2013年河南中考数学试题

合集下载

2013年河南中考数学真题卷含答案解析

2013年河南中考数学真题卷含答案解析

2013年河南省初中学业水平暨高级中等学校招生考试数学试题(含答案全解全析)(满分120分,考试时间100分钟)参考公式:二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(-b2a ,4ac-b24a).第Ⅰ卷(选择题,共24分)一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.-2的相反数是()A.2B.-|-2|C.12D.-122.下列图形中,既是轴对称图形又是中心对称图形的是()3.方程(x-2)(x+3)=0的解是()A.x=2B.x=-3C.x1=-2,x2=3D.x1=2,x2=-34.在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50.则这8人体育成绩的中位数是()A.47B.48C.48.5D.495.如图是正方体的一种展开图,其每个面上都标有一个数字.那么在原正方体中,与数字“2”相对的面上的数字是()A.1B.4C.5D.66.不等式组{x≤2,x+2>1的最小整数解为()A.-1B.0C.1D.27.如图,CD 是☉O 的直径,弦AB ⊥CD 于点G,直线EF 与☉O 相切于点D,则下列结论中不一定正确的是( )A.AG=BGB.AB ∥EFC.AD ∥BCD.∠ABC=∠ADC8.在二次函数y=-x 2+2x+1的图象中,若y 随x 的增大而增大,则x 的取值范围是( ) A.x<1 B.x>1 C.x<-1 D.x>-1第Ⅱ卷(非选择题,共96分)二、填空题(每小题3分,共21分) 9.计算:|-3|-√4= .10.将一副直角三角板ABC 和EDF 如图放置(其中∠A=60°,∠F=45°),使点E 落在AC 边上,且ED ∥BC,则∠CEF 的度数为 .11.化简:1x +1x(x -1)= . 12.已知扇形的半径为4 cm,圆心角为120°,则此扇形的弧长是 cm.13.现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4.把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是 .14.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P'(2,-2),点A 的对应点为A',则抛物线上PA 段扫过的区域(阴影部分)的面积为 .15.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连结AE,把∠B沿AE折叠,使点B 落在点B'处.当△CEB'为直角三角形时,BE的长为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(x+2)2+(2x+1)(2x-1)-4x(x+1),其中x=-√2.17.(9分)从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别观点频数(人数)A大气气压低,空气不流动80B地面灰尘大,空气湿度低mC汽车尾气排放nD工厂造成的污染120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=,扇形统计图中E组所占的百分比为%;(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?18.(9分)如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连结EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为s时,四边形ACFE是菱形;②当t为s时,以A、F、C、E为顶点的四边形是直角梯形.19.(9分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位.如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC(结果精确到0.1米.参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,√3≈1.73).20.(9分)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=kx (x>0)的图象经过BC的中点D,且与AB交于点E,连结DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.21.(10分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式; (3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.22.(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.图1图2(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转.当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.图3(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射相应的BF的长.线BA上存在点F,使S△DCF=S△BDE,请直接写出....图4x+2交于C、D两点,其中点C在y轴上,点D 23.(11分)如图,抛物线y=-x2+bx+c与直线y=12的坐标为(3,7).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.2(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由;相应的点P的坐标.(3)若存在点P,使∠PCF=45°,请直接写出....答案全解全析:1.A 只有符号不同的两个数是互为相反数,所以-2的相反数为2,故选A.2.D 选项A既不是中心对称图形,也不是轴对称图形;选项B只是轴对称图形;选项C只是中心对称图形;选项D既是中心对称图形又是轴对称图形.故选D.3.D 由(x-2)(x+3)=0得x-2=0或x+3=0,所以x=2或x=-3.故选D.4.C 8人的成绩从小到大排列,中间的两个数分别是48和49,所以这8人体育成绩的中位数是48+49=48.5,故选C.25.B 根据正方体的平面展开图特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“2”相对的面上的数字是“4”.6.B 解此不等式组得-1<x≤2,所以最小整数解为0,故选B.7.C CD是☉O的直径,弦AB⊥CD于点G,由垂径定理得AG=BG,直线EF与☉O相切于点D,所以EF⊥CD,则AB∥EF,因为同弧所对的圆周角相等,所以∠ABC=∠ADC,因为∠C与∠ADC不一定相等,所以选项C不一定正确.故选C.评析本题考查垂径定理、平行线的判定定理、圆周角定理,属基础题.8.A 根据解析式可求抛物线的对称轴为直线x=1,又a=-1,所以抛物线开口向下,在对称轴左侧y 随x 的增大而增大,故选A. 9.答案 1 解析 原式=3-2=1. 10.答案 15°解析 ∵∠A=60°,∴∠ACB=30°,∵ED∥BC,∴∠DEC=∠ACB=30°, ∴∠CEF=∠DEF -∠DEC=45°-30°=15°. 11.答案1x -1解析 原式=x -1+1x (x -1)=xx (x -1)=1x -1.12.答案8π3解析 由弧长计算公式得此扇形的弧长=120π×4180=8π3cm.13.答案 23解析 列表或画树状图可得,本次试验结果共有12种,两张卡片数字之积为负数的结果:(-1,3), (-1,4),(-2,3),(-2,4),(3,-1),(3,-2),(4,-1),(4,-2),共有8种,所以两张卡片上的数字之积为负数的概率是23. 14.答案 12解析 连结AP,A'P',AP',由平移的性质可得四边形APP'A'为平行四边形,根据割补的原理可知阴影部分的面积即为平行四边形APP'A'的面积,又S △APP'=12OA·(x P'-x P )=12×3×4=6,所以平行四边形APP'A'的面积为2S △APP'=6×2=12,即抛物线上PA 段扫过的区域的面积为12. 评析 本题是以二次函数图象的平移为背景的求阴影部分面积的题目,依据平移的性质及割补方法确定平行四边形是关键,求平行四边形APP'A'的面积是难点,突破难点的方法是通过求S △APP'再结合平行四边形的性质求面积,本题技巧性强,属中等难度题目.15.答案 32或3解析 在△CEB'中,显然∠B'CE 不可能为直角,所以(1)当∠B'EC=90°时,在矩形ABCD 中,四边形AB'EB 为正方形,所以BE=AB=3.(2)当∠EB'C=90°时,由对称性得∠AB'E=90°,所以点A 、B'、C 三点共线, 在Rt△ADC 中AC=√AD 2+CD 2=5, B'C=AC-AB'=2,设BE=x,则CE=4-x.在Rt△B'EC 中,B'C 2+B'E 2=CE 2,即x 2+4=(4-x)2,解得x=32.所以满足条件的BE 的长为3或32.评析 本题通过矩形的折叠,考查了轴对称的性质、矩形的性质、勾股定理等知识,依据题意画出图形并分类讨论是解题的基本思想方法,本题属易错题. 16.解析 原式=x 2+4x+4+4x 2-1-4x 2-4x(4分) =x 2+3.(6分)∴当x=-√2时,原式=(-√2)2+3=5.(8分) 17.解析 (1)40;100;15.(3分) (2)持D 组“观点”的市民人数约为 100×12080+40+100+120+60=30(万人).(6分) (3)持C 组“观点”的概率为100400=14.(9分)18.解析(1)证明:∵D为AC中点,∴AD=DC.(1分) ∵AG∥BC,∴∠EAC=∠ACF,∠AEF=∠EFC.∴△ADE≌△CDF.(5分)(2)①6;(7分)②32.(9分)19.解析在Rt△BAE中,∠BAE=68°,BE=162米,∴AE=BEtan∠BAE ≈1622.50=64.80(米).(3分)在Rt△DCE中,∠DCE=60°,DE=176.6米,∴CE=DEtan∠DCE =√3≈102.08(米).(6分)∴AC=CE-AE≈102.08-64.80=37.28≈37.3(米),即工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.(9分) 【说明:AC的计算结果在37.0至37.6之间均可】20.解析(1)在矩形OABC中,∵点B坐标为(2,3),∴BC边中点D的坐标为(1,3).又∵双曲线y=kx经过点D(1,3),∴3=k1,∴k=3,∴y=3x.∵点E在AB上,∴点E的横坐标为2.又∵双曲线y=3x经过点E,∴点E纵坐标为32,∴点E坐标为(2,32).(2)由(1)得BD=1,BE=32,CB=2.∵△FBC∽△DEB,∴BDCF =BECB,即1CF=322.∴CF=43,∴OF=53,即点F 的坐标为(0,53). 设直线FB 的解析式为y=k 1x+b,而直线FB 经过B(2,3),F (0,53),∴{3=2k 1+b ,53=b ,∴k 1=23,b=53. ∴直线FB 的解析式为y=23x+53. 21.解析 (1)设A 品牌计算器的单价为x 元,B 品牌计算器的单价为y 元,则有{2x +3y =156,3x +y =122.∴{x =30,y =32. 即A 、B 两种品牌计算器的单价分别为30元和32元.(4分)(2)根据题意得:y 1=0.8×30x,即y 1=24x.(5分)当0≤x≤5时,y 2=32x;(6分)当x>5时,y 2=32×5+32(x -5)×0.7,即y 2=22.4x+48.(7分)【说明:若把“0≤x≤5”写为“x≤5”,不扣分】(3)当购买数量超过5个时,y 2=22.4x+48.①当y 1<y 2时,24x<22.4x+48,∴x<30.即当购买数量超过5个而不足30个时,购买A 品牌的计算器更合算;(8分)②当y 1=y 2时,24x=22.4x+48,∴x=30.即当购买数量为30个时,购买A 品牌与B 品牌的计算器花费相同;(9分)③当y 1>y 2时,24x>22.4x+48,∴x>30.即当购买数量超过30个时,购买B 品牌的计算器更合算.(10分)22.解析 (1)①DE∥AC;②S 1=S 2.(2分)(2)证明:∵∠DCE=∠ACB=90°,∴∠DCM+∠ACE=180°.又∵∠ACN+∠ACE=180°,∴∠ACN=∠DCM.(4分)又∵∠CNA=∠CMD=90°,AC=CD,∴△ANC≌△DMC.(6分)∴AN=DM.又∵CE=CB,∴S 1=S 2.(8分)(3)4√33或8√33.(10分)【提示】如图所示,作DF 1∥BC 交BA 于点F 1;作DF 2⊥BD 交BA 于点F 2.BF 1、BF 2即为所求.评析 本题考查了含30°角的直角三角形的性质、三角形全等的判定、平行线间的距离等知识点,综合分析“猜想论证”中提示的方法,进行类比探究解题,掌握一些常见的数学模型也是提高解答此类题目能力的方法.23.解析 (1)∵直线y=12x+2经过点C,∴C(0,2).∵抛物线y=-x 2+bx+c 经过点C(0,2)和D (3,72),∴{2=c ,72=-32+3b +c .∴{c =2,b =72. ∴抛物线的解析式为y=-x 2+72x+2.(3分)(2)∵P 点横坐标为m,∴P (m ,-m 2+72m +2),F (m ,12m +2).∵PF∥CO,∴当PF=CO 时,以O 、C 、P 、F 为顶点的四边形为平行四边形.①当0<m<3时,PF=-m 2+72m+2-(12m +2)=-m 2+3m.∴-m 2+3m=2,解得:m 1=1,m 2=2.即当m=1或2时,四边形OCPF 是平行四边形;(7分)②当m≥3时,PF=(12m +2)-(-m 2+72m +2)=m 2-3m.∴m 2-3m=2,解得:m 1=3+√172,m 2=3-√172(舍去). 即当m=3+√172时,四边形OCFP 是平行四边形.(9分)(3)点P 的坐标为P 1(12,72),P 2(236,1318).(11分) 【提示】如图,当点P 在CD 上方且∠PCF=45°时,作PM⊥CD,CN⊥PF,则△PMF∽△CNF,从而PM MF =CN FN =m12m=2.∴PM=CM=2CF.∴PF=√5FM=√5CF=√5×√52CN=52CN=52m. 又∵PF=-m 2+3m,∴-m 2+3m=52m.解得:m 1=12,m 2=0(舍去),∴P (12,72).同理可得,另一点为P (236,1318).评析 本题将二次函数、一次函数与平行四边形、直角三角形等知识相结合,考查了待定系数法求二次函数解析式,二次函数的图象和性质,属难题.。

2013年河南中考考前重点中学联手预测数学试卷

2013年河南中考考前重点中学联手预测数学试卷

´2013年河南中考考前重点中学联手预测卷(3月30日)数 学注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟. 请用钢笔或圆珠笔直接答在试卷上. 2.答题前将密封线内的项目填写清楚.一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内. 1.(2的平方根是【 】(A )2± (B ) (C (D ) 1.414±2.为支援鹤壁洪水灾区,鹤壁电视台举办了《情系大树,爱无边》赈灾募捐舞会,晚会现场募得善款达2175000000元.2175000000用科学计数法表示正确的是【 】(A )6217510⨯ (B )821.7510⨯ (C )92.17510⨯ 103.如图,将边长为2 cm 的正方形ABCD 沿其对角 线AC 剪开,再把△ABC 沿着AD 方向平移,得 到△C B A '''ˊ,若两个三角形重叠部分的面积是 1cm 2,则它移动的距离A A 'ˊ等于 【 】A.0.5cmB.1cmC.1.5cmD.2cm 4. 下列说法正确的有 【 】(1)如图(a),可以利用刻度尺和三角板测量圆形工件的直径; (2)如图(b ),可以利用直角曲尺检查工件是否为半圆形;(3)如图(c ),两次使用丁字尺(C D 所在直线垂直平分线段A B )可以找到圆形工件的圆心; (4)如图(d ),测倾器零刻度线和铅垂线的夹角,就是从P 点看A 点时仰角的度数.A .1个B .2个C .3个D .4个5.如图,已知直线b x y +=3与2-=ax y 的交点的横坐标为2-,根据图象有下列3个结论:①0>a ;②0>b ;③2->x 是不等式23->+ax b x 的解集.其中正确的个数是 【 】A .0B .1C .2D .3(a ) (b )(c )(d )AABC DP6.如图,已知A (4,0),点1A 、2A 、…、1n A -将线段O A n 等分,点1B 、2B 、…、1n B -、B 在直线0.5y x =上,且11A B ∥22A B ∥…∥11n n A B --∥AB ∥y 轴.记△11OA B 、△122A A B 、…、△211n n n A A B ---、△1n A AB -的面积分别为1S 、2S 、…1n S -、nS .当n 越来越大时,猜想1S +2S +…+n S 最近的常数是【 】(A )1 (B )2 (C )4 (D )8 二、填空题(每小题3分,共27分)7.如图,已知等边A B C △,D 是边BC 的中点,过D 作DE ∥AB 于E ,连结BE 交AD 于1D ;过1D 作D 1E 1∥AB 于1E ,连结1B E 交AD 于2D ;过2D 作D 2E 2∥AB 于2E如此继续,若记B D E S △为S 1,记11B D E S △为S 2,记22BDE S △为S 3…,若A B C S △面积为则Sn=_____ cm 2(用含n 与S 的代数式表示)8.如图,在平面直角坐标系中,一颗棋子从点P (0,2-)处开始依次关于点A (1-,1-),B (1,2),C (2,1)作循环对称跳动,即第一次跳到点P 关于点A 的对称点M 处,接着跳到点M 关于点B 的对称点N 处,第三次再跳到点N 关于点C 的对称点处,…,如此下去.则经过第2011次跳动之后,棋子落点的坐标为 ▲ .9.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为200的微生物会出现在第 天.10.如图,直线m 上摆着三个正三角形:△ABC 、△HFG 、△DCE 。

河南省中考数学真题试题(含解析)

河南省中考数学真题试题(含解析)

河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

1.(3分)﹣的绝对值是()A.﹣B.C.2 D.﹣2【分析】根据一个负数的绝对值是它的相反数进行解答即可.【解答】解:|﹣|=,故选:B.【点评】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5【分析】本题用科学记数法的知识即可解答.【解答】解:0.0000046=4.6×10﹣6.故选:C.【点评】本题用科学记数法的知识点,关键是很小的数用科学记数法表示时负指数与0的个数的关系要掌握好.3.(3分)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°【分析】根据平行线的性质解答即可.【解答】解:∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B﹣∠E=75°﹣27°=48°,故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.4.(3分)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=2【分析】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则进行运算即可;【解答】解:2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(x﹣y)2=x2﹣2xy+y2,C错误;=2,D正确;故选:D.【点评】本题考查整式的运算;熟练掌握合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则是解题的关键.5.(3分)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【分析】根据三视图解答即可.【解答】解:图①的三视图为:图②的三视图为:故选:A.【点评】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.6.(3分)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先化成一般式后,在求根的判别式.【解答】解:原方程可化为:x2﹣2x﹣4=0,∴a=1,b=﹣2,c=﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0,∴方程由两个不相等的实数根.故选:A.【点评】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.7.(3分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元【分析】根据加权平均数的定义列式计算可得.【解答】解:这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故选:C.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.8.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.4【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=﹣4;故选:B.【点评】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.9.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C 为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD﹣AF=1.然后在直角△FDC中利用勾股定理求出CD的长.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.【点评】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.10.(3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)【分析】先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.【解答】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故选:D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.二、填空题(每小题3分,共15分。

河南省2013年中考数学真题考试试题(解析版)

河南省2013年中考数学真题考试试题(解析版)

河南省2013年中考数学试卷一、选择题(每小题3分,共24分)下列各小题均匀四个答案,其中只有一个十正确的.4.(3分)(2013•河南)在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则8人体育成绩的中位数是()=48. 55.(3分)(2013•河南)如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是()6.(3分)(2013•河南)不等式组的最小整数解为()7.(3分)(2013•河南)如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是()8.(3分)(2013•河南)在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x,在对称轴左边,二、填空题(每小题3分,满分21分)9.(3分)(2013•河南)计算:|﹣3|﹣= 1 .(2013•河南)将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使10.(3分)点E落在AC边上,且ED∥BC,则∠CEF的度数为15°.11.(3分)(2013•河南)化简:= .+=.故答案为:.12.(3分)(2013•河南)已知扇形的半径为4cm,圆心角为120°,则扇形的弧长为πcm.=13.(3分)(2013•河南)现有四张完全相同的卡片,上面分别标有数字﹣1,﹣2,3,4.把卡片背面上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是.=14.(3分)(2013•河南)如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为12 .=2∴PP′=2×2=4=×3=415.(3分)(2013•河南)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3 .=5三、解答题(本大题共8个小题,满分75分)16.(8分)(2013•河南)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.﹣17.(9分)(2013•河南)从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解”雾霾天气的主要原因“,随机调查了该市部分市民,并对调查结果进行整(1)填空:m= 40 ,n= 100 .扇形统计图中E组所占的百分比为15 %;(2)若该市人口约有100万人,请你估计其中持D组”观点“的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?×100%=15%;)100×=30组“观点”的概率是18.(9分)(2013•河南)如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A 出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为 6 s时,四边形ACFE是菱形;②当t为 1.5 s时,以A、F、C、E为顶点的四边形是直角梯形.19.(9分)(2013•河南)我国南水北调中线工程的起点是丹江水库,按照工程计划,需对原水库大坝进行混凝土加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位.如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡坡底端水平方向增加的宽度AC(结果精确到0.1米.参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,).==64.8==≈102.1(米)20.(9分)(2013•河南)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.21.(10分)(2013•河南)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A 品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.,,22.(10分)(2013•河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.=+的长为或23.(11分)(2013•河南)如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.,,=CF=m PN=2FN=PF=,))或(,。

河南省历年中考数学试题及答案

河南省历年中考数学试题及答案

河南省历年中考数学试题及答案河南省历年中考数学试题及答案是许多准备参加中考的学生和家长十分关心的话题。

在这篇文章中,我们将为大家整理和介绍一些河南省历年中考数学试题,并附上详细的答案解析,希望能够为大家的复习提供帮助。

一、选择题选择题是中考数学试卷中的重要组成部分。

以下是河南省历年中考数学试卷中的一道选择题:题目:已知正比例函数y = kx,当x = 4时,y = 10;当x = 6时,y = 15。

求k的值。

解析:根据题意可得到方程组:4k = 106k = 15通过解方程可得k = 2.5,因此,选项B为正确答案。

二、填空题填空题是中考数学试卷中锻炼计算能力和应用能力的重要题型。

以下是河南省历年中考数学试卷中的一道填空题:题目:Kate利用1组花环,每个花环用3朵玫瑰和5朵郁金香制作,共制作了8个花束,请问她用了多少朵玫瑰?解析:设用了x朵玫瑰,则用了24 - x朵郁金香,由题意可得方程:3x + 5(24 - x) = 8 × 8通过解方程可得x = 15,因此,她用了15朵玫瑰,答案为15。

三、解答题解答题是中考数学试卷中考察学生分析问题和解决问题能力的重要题型。

以下是河南省历年中考数学试卷中的一道解答题:题目:如图,直线l1与直线l2相交于点O,∠AOB = 85°,求∠COB的度数。

解析:由于l1与l2相交,根据错综相交线性质,可得∠AOB =∠COE。

又∠AOB = 85°,因此∠COE = 85°。

由于角的两边是射线,所以∠COB = ∠COE - ∠BOE = 85° - 70° = 15°。

四、解析题解析题是中考数学试卷中考察学生解决复杂问题和综合运用知识的重要题型。

以下是河南省历年中考数学试卷中的一道解析题:题目:汽车维修站每天收取基本工时费80元,每小时超时费30元。

某辆车维修时间3小时30分钟,应支付多少元?解析:首先需要计算维修时间的分钟数:3小时30分钟 = 3 × 60 +30 = 210分钟。

历年河南省中考数学试卷

历年河南省中考数学试卷

2014年至2017年河南中考数学试卷及答案解析2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣=.12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m 与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A (m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【考点】18:有理数大小比较.【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.【考点】U3:由三视图判断几何体.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)(2017•河南)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.。

河南中考数学题分析

河南中考数学题分析

中考例题
试题以图形与几何 → 图形的性质 → 圆 → 圆的综合知识作为命题主线,以圆的对称性、 圆心角与圆周角之间的关系、圆的有关运算作为考查核心,与初中所学知识融会贯通, 较好地考查对图形与几何部分知识的掌握情况.
中考例题
本题第一问为填空,主要考查常见几何模型的掌握情况;第二问为几何证明,考查逻辑推 理能力.试题形式丰富、梯度合理、考查全面、难易适中,具有较好的难度与区分度.可 通过对本试题的求解,总结掌握与圆有关几何问题的求解通法.
中考例题中考例题源自敬请各位老师批评指正河南中考数学题分析
——图形与几何
中考例题
本题是一道综合运用圆的有关知识解决问题的解答题.知识层面考查了对圆周角 的性质定理、圆心角及其所对应的弧或弦之间的关系、扇形的面积公式、特殊角的三 角函数、三角形全等及三角形相似判定、等腰直角三角形的性质及正三角形的面积计 算等内容的掌握情况,能力层面考查对数学运算、几何直观、逻辑推理等学科素养的 掌握情况.
中考例题
本题第一问为填空,主要考查常见几何模型的掌握情况;第二问为几何证明,考查逻辑推 理能力.试题形式丰富、梯度合理、考查全面、难易适中,具有较好的难度与区分度.可 通过对本试题的求解,总结掌握与圆有关几何问题的求解通法.
中考例题
中考例题
中考例题
解法2 如图4,连接BN,AN.
中考例题
中考例题

往年河南中考数学真题及答案

往年河南中考数学真题及答案

往年河南中考数学真题及答案注意事项:1.本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上。

2.答卷前将密封线内的项目填写清楚。

参考公式:二次函数图像2(0)y ax bx c a=++≠的顶点坐标为24(,)24b ac ba a--一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。

1、-2的相反数是【】(A)2 (B)2-- (C)12(D)12-【解析】根据相反数的定义可知:-2的相反数为2【答案】A2、下列图形中,既是轴对称图形又是中心对称图形的是【】【解析】轴对称是指在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。

中心对称图形是指平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么就说这两个图形关于这个点成中心对称。

结合定义可知,答案是D题号一二三总分1~8 9~15 16 17 18 19 20 21 22 23【答案】D3、方程(2)(3)0x x -+=的解是【】(A )2x = (B )3x =- (C )122,3x x =-= (D )122,3x x ==-【解析】由题可知:20x -=或者30x +=,可以得到:122,3x x ==-【答案】D4、在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是【】(A ) 47 (B )48 (C )48.5 (D )49【解析】中位数是将数据按照从小到大的顺序排列,其中间的一个数或中间两个数的平均数就是这组数的中位数。

本题的8个数据已经按照从小到大的顺序排列了,其中间的两个数是48和49,它们的平均数是48.5。

因此中位数是48.5【答案】C5、如图是正方形的一种张开图,其中每个面上都标有一个数字。

河南南阳中考数学试卷及答案

河南南阳中考数学试卷及答案

河南南阳中考数学试卷及答案注意事项:1、本试卷共8页,三大题,满分120分,考题时间100分钟。

请用钢笔或圆珠笔答在试卷指定位置上。

2、答卷前请在指定的位置填好自己的座号,并将密封线内的项目填写清楚。

题号 一 二 三 总分 16 17 18 19 20 21 22 23 得分一、 选择题(本题满分18分,共有6道小题,每小题3分)下列每小题都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的。

请将各小题所选答案的代号填写在下面的表格内相应题号下面。

选择题答题位置 题号 1 2 3 4 5 6 答案1.-7的相反数是( ) A. 7 B. -7 C.71 D.17- 2.直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A.43 B. 34 C. 53 D. 543.如图,是中国共产主义青年团团旗上的图案,点A 、B 、C 、D 、E 五等分圆,则A B C D E ∠+∠+∠+∠+∠等于( )A. ︒360B. ︒180C. ︒150D. ︒1204.初三年级某班十名男同学“俯卧撑”的测试成绩(单位:次数)分别是9,14,10,15,7,9,16,10,11,9,这组数据的众数、中位数、平均数依次是( ) A. 9,10,11 B.10,11,9 C.9,11,10 D.10,9,115.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( ) A.k >14-B.k >14-且0k ≠C.k <14-D.14k ≥-且0k ≠ 6.如图,已知□ABCD 中,AB=4,AD=2,E 是AB 边上的一动点(动点E 与点A 不重合,可与点B 重合),设AE=x ,DE 的延长线交CB 的延长线于点F ,设CF=y ,则下列图象能正确反映y 与x 的函数关系的是( )得分 评卷人二、填空题(本题满分27分,共有9道小题,每小题3分)7.16的平方根是8.如图,直线a,b 被直线c 所截,若a ∥b ,︒=∠501,则=∠2 9.样本数据3,6,a,4,2的平均数是5,则这个样本的方差是10.如图所示,AB 为⊙0的直径,AC 为弦,OD ∥BC 交AC 于点D ,若AB=20cm,︒=∠30A ,则AD= cm11.某花木场有一块如等腰梯形ABCD 的空地(如图),各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线AC= cm12.如图,矩形ABCD 的两条线段交于点O ,过点O 作AC 的垂线EF,分别交AD 、BC 于点E 、F ,连接CE,已知CDE ∆的周长为24cm ,则矩形ABCD 的周长是 cm13、在一幅长50cm ,宽30cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为 14、如图是二次函数2)1(2++=x a y 图像的一部分,该图在y 轴右侧与x 轴交点的坐标 是15、如图,直线2-==kx y (k >0)与双曲线ky =在第一象限内的交点面积为R ,与x 轴的交点为P ,与y 轴的交得分 评卷人三、解答题(本题满分75分,共8道小题) 16、(本小题满分8分)解不等式组()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 并把解集在已画好的数轴上表示出来。

历年河南中考数学试卷真题

历年河南中考数学试卷真题

历年河南中考数学试卷真题1. 某物体从静止开始匀加速运动,经过10秒钟的运动后,其速度达到20m/s,求该物体的加速度和位移。

解:由于物体匀加速运动,可以使用运动学中的公式:v = u + at,s = ut + 1/2at^2,其中,v为最终速度,u为初速度,a为加速度,t为时间,s为位移。

根据题意,初速度u为0m/s,最终速度v为20m/s,时间t为10s。

代入公式可得:20 = 0 + a * 10,s = 0 * 10 + 1/2 * a * 10^2。

解方程可以得到加速度a为2m/s^2,代入位移公式可以得到位移s为100m。

因此,该物体的加速度为2m/s^2,位移为100m。

2. 甲、乙两人分别从A、B两地同时出发,相向而行,甲每小时行10km,乙每小时行15km,若甲乙相遇后再一起走到终点,比较两人所行的路程。

解:设甲乙相遇的时间为t小时。

甲的速度为10km/h,乙的速度为15km/h。

根据题意,甲乙从相遇点重新一起走到终点,所以两人行走的时间相同。

则甲乙从各自出发点到相遇点的路程分别为10t km和15t km。

综上,甲所行的路程为10t km,乙所行的路程为15t km。

3. 某几何图形的面积为24平方厘米,其长度为6厘米,求该几何图形的宽度。

解:设该几何图形的宽度为w厘米。

根据题意,该几何图形的面积为24平方厘米,长度为6厘米。

根据几何图形面积的计算公式,可以列出等式:面积 = 长度 * 宽度,24 = 6w。

解方程可得到该几何图形的宽度w为4厘米。

4. 小明买了一份礼物,原价为180元,商场打8折,小明还交了5元服务费,求小明实际支付的金额。

解:设小明实际支付的金额为x元。

根据题意,原价为180元,商场打8折,即小明所支付的金额为8折后的价钱。

则有等式:x = 180 * 0.8 + 5。

计算可得小明实际支付的金额x为149元。

5. 有一道数学题,其中有5个选择题和3个填空题,每个选择题的分值为2分,每个填空题的分值为4分,求这道数学题的总分。

2013年中考数学试题按章节考点分类:第42章几何综合型问题

2013年中考数学试题按章节考点分类:第42章几何综合型问题

图12四十二章 几何综合型问题7.(2013贵州六盘水,7,3分)下列命题为真命题的是( ▲ )A .平面内任意三个点确定一个圆B .五边形的内角和为540°C .如果a>b,则ac 2>bc 2D .如果两条直线被第三条直线所截那么所截得的同位角相等分析:根据命题的定义:对一件事情做出判断的语句叫命题.正确的命题叫真命题,据此即对四个选项进行分析即可回答.解答:解:A 、平面内任意三点确定一个圆是一个假命题,,如三点在一条直线上,不能构成圆,故本选项错误;B 、五边形的内角和为540°,故本选项正确;C 、如果a b >则22ac bc >,如果c=0,结论不成立,故本选项错误;D 、如果两条直线被第三条直线所截,那么所得的同位角相等.没有平行线,故本选项错误; 故选B .点评:此题考查了命题的定义,包括真命题和假命题.13. (2013贵州省毕节市,13,3分)下列命题是假命题的是( )A.同弧或等弧所对的圆周角相等B.平分弦的直径垂直于弦C.两条平行线间的距离处处相等D.正方形的两条对角线互相垂直平分 解析:分析是否为假命题,可以举出反例;也可以分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A 、错误,同弧或等弧所对的圆周角相等或互补,是假命题;B 、平分弦的直径垂直于弦是正确的,是真命题;C 、两条平行线间的距离处处相等是正确的,是真命题;D 、正方形的两条对角线互相垂直平分是正确的,是真命题.故选A .点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.31. ( 2013年四川省巴中市,31,12)如图12,在平面直角坐标系中,点A 、C 分别在x 轴、y轴上,四边形ABCO 为矩形,AB=16,点D 与点A 关于y 轴对称,tan ∠ACB=43 ,点E 、F 分别是线段AD 、AC 上的动点(点E 不与点A 、D 重合),且∠CEF=∠ACB. (1)求AC 的长和点D 的坐标; (2)说明△AEF 与△DCE 相似; (3)当△EFC 为等腰三角形时,求点E 的坐标.【解析】①∵四边形ABCO 为矩形,∴∠B=900tan ∠ACB=43 ,在R t △ACB 中,设BC=3k,AB=4k,股定理,AC=5K,∵AB=4k=16,∴k=4, ∴AC=20,OA=BC==3k=12,∴点A 的坐标为(-12,0),27题答案图而点D 与点A 关于y 轴对称,∴点D 的坐标为(12,0) ②由:∠CDE=∠EAF,∠AEF =∠DCE ,得出△AEF ∽△DCE ③分类讨论:当CE=EF 时,则△AEF ∽△DCE , ∴AE=CD ,即AO+OE=CD 设E(x,0),有12+x=20,∴x=8 此时,点E 的坐标为(8.0)当EF=FC 时,∠FCE =∠FEC=∠ACB,∴tan ∠FCG =tan ∠ACB=43 ,作FG ⊥CE 于G,在R t △FCG 中,设CE=6a,则FG=4a,于是CF=5a, ∵△AEF ∽△DCE∴CE 2=CF ·AC,即36a 2=5a ·20,a=259∴CE=259 ×6=503 .在R t △CEO 中,OE=CE 2-OC 2=143 ∴E (143 ,0)当CE=CF 时,E 与D 重合与题目矛盾。

2013年河南省中招考试数学试题及答案

2013年河南省中招考试数学试题及答案

1 2013年河南省中招考试数学试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的。

1.-2的相反数是( )(A )2 (B )-|-2| (C )12 (D )12-2.下列图形中,既是轴对称图形又是中心对称图形的是( )3.方程(x-2)(x+3)=0的解是( )(A )x=2 (B )x=-3 (C )12x =-,23x = (D )12x =,23x =- 4.在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则这8人体育成绩的中位数是( )(A )47 (B )48 (C )48.5 (D )49 5.如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是( )(A )1 (B )4 (C )5 (D )6 6.不等式组221x x ≤⎧⎨+>⎩的最小整数解为( ) (A )-1 (B )0 (C )1 (D )27.如图,CD 是⊙O 的直径,弦AB ⊥CD 于点G ,直线EF 与⊙O 相切于点D ,则下列结论中不一定正确的是( )(A )AG=BG(B )AB ∥EF (C )AD ∥BC (D )∠ABC=∠ADC8.在二次函数221y x x =-++的图象中,若y 随着x 的增大而增大,则x 的取值范围是( ) (A )x <1 (B )x >1 (C )x <-1 (D )x >-12 二、填空题(每小题3分,共21分)9.计算34--=__________. 10.将一副直角三角板ABC 和EDF 如图放置(其中∠A=60°,∠F=45°),使点E 落在AC 边上,且ED ∥BC ,则CEF 的度数为=__________.11.化简:11(1)x x x --=__________.12.已知扇形的半径为4cm ,圆心角为120°,则此扇形的弧长是__________cm . 13.现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4,把卡片背面朝上洗匀,然后从中随机抽取两张,则这四张卡片上的数字之积为负数的概率是__________.14.如图,抛物线的顶点为P (-2,2),与y 轴交于点A (0,3),若平移该抛物线使其顶点P 沿直线移动到点P'(2,-2),点A 的对应点为A',则抛物线上PA 段扫过的区域(阴影部分)的面积为__________.15.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为__________.三、解答题(本大题共8个小题,满分为75分)16.(8分)先化简,再求值:2(2)(21)(21)4(1)x x x x x +++--+,其中2x =-.17.(9分)从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气,某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=__________,n=__________.扇形统计图中E组所占的百分比为__________%;(2)若该市人中约有100万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?18.(9分)如图,在等边三角形ABC中,BC=6cm,射线AC∥BC,点E从点A出发沿射线AC以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为__________s时,四边形ACFE是菱形;②当t为__________s时,以A、F、C、E、为顶点的四边形是直角梯形.19.(9分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截34 面示意图,其中原坝体的高为BE ,背水坡坡角∠BAC=68°。

2013年北京、上海、大连、河南、福州市中考数学试题及答案

2013年北京、上海、大连、河南、福州市中考数学试题及答案

2013年北京市高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。

1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。

将3 960用科学计数法表示应为( )A. 39.6³102B. 3.96³103C. 3.96³104D. 3.96³104 2. 43-的倒数是( ) A. 34 B. 43 C. 43- D. 34-3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( ) A.51 B. 52 C. 53 D. 544. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于( )A. 40°B. 50°C. 70°D. 80°5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上。

若测得BE=20m ,EC=10m ,CD=20m ,则河的宽度AB 等于( )A. 60mB. 40mC. 30mD. 20m 6. 下列图形中,是中心对称图形但不是轴对称图形的是( )7. 某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5 6 7 8 人数1015205则这50名学生这一周在校的平均体育锻炼时间是( )A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时8. 如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )二、填空题(本题共16分,每小题4分)9. 分解因式:a ab ab 442+-=_________________10. 请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式__________10 11. 如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为__________12. 如图,在平面直角坐标系x O y 中,已知直线l :1--=x t ,双曲线xy 1=。

河南省中考数学试卷(含解析答案)

河南省中考数学试卷(含解析答案)

河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“ ”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= .12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)85 95 105 115日销售量y(个)175 125 75 m日销售利润w(元)875 1875 1875 875 (注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC 于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FB C的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= 2 .【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2 .【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB 上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S阴==π.【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4 .【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000 人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DB F为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DB F=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)85 95 105 115日销售量y(个)175 125 75 m日销售利润w(元)875 1875 1875 875 (注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是2000 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC 于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),。

九年级数学中考题一元二次方程

九年级数学中考题一元二次方程

九年级数学中考题一元二次方程11.(2013•乌鲁木齐)若关于x的方程式x2-x+a=0有实根,则a的值可以是()A.2 B.1 C.0.5 D.0.2512.(2013•潍坊)已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=-1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解.13.(2013•威海)已知关于x的一元二次方程(x+1)2-m=0有两个实数根,则m的取值范围是()14.(2013•天水)一个三角形的两边长分别为3和6,第三边的边长是方程(x-2)(x-4)=0的根,则这个三角形的周长是()A.11 B.11或13C.13 D.以上选项都不正确15.(2013•天水)从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48m2,则原来这块木板的面积是()A.100m2B.64m2C.121m2D.144m2 16.(2013•天门)已知α,β是一元二次方程x2-5x-2=0的两个实数根,则α2+αβ+β2的值为()A.-1 B.9 C.23 D.27 17.(2013•泰州)下列一元二次方程中,有两个不相等实数根的方程是()A.x2-3x+1=0 B.x2+1=0 C.x2-2x+1=0 D.x2+2x+3=0 18.(2013•台湾)若一元二次方程式a(x-b)2=7的两根为19.(2013•十堰)已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是()A.4 B.-4 C.1 D.-1 20.(2013•上海)下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2-x+1=0 D.x2-x-1=0 21.(2013•日照)已知一元二次方程x2-x-3=0的较小根为x1,则下面对x1的估计正确的是()A.-2<x1<-1 B.-3<x1<-2 C.2<x1<3 D.-1<x1<022.(2013•钦州)关于x的一元二次方程3x2-6x+m=0有两个不相等的实数根,则m的取值范围是()A.m<3 B.m≤3C.m>3 D.m≥3 23.(2013•黔西南州)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()24.(2013•平凉)一元二次方程x2+x-2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定25.(2013•平凉)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()26.(2013•宁夏)一元二次方程x(x-2)=2-x的根是()A.-1 B.2 C.1和2 D.-1和2 27.(2013•南平)关于x的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定28.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是()A.2018 B.2008 C.2014 D.2012显示解析试题篮29.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是()A.k>-1 B.k<1且k≠0C.k≥-1且k≠0D.k>-1且k≠030.(2013•泸州)设x1、x2是方程x2+3x-3=0的两个实数根,()A.5 B.-5 C.1 D.-1 31.(2013•六盘水)已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<-2 B.k<2 C.k>2 D.k<2且k≠1 32.(2013•丽水)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4 B.x-6=4 C.x+6=4 D.x+6=-4 33.(2013•兰州)用配方法解方程x2-2x-1=0时,配方后得的方程为()A.(x+1)2=0 B.(x-1)2=0 C.(x+1)2=2 D.(x-1)2=2 34.(2013•兰州)据调查,2011年5月兰州市的房价均价为7600/m2,2013年同期将达到8200/m2,假设这两年兰州市房价的平均增长率为x,根据题意,所列方程为()A.7600(1+x%)2=8200 B.7600(1-x%)2=8200C.7600(1+x)2=8200 D.7600(1-x)2=820035.(2013•昆明)一元二次方程2x2-5x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定36.(2013•昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80-100x-80x=7644 B.(100-x)(80-x)+x2=7644C.(100-x)(80-x)=7644 D.100x+80x=35637.(2013•黄冈)已知一元二次方程x2-6x+C=0有一个根为2,则另一根为()A.2 B.3 C.4 D.8 38.(2013•呼和浩特)(非课改)已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,,则m的值是()A.3或-1 B.3 C.1 D.-3或1 39.(2013•衡阳)某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=128 B.168(1-x)2=128C.168(1-2x)=128 D.168(1-x2)=12840.(2013•河南)方程(x-2)(x+3)=0的解是()A.x=2 B.x=-3 C.x1=-2,x2=3 D.x1=2,x2=-3 41.(2013•桂林)已知关于x的一元二次方程x2+2x+a-1=0有两根为x1和x2,且x12-x1x2=0,则a的值是()A.a=1 B.a=1或a=-2 C.a=2 D.a=1或a=2 42.(2013•广州)若5k+20<0,则关于x的一元二次方程x2+4x-k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断43.(2013•福州)下列一元二次方程有两个相等实数根的是()A.x2+3=0 B.x2+2x=0 C.(x+1)2=0 D.(x+3)(x-1)=0 44.(2013•鄂州)下列计算正确的是()45.(2013•鄂州)已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a的值为()A.-10 B.4 C.-4 D.10 46.(2013•东营)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是()A.5个B.6个C.7个D.8个47.(2013•大连)若关于x的方程x2-4x+m=0没有实数根,则实数m的取值范围是()A.m<-4 B.m>-4 C.m<4 D.m>4 48.(2013•达州)若方程3x2-6x+m=0有两个不相等的实数根,则m的取值范围在数轴上表示正确的是()A.B.C.D.49.(2013•成都)一元二次方程x2+x-2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根50.(2013•常德)下列一元二次方程中无实数解的方程是()A.x2+2x+1=0 B.x2+1=0 C.x2=2x-1 D.x2-4x-5=0 51.(2013•滨州)对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定52.(2013•包头)已知方程x2-2x-1=0,则此方程()53.(2013•鞍山)已知b<0,关于x的一元二次方程(x-1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根54.(2013•安顺)已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为()A.1 B.-1 C.2 D.-2 55.(2013•安徽)目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)2=438 D.438(1+2x)2=38956.(2012•株洲)已知关于x的一元二次方程x2-bx+c=0的两根分别为x1=1,x2=-2,则b与c 的值分别为()A.b=-1,c=2 B.b=1,c=-2 C.b=1,c=2 D.b=-1,c=-2 57.(2012•湛江)湛江市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是()A.5500(1+x)2=4000 B.5500(1-x)2=4000C.4000(1-x)2=5500 D.4000(1+x)2=550058.(2012•宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x-3)2+11 B.(x+3)2-7 C.(x+3)2-11 D.(x+2)2+4 59.(2012•烟台)下列一元二次方程两实数根和为-4的是()A.x2+2x-4=0 B.x2-4x+4=0 C.x2+4x+10=0 D.x2+4x-5=0二、填空题1.(2013•遵义)已知x=-2是方程x2+mx-6=0的一个根,则方程的另一个根是.2.(2013•自贡)已知关于x的方程x2-(a+b)x+ab-1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2.则正确结论的序号是.(填上你认为正确结论的所有序号)3.(2013•镇江)写一个你喜欢的实数m的值,使关于x的一元二次方程x2-x+m=0有两个不相等的实数根.4.(2013•张家界)若关于x的一元二次方程kx2+4x+3=0有实数根,则k的非负整数值是.5.(2013•宜宾)某企业五月份的利润是25万元,预计七月份的利润将达到36万元.设平均月增长率为x,根据题意所列方程是.27.(2013•新疆)2009年国家扶贫开发工作重点县农村居民人均纯收入为2027元,2011年增长到3985元.若设年平均增长率为x,则根据题意可列方程为.8.(2013•温州)方程x2-2x-1=0的解是.9.(2013•天津)一元二次方程x(x-6)=0的两个实数根中较大的根是.10.(2013•沈阳)若关于x的一元二次方程x2+4x+a=0有两个不相等的实数根,则a的取值范围是.11.(2013•陕西)一元二次方程x2-3x=0的根是.12.(2013•青岛)某企业2010年底缴税40万元,2012年底缴税48.4万元.设这两年该企业交税的年平均增长率为x,根据题意,可得方程.13.(2013•黔西南州)已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是.14.(2013•黔东南州)若两个不等实数m、n满足条件:m2-2m-1=0,n2-2n-1=0,则m2+n2的值是.15.(2013•平凉)现定义运算“★”,对于任意实数a、b,都有a★b=a2-3a+b,如:3★5=32-3×3+5,若x★2=6,则实数x的值是.16.(2013•攀枝花)设x1,x2是方程2x2-3x-3=0的两个实数根,17.(2013•南京)已知如图所示的图形的面积为24,根据图中的条件,可列出方程:.18.(2013•绵阳)已知整数k<5,若△ABC的边长均满足关于x的方程,则△ABC 的周长是.19.(2013•眉山)已知关于x的一元二次方程x2-x-3=0的两个实数根分别为α、β,则(α+3)(β+3)= .20.(2013•龙岩)已知x=3是方程x2-6x+k=0的一个根,则k= .21.(2013•六盘水)无论x取任何实数,代数式都有意义,则m的取值范围为22.(2013•临沂)对于实数a,b,定义运算“﹡”:.例如4﹡2,因为4>2,所以4﹡2=42-4×2=8.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1﹡x2= .23.(2013•聊城)若x1=-1是关于x的方程x2+mx-5=0的一个根,则方程的另一个根x2= .24.(2013•兰州),且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是.25.(2013•荆门)设x1,x2是方程x2-x-2013=0的两实数根,26.(2013•江西)若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程.27.(2013•吉林)若将方程x2+6x=7化为(x+m)2=16,则m= .28.(2013•黑龙江)若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n= .29.(2013•菏泽)已知:关于x的一元二次方程kx2-(4k+1)x+3k+3=0 (k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2-x1-2,判断y是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由.30.(2013•哈尔滨)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.31.(2013•广安)方程x2-3x+2=0的根是.32.(2013•佛山)方程x2-2x-2=0的解是.234.(2013•常州)已知x=-1是关于x的方程2x2+ax-a2=0的一个根,则a= .35.(2013•滨州)一元二次方程2x2-3x+1=0的解为.36.(2013•巴中)方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为.37.(2012•淄博)一个三位数,其各位上的三个数字的平方和等于其中两个数字乘积的2倍,请写出符合上述条件的一个三位数.38.(2012•资阳)关于x的一元二次方程kx2-x+1=0有两个不相等的实数根,则k的取值范围是.39.(2012•张家界)已知m和n是方程2x2-5x-3=0的两根,40.(2012•枣庄)已知关于x的方程x2+mx-6=0的一个根为2,则这个方程的另一个根是.三、解答题1.(2013•自贡)用配方法解关于x的一元二次方程ax2+bx+c=0.2.(2013•淄博)关于x的一元二次方程(a-6)x2-8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求的值.3.(2013•珠海)某渔船出海捕鱼,2010年平均每次捕鱼量为10吨,2012年平均每次捕鱼量为8.1吨,求2010年-2012年每年平均每次捕鱼量的年平均下降率.4.(2013•重庆)“4•20”雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m顶,每辆小货车每次比原计划少运300顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多次,小货车每天比原计划多跑m次,一天恰好运送了帐篷14400顶,求m的值.5.(2013•重庆)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)6.(2013•漳州)解方程:x2-4x+1=0.7.(2013•枣庄)先化简,再求值:.其中m是方程x2+3x-1=0的根.8.(2013•玉林)已知关于x的方程x2+x+n=0有两个实数根-2,m.求m,n的值.9.(2013•义乌)解方程(1)x2-2x-1=0(2)10.(2013•盐城)先化简,再求值:,其中x为方程x2+3x+2=0的根.11.(2013•徐州)(1)解方程:x2-2x=1;(2)解不等式组:12.(2013•孝感)已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2−x12−x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.13.(2013•襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?14.(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2-6x-27=0,x2-2x-8=0,,x2+6x-27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x-12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.15.(2013•无锡)(1)解方程:x2+3x-2=0;(2)解不等式组:16.(2013•泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?17.(2013•上海)解方程组:18.(2013•山西)解方程:(2x-1)2=x(3x+2)-7.19.20.(2013•衢州)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.21.(2013•青岛)在前面的学习中,我们通过对同一面积的不同表达和比较,根据图1和图2发现并验证了平方差公式和完全平方公式.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.【研究速算】提出问题:47×43,56×54,79×71,…是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图3,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形上面.(2)分析:原矩形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述).【研究方程】提出问题:怎样图解一元二次方程x2+2x-35=0(x>0)?几何建模:(1)变形:x(x+2)=35.(2)画四个长为x+2,宽为x的矩形,构造图4(3)分析:图中的大正方形面积可以有两种不同的表达方式,(x+x+2)2或四个长x+2,宽x 的矩形面积之和,加上中间边长为2的小正方形面积.即(x+x+2)2=4x(x+2)+22∵x(x+2)=35∴(x+x+2)2=4×35+22∴(2x+2)2=144∵x>0∴x=5归纳提炼:求关于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并注明相关线段的长)【研究不等关系】提出问题:怎样运用矩形面积表示(y+3)(y+2)与2y+5的大小关系(其中y>0)?几何建模:(1)画长y+3,宽y+2的矩形,按图5方式分割(2)变形:2y+5=(y+3)+(y+2)(3)分析:图5中大矩形的面积可以表示为(y+3)(y+2);阴影部分面积可以表示为(y+3)×1,画点部分部分的面积可表示为y+2,由图形的部分与整体的关系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5归纳提炼:当a>2,b>2时,表示ab与a+b的大小关系.根据题意,设a=2+m,b=2+n(m>0,n>0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图并注明相关线段的长)22.(2013•南充)关于x的一元二次方程为(m-1)x2-2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?23.(2013•绵阳)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?24.(2013•连云港)小林准备进行如下操作实验;把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48cm2.”他的说法对吗?请说明理由.25.(2013•乐山)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC 是等腰三角形时,求k的值.26.(2013•荆州)已知:关于x的方程kx2-(3k-1)x+2(k-1)=0(1)求证:无论k为何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且|x1-x2|=2,求k的值.27.(2013•济宁)人教版教科书对分式方程验根的归纳如下:“解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.”请你根据对这段话的理解,解决下面问题:已知关于x的方程无解,方程x2+kx+6=0的一个根是m.(1)求m和k的值;(2)求方程x2+kx+6=0的另一个根.28.(2013•黄石)解方程组:29.(2013•淮安)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?30.(2013•杭州)当x满足条件时,求出方程x2-2x-4=0的根.31.(2013•贵阳)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;(2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.32.(2013•广州)解方程:x2-10x+9=0.33.(2013•广东)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?34.(2013•德宏州)如图,要建造一个直角梯形的花圃.要求AD边靠墙,CD⊥AD,AB:CD=5:4,另外三边的和为20米.设AB的长为5x米.(1)请求出AD的长(用含字母x的式子表示);(2)若该花圃的面积为50米2,且周长不大于30米,求AB的长.35.(2013•达州)选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如①选取二次项和一次项配方:x2-4x+2=(x-2)2-2;②选取二次项和常数项配方:③选取一次项和常数项配方:根据上述材料,解决下面问题:(1)写出x2-8x+4的两种不同形式的配方;(2)已知x2+y2+xy-3y+3=0,求x y的值.36.(2013•北京)已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.37.(2013•百色)为响应区“美丽广西清洁乡村”的号召,某校开展“美丽广西清洁校园”的活动,该校经过精心设计,计算出需要绿化的面积为498m2,绿化150m2后,为了更快的完成该项绿化工作,将每天的工作量提高为原来的1.2倍.结果一共用20天完成了该项绿化工作.(1)该项绿化工作原计划每天完成多少m2?,(2)在绿化工作中有一块面积为170m2的矩形场地,矩形的长比宽的2倍少3m,请问这块矩形场地的长和宽各是多少米?38.(2013•巴中)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.39.(2012•遵义)根据遵义市统计局发布的2011年遵义市国民经济和社会发展统计公报相关数据,我市2011年社会消费品总额按城乡划分绘制统计图①,2010年与2011年社会消费品销售额按行业划分绘制条形统计图②,根据图中信息回答下列问题:(1)图①中“乡村消费品销售额”的圆心角是度,乡村消费品销售额为亿元;(2)2010年到2011年间,批发业、零售业、餐饮住宿业中销售额增长的百分数最大的行业是;(3)预计2013年我市的社会消品总销售额到达504亿元,求我市2011-2013年社会消费品销售总额的年平均增长率.。

历年河南省中考数学试卷(含答案)

历年河南省中考数学试卷(含答案)

2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣=.12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m 与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A (m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)(2017•河南)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB绕点A 逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论. 【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°, ∴∠OAO′=60°,∴△OAO′是等边三角形, ∴∠AOO′=60°, ∵∠AOB=120°, ∴∠O′OB=60°,∴△OO′B 是等边三角形, ∴∠AO′B=120°, ∵∠AO′B′=120°, ∴∠B′O′B=120°, ∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.故选C .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分) 11.(3分)(2017•河南)计算:23﹣= 6 .【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)(2017•河南)不等式组的解集是﹣1<x≤2.【分析】先求出不等式的解集,再求出不等式解集的公共部分.【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为m<n.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)(2017•河南)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为+或1.【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50人,a+b=28,m=8;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)(2017•河南)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A 船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C 在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)(2017•河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为y=﹣x+4,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.22.(10分)(2017•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E 分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM ⊥PN;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,=2+5=7,∴MN最大=PM2=×MN2=×(7)2=.∴S△PMN最大方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在AB的延长线上,∴BD=AB+AD=14,∴PM=7,=PM2=×72=∴S△PMN最大【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道中考常考题.23.(11分)(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y 轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m 的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。

2013年河南省中考数学试卷分析

2013年河南省中考数学试卷分析

2013年河南省中考数学试卷分析贾静总体评价:一、中考试卷的功能:1、学业水平测试------基础性2、名校选拔测试------选拔性二、试卷难度2013年试卷在继承前几年的基础上,严格按照新课标标准的要求去执行,但稳中有变,力求创新。

容易题、中等题、难题的比例为7:2:1。

整体难度略微下降,但压轴题的难度提升明显,体现了中考的选拔性功能。

学生的思维能力,还要让学生养成良好的书写规范。

题型分析:一、试题整体分析2013年的中考数学试题与去年相比,试卷考查的内容稍有变化,试题注重通性通法,淡化特殊技巧,解答题设置了多个问题,层次分明,难度适中,比较平和,同去年变化不大,但更加突出了对考生解决实际问题能力的考查,有利于高中阶段学校综合、有效地评价学生的数学学习状况。

1、试题题型稳中有变试卷体现了“稳中求变,稳中求新”。

最后的压轴题难度的提高成为大多数好学生的丢分之处,重视基础知识、基本技能、基本思想方法和基本活动经验等考查,试题涉及的生活实际应用题共计28分,约占整个试卷的23.3﹪,这一改变正体现了“贴近学生学习、生活实际”这一新的教育教学理念。

2、试卷突出对数学思想方法与数学活动过程的考查试卷中综合实践与应用的能力要求数学知识要回归本质,学以致用,这份试卷充分体现了课改精神,共考察了函数、方程、统计、概率思想,同时还渗透数形结合、待定系数、归纳等方法。

二、试题特点及失分分析1、选择题A.题型特征选择题(共8小题,每小题3分,共24分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题,选对得3分,不选,选错或选出的代号超过一个的(不论是否写在括号内)一律0分.B.题型特点1.试题着重考查了“双基”,考查了数学中的重点、重要知识,考查了考查了学生的基础知识和基本能力。

2.考查内容紧扣考纲,主要考察简单的概念及计算,没有出现“怪、偏、繁”题.C.试题考点1. 难试题的起步较低,坡度不大,以基础性试题为主2. 考点设置规律性比较强:主要集中在基本定义、基本运算、简单综合应用方面,这也是我们在设计题型时要借鉴学习的一个重要方面.D.失分情况分析选择题突出了对学生基本知识和基本技能的考查,试题难度不大,从学生答卷的情况看,失分原因有以下两个方面:1.概念不清,如第4题中位数的计算,由于概念不清导致计算错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.在一次体育测试中,小芳所在小组8人的成绩分别 是:46,47,48,48,49,49,50.则这8人体育成 绩的中位数是【 】 (A)47 (B)48 (C)48.5 (D)49
2013-8-23
5
2013年>河南省>第5题>3分
5.如图是正方体的一种展开图,其每个面上都 标有一个数字,那么在原正方体中,与数字 “2”相对的面上的数字是 【 】 (A) 1 (B)4 (C) 5 (D)6
2013-8-23
12
2013年>河南省>第12题>3分
2013-8-23
13
2013年>河南省>第13题>3分
2013-8-23
14
2013年>河南省>第14题>3分
2013-8-23
15
2013年>河南省>第15题>3分
2013-8-23
16
2013年>河南省>第16题>8分
2013-8-23
2013-8-23
6
2013年>河南省>第6题>3分
2013-8-23
7
2013年>河南省>第7题>3分
2013-8-23
8
2013年>河南省>第8题>3分
2013-8-23
9
2013年>河南省>第9题>3分
2013-8-23
10
2013年>河南省>第10题>3分
2013-8-23
11
2013年>河南省>第11题>3分
2013-8-23
23
2013年>河南省>第22题>10分
2013-8-23
24
2013年>河南省>第22题>10分
2013-8-23
25
2013年>河南省>第22题>10分
2013-8-23
26
2013年>河南省>第23题>11分
2013-8-23
27
17
2013年>河南省>第17题>9分
2013-8-23
18
2013年>河南省>第17题>9分
2013-8-23
19
2013年>河南省>第18题>9分
2013-8-23
20
2013年>河南省>第19题>9分
2013-8-23
21
2013年>河南省>第20题>9分
2013-8-23
22
2013年>河南省>第中考数学
2013-8-23 1
2013年>河南省>第1题>3分
2013-8-23
2
2013年>河南省>第2题>3分
2、下列图形中,既是轴对称图形又是中心 对称图形的是【 】
2013-8-23
3
2013年>河南省>第3题>3分
3.方程 的解是【 】
2013-8-23
4
2013年>河南省>第4题>3分
相关文档
最新文档