《运筹学》期末考试试卷A答案

合集下载

运筹学2024学年期末考试题A卷及答案

运筹学2024学年期末考试题A卷及答案

运筹学2024学年期末考试题A卷及答案一、选择题(每题5分,共25分)1. 运筹学的主要研究方法是()A. 定性分析B. 定量分析C. 定性分析与定量分析相结合D. 案例分析答案:C2. 下列哪个不是运筹学的基本分支?()A. 线性规划B. 非线性规划C. 动态规划D. 英语翻译答案:D3. 在线性规划问题中,约束条件是()A. 等式约束B. 不等式约束C. 等式与不等式约束D. 以上都对答案:D4. 下列哪个算法适用于解决非线性规划问题?()A. 单纯形法B. 拉格朗日乘数法C. 牛顿法D. 二分法答案:C5. 在库存管理中,EOQ模型适用于()A. 确定性库存系统B. 随机库存系统C. 连续库存系统D. 离散库存系统答案:A二、填空题(每题5分,共25分)6. 运筹学起源于__________战争期间。

答案:第二次世界大战7. 线性规划问题的标准形式是:max(或min)__________,s.t.__________。

答案:目标函数;约束条件8. 在非线性规划问题中,若目标函数和约束条件均为凸函数,则该问题为__________规划问题。

答案:凸规划9. 库存管理中的ABC分类法是根据__________、__________和__________三个指标进行的。

答案:重要性、价值、需求量10. 在排队论中,顾客到达和服务时间的分布通常假设为__________分布。

答案:负指数分布三、计算题(每题15分,共60分)11. 某工厂生产A、B两种产品,生产一个A产品需要2个工时和3个原材料,生产一个B产品需要1个工时和2个原材料。

工厂每周可利用的工时为120小时,原材料为150个。

A产品的利润为30元,B产品的利润为20元。

请制定生产计划,以使工厂获得最大利润。

答案:生产A产品20个,B产品50个,最大利润为1300元。

12. 某公司有两种投资方案:方案一需投资100万元,年收益率为10%;方案二需投资150万元,年收益率为12%。

管理运筹学--答案

管理运筹学--答案

09 <<运筹>>期末考试试卷(A)答案一、不定项选择题(每小题2分共20分)1、A2、B3、ABCD4、ABC5、D6、C7、B8、ABCD9、ABC 10、ABC二、名词解释(每小题4分,共20分)1、运筹学是一门以人机系统的组织、管理为对象,应用数学和计算机等工具来研究各类有限资源的合理规划使用期并提供优化决策方案的科学。

2、线性规划是研究线性约束条件下线性目标函数的极值问题的数学理论和方法。

3、如果系统中包含元素A、B、C、K….等,按照经典意义(非模糊,非统计意义)的原则来聚类。

4、系统的综合性原则是指系统内部各组成部分的联系与协调,包含要素间的协调及系统与环境问题的协调。

5、TSP问题称为“旅行推销员问题”,是指:有N个城市A、B、…….等,它们这间有一定的距离,要求一条闭合路径,由某城市出发,每个城市经历过一次,最终返回原城市,所经历的路程最短。

三、简答题(每小题5分,共28分)1、列出一些企业产品结构优化的柔性模型约束条件。

(1)关键设备的生产能力(2)各类能源的约束(3)工艺的约束(4)产品类结构关系,以及物流过程中上、下游产品供需的约束(5)某些产品的下限约束(6)非负约束2、排队规则:损失制等待制:先到先服务、后到先服务、随机服务、优先权服务混合制3、运筹学的特点:(1)以最优性为核心。

(2)以模型化为特征(3)以计算机为主要实现手段。

(4)多学科交融4、神经元的功能:(1)整合功能(2)兴奋与抑制(3)突触延时与不应期(4)学习、遗忘与疲劳四、应用题。

(每题15分,共45分)1、设A、B的产量为X、Y模型:目标MAX利润=500X+900Y约束条件:9X+4Y≤3604X+5Y≤2003X+10Y≤300X、Y均大于或等于零图解略最优解:X=20千克 Y=24千克利润31600元2、企业在选择运用“农村包围城市”还是“城市中心”的指导思想时,应考虑自己的条件,竞争对手的情况,宏观和中观形势。

运筹学试卷及答案

运筹学试卷及答案

……学院2009—2010学年第二学期09行政管理专业<<运筹学>>期末考试试卷(A)一、不定项选择题(每小题2分共20分)1、配送是一种先进的物资管理模式,其本质是()A、存储集中化B、存储分散化C、运输时间最短D、运送效率最低2、对系统因环境变化显示出来的敏感程度进行分析是()A、变化性分析B、灵敏度分析C、时间序列分析D、线性规划3、物流中心选址主要考虑的因素有()A、供货点到物流中心的费用B、物流中心到用户的费用C、各物流中心的容量限制D、物流中心的个数限制4、下面对AHP评价正确的是()A、本质上是一种思维方式B、是一种定性与定量相结合的的方法C、标度方法及一致性判断具有认知基础D、不是一种定性与定量相结合的的方法5、任意一个顾客的服务时间都是固定的常数B,此时服务时间的分布函数是()A、负指数分布B、正指数分布C、爱尔朗分布D、定长分布6、下列指标是评价一家图书馆的输出指标的是()A、书库面积B、工作人员数量C、图书借出数D、所在地人口7、单纯形算法的一个重要前提是()A、未知数个数不能超过3个B、线性规划问题必须是标准形式C、线性规划问题必须是非标准形式D、线性规划问题可以是标准形式或非标准形式8、运用分析中常用的数学方法有()A、线性规划B、动态规划C、最优控制D、非线性规划9、混沌的主要特征有()A、内随机性B、整体稳定性C、具有分形特征D、整体不稳定性10、运筹学的正确发展之路有()A、理念更新B、以实践为本C、学科交融D、以抽象的理论为主,主要用于高深的理论研究二、名词解释(每小题4分,共20分)1、运筹学2、线性规划3、经典型聚类4、系统的综合性原则5、TSP问题三、简答题(每小题7分,共28分)1、列出一些企业产品结构优化的柔性模型约束条件。

2、排队规则3、运筹学的特点。

4、神经元的功能四、应用题。

(第1题6分,第2题10分,第3题8分,第四题8分)1、货物从仓库送到销售点1、2、3、4、5。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

《运筹学》试题参考答案 一、填空题�每空2分�共10分� 1、在线性规划问题中�称满足所有约束条件方程和非负限制的解为 可行解 。

2、在线性规划问题中�图解法适合用于处理 变量 为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点�化为供求平衡的标准形式 。

4、在图论中�称 无圈的 连通图为树。

5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。

二、�每小题5分�共10分�用图解法求解下列线性规划问题� 1�m a x z = 6x 1+4x 2�������������0781022122121x x x x x x x � 解�此题在“《运筹学》复习参考资料.d o c ”中已有�不再重复。

2�m i n z =�3x 1+2x 2 �������������������0,137210422422121212121x x x x x x x x x x解�⑴⑵⑶ ⑷ ⑸⑹、⑺⑴⑵⑶ ⑷ ⑸、⑹可行解域为a b c d a �最优解为b 点。

由方程组������02242221xx x 解出x 1=11�x 2=0 ∴X *=��������21x x =�11�0�T∴m i n z =�3×11+2×0=�33三、�15分�某厂生产甲、乙两种产品�这两种产品均需要A 、B 、C 三种资源�每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示�ABC甲 9 4 3 70 乙 4 6 10 120 360 200 3002�用单纯形法求该问题的最优解。

�10分� 解�1�建立线性规划数学模型� 设甲、乙产品的生产数量应为x 1、x 2�则x 1、x 2≥0�设z 是产品售后的总利润�则 ma x z =70x 1+120x 2 s.t . ��������������0300103200643604921212121x x x x x x x x � 2�用单纯形法求最优解� 加入松弛变量x 3�x 4�x 5�得到等效的标准模型� ma x z =70x 1+120x 2+0 x 3+0 x 4+0 x 5 s.t . ������������������5,...,2,1,03001032006436049521421321j x x x x x x xx x x j 列表计算如下�CB XB b70 120 0θL x1 x2 x3 x4 x5 0x 3 360 94190 0 x 4 200 4 6 0 1 0 100/3 0 x 5 300 3 �10� 0 0 1 300 0 0 0 0 70 120↑ 0 0 0 0 x3 240 39/5 0 1 0 - 2/5 400/13 0 x4 20 �11/5� 0 0 1 - 3/5 100/11 120 x 2 30 3/10 1 0 0 1/10 10036 120 0 0 12 34↑ 0 0 0 �12 0 x3 1860/11 0 0 1 �39/11 19/11 70 x 1 100/11 1 0 0 5/11 - 3/11 120 x 2 300/11 0 1 0 - 3/22 2/11114300070 120 0 170/11 30/11 0 0-170/11 �30/11 ∴X *=�11100�11300�111860�0�0�T ∴m a x z =70×11100+120×11300=1143000四、�10分�用大M 法或对偶单纯形法求解如下线性规划模型� mi n z =5x 1�2x 2�4x 3 ������������0,,10536423321321321x x x x x x x x x解�用大M 法�先化为等效的标准模型� ma x z / =�5x 1�2x 2�4x 3 s.t . ���������������5,...,2,1,01053642353214321j y x x x xx x x x j 增加人工变量x 6、x 7�得到� ma x z / =�5x 1�2x 2�4x 3�M x 6�M x 7 s.t �����������������7,...,2,1,0105364237532164321j x x x x x x x x x x x j 大M 法单纯形表求解过程如下�C B X B b�5�2�400�M�MθLx1x2x3x4x5x6x7�M x64�3�12�10104/3�M x7106350�1015/3�9M�4M�7M M M�M�M9M�5↑4M�27M�4�M�M00�5x14/311/32/3�1/301/30——�M x72011�2��1�211�5-M�5/3-M�10/3-2M+5/3M2M�5/3-M0M�1/3M�2/32M�5/3↑�M�3M+5/30�5x15/311/25/60�1/601/610/3 0x410�1/2�1/21�1/2�11/22�5�5/2�25/605/60�5/601/2↑1/60�5/6�M�M+5/6�5�2x12/3101/3�11/31�1/3 x220112�1�21�322�5�2�11/311/3�1�1/3 00�1/3�1�1/3�M+1�M+1/3∴x*=�32�2�0�0�0�T最优目标函数值m i n z=�m a x z/=���322�=322五、�15分�给定下列运输问题��表中数据为产地A i到销地B j的单位运费�B1 B2 B3 B4 si A 1 A 2 A 3 1 2 3 4 8 7 6 5 9 10 11 9 10 80 15 dj 8 22 12 181�用最小费用法求初始运输方案�并写出相应的总运费��5分� 2�用1�得到的基本可行解�继续迭代求该问题的最优解。

运筹学上年的期末考试试题A卷

运筹学上年的期末考试试题A卷

仅供参考一、简答题(每小题3分,共21分)1.线性规划问题在何条件下无解?2.整数规划问题有否无穷多组最优解?3.动态规划问题一定会有解吗?它是否会有多组最优解?4.一个线性规划问题若无可行解,则其对偶问题的解的情况如何?5.图论中的欧拉图一定是哈米尔图吗?哈米尔顿图一守是欧拉图吗?6.一个网络最大流问题在何条件下存在“增广链”?则请写出其相应的割平面方程,并指出下一步该如何求解?二、(共34分)Max Z=7x1+9x23x1+4x2≤24 b1(LP)8x1+3x2≤24 b2X1,x2≥0(1)请用单纯形法求解(2)(LP)是否有无穷多组最优解?若有,请求出另一组解,若无请简要说明理由。

(3)请指出b1、b2对应的影子价格?(4)其对偶问题(DLP)是否有最优解?(5)若b1由24变为18,则原问题的最优解的最优性、可能性会有何变化?若有变化,不要求坐你求出新的最优解,但是要求你简述如何做能够最方便地求出新的最优解?(不必求解,简述思想即可)三、(共7分)请写出下述问题的对偶问题。

Max Z =-9x1+7x2-8x37x1-5x2+4x3≤84x1+5x2-3x3≥5-3x1+4x2+2x3=-3X1无限制,x2 ≥0,x3≤0四、(共8分)请自编一个有关目标线性规划问题的实例,并列出数学模型。

(不必求解)五、(共10分)对下述4人于4种活的问题,要求每人干一种活,每种活一人干,希望总耗时最少,则六、(共12分)某厂有车600台,计划用3年,已知每年可能有两种生产任务;甲任务:获利1500元/台,年,设备损坏率40%乙任务:获利1200元/台,年,设备损坏率10%问:如何安排获利最高?七、(每小题4分,共8分)1.画出其最小生成树2.求出从V1到V7的最短路。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

� �
0*
12
4
5
� �

� (0)
8
2

� 11 (0) 5
5� √ �
4�
�2
3
(0)
0* �


� �
0*
12
4
5
� �

第 9 页 共 11 页
� 0*
6
(0)
3�


� 13 (0) 5
4�
� �
4
3
0*
(
0)
� �
� �
(0)
10
2
3
� �
�0 0

至此已得最优解� � 0 1
�0 0
9
4
3
70

4
6
10
120
360
200
300
1�建立使得该厂能获得最大利润的生产计划的线性规划模型��5 分�
第 2 页 共 11 页
2�用单纯形法求该问题的最优解。�10 分� 解�1�建立线性规划数学模型�
设甲、乙产品的生产数量应为 x1、x2�则 x1、x2≥0�设 z 是产品售后的总利 润�则
30
400/13 100/11
100
四、�10 分�用大 M 法或对偶单纯形法求解如下线性规划模型�
min z =5x1�2x2�4x3
�3 x1 � x2 � 2 x3 � 4
� �
6
x1

3x2

5 x3

10
� �
x1, x2 , x3

0
第 4 页 共 11 页

运筹期末考试试题及答案

运筹期末考试试题及答案

运筹期末考试试题及答案### 运筹学期末考试试题及答案#### 一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量均为非负B. 目标函数为最大化C. 所有约束条件为等式D. 所有变量均为正数答案:A2. 单纯形法中,如果一个变量的系数在所有约束条件中都是负数,那么这个变量:A. 可以取任意值B. 必须取0C. 可以取正值D. 可以取负值答案:B3. 下列哪个算法不是用于解决整数规划问题的?A. 分支定界法B. 割平面法C. 动态规划D. 线性规划单纯形法答案:D4. 在网络流问题中,如果从源点到汇点存在多条路径,那么流量应该:A. 均匀分配到所有路径B. 只通过最短路径C. 只通过最长路径D. 可以自由选择路径答案:A5. 动态规划中,状态转移方程的作用是:A. 确定最优解B. 描述系统状态的变化C. 计算目标函数值D. 确定初始状态答案:B#### 二、填空题(每题3分,共15分)1. 在线性规划中,如果目标函数的系数矩阵是正定的,则该线性规划问题有唯一最优解。

2. 运筹学中的“运筹”一词来源于中国古代的________,意为筹划、谋划。

3. 决策树是一种用于解决________问题的图形化工具。

4. 在排队理论中,M/M/1队列模型表示的是单服务器、________到达、________服务的排队系统。

5. 博弈论中的纳什均衡是指在非合作博弈中,每个参与者选择的策略都是对其他参与者策略的最优响应。

#### 三、简答题(每题10分,共30分)1. 描述单纯形法的基本步骤。

2. 解释什么是敏感性分析,并说明其在实际问题中的应用。

3. 简述动态规划的基本原理,并给出一个实际应用的例子。

#### 四、计算题(每题15分,共25分)1. 给定线性规划问题的标准形式,写出其对偶问题,并说明对偶问题的性质。

2. 考虑一个网络流问题,给定网络的节点和边,以及每条边的容量,求出从源点到汇点的最大流量,并说明使用的方法。

运筹学考试题a卷及答案

运筹学考试题a卷及答案

运筹学期末考试题(a 卷)注意事项:1、答题前,考生务必将自己的姓名、班级填写在答题卡上。

2、答案用钢笔或圆珠笔写在答题卡上,答在试卷上不给分。

3、考试结束,将试卷和答题卡一并交回。

一、 单项选择题(每小题1分,共10分)1:在下面的数学模型中,属于线性规划模型的为( ) ⎪⎩⎪⎨⎧≥≤+=0Y ,X 3XY .t .s Y X 4S max .A ⎪⎩⎪⎨⎧≥-≥-+=0Y ,X 1Y X 2.t .s Y X 3S min .B ⎪⎩⎪⎨⎧≥≤-+=0Y ,X 2Y X .t .s Y X S max .C 22 ⎪⎩⎪⎨⎧≥≥+=0Y ,X 3Y X .t .s XY2S min.D 2.线性规划问题若有最优解,则一定可以在可行域的 ( )上达到。

A .内点 B .顶点 C .外点 D .几何点 3:在线性规划模型中,没有非负约束的变量称为 ( )A .多余变量B .松弛变量 C.自由变量 D .人工变量4:若线性规划问题的最优解同时在可行解域的两个顶点处达到,那么该线性规划问题最优解为( )A.两个B.零个C.无穷多个D.有限多个 5:原问题与对偶问题的最优( )相同。

A .解B .目标值C . 解结构D .解的分量个数 6:若原问题中i x 为自由变量,那么对偶问题中的第i 个约束一定为 ( )A .等式约束B .“≤”型约束C .“≥”约束D .无法确定7:若运输问题已求得最优解,此时所求出的检验数一定是全部( ) A .小于或等于零 B .大于零 C .小于零 D .大于或等于零 8:对于m 个发点、n 个收点的运输问题,叙述错误的是( ) A .该问题的系数矩阵有m ×n 列 B .该问题的系数矩阵有m+n 行 C .该问题的系数矩阵的秩必为m+n-1 D .该问题的最优解必唯一 9:关于动态规划问题的下列命题中错误的是( ) A 、动态规划分阶段顺序不同,则结果不同 B 、状态对决策有影响C 、动态规划中,定义状态时应保证在各个阶段中所做决策的相对独立性D 、动态规划的求解过程都可以用列表形式实现10:若P 为网络G 的一条流量增广链,则P 中所有正向弧都为G 的( ) A .对边 B .饱和边 C .邻边 D .不饱和边 二、 判断题(每小题1分,共10分)1:图解法和单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

《运筹学》(A)参考答案.docx

《运筹学》(A)参考答案.docx

《运筹学》(A)参考答案一、不定项选择题(每小题3分,共9分)1.线性规划的标准型有特点(B D )0A、右端项非零;B、目标求最大;C、有等式或不等式约束;D、变量均非负。

2.一个线性规划问题(P)与它的对偶问题(D)有关系(BCD)。

A、(P)无可行解则(D) 一定无可行解;B、(P)、(D)均有可行解则都有最优解;C、(P)的约束均为等式,则(D)的所有变量均无非负限制;D、若(D)是(P)的对偶问题,则(P)是(D)的对偶问题。

3.关于动态规划问题的下列命题中(B )是错误的。

A、动态规划阶段的顺序与求解过程无关;B、状态是由决策确定的;C、用逆序法求解动态规划问题的重要基础之一是最优性原理;D、列表法是求解某些离散变量动态规划问题的有效方法。

二、判断题(每小题2分,共10分)1.若某种资源的影子价格等于Q在其他条件不变的情况下,当该种资源增加5个单位时,相应的目标函数值将增大5k个单位。

(X)2.如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数久最优调运方案将不会发生变化。

(V)3.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,有无穷多最优解,无界解,无可行解。

(X )4.用割平面法求解纯整数规划问题时,要求包括松弛变量在内的全部变量必须取整数值。

(V )5.如图中某点匕有若干个相邻点,与其距离最远的相邻点为耳,则边卩,刀必不包含在最小支撑树内。

(X)三(20分)、考虑下列线性规划:max z = 3xj + 5x2 + x34xj + 2X2+x3 < 14< X] + x2 + x3 < 4Xj > 0, j = 1,2,31(10分)、写出此线性规划的最优解、最优值、最优基B和它的逆沪;2(2分)、求线性规划的对偶问题的最优解;3(4分)、试求C2在什么范围内,此线性规划的最优解不变;4 (4分)、若^=14变为9,最优解及最优值是什么?解:1(10分)、写出此线性规划的最优解、最优值、最优基B和它的逆沪;标准形式:max z = 3xj + 5x2 + x34xj + 2*2 + X3 + 卩=14< X] + *2 + X3 + x5 = 4X j > 0, j = 1,2,3,4,5最优解 X' =(0,4,0,6,0)『 最优值r =20 ---------------- (1分) 最优基5 = P 2]---------------- (2分)0 1 "1 -2B~l= o ]---------------- (2 分)2(2分)、求线性规划的对偶问题的最优解; 对偶问题的最优解厂=(0,5)3(4分)、试求c?在什么范围内,此线性规划的最优解不变;(1分)(2分)要使得原最优解不变,则所有检验数非正,即 3 — c 2 W 0 <1-C 2 <0 ,解得c 2 >3--------------- (2 分)~C 2 - 04(4分)、若$=14变为9,最优解及最优值是什么?-2j9 1 4最优值r =20-四(10分)、下述线性规划问题:max z = 10“ + 24x 2 + 20x 3 + 2O.r 4 + 25x 5X] + x 2 + 2x, + 3X 4 + 5X 5 < 19 < 2x 1 + 4X 2 + 3x, + 2X 4 + x 5 < 57 ">(2分)(2分)0, j =l,2,---,5以几,力为对偶变量写出其对偶问题。

《运筹学》期末考试试卷A-答案

《运筹学》期末考试试卷A-答案

《运筹学》期末考试试卷A-答案一、选择题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中进行决策的科学,以下哪个选项不属于运筹学的研究内容?A. 优化问题B. 随机过程C. 系统建模D. 心理咨询答案:D2. 在线性规划中,若一个线性规划问题的可行域是空集,则该问题称为:A. 无界问题B. 无解问题C. 无可行解问题D. 有解问题答案:C3. 线性规划问题中,目标函数和约束条件均为线性函数的是:A. 线性规划B. 非线性规划C. 动态规划D. 随机规划答案:A4. 在整数规划中,若决策变量只能取整数值,则该问题称为:A. 线性规划B. 整数规划C. 非线性规划D. 动态规划答案:B5. 在排队论中,以下哪个因素对服务效率影响最大?A. 服务速率B. 到达率C. 排队长度D. 服务时间答案:A二、填空题(每题5分,共25分)1. 运筹学的基本方法是________、________和________。

答案:模型化、最优化、计算机模拟2. 线性规划的标准形式包括________、________和________。

答案:目标函数、约束条件、非负约束3. 在非线性规划中,目标函数和约束条件至少有一个是________函数。

答案:非线性4. 动态规划适用于解决________决策问题。

答案:多阶段5. 排队论中的基本参数包括________、________和________。

答案:到达率、服务率、服务台数量三、简答题(每题10分,共30分)1. 请简要介绍线性规划的基本概念。

答案:线性规划是运筹学的一个基本分支,主要研究在一定的线性约束条件下,如何求解目标函数的最大值或最小值问题。

线性规划问题通常包括目标函数、约束条件和非负约束。

目标函数是决策者要优化的目标,约束条件是决策者需要满足的条件,非负约束要求决策变量取非负值。

2. 请简要阐述整数规划的特点。

答案:整数规划是线性规划的一种特殊情况,要求决策变量取整数值。

《运筹学》 期末考试 试卷A 答案

《运筹学》 期末考试 试卷A 答案

《运筹学》试题样卷(一)一、判断题(共计10分,每小题1分,对的打√,错的打X )1. 无孤立点的图一定是连通图。

2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。

3. 如果一个线性规划问题有可行解,那么它必有最优解。

4.对偶问题的对偶问题一定是原问题。

5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。

6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。

7. 度为0的点称为悬挂点。

8. 表上作业法实质上就是求解运输问题的单纯形法。

9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。

二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日;春夏季4000人日。

如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。

养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。

农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。

三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。

(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0五、求解下面运输问题。

运筹学期末试卷A卷答案-01-23

运筹学期末试卷A卷答案-01-23

运筹学 期末试卷(A 卷)系别: 工商管理学院 专业: 工商管理 考试日期: 年 月 日姓名: 学号: 成 绩:1.[12分]某公司正在制造两种产品:产品I 和产品II ,每天的产量分别为30个和120个,利润分别为500元/个和400元/个。

公司负责制造的副总经理希望了解是否可以通过改变这种产品的数量而提高公司的利润。

公司各个车间的加工能力和制造单位产品所需的加工工时如下表:(1) 假设生产的全部产品都能销售出去,试建立使公司获利最大的生产计划模型。

(2) 用图解法求出最优解。

P25 No72.[12分] 某超市实行24小时营业,各班次所需服务员和管理人员如下:何安排使得超市用人总数最少?(1) 建立线性规划模型(只建模不求具体解); (2) 写出基于Lindo 软件的源程序(代码)。

3.[10分]设xA ,xB 分别代表购买股票A 和股票B 的数量,f 代表投资风险指数,建立线性规划模型如下: 目标函数:Min f=8x A +3x B约束条件:投资总额120万元 投资回报至少6万购买量非负501001200000A B x x +≤,0A B x x ≥100300000B x ≥5460000A B x x +≥股票B 投资不少于30万元利用教材附带软件进行求解,结果如下:**********************最优解如下************************* 目标函数最优值为 : 62000变量 最优解 相差值 ------- -------- -------- x1 4000 0 x2 10000 0约束 松弛/剩余变量 对偶价格 ------- ------------- -------- 1 0 .057 2 0 -2.167 3 700000 0 目标函数系数范围 :变量 下限 当前值 上限 ------- -------- -------- -------- x1 3.75 8 无上限 x2 无下限 3 6.4 常数项数范围 :约束 下限 当前值 上限------- -------- -------- -------- 1 780000 1200000 1500000 2 48000 60000 102000 3 无下限 300000 1000000试回答下列问题:(1) 在这个最优解中,购买股票A 和股票B 的数量各为多少?这时投资风险是多少?(2) 上述求解结果中松弛/剩余变量的含义是什么?(3) 当目标函数系数在什么范围内变化时,最优购买计划不变?(4) 请对右端常数项范围的上、下限给予具体解释,应如何应用这些数据?(5) 当每单位股票A 的风险指数从8降为6,而每单位股票B 的风险指数从3升为5时,用百分一百法则能否断定其最优解是否发生变化?为什么? 4.[6分]设有矩阵对策},,{21A S S G =,其中,{}112345,,,,S ααααα=,{}212345,,,,S βββββ=2343564132421457346454126A --⎛⎫ ⎪- ⎪ ⎪=-- ⎪-- ⎪ ⎪⎝⎭求矩阵对策的最优纯策略(要求图示)。

《运筹学》_期末考试_试卷A_答案

《运筹学》_期末考试_试卷A_答案

一、判断题(共计10分,每小题1分,对的打√,错的打X )1. 无孤立点的图一定是连通图。

2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。

3. 如果一个线性规划问题有可行解,那么它必有最优解。

4.对偶问题的对偶问题一定是原问题。

5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与>j σ对应的变量都可以被选作换入变量。

6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。

7. 度为0的点称为悬挂点。

8. 表上作业法实质上就是求解运输问题的单纯形法。

9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。

二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日;春夏季4000人日。

如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。

养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。

农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。

三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为松弛变量,问题的约束为 ⎽ 形(1)写出原线性规划问题;(4分)(2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。

(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0五、求解下面运输问题。

最新(整理)《运筹学》期末考试试题及参考答案

最新(整理)《运筹学》期末考试试题及参考答案

(整理)《运筹学》期末考试试题及参考答案------------------------------------------作者xxxx------------------------------------------日期xxxx《运筹学》试题参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。

2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。

4、在图论中,称 无圈的 连通图为树。

5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。

二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:此题在“《运筹学》复习参考资料。

do c”中已有,不再重复. 2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺⑴⑵ ⑶ ⑷ ⑸、⑹可行解域为ab cda,最优解为b 点。

由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(11,0)T∴m in z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:A B C 甲 9 4 3 70 乙 4 6 10 1203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解.(10分) 解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z是产品售后的总利润,则m ax z =70x 1+120x 2s .t 。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案《运筹学》期末考试试题及参考答案一、填空题1、运筹学是一门新兴的_________学科,它运用_________方法,研究有关_________的一切可能答案。

2、运筹学包括的内容有_______、、、_______、和。

3、对于一个线性规划问题,如果其目标函数的最优解在某个整数约束条件的约束范围内,那么该最优解是一个_______。

二、选择题1、下列哪一项不是运筹学的研究对象?( ) A. 背包问题 B. 生产组织问题 C. 信号传输问题 D. 原子核物理学2、以下哪一个不是运筹学问题的基本特征?( ) A. 唯一性 B. 现实性 C. 有解性 D. 确定性三、解答题1、请简述运筹学在日常生活中的应用实例,并就其中一个进行详细说明。

2、某企业生产三种产品,每种产品都可以选择用手工或机器生产。

假设生产每件产品手工需要的劳动时间为3小时,机器生产为2小时,卖价均为50元。

此外,手工生产每件产品的材料消耗为10元,机器生产为6元。

已知每个工人每天工作时间为24小时,可生产10件产品,每件产品的毛利润为50元。

请用运筹学方法确定手工或机器生产的数量,以达到最大利润。

参考答案:一、填空题1、交叉学科;数学;合理利用有限资源,获得最大效益2、线性规划、整数规划、动态规划、图论与网络、排队论、对策论3、整点最优解二、选择题1、D 2. A三、解答题1、运筹学在日常生活中的应用非常广泛。

例如,在背包问题中,如何在有限容量的背包中选择最有价值的物品;在生产组织问题中,如何合理安排生产计划,以最小化生产成本或最大化生产效率;在信号传输问题中,如何设计最优的信号传输路径,以确保信号的稳定传输。

以下以背包问题为例进行详细说明。

在背包问题中,给定一组物品,每个物品都有自己的重量和价值。

现在需要从中选择若干物品放入背包中,使得背包的容量恰好被填满,同时物品的总价值最大。

这是一个典型的0-1背包问题,属于运筹学的研究范畴。

运筹学期末试题及答案

运筹学期末试题及答案

运筹学期末试题及答案一、选择题1. 运筹学是通过分析和决策来实现最佳利益的学科。

以下哪个选项最准确地描述了运筹学的定义?A. 运筹学是一门研究如何安排和管理物流的学科。

B. 运筹学是一门研究如何制定合理的销售策略的学科。

C. 运筹学是一门研究如何决策和规划资源的学科。

D. 运筹学是一门研究如何提高生产效率的学科。

答案:C2. 线性规划是一种常用于解决最优化问题的数学方法。

以下哪个选项最准确地解释了线性规划问题?A. 线性规划是一种通过建立线性方程组来寻找最小值或最大值的方法。

B. 线性规划是一种通过建立非线性方程组来寻找最小值或最大值的方法。

C. 线性规划是一种通过建立线性方程组来寻找全局最优解的方法。

D. 线性规划是一种通过建立非线性方程组来寻找局部最优解的方法。

答案:C3. 整数规划是一种特殊的线性规划问题,其中决策变量必须是整数。

以下哪个选项最准确地描述了整数规划的特点?A. 整数规划只适用于小规模问题,无法处理大规模问题。

B. 整数规划可以保证找到问题的最优整数解。

C. 整数规划只能用于决策变量为0或1的二进制问题。

D. 整数规划在求解过程中需要考虑所有可能的整数解。

答案:B4. 单纯形法是一种用于解决线性规划问题的常用算法。

以下哪个选项最准确地描述了单纯形法的特点?A. 单纯形法只能用于求解可行解存在且有限的线性规划问题。

B. 单纯形法可以保证找到线性规划问题的最优解。

C. 单纯形法在求解过程中需要考虑所有可能的解空间。

D. 单纯形法只适用于二维线性规划问题,无法处理高维问题。

答案:B5. 敏感性分析是一种用于评估线性规划模型解的稳定性和可靠性的方法。

以下哪个选项最准确地解释了敏感性分析?A. 敏感性分析是一种通过调整决策变量的值来优化线性规划模型的方法。

B. 敏感性分析是一种通过改变约束条件的值来评估线性规划模型的可行性的方法。

C. 敏感性分析是一种通过改变目标函数系数的值来评估线性规划模型解的稳定性的方法。

《运筹学》考试题(A卷)题解

《运筹学》考试题(A卷)题解

x1 1 或 x2 2 ,利用这一结果,可以把 ( IL0 ) 划分为两个子问题:
max f x1 3 x 2 2 x1 3 x 2 4 x1 2 x 2 7 ; ( IL2 ) ( IL1 ) s.t.3x1 x 2 9 x 1 1 x1 0且为整数 , x 2 0
2 x1 3 x 2 4 x 2 x 7 1 2 s.t.3 x1 x 2 9 x 1 1 x1 0 , x 2 0
解之得: x1 1, x2 4, f1 13 ,最优解中 x1 已是整数,因而它也是 ( IL1 ) 的最优解。同时,
3 2 A 4 C B 1 2 3 1 F 3 E 3 4 D 1 G
解: (1)当 k 3 时,显然,有
f 3 ( D) 1
f 3 ( E) 3
f 3 (F ) 4
6
(2)当 k 2 时,求 f 2 ( B), f 2 (C) 。 由 B 出发有三种走法: B D, B E , B F ,即 D2 ( B) {D, E, F},故有
d1 ( A, B) f 2 ( B) 2 4 f1 ( A) min 6( A B D G ) d1 ( A, C ) f 2 (C ) 4 3

f1 ( A) min d 2 ( A, X ) f 2 ( X ) 2 4,4 3 6( A B D G )

f 2 (C ) min d 2 (C , X ) f 3 ( X ) 3 1,3 3,1 4 4(C D G )
X D2 ( C )
(3)当 k 1 时,求 f1 ( A) 。 由 A 出发有两种走法: A B1 , A B2 ,即 D1 ( A) {B, C} ,故有

安徽理工大学《运筹学》2023-2024学年第一学期期末试卷及答案

安徽理工大学《运筹学》2023-2024学年第一学期期末试卷及答案

安徽理工大学《运筹学》2023-2024学年第一学期期末试卷及答案一、选择题(每题2分,共20分)1. 运筹学起源于以下哪个国家?A. 英国B. 美国C. 德国D. 法国答案:B2. 线性规划问题的标准形式中,目标函数是以下哪种类型?A. 最大化B. 最小化C. 两者均可D. 无法确定答案:C3. 在目标规划中,若目标函数为最小化,则约束条件应满足以下哪种关系?A. ≤B. ≥C. =D. 以上都对答案:D4. 对于非线性规划问题,以下哪种方法不适用于求解?A. 拉格朗日乘数法B. 牛顿法C. 柯西法D. 线性规划法答案:D5. 在运输问题中,以下哪个概念表示运输成本?A. 价值系数B. 机会成本C. 运费D. 产出系数答案:C二、填空题(每题3分,共15分)6. 线性规划问题中,若约束条件为等式,则称为__________约束。

答案:等式7. 在目标规划中,若目标函数为最大化,则约束条件应满足__________关系。

答案:≥8. 在非线性规划问题中,若目标函数为凸函数,则求解得到的极小值是__________。

答案:全局最小值9. 在运输问题中,若产地与销地的供需平衡,则称为__________问题。

答案:平衡10. 网络计划中,关键路径是指__________。

答案:完成时间最长的路径三、判断题(每题2分,共10分)11. 线性规划问题中,目标函数和约束条件必须是线性的。

()答案:错误12. 在目标规划中,目标函数可以同时包含最小化和最大化目标。

()答案:正确13. 非线性规划问题中,若目标函数为凹函数,则求解得到的极大值是全局最大值。

()答案:正确14. 在运输问题中,若产地与销地的供需不平衡,可以通过添加虚拟产地或销地来平衡。

()答案:正确15. 网络计划中,关键路径上的活动称为关键活动。

()答案:正确四、计算题(每题15分,共60分)16. 某企业生产甲、乙两种产品,生产一单位甲产品需要消耗2单位原材料,3单位劳动力,产生4单位利润;生产一单位乙产品需要消耗1单位原材料,2单位劳动力,产生3单位利润。

运筹学试题及答案(共两套)

运筹学试题及答案(共两套)

运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。

每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《运筹学》试题样卷(一)一、判断题(共计10分,每小题1分,对的打√,错的打X )1. 无孤立点的图一定是连通图。

2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。

3. 如果一个线性规划问题有可行解,那么它必有最优解。

4.对偶问题的对偶问题一定是原问题。

5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。

6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。

7. 度为0的点称为悬挂点。

8. 表上作业法实质上就是求解运输问题的单纯形法。

9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。

二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日;春夏季4000人日。

如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。

养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。

农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。

三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。

(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0五、求解下面运输问题。

(18分)某公司从三个产地A 1、A 2、A 3 将物品运往四个销地B 1、B 2、B 3、B 4,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如表所示: 问:应如何调运,可使得总运输费最小?六、灵敏度分析(共8分)线性规划max z = 10x 1 + 6x 2 + 4x 3s.t. x 1 + x 2 + x 3 ≤ 100 10x 1 +4 x 2 + 5 x 3 ≤ 600 2x 1 +2 x 2 + 6 x 3 ≤ 300 x 1 , x 2 , x 3 ≥ 0的最优单纯形表如下:(1)C1在何范围内变化,最优计划不变?(4分)(2)b1在什么范围内变化,最优基不变?(4分)七、试建立一个动态规划模型。

(共8分)某工厂购进100台机器,准备生产p1 , p2 两种产品。

若生产产品p1 ,每台机器每年可收入45万元,损坏率为65%;若生产产品p2 ,每台机器每年可收入35万元,损坏率为35%;估计三年后将有新的机器出现,旧的机器将全部淘汰。

试问每年应如何安排生产,使在三年内收入最多?八、求解对策问题。

(共10分)某种子商店希望订购一批种子。

据已往经验,种子的销售量可能为500,1000,1500或2000公斤。

假定每公斤种子的订购价为6元,销售价为9元,剩余种子的处理价为每公斤3元。

要求:(1)建立损益矩阵;(3分)(2)用悲观法决定该商店应订购的种子数。

(2分)(3)建立后悔矩阵,并用后悔值法决定商店应订购的种子数。

(5分)九、求下列网络计划图的各时间参数并找出关键问题和关键路径。

(8分)十、用标号法求V1到V6的最短路。

(6分)运筹学样卷(一)答案一、判断题。

共计10分,每小题1分二、建线性规划模型。

共计8分(酌情扣分)解:用321,,x x x 分别表示大豆、玉米、麦子的种植公顷数;54,x x 分别表示奶牛和鸡的饲养数;76,x x 分别表示秋冬季和春夏季的劳动力(人日)数,则有 7654321252020900460041003000max x x x x x x x Z ++++++=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥≤≤≤+++++≤+++++≤+≤+++)7,,2,1(0)(1500)(200)(40003.0504017550)(35006.010*******)(150003400)(1005.154754321654321544321 j x x x x x x x x x x x x x x x x x x x x x j鸡舍限制牛栏限制劳动力限制劳动力限制资金限制土地限制三、对偶问题。

共计8分解:(1)原线性规划问题:3211026max x x x z+-=⎪⎩⎪⎨⎧≥≤+-≤+0,103522132122x x x x x x x ;……4分(2)原问题的对偶规划问题为:21105min y y w +=⎪⎪⎩⎪⎪⎨⎧≥≥+-≥-≥0,1022632121212y y y y y y y ; ……3分(3)对偶规划问题的最优解为:)2,4(=*Y T 。

……1分四、单纯形表求解线性规划。

共计16分 解:引入松弛变量x 4、 x 5、 x 6,标准化得,3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3+ x 4= 60x 1- x 2 +2 x 3 + x 5 = 10 x 1+ x 2- x 3 + x 6 = 0x 1, x 2 , x 3, x 4、 x 5、 x 6,≥0……………3分建初始单纯形表,进行迭代运算: ……………………… …9分由最优单纯形表可知,原线性规划的最优解为: ( 15 , 5 , 0 )T …2分最优值为: z*=25。

………2分五、求解运输问题。

共计18分 解:(1)最小元素法:(也可以用其他方法,酌情给分) 设x ij 为由A i 运往B j 的运量(i=1,2,3; j=1,2,3,4), 列表如下:分 所以,基本的初始可行解为:x 14 =25; x 22=20 ; x 24 =5 ;X 31 =15; x 33 =30; x 34=5其余的x ij=0。

…………3分(2)求最优调运方案:1会求检验数,检验解的最优性:σ11=2;σ12=2;σ13=3;σ21=1;σ23=5;σ32= - 1…………3分2会求调整量进行调整:=5 …………2分…3分3再次检验 …………2分4能够写出正确结论解为:x 14=25 ; x 22 =15 ; x 24 =10 x 31 =15, x 32 =5 x 33=30其余的x ij=0。

……1分最少运费为: 535 ………1分。

六、灵敏度分析。

共计8分 (1)(4分)(2)(4分)10401=∆≤-b七、建动态规划模型。

共计8分解:(1)设阶段变量k 表示年度,因此,阶段总数n =3。

(2)状态变量sk 表示第k 年度初拥有的完好机床台数, 同时也是第 k –1 年度末时的完好机床数量。

(3)决策变量uk ,表示第k 年度中分配于生产产品 p 1 的机器台数。

于是sk – uk 便为该年度中分配于生产产品 p 1的机器台数. (4) 状态转移方程为(5)允许决策集合,在第 k 段为 (6)目标函数。

设gk (sk ,uk )为第k 年度的产量,则gk (sk ,uk ) = 45uk + 35(sk –uk ) ,因此,目标函数为 (7)条件最优目标函数递推方程。

令fk (sk )表示由第k 年的状态sk 出发,采取最优分配方案到第3年度结束这段时间的产品产量,根据最优化原理有以下递推关系:⎭⎬⎫⎩⎨⎧--≤∆≤⎭⎬⎫⎩⎨⎧--3/23/10min 6/13/2,6/13/8max 1c 155104106,54111=+≤∆+≤-=≤∆≤-c c c ⎭⎬⎫⎩⎨⎧----≤∆≤⎭⎬⎫⎩⎨⎧-∞-2100,3/23/100min 3/53/200,max 1b )(65.035.01k k k k u s u s -+=+}{)(k k k k k s u u s U ≤≤=0∑==3),(k i kk k k u s g R ))((max )(k k U u k k s u s f kk ∈=(8).边界条件为八、解决对策问题。

共10分(1)益损矩阵如下表所示:……3分(2)悲观法:A 1 ,订购500公斤。

……2分 (3)后悔矩阵如下表所示:……3分23……2分)]}(65.035.0[)](3545{[1k k k k k k k u s u f u s u -++-++0)(1313=++s f关键问题是:①→②;2→④;④→⑤;④→6;6→⑦关键线路是:评分标准:①能正确给各顶点标号并填表......................4分②正确写出关键问题.............. 2分③正确画出关键线路............. 2分十、用标号法求v 1 到 v 6 的最短路。

(6分)1234,56长度为:12正确标号:4分;正确写出结论:2分。

相关文档
最新文档