方向的要素,可以比较大小 (3)0与任意向量共线(没有平行传递性) (4)共线向量方向相同或相反 (5)相反向量长度相等AD BC =;AB DC =且||||AB AD =.AD BC =说明AD 和BC 两条边相等且平行,所以为平行四边形;AB DC =说明AB 和DC 相等且平行,为平行四边形,|||AB AD =说明两临边相等,为菱形.答案:(1)平行四边形 (2给出如下命题:①向量AB 的长度与向量BA 的长度相等;a 与b 平行,则a 与b 的方向相同或相反;③两个有公共起点而且相等的向量,其终点必相同;④两个公共终点的向量,一定是共线向量;AB 与向量CD 是共线向量,则点其中正确的命题个数是( B .2 C .3AB 和BA 长度相等,方向相反,正确;②当为零向量时,不满足条件,错误;③起点相同,长度和方向也相同,终点一定相同,正确;④终点相同,起点未必相同,不一定是共线向量,错误;⑤共线向量即平行向量,它们的起点和终点不一定在同一直线上,错误;答案:C题型二:向量四则运算1如图:正六边形ABCDEF 中,BA CD EF ++=( ) A .0 B .BE C .AD D .CF解析:由于BA DE =,故BA CD EF CD DE EF CF ++=++=. 答案:D2根如图所示,已知正六边形ABCDEF ,O 是它的中心,若BA =a ,BC =b ,试用a ,b 将向量OE ,BF ,BD ,FD 表示出来.解析:OE BO a b ==+;2BF BA AF BA BO a b =+=+=+;2BD BC CD BC BO a b =+=+=+;FD AC BC BA b a ==-=-.答案: a b +,2a b +,2a b +,b a -3AB AC BC --=( )A .2BCB .0C .2BC -D .2AC主要考察向量的加法、减法、数乘、数量积四种运算法则,包含纯字母运算、纯坐标运算、字母结合图形运算、坐标结合图形运算等形式,属于基础题型,需要注意: (1)向量没有位置概念,相等向量的有向线段等价 (2)熟练掌握加减法的口诀,可以直接计算的就不必画图 (3)注意数形结合思想的运用,加减法的对角线性质 (4)字母运算和坐标运算自成一体,也可相互转化AC AB BD CD --+=( A .0 B .DA BC AB 0AC AB BD CD BC BD CD DC CD --+=-+=+=. A OA OC OB CO --+-=_____.解析:原式等于 ()()OB OA CO CO AB -+-=. AB如图,D ,E ,F 分别是ABC 的边AB ,BC ,CA 的中点,则( ) A .0AD BE CF ++= B .0BD CF DF -+= C .0AD CE CF +-= D .0BD BE FC --=AD FE =,BE EC =,则0AD BE CF FE EC CF ++=++=,A 正确.A在ABCD 中,BC CD BA -+=( ) A .BC B .AD C .AB D .AC在平行四边形中,BA 和CD 是相反向,则0CD BA -+=,故0BC BC +=.答案:A8若O 是ABC 所在平面内一点,且满足||2|OB OC OB OC OA -=+-,则的形状为_______.2()()OB OC OA OB OA OC OA AB AC +-=-+-=+,ABC为直角三角(2,4)a=,(1,1)b=-,则a b-=()B.(5,9).(3,7)D(4,8)(1,1)(5,7)a b-=--=.已知四边形ABCD2BC AD=,则顶点D的坐标为((,AD x=2(24)(4,3)BC AD x y==-=,即72y=.(1,3)a=-,(2,4)b=-,若表示向量a,32b a-,c的有向线段首尾相接能构成三角形,则向量c为(1)-.(1,1)-4,6)D.(4,6)-(,)c x y=,能构成三角432230a b a c a b c+-+=++=,即2,4)(,6)(6,12)(4,6)(0,0)x y x y-+-+--++=,即40x-+=,,解得4x=,(2,3)BA=(4,7)CA=BC=(2,4)-B.(3,4)C.(6,10)(4,7)AC=--,(2,3)(4,BC BA AC=+=+-ABC 中,|5BC =,|8CA =,BC CA ⋅.解析:设BC 和CA 的夹角为θ,则120θ=︒,因为||5BC =,|8CA =,则||||cos 58cos120BC CA BC CA θ⋅==⨯答案:20-14已知a ,b 为单位向量,其夹角为)a b b -⋅=( ) A .1- B D .2 221)22||||cos60||2102a b b a b b a b b -⋅=⋅-=︒-=⨯-=.已知两个单位向量a ,b 夹角为60︒,(1)c ta t b =+-,若0b c ⋅=,则2(1)cos6010b c ta b t b t t ⋅=⋅+-=︒+-=,解得2t =. 2设(1,2)a =-,(3,4)b =-,(3,2)c =,则(2)a b c +⋅=( ) A .(15,12)- B .0 C . D .11- 2(1,2)2(3,4)5,6)a b +=-+-=-,(2)(5,6)(3,2)a b c +⋅=-⋅C已知两个单位向量1e ,2e 的夹角为3π,若向量1122b e e =-,21234b e e =+,则12b b ⋅=______.2212121211221(2)(34)32832862b b e e e e e e e e ⋅=-⋅+=-⋅-=-⨯-=-. 6-题型三:平面向量基本定理1在ABCD 中,AB a =,AD b =,3AN NC =,M 为BC 的中点,则MN =_____.解析:33()44AN AC a b ==+,1122AM AB BM AB AD a b =+=+=+, 所以1144MN AN AM a b =-=-+.答案:1144a b -+2如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM c =,AN d =,试用c ,d 表示AB ,AD .解析:设AB a =,AD b =,则1212c AM AD DM b a d AN AB BN a b⎧==+=+⎪⎪⎨⎪==+=+⎪⎩,解得2(2)32(2)3a d c b c d ⎧=-⎪⎪⎨⎪=-⎪⎩,所以4233AB d c =-,4233AD c d =-. 答案:4233AB d c =-,4233AD c d =-主要考察用两个不共线向量表示一个向量,即12a e e λμ=+,大部分是围绕求基底的系数出题,属简单题型,但考查方式较为灵活,需要注意:(1)有些目标向量用已知基底不太好构造,可以用相对熟悉的基底(例如平行四边形的临边)来表示已知基底,再用熟悉的基底来表示目标向量(2)有些题目会用到几何图形比例问题,注意观察图形中的三角形相似 (3)在求一些长度问题时,可能会用到解三角形内容在梯形ABCD 中,AB CD ∥,2AB CD =,M ,N 分别为CD ,BC 的中点,若AB AM AN λμ=+,则λμ+=______.2AB AN NB AN CN AN CA AN AN CM MA =+=+=++=++=14AN AB AM --,所以8455AB AN AM =-,即45λ=-,85μ=,故λ+答案:454在ABC 中,AB c =,AC b =,若点D 满足2BD DC =,则AD =( A .2133b c + B .5233c b - C .13b c - D .1233b c + 22221()()()33333AD AB BD AB BC AB AC AB c b c b c =+=+=+-=+-=+.答案:A在平行四边形ABCD 中,AC 与DB 相交于点O ,E 是线段OD 的中点,AE 延长线与CD 交于F ,若AC a =,BD b =,则AF =( ) A .1142a b + B .2133a b +C .1124a b + D .1233a b +AD AB aAD AB b+=-=,解得1()2AD a b =+,1()2AB a b =-,EDFEBA ,DE 13=,故11121()()23233AF AD DF a b a b a b =+=++⨯-=+.B如图,平面内有三个向量OA ,OB ,OC ,OA 与OB 夹角为120︒,OA 与OC 夹角为30︒,且||||1OA OB ==,||23OC =,若OC OA OB λμ=+,则λμ+的值为_____.解析:作平行四边形ODCE ,则OC OD OE OA OB λμ=+=+,4cos30OCOD ==︒,2tan30OCOE ==︒,即4λ=,2μ=,6λμ+=. 答案:6(1,1)a =,(1,1)b =-,(4,2)c =,则c =( )a b + B .3a b - C .3a b + D .3a b +(,)(,)(,)(4,2)c a b λμλλμμλμλμ=+=+-=-+=,所以4λμ-=,λ+3,1μ=-,则3c a b =-.如图:向量a b -=( ) A .1224e e -- B .1242e e -- C .123e e - D .123e e -+解析:由图可知12()3a b a b e e -=+-=-+. 答案:D向量a b c ++可表示为( ) A .1232e e - B .1233e e -- C .1232e e + D .1223e e +解析:a b c ++在图上画出来,可知1232a b c e e ++=+.答案:C10向量a ,b ,c 在正方形网格中的位置如图所示,若c a b λμ=+,则λμ=______. 解析:如图所示建立平面直角坐标系,可得(1,1)a =--,(6,2)b =,(1,3)c =--,则(,)(6,2)c a b λμλλμμ=+=-+=(6,2)(1,3)μλλμ-+=--,解得2λ=-,12μ=-,则4λμ=. 答案:4题型四:共线、中点、重心问题1设1e ,2e 是不共线向量,若向量1235a e e =+与向量123b me e =-共线,则m 的值等于( )A .95-B .53-C .35-D .59-解析,a 与b 共线,则满足b a λ=,即12123(35)me e e e λ-=+,则335m λλ=⎧⎨-=⎩,解得95m =-.答案:A主要考察一些常用结论,即本学案知识点第4点的内容,属中下难度题型,再强调一下:(1)(0)a b a b b λ⇔=≠∥,1221x y x y =(2)(1),,PC PA PB A B C λλ=+-⇔三点共线,P A 和PB 系数和为0(3)D 为BC 中点,1()2AD AB AC =+,即平行四边形对角线的一半(4)G 为ABC 重心,0GA GB GC ++=a b λ+与(2)b a --共线((2))a b b a λμ+=--,即2a b a b λμμ+=-,12μλμ=⎧⎨=-⎩,解得λ答案:D3已知(1,0)a =,(2,1)b =,ka b -与2a b +共线;(23AB a b =+,BC a mb =+,且A 三点共线,求m 的值.1)(,0)(2,1)(2,1)ka b k k -=-=--2(1,0)(4,2)(5,2)a b +=+=,两者共线,2)(1)5=-⨯,解得12k =-.,B ,C 三点共线,则AB BC λ=,即23()a b a mb λ+=+,则23=⎧⎨=⎩32m = (2,2),(,0)B a ,(0,)C b (0)ab ≠共线,则1a b(AB a =-(2,AC =-AB AC ∥,2)(2)=-⨯,化简得2ab a -,得1112a b +=BC ,已知点(A -AB DC =,设D (8,8)AB =(8DC =-0=,2y =-,故.答案:(0,6已知向量a ,b ,且2AB a b =+,56BC a b =-+,72CD a b =-,则一定共线的三点是( )363AD AB BC CD a b AB =++=+=,所以AD AB ∥,A ,AABC 中,12AM AC =,29AD mAB AC =+,则m =______.12(1)(1)29AD AB AM AB AC mAB AC λλλλ=+-=+-=+,则12,则59m λ==.59设D ,E ,F 分别为ABC 的三边BC ,CA ,AB ,的中点,则EB FC +=( )A .ADB .12ADC .BC D .12BC 11()()()22EB FC BE CF BA BC CA CB AB AC AD +=-+=-+++=+=.A已知O 是ABC 所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,那么( )AO OD = 2AO OD = 3AO OD = D .2AO OD =是中点,则有2OB OC OD +=,原式变为220OA OD +=,即OA OD =-,故AO OD =.答案:A10设M 是ABC 所在平面上的一点,且33022MB MA MC ++=,D 是AC 中点,则||||MD BM 的值为( A .13 B .12D .23)232MA MC MD MD BM +=⋅==,即MD 与BM 共线,则||13||MD BM =.ABC 和点M满足0MA MB MC ++=,若存在实数m 使得AB AC mAM +=成立,则m =_____.解析:由0MA MB MC ++=可知M 为ABC 的重心,则2211[()]()3323AM AD AB AC AB AC ==+=+,即3AB AC AM +=,则3m =. 答案:312如图,在ABC 中,点O 是B C 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB mAM =,AC nAN =,则m n +的值为______.1()222m n AO AB AC AM AN =+=+,因为,O ,N 三点共线,m n2n =. 2在ABC 中,已知D 是AB 边上的一点,2AD DB =,13CD CA CB λ=+,则λ ) .23 3D .23- 解析:因为A ,D ,13CD CA CB λ=+,则113λ+=,23λ=.三点在同一条直线l 上,O 为直线l 外一点,0pOA qOB rOC ++= ,0pOA qOB rOC ++=变形得q rOA OB OC p p=--,因,B ,C 三点共线,则有0=,化简得p q r ++=答案:015已知点G 是ABC 的重心,点P 是GBC 内一点,若AP AB AC λμ=+,则λμ+的取值范围是( )A .1(,1)2 B .2(,1)3 C .3(1,)2D .(1,2)解析:P 是GBC 内一点,则1λμ+<,当且仅当P 在线段BC 上时,λμ+最大等于1,当P 和G 重合时,λμ+最小,此时1()3AP AG AB AC ==+,即23λμ+=,故213λμ<+<. 答案:B 16在ABC 中,2AB =,3AC =,D 是边B C 的中点,则AD BC ⋅=______.解析:1()2AD AB AC =+,BC AC AB =-,则221()2AD BC AC AB ⋅=-15(94)22=-=.答案:52题型五:面积比问题1在ABC 所在平面内有一点P ,如果2PA PC AB PB +=-,那么PBC 与ABC 的面积之比是( ) A .34 B .12 C .13D .23 主要考察用向量性质来研究三角形的关系,掌握了原理后较为简单,大体有3种形式:(1)高相同,底不同,向量线性计算得出底的比例关系(2)高不同,底相同,高的比转换为相似三角形的比,再转化为向量基底的长度比 (3)三角形店内一点与三个顶点的连线把三角形分成三个小三角,它们的面积比问题,把题目给出的向量前面的系数标到对应线段上,与每一个线段所对的三角形面积比就是它们的系数比解析:2PA PC AB PB +=-化简可得3PC AP =,即P 在AC 上,两个三角形高相等,则34S PBC PC S ABC AC ==.答案:A如图,设P ,Q 为ABC 内的两点,且2155AP AB AC =+,2134AQ AB AC =+,则ABP 与ABQ 的面积之比为______.解析:如图作辅助线,EF ,GH 分别为两个三角形的高,15AE AC =,14AG AC =,则45S ABP EF AE S ABQ GH AG ===.答案:45已知O 是正三角形ABC 内部一点,230OA OB OC ++=,则OAC 与OAB 的面23 D .13解析:画图,把向量前面的系数标到对应线段上,与每一个线段所对的三角形面积比就是它们的系数比,则OAC 与OAB 的面积比为2:3. 答案:BABC 内一点且满足320PA PB PC ++=,则PBC ,PAC ,PAB 的面积比为( )4:3:2 2:3:4 C .1:1:1 D .3:4:6 解析:画图,把向量前面的系数标到对应线段上,与每一个线段所对的三角形面积比就是它们的系数比,则面积比为4:3:2. 答案:A题型六:垂直、求模、求角、投影问题1已知向量(,3)a k =,(1,4)b =,(2,1)c =,且(23)a b c -⊥,则k =( ) A .92- B .0 C .3 D .152解析:23(2,6)(3,12)(23,6)a b k k -=-=--,由题意知(23)0a b c -⋅=,则(23,6)(2,1)2(23)60k k --⋅=--=,解得3k =.答案:C2设向量a ,b 满足||10a b +=,||6a b -=,则a b ⋅=( ) A .1 B .2 C .3 D .5解析:由||10a b +=两边平方得22210a b a b ++⋅=,由||6a b -=两边平方得2226a b a b +-⋅=,两式相减得1a b ⋅=.答案:A 3已知向量a ,b 满足(2)()6a b a b +⋅-=-,且||1a =,||2b =,则a 与b 的夹角为主要考察数量积的性质,即本学案知识点第5点的内容,利用数量积的字母公式或坐标公式进行带入计算,由于是本章最后一节,题目融合程度可以比较高,需要记住一些常见题型和结论,大量的练习,高考出题大部分是考察这里,题目难度较低,但也可以出一些中等难度题型,需要注意的是:(1)两个向量的夹角一定要看准,向量的夹角不是线段的夹角,是方向的夹角 (2)0a b a b ⊥⇔⋅=,此乃五星级考点(3)求模公式2||a a =和2211||a x y =+一定要熟练运用,给你带模的条件很多时候都需要平方后再使用(4)求角公式就是数量积公式反过来用 (5)投影有简化公式||a bb ⋅,考察方式比较多样,涉及数量积最值的投影问题,通常需要作图来看,数形结合22222)()21226a b a b a b a b a b +⋅-=-+⋅=-⨯+⋅=-,解1a b ⋅=,11cos 122||||a b a b ⋅==⨯,3πθ=.答案:3π4已知点1,1)-,(1,2)B AB 在CD 方向上的投影为(2,1)AB =(5,5)CD = ,||52CD =10510||||552AB CD AB CD ⋅+==⨯ ,投影为3103|cos 510AB θ⨯=322如图,在平行四边形ABCD 中,AP BD ⊥,垂足为P ,且3AP =,则AP AC ⋅=_____.22||||cos AP AC AP AO AP AO ⋅=⋅=∠Rt APO 中,|cos ||AO PAC AP ∠=,所以22||218AP AC AP ⋅==⨯.答案:186在平行四边形ABCD 中,1AD =,60BAD ∠=为CD 的中点,1AC BE ⋅=,则AB 的长为_____.AB a =,AD b =,AC a b =+,12BE b a=-,222111111()()||||11222222AC BE a b b a a b a b a a ⋅=+⋅-=⋅-+=⨯-+=,解得||0()a =舍去或1||2=a .答案:127已知1e ,2e 是夹角为2π的两个单位向量,122a e e =-,12b ke e =+,若a ⋅则实数k 的值为______a ,b 不共线,且|||a b =,则下列结论中正确的是(a b +与a b -垂直 B .a b +与a b -共线 a b +与a 垂直 D .a b +与a 共线|||a b =可得22||||a b =,即2222||||()()0a b a b a b a b -=-=+⋅-=,A 项很明显都不正确.答案:A 设向量a ,b 满足||||1a b ==,12a b ⋅=-,则|2|a b +=( ) B .3 C .5 D .72222|(2)441423a b a b a b a b +=+=++⋅=+-=.B若(1,3)OA =-,||||OA OB =,0OA OB ⋅=,则||AB =______解析:设||(,)OB x y =,由两个条件可知2221330x y x y ⎧+=+⎪⎨-=⎪⎩,解得(3,1)(3,OB =-或,则(2,4)2)AB OB OA =-=-或,22||=AB 答案:2511设向量a ,b 满足||10a b +=,||6a b -=,则a b ⋅=( )A .B .2C .3D .5解析:条件中两式分别平方得22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得4a b ⋅=,1a b ⋅=.答案:Aa b ∥ a b ⊥ |||a b = a b a b +=-解析:法一:根据向量加法和减法法则,||a b +和||a b -分别代表以a ,b 为临边的平行四边形的对角线长度,两对角线长度一样,说明四边形为矩形.故有a b ⊥;可得222222a a b b a a b b +⋅+=-⋅+,即40a b ⋅=,则a b ⊥.(2,4)a =,(1,2)b =-,若()c a a b b =-⋅,则||c =_____. ()(2,4)(28)(1,2)(8,8)c a a b b =-⋅=--+-=-,22||8(8)82c =+-=.82(,1)a x =,(1,)b y =,(2,4)c =-a c ⊥,b c ∥,则||a b +=( A .5 B .10 .25 D .10a c ⊥,则240a c x ⋅=-=,得2x =,bc ∥,则42y -=,(2,1)(1,2)(3,1)a b +=+-=-,故|9110a b +=+=.答案:B15已知(1,1)m λ=+,(2,2)n λ=+,若()()m n m n +⊥-,则λA .4- .3- C .2- D .1-(2m n λ+=+(1,m n -=--()()(2m n m n λ+⋅-=-.B单位向量1e 与2e 的夹角为α,且13=,向量1232a e e =-与123b e e =-的夹,则cos β=_____1212(32)(3)8a b e e e e ⋅=-⋅-=,212|(32)3a e e =-=,212||(3)8b e e =-=,8||||38a b a b ⋅==2 已知向量a ,b 满足(2)()6a b a b +⋅-=-,|1a =,||2b =,则a 与b 的夹角为222)()2186a b a b a b a b a b +⋅-=-+⋅=-+⋅=-,所以1a b ⋅=,故11122||||a b a b ⋅==⨯,60θ=︒. 60︒若向量(1,2)a =,(1,1)b =-,则a b +与a b -的夹角等于(A .4π- B .6π 4π D .34π (3,3)a b +=,(0,3)a b -=,)()9a b a b +⋅-=,|2|32a b +=,922||||323a b a b ⋅===⨯,夹角为4π.设向量a ,b 夹角为θ(3,3)a =,(1,1)b a -=-(,)b x y =,2(23,23)(1,1)b a x y -=---,得(1,2)b =,9a b ⋅=,||32a =,|5b =,9310cos 10||||325a b a b θ⋅===⨯. 答案:31010已知i ,j 为互相垂直的单位向量,2a i j =+,i j +,且a 与a b λ+的夹角为锐角,则实数λ5(,0)(0,)3-+∞ 3 C .5[,0)(0,)3-+∞ D .5(,0)3- 由题意知(1,2)a =,(1,1)b =,(1,2)a b λλλ+=++,夹角为锐角,即cos 0θ>|||||sin a b a b θ⨯=,a 与b 的夹角,若(3,a =--(1,3)b =|a b ⨯=( )A .3B .23C .2D .432||||a b a b ⋅-=⨯|||||sin a b a b θ⨯==已知点(1,1)A -(3,4),则向量AB 在CD 方向上的投影为( )D .3152- (2,1)AB =(5,5)CD =15AB CD ⋅=,|5AB =,|52CD =151010||||552a b a b θ⋅===⨯,投影为2||cos AB θ=. A (,1)A a ,(2,B 为平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为(.543a b -= D .5414a b +=OA 与OB 在OC 方向上的投影相同,则有OA OC OB OC ⋅=⋅,带入坐标,则有85b =+,即45a b -=.A向量a 的模为1,且a ,b 满足||4a b -=,||2a b +=,则b 在a 方向上的投影等|4a b -=两22216a b a b +-⋅=,|2a b +=两2224a b a b ++⋅=,两式相减得3a b ⋅=-,则投影为3||a b a ⋅=-. 答案:3- 25 在矩形ABCD 中,2,1BC =,的中点,若界)任意一点,则AE AF ⋅的最大值为(2.4 C .2解析:如图,建立坐标系,设AE 与AF 夹角为θ,则||||cos AE AF AE AF θ⋅==2212()||cos 2AF θ+,||cos AF θ为AF 在AE 方向上的投影,由投影定义可知,只有点F 取点C 时,投影有最大值,此时19(2,)(2,1)22AE AF ⋅=⋅=. 答案:C如图,在等腰直角三角形ABC 中,90A ∠=︒,22BC =,G 是ABC 的重心,P 是ABC 内的任意一点(含边界),则BG BP ⋅的最大值为_____.解析:如图所示,2222225||413333BG BD AB AD ==+=+=, 25||||cos ||cos 3BG BP BG BP BP θθ⋅==,则BG BP ⋅的最大值即||cos BP θ最大,由投影定义可知,当P 与C 重合时,有最大值,由余弦定理得222581310cos 2102522BD BC CD BD BC θ+-+-===⋅⨯,则最大值25310||||cos 224310BG BP BG BC θ⋅==⨯⨯=.数学浪子整理制作,侵权必究。
《平面向量的应用》课件
向量的模表示向量的长度,可以通过坐标表示计算得出。具体计算公式为$sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,其中$(x_1, y_1)$和$(x_2, y_2)$分别是向量的起点和终点的坐标。
向量加法和数乘可以通过坐标表示进行计算,遵循平行四边形法则和数乘的分配律。
详细描述
总结词
向量的大小或模定义为向量起点到终点的距离。
总结词
向量的模是表示向量大小的数值,可以通过勾股定理计算得到。向量的模具有几何意义,表示向量起点到终点的距离。
详细描述
向量小。
总结词
向量的加法是将两个有向线段首尾相接,形成一个新的有向线段。数乘则是将一个向量放大或缩小,保持方向不变。通过向量的加法和数乘,可以组合多个向量,形成复杂的向量关系。
平面向量的应用实例
03
速度和加速度
在匀速圆周运动和平抛运动等物理问题中,可以利用平面向量表示速度和加速度,进而分析运动规律。
力的合成与分解
通过向量加法、数乘和向量的数量积、向量的向量积等运算,可以方便地表示出力的合成与分解过程,进而分析物体的运动状态。
力的矩
矩是一个向量,可以利用平面向量表示力矩,进而分析转动效果。
总结词:平面向量在解决几何问题中具有广泛的应用,如向量的加法、减法、数乘等运算可以用于解决长度、角度、平行、垂直等问题。
总结词:平面向量在解决代数问题中具有广泛的应用,如向量的模长、向量的数量积、向量的向量积等运算可以用于解决方程组、不等式等问题。
总结词
通过平面直角坐标系,可以将向量表示为有序实数对。
详细描述
在平面直角坐标系中,任意一个向量可以由其起点和终点的坐标确定,并表示为有序实数对。例如,向量$overset{longrightarrow}{AB}$可以表示为$(x_2 - x_1, y_2 - y_1)$。
高考数学一轮总复习第五章平面向量与复数 3平面向量的数量积及平面向量的应用课件
=
D.6
3+
,解得
= 5.故选C.
命题角度3 两个向量的垂直
3
−
例4(1) (2022年全国甲卷)已知向量 = , 3 , = 1, + 1 .若 ⊥ ,则 =____.
4
解:由题意,知 ⋅ = + 3 + 1 = 0,解得 =
3
3
− .故填− .
4
4
(2)设非零向量,满足 + = − ,则 (
)
D.8
0
3
4.若 = 2,1 , = 2, −1 , = 0,1 ,则 + ⋅ =___;
⋅ =___.
解: + = 4,0 ,所以 + ⋅ = 0, ⋅ = 3.故填0;3.
考点一 平面向量数量积的运算
1
3
例1(1) (2022年全国甲卷)设向量,的夹角的余弦值为 ,且 = 1, = 3,
又因为 − = 3,所以 −
2
= 3.
即2 − 2 ⋅ + 2 = 2 = 3,所以 = 3.故填 3.
命题角度2 求平面向量的夹角
例3 (2023年全国甲卷)已知向量 = 3,1 , = 2,2 ,则cos⟨ + , − ⟩ =
(
)
B.
√
1
A.
17
17
.故选B.
17
【点拨】 求两向量,的夹角 ,通常采用公式cos =
⋅
进行求解.
变式3 (2022年新课标Ⅱ卷)已知向量 = 3,4 , = 1,0 , = + ,若⟨,⟩ = ⟨,
平面向量及其应用
平面向量及其应用平面向量是指在平面上用有向线段表示的量,可以简单地理解为二维向量。
平面向量的表示方法包括指定向量的起点和终点,或者指定向量在平面直角坐标系中的坐标。
平面向量是数学中的一个重要概念,应用广泛,例如在物理、工程学、计算机图形学等领域中,都有平面向量的应用。
平面向量的运算平面向量有加法、减法、数乘等运算。
其中,向量的加法和减法可以用三角形法则或平行四边形法则来表示。
三角形法则指出,两个向量相加的结果为它们首尾相接的三角形的第三边的向量;平行四边形法则指出,两个向量之和等于以它们为相邻边的平行四边形对角线所对应的向量。
这两种方法在实际运算中应用广泛,并具有直观性和易于理解的特点。
数乘运算是指向量与实数的乘积。
它可以用向量的长度与方向来表示,即将向量的长度缩放为实数倍,并不改变向量的方向。
在计算中,通常将向量表示为坐标形式,然后再进行数乘运算。
平面向量的应用平面向量广泛应用于物理学中的力学、电学、热学等领域。
其中,力学中向量的应用最为明显。
在力学中,向量可以表示物体的受力情况,以及物体在空间中的位置和运动状态。
例如,平衡力和非平衡力就可以用向量表示。
雷诺定理、牛顿第二定律等力学定理中都涉及向量的概念,因此对平面向量的熟悉和掌握是学习物理学的前提。
平面向量还广泛应用于计算机图形学中。
计算机图形学是一门研究如何在计算机上表示、处理和生成图像的学科。
在计算机图形学中,向量常用于表示二维或三维空间中的几何图形,例如点、直线、多边形等。
多项式的处理、旋转、平移等操作都可以用向量计算实现。
因此,向量的概念和运算成为了计算机图形学的基础知识。
总结平面向量是一个重要的数学概念,在各个领域中都有广泛的应用。
平面向量的运算包括加法、减法、数乘等,其中向量的加法和减法可以用三角形法则或平行四边形法则来表示。
平面向量的应用包括物理学中的力学、计算机图形学等领域。
学习平面向量是一项基础而重要的数学功课。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习专题:平面向量及其运算 平面向量及其运算(一)例题1 给出下列结论:①数轴上相等的向量,它们的坐标相等;反之,若数轴上两个向量的坐标相等,则这两个向量相等;②对于任何一个实数,数轴上存在一个确定的点与之对应;③数轴上向量AB 的坐标是一个实数,实数的绝对值为线段AB 的长度,若起点指向终点的方向与数轴同方向,则这个实数取正数,反之取负数;④数轴上起点和终点重合的向量是零向量,它的方向不确定,它的坐标是0。
其中正确结论的个数是( ) A. 1 B. 2C. 3D. 4【答案】D【解析】①向量相等,则它们的坐标相等,坐标相等,则向量相等,①正确; ②实数和数轴上的点是一一对应的关系,即有一个实数就有一个点跟它对应,有一个点也就有一个实数与它对应,②正确;③数轴用一个实数来表示向量AB ,正负决定其方向,绝对值决定其长度,③正确; ④数轴上零向量其起点和终点重合,方向不确定,大小为0,其坐标也为0,④正确。
故选:D 。
总结提升:有关平面向量概念的注意点(1)相等向量具有传递性,非零向量的平行也具有传递性。
(2)共线向量即为平行向量,它们均与起点无关。
(3)向量可以平移,平移后的向量与原向量是相等向量。
解题时,不要把它与函数图象的移动混淆。
(4)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小。
(5)两平行向量有向线段所在的直线平行或重合,易忽视重合这一条件。
例题2 如图所示,在中,分别是的中点, 2,,.3AEAD AB a AC b用表示; 【解析】如图,延长到,使2,AGAD 连接,得到平行四边形。
ABC △D F ,BC AC ,a b ,,,,,AD AE AF BE BF AD G BG CG ,ABGC则()11,22AG a b AD AG a b =+==+, 2133AE AD a b 11,22AF AC b 112.33BE AE AB a b a b a112.22BFAF AB b a b a总结提升:平面向量线性运算问题的常见类型及解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连的向量的和用三角形法则。
(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解。
(3)用几个基本向量表示某个向量问题的基本技巧: ①观察各向量的位置; ②寻找相应的三角形或多边形; ③运用法则找关系; ④化简结果。
(4)与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程组即可求得相关参数的值。
例题3 已知,a b 是不共线的向量,AB a b ,AC a b μ=+,,λμ∈R ,则A ,B ,C 三点共线的等价条件为( )A. 2λμ+=B. 1λμ-=C. 1λμ=-D. 1λμ=【答案】D【解析】因为A 、B 、C 三点共线,所以//AB AC ,设(0)AB mAC m =≠,所以,1,m m λμ=⎧⎨=⎩所以1λμ=,故选D 。
总结提升:求解向量共线问题的注意事项(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用。
(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线。
(3)直线的向量式参数方程:,,A P B 三点共线⇔(1)OP t OA tOB =-⋅+(O 为平面内任一点,t ∈R )。
例题4 如图在△AOB 中,D 是边OB 的中点,C 是边OA 上靠近O 的三等分点,AD 与BC 交于M 点。
设OAa ,OBb 。
(1)用a ,b 表示OM ;(2)过点M 的直线与边OA ,OB 分别交于E ,F 。
设OE pOA , OFqOB ,求p1+q2的值。
【解析】(1)设OMxa yb ,则(1)(1)AM OM OA x OA yOB x a yb =-=-+=-+,12AD OD OA ab , (1)BMOMOBxa y b ,1133BCBO OCOA OB a b 。
因为A ,M ,D 三点共线,所以AM ,AD 共线,从而1(1)2x y ①, 又C ,M ,B 三点共线,所以BM ,BC 共线,同理可得1(1)3y x ②,联立①②,解得1525x y ⎧=⎪⎪⎨⎪=⎪⎩,故1255OMa b 。
(2)因为12125555EM OM OE a b pa p a b ⎛⎫=-=+-=-+ ⎪⎝⎭。
EF OF OE pa qb =-=-。
因为EM ,EF 共线,所以(51-p )q =-52p ,整理得p 1+q 2=5。
总结提升:平面向量基本定理的实质及解题思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算。
(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决。
(1)在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化。
(2)在用三角形加法法则时,要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量终点所得的向量;在用三角形减法法则时,要保证“同起点”,结果向量的方向是指向被减向量。
(3)有关两向量平行问题,若已知两向量的坐标形式,常利用坐标运算来解决;若两向量不是以坐标形式呈现的,常利用共线向量定理(当0b 时,//a b ⇔存在唯一实数λ,使得ab )来解决。
(4)当向量以几何图形的形式出现时,要把这个几何图形中的一个向量用其余的向量线性表示,就要根据向量加减法的法则进行,特别是减法法则很容易使用错误,向量MNON OM (其中O 为我们所需要的任何一个点),这个法则就是终点向量减去起点向量。
(答题时间:30分钟)1. 设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则+=( ) A.B.21C. BCD.21BC 2. 设a 、b 都是非零向量,下列四个条件中,使||a a =||b b成立的条件是( )A. |a |=|b |且a ∥bB. a =-bC. a ∥bD. a =2b3. 如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,=,,则=( )A. B.C. D.4. 已知A ,B ,C 是圆O 上的不同的三点,线段CO 与线段AB 交于点D ,若=λ+μ(λ∈R ,μ∈R ),则λ+μ的取值范围是( )A. (0,1) B . (1,+∞) C. (1,2] D. (-1,0)5. 如图所示,四边形是平行四边形,且,,设,,试用表示。
AB a AC b =AD 12a b -12a b -12a b +12a b +OADB 13BM BC =13CN CD =OA a =OB b =,a b ,,OM ONMN1.【答案】A【解析】+FC =21(+CB )+21(AC +BC )=21(+AC )=,故选A 。
2.【答案】D【解析】因为||a a 表示与a 同向的单位向量,||b b 表示与b 同向的单位向量, 所以a 与b 必须方向相同才能满足||a a =||b b。
故选D 。
3.【答案】D【解析】连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且, 所以。
故选:D 4. 【答案】B【解析】由题意可得=k =kλ+kμ(0<k <1),又A ,D ,B 三点共线可得kλ+kμ=1,则λ+μ=k1>1,即λ+μ的取值范围是(1,+∞),故选B 。
5. 【解析】即:即:1122CD AB a ==12AD AC CD b a =+=+()1111536666OM OB BM OB BC OB BA OB OA OB OA OB =+=+=+=+-=+1566OM a b =+()142222333333ON OC CN CD CD CD OD OA OB OA OB =+=+===+=+2233ON a b =+221511336626MN ON OM a b a b a b ⎛⎫⎛⎫∴=-=+-+=- ⎪ ⎪⎝⎭⎝⎭平面向量及其线性运算(二)例题5 (1)已知向量(1,)a m =,(,2)b m =,若//a b ,则实数m 等于( ) A.C.D.0(2)设向量(10)a ,=,(-1)b ,m =,若()a ma b ⊥-,则m =_______. 【答案】(1)C (2)-1【解析】(1)2//2a b m m ⇒=⇒=(2)(1,),ma b m m -=+-且()a ma b ⊥-,()10a m a bm ∴⋅-=+=,得m =-1.例题6 在如图的平面图形中,已知OM=1.0N=2,∠MON=120°,MA BM 2=·CN =NA 2,则OM BC ⋅的值为( )A. 15-B. 9-C. 6-D. 0 【答案】C【解析】如图所示,连结MN ,由2=·=2可知点M ,N 分别为线段AB ,AC 上靠近点A 的三等分点,则)(33OM -==, 由题意可知:112==OM ,OM ⋅1120cos 21-=︒⨯⨯=,结合数量积的运算法则可得:63333)(3-=--=-⋅=⋅-=⋅OM OM ON OM OM ON OM BC 。
本题选择C 选项。
总结提升:计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即cos a b a b θ⋅= (是a 与b 的夹角)。
(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解。
(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解。
例题7 已知向量(cos ,sin ),a θθ=(3,1),b =-求|2|a b -的最大值. 【解法1】(代数方法)22|2|=444a b a b a b-+-⋅==≤【解法2】(几何法)如图,用OB 表示b ,以O 为圆心,2为半径作圆,则2a 可看成以O 为起点,终点在圆O 上的向量,由向量减法的几何意义可知答案为4.总结提升:(1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式22ax y 。
②若向量,a b 是以非坐标形式出现的,求向量a 的模可应用公式22a a a a ==⋅,或()22222a b a ba ab b ±=±=±⋅+,先求向量模的平方,再通过向量数量积的运算求解。