电磁感应综合力学问题
电磁感应综合问题(解析版)--2024年高考物理大题突破
电磁感应综合问题1.掌握应用动量定理处理电磁感应问题的思路。
2.掌握应用动量守恒定律处理电磁感应问题的方法。
3.熟练应用楞次定律与法拉第电磁感应定律解决问题。
4.会分析电磁感应中的图像问题。
5.会分析电磁感应中的动力学与能量问题。
电磁感应中的动力学与能量问题1(2024·河北·模拟预测)如图甲所示,水平粗糙导轨左侧接有定值电阻R =3Ω,导轨处于垂直纸面向外的匀强磁场中,磁感应强度B =1T ,导轨间距L =1m 。
一质量m =1kg ,阻值r =1Ω的金属棒在水平向右拉力F 作用下由静止开始从CD 处运动,金属棒与导轨间动摩擦因数μ=0.25,金属棒的v -x 图像如图乙所示,取g =10m/s 2,求:(1)x =1m 时,安培力的大小;(2)从起点到发生x =1m 位移的过程中,金属棒产生的焦耳热;(3)从起点到发生x =1m 位移的过程中,拉力F 做的功。
【答案】(1)0.5N ;(2)116J ;(3)4.75J 【详解】(1)由图乙可知,x =1m 时,v =2m/s ,回路中电流为I =E R +r =BLv R +r=0.5A安培力的大小为F 安=IBL =0.5N (2)由图乙可得v =2x金属棒受到的安培力为F A =IBL =B 2L 2v R +r=x2(N )回路中产生的焦耳热等于克服安培力做的功,从起点到发生x =1m 位移的过程中,回路中产生的焦耳热为Q =W 安=F A x =0+0.52×1J =0.25J金属棒产生的焦耳热为Q 棒=r R +rQ =116J(3)从起点到发生x =1m 位移的过程中,根据动能定理有W F -W 安-μmgx =12mv 2解得拉力F 做的功为W F =4.75J1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。
高考物理三轮冲刺:电磁感应综合应用+教案
电磁感应综合应用1.掌握电磁感应与电路结合问题的分析方法2.掌握电磁感应动力学问题的重要求解内容3.能解决电磁感应与能量结合题型4.培养学生模型构建能力和运用科学思维解决问题的能力电磁感应中的电路问题1、分析电磁感应电路问题的基本思路对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.在闭合电路中,“相当于电源”的导体两端的电压与真实的电源两端的电压一样,等于路端电压,而不等于感应电动势.【例题1】用均匀导线做成的正方形线框边长为0.2m,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以10T/s的变化率增强时,线框中a、b两点间的电势差是()A.U ab=0.1V B.U ab=-0.1VC.U ab=0.2V D.U ab=-0.2V【演练1】如图所示,两个相同导线制成的开口圆环,大环半径为小环半径的2倍,现用电阻不计的导线将两环连接在一起,若将大环放入一均匀变化的磁场中,小环处在磁场外,a、b两点间电压为U1,若将小环放入这个磁场中,大环在磁场外,a、b两点间电压为U2,则()A.=1B.=2C.=4D.=【例题2】把总电阻为2R的均匀电阻丝焊接成一半径为a的圆环,水平固定在竖直向下的磁感应强度为B的匀强磁场中,如图所示,一长度为2a,电阻等于R,粗细均匀的金属棒MN放在圆环上,它与圆环始终保持良好的接触,当金属棒以恒定速度v向右移动经过环心O时,求:(1)棒上电流的大小和方向及棒两端的电压U MN;(2)圆环消耗的热功率和在圆环及金属棒上消耗的总热功率.【演练2】如图甲所示,固定在水平面上电阻不计的光滑金属导轨,间距d=0.5m.右端接一阻值为4Ω的小灯泡L,在CDEF矩形区域内有竖直向上的匀强磁场,磁感应强度B按如图乙规律变化.CF长为2m.在t=0时,金属棒从图中位置由静止在恒力F作用下向右运动到EF位置,整个过程中,小灯泡亮度始终不变.已知ab金属棒电阻为1Ω,求:(1)通过小灯泡的电流;(2)恒力F的大小;(3)金属棒的质量.电磁感应的动力学问题1.导体棒的两种运动状态(1)平衡状态——导体棒处于静止状态或匀速直线运动状态,加速度为零;(2)非平衡状态——导体棒的加速度不为零.2.两个研究对象及其关系电磁感应中导体棒既可看作电学对象(因为它相当于电源),又可看作力学对象(因为有感应电流而受到安培力),而感应电流I和导体棒的速度v是联系这两个对象的纽带.3.电磁感应中的动力学问题分析思路(1)电路分析:导体棒相当于电源,感应电动势相当于电源的电动势,导体棒的电阻相当于电源的内阻,感应电流I=.(2)受力分析:导体棒受到安培力及其他力,安培力F安=BIl=,根据牛顿第二定律:F合=ma.(3)过程分析:由于安培力是变力,导体棒做变加速运动或变减速运动,当加速度为零时,达到稳定状态,最后做匀速直线运动,根据共点力的平衡条件列方程:F合=0.4. 电磁感应中电量求解(1)利用法拉第电磁感应定律由整理得:若是单棒问题(2)利用动量定理单棒无动力运动时-BILΔt=mv2-mv1 又整理得:BLq= mv1-mv2【例题3】如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于斜面向下.导轨和金属杆的电阻可忽略,让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图.(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小.(3)求在下滑过程中,ab杆可以达到的速度最大值.(4)若从开始下滑到最大速度时,下滑的距离为x,求这一过程中通过电阻R的电量q.【演练3】(多选)如图所示,电阻不计间距为L的光滑平行导轨水平放置,导轨左端接有阻值为R的电阻,以导轨的左端为原点,沿导轨方向建立x轴,导轨处于竖直向下的磁感应强度大小为B的匀强磁场中。
电磁感应练习50题
电磁感应练习50题(含答案)1、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q.答案分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.(3)导体棒在滑动时摩擦生热为Q f=2μmgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热Q.解答:解:(1)导体棒在粗糙轨道上受力平衡:由 mgsin θ=μmgcos θ+BIL得:I=0.5A由BLv=I(R+r)代入数据得:v=2m/s(2)进入粗糙导轨前,导体棒中的平均电动势为: ==导体棒中的平均电流为: ==所以,通过导体棒的电量为:q=△t==0.125C(3)由能量守恒定律得:2mgdsin θ=Q电+μmgdcos θ+mv2得回路中产生的焦耳热为:Q电=0.35J所以,电阻R上产生的焦耳热为:Q=Q电=0.2625J答:(1)导体棒到达轨道底端时的速度大小是2m/s;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q是0.35C;(3)整个运动过程中,电阻R产生的焦耳热Q是0.2625J.点评:本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的.2、如图所示,两平行金属导轨间的距离L=0.40m,金属导轨所在的平面与水平面夹角θ=37º,在导轨所在平面内,分布着磁感应强度B=0.50T、方向垂直于导轨所在平面的匀强磁场。
电磁感应中的力学问题
典例1、如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为B的绝缘斜面上,两导轨间距为L, M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略,让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图。
(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及加速度的大小。
(3)求在下滑过程中,ab杆可以达到的最大速度。
典例2、如图所示,固定在同一水平面内的两根长直金属导轨的间距为L,其右端接有阻值为R的电阻,整个装置处在竖直向上、磁感应强度大小为B的匀强磁场中,一质量为m的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为w杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨向左运动,当杆运动的距离为d 时,速度恰好达到最大(杆始终与导轨保持垂直) 不计,重力加速度为g。
求此过程中:(1)杆的速度的最大值;(2)通过电阻R上的电量。
b典例3、如图所示,两足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直。
一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放。
导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I。
整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。
求:(1)磁感应强度的大小B;(2)电流稳定后,导体棒运动速度的大小v;(3)流经电流表电流的最大值。
1如图,两平行金属导轨位于同一水平面上,相距I,左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下•一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好。
电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)
压轴题07电磁感应规律的综合应用目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一以动生电动势为基综合考查导体棒运动的问题 (2)热点题型二以感生电动势为基综合考查导体棒运动的问题 (9)热点题型三以等间距双导体棒模型考动量能量问题 (16)热点题型四以不等间距双导体棒模型考动量定理与电磁规律的综合问题 (21)热点题型五以棒+电容器模型考查力电综合问题 (27)三.压轴题速练 (33)一,考向分析1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。
2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。
3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图像、动能定理和能量守恒定律等。
电磁感应综合试题往往与导轨滑杆等模型结合,考查内容主要集中在电磁感应与力学中力的平衡、力与运动、动量与能量的关系上,有时也能与电磁感应的相关图像问题相结合。
通常还与电路等知识综合成难度较大的试题,与现代科技结合密切,对理论联系实际的能力要求较高。
4.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源。
(2)在电源内部电流由负极流向正极。
(3)电源两端的电压为路端电压。
5.电荷量的求解电荷量q=IΔt,其中I必须是电流的平均值。
由E=n ΔΦΔt、I=ER总、q=IΔt联立可得q=n ΔΦR总,与时间无关。
6.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流、电阻不变。
(2)功能关系:Q=W克服安培力,电流变不变都适用。
(3)能量转化:Q=ΔE(其他能的减少量),电流变不变都适用。
7.用到的物理规律匀变速直线运动的规律、牛顿运动定律、动能定理、能量守恒定律等。
非主流方法解决电磁感应与力学综合问题
非 常道
是 阻 碍 穿过 闭 合 回 路 的 磁 通 量 变 化
我们在应用楞 次定律 时 产生 感应 电流所 具 有 的
,
非 主流 方 法 解决 电磁 感应与 力 学 综 合 问题
条件必 然是磁 通量 的变化
3 ) 由 于
“
.
阻 碍
”
作 用 才 导 致 了 电 磁 感 应 中的 能 量
转 化
.
4 )
感应 电流 对产 生 的原 因都有 阻 碍作 用
,
.
楞 次 定 律 强 调 的是 感 应 电 流 的 方 向 感 应 电 流 的
磁 场 阻碍原 磁通 量 的变化
(包
.
我 们 可 将 其 含 义 推 广 为 :感 应 电 流 对 产 生 的 原 因
括外磁 场 的变化 线 圈 面 积 的变化 相对 位 置 的变 化 导体 中电流 的变 化 等 ) 都 有 阻 碍 作 用 因此 我 们 用 楞 次定律 推 广 的含 义 考 虑 问 题 可 以 提 高运 用 楞 次
A
、
向右摆 至 最 高
.
从解题 步骤 上 看 我们 已经 能感 觉 到做这 类 楞次 定 律 和 力 学 综 合 题 目时 所 涉 及 的 内容 很 多 做 题 过 程
,
,
则 以下 说法 正 确 的是 (
; ;
;
A
B C
B 两
点等高
B B
中
-
,
t: 比 g
较容 易 出错
.
A
点高于 低于
点 点
A 点
感应 电流 的磁 场 总是 阻 碍 原 磁 场磁 通 量 的变
舭
劳 动 是 社 会 中每 个 人 不 可 避 免 的 义 务
§4 电磁感应与力学规律的综合应用
§4 电磁感应与力学规律的综合应用教学目标:1.综合应用电磁感应等电学知识解决力、电综合问题; 2.培养学生分析解决综合问题的能力 教学重点:力、电综合问题的解法教学难点:电磁感应等电学知识和力学知识的综合应用,主要有1、利用能的转化和守恒定律及功能关系研究电磁感应过程中的能量转化问题2、应用牛顿第二定律解决导体切割磁感线运动的问题。
3、应用动量定理、动量守恒定律解决导体切割磁感线的运动问题。
4、应用能的转化和守恒定律解决电磁感应问题。
教学方法:讲练结合,计算机辅助教学 教学过程:一、电磁感应中的动力学问题这类问题覆盖面广,题型也多种多样;但解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等,基本思路是:【例1】如图所示,AB 、CD 是两根足够长的固定平行金属导轨,两导轨间的距离为L ,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B ,在导轨的 AC 端连接一个阻值为 R 的电阻,一根质量为m 、垂直于导轨放置的金属棒ab ,从静止开始沿导轨下滑,求此过程中ab 棒的最大速度。
已知ab 与导轨间的动摩擦因数为μ,导轨和金属棒的电阻都不计。
F=BIL 界状态v与a方向关系运动状态的分析a 变化情况 F=ma 合外力 感应电流 确定电源(E ,r ) r R EI +=解析:ab 沿导轨下滑过程中受四个力作用,即重力mg ,支持力F N 、摩擦力F f 和安培力F 安,如图所示,ab 由静止开始下滑后,将是↓↑→↑→↑→↑→a F I E v 安(↑为增大符号),所以这是个变加速过程,当加速度减到a =0时,其速度即增到最大v =v m ,此时必将处于平衡状态,以后将以v m 匀速下滑ab 下滑时因切割磁感线,要产生感应电动势,根据电磁感应定律: E=BLv ① 闭合电路AC ba 中将产生感应电流,根据闭合电路欧姆定律: I=E/R ②据右手定则可判定感应电流方向为aAC ba ,再据左手定则判断它受的安培力F 安方向如图示,其大小为: F 安=BIL ③取平行和垂直导轨的两个方向对ab 所受的力进行正交分解,应有: F N = mg cos θ F f = μmg cos θ由①②③可得RvL B F 22=安以ab 为研究对象,根据牛顿第二定律应有:mg sin θ –μmg cos θ-RvL B 22=ma ab 做加速度减小的变加速运动,当a =0时速度达最大 因此,ab 达到v m 时应有:mg sin θ –μmg cos θ-RvL B 22=0 ④ 由④式可解得()22cos sin LB Rmg v m θμθ-=注意:(1)电磁感应中的动态分析,是处理电磁感应问题的关键,要学会从动态分析的过程中来选择是从动力学方面,还是从能量、动量方面来解决问题。
电磁感应力学专题(学生做练习用)
电磁感应中的力学问题1.如图5-2-6甲,闭合线圈从高处自由下落一段时间后垂直于磁场方向进入一有界磁场,在边刚进入磁场到边刚进入磁场的这段时间内,线圈运动的速度图象可能是图5-2-6乙中的哪些图 (ACD )2,如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金导轨相距1m ,导轨平面与水平面成θ=37o 角,下端连接阻值为R 的电阻,匀强磁场方向与导轨平面垂直,质量为0.2kg ,电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.(1)求金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8W ,求该速度的大小;(3)在上问中,若R =2Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向.(g =10m/s 2,sin37o=0.6,cos37o =0.8)解答:(1)金属棒开始下滑的初速度为零,根据牛顿第二定律mg sin θ-μmg cos θ=ma ①由①式解得: a =4m/s 2 ②(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F ,棒在沿导轨方向受力平衡mg sin θ-μmg cos θ-F =0 ③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率Fv =P ④由③④两式解得 10P v F==m/s ⑤ (3)设电路中电流为I ,两导轨间金属棒长为l ,磁场的磁感应强度为BBlv I R= ⑥ P =I 2R ⑦由⑥⑦两式解得0.4B vl==T ⑧ 磁场方向垂直导轨平面向上. 3.如图11, 电动机用轻绳牵引一根原来静止的长l =1m ,质量m =0.1kg 的导体棒AB ,导体棒的电阻R =1Ω,导体棒与竖直“∏”型金属框架有良好的接触,框架处在图示方向的磁感应强度为B =1T 的匀强磁场中,且足够长,已知在电动机牵引导体棒时,电路中的电流表和电压表的读数分别稳定在I=1A 和U =10V ,电动机自身内阻r =1Ω,不计框架电阻及一切摩擦,取g =10m/s 2,求:导体棒到达的稳定速度?4.5m/sB b cA B C D 图5-2-6 甲 乙4.如图5-2-7,在光滑的水平面上有一半径为r =10cm ,电阻R=1Ω,质量m =1kg 的金属圆环,以速度v =10m/s 向一有界磁场滑去,匀强磁场垂直纸面向里,B =0.5T ,从环刚进入磁场算起,到刚好有一半进入磁场时,圆环释放了3.2J 的热量,求:⑴此时圆环中电流的瞬时功率;⑵此时圆环运动的加速度.0.36W ,0.6m/s 2 方向向左5、如图所示,在倾角为θ的光滑斜面上,存在着两个磁感应强度大小相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度ef 与fg 均为L.一个质量为m ,边长为L 的正方形线框以速度v 进入上边磁场时,即恰好做匀速直线运动。
高考物理小一轮复习(假期之友)电磁感中的力学问题
拾躲市安息阳光实验学校2011江苏高考物理小一轮复习(假期之友)--电磁感应中的力学问题【知识梳理】1.电磁感应与力学的联系在电磁感应中切割磁感线的导体要运动,感应电流又要受到安培力的作用。
因此,电磁感应问题又往往和力学问题联系在一起,解决电磁感应中的力学问题,一方面要考虑电磁学中的有关规律;另一方面还要考虑力学的有关规律,要将电磁学和力学知识综合起来应用。
电磁感应与动力学、运动学结合的动态分析,思考方法是:电磁感应现象中感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,循环结束时,加速度等于零,导体达到稳定状态.【典型例题】例1:下图中a1b1c1d1 和a2b2c2d2 为同一竖直平面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。
导轨的a1b1段与a2b2段是竖直的,距离为l1,c1d1与c2d2段也是竖直的,距离为l2.x1y1与x2y2为两根用不可伸长的绝缘轻线相连接的金属杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。
两杆与导轨构成的回路的总电阻为R。
F为作用于金属杆x1y1上的竖直向上的恒力。
已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。
【分析与解】本题是电磁感应现象与物体的平衡相结合的问题,分析中应着重于两个方面,一是分析发生电磁感应回路的结构并计算其电流;二是分析相关物体的受力情况,并根据平衡条件建立方程。
设杆向上运动的速度为v,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少.由法拉第电磁感应定律,回路中的感应电动势的大小E = B(l2-l1)v①回路中的电流REI=②电流沿顺时针方向.两金属杆都要受到安培力作用,作用于杆x1y1的安培力为f1 = B l1I③方向向上,作用于杆x2y2的安培力f2 = B l2I④方向向下.当杆做匀速运动时,根据牛顿第二定律有F-m1g-m2g + f1-f2=0 ⑤解以上各式,得)()(1221llBgmmFI-+-=⑥RllBgmmFv212221)()(-+-=⑦作用于两杆的重力的功率的大小P = (m1+m2)gv⑧电阻上的热功率Q =I2R⑨由⑥、⑦、⑧、⑨式,可得gmmRllBgmmFP)()()(21212221+-+-=,RllBgmmFQ21221])()([-+-=。
电磁感应和力学综合应用1
高二物理纠偏辅导电磁感应(与力的综合应用)学案2011. 5 。
5方法精要电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此,电磁感应问题往往跟力学问题联系在一起,解决这类电磁感应中的力学问题,不仅要应用电磁学中的有关规律,如楞次定律、法拉第电磁感应定律、左右手定则、安培力的计算公式等,还要应用力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律、机械能守恒定律等。
要将电磁学和力学的知识综合起来应用。
由于安培力和导体中的电流、运动速度均有关,所以对磁场中运动导体进行动态分析十分必要。
例1. 水平放置于匀强磁场中的光滑导轨上,有一根导体棒ab,用恒力F作用在ab上,由静止开始运动,回路总电阻为R,分析ab 的运动情况,并求ab的最大速度。
例2. 在磁感应强度为B的水平均强磁场中,竖直放置一个冂形金属框ABCD,框面垂直于磁场,宽度BC=L,质量m的金属杆PQ用光滑金属套连接在框架AB和CD上如图.金属杆PQ电阻为R,当杆自静止开始沿框架下滑时:(1)开始下滑的加速度为多少?(2)框内感应电流的方向怎样?(3)金属杆下滑的最大速度是多少?(4)从开始下滑到达到最大速度过程中重力势能转化为什么能量例3. 竖直放置冂形金属框架,宽1m,足够长,一根质量是0.1kg,电阻0.1Ω的金属杆可沿框架无摩擦地滑动.框架下部有一垂直框架平面的匀强磁场,磁感应强度是0.1T,金属杆MN 自磁场边界上方0.8m处由静止释放(如图).求:(1)金属杆刚进入磁场时的感应电动势;(2)金属杆刚进入磁场时的加速度;(3)金属杆运动的最大速度及此时的能量转化情况.例4.如图所示,竖直平行导轨间距l=20cm,导轨顶端接有一电键K。
导体棒ab与导轨接触良好且无摩擦,ab的电阻R=0.4Ω,质量m=10g,导轨的电阻不计,整个装置处在与轨道平面垂直的匀强磁场中,磁感强度B=1T。
当ab棒由静止释放0.8s 后,突然接通电键,不计空气阻力,设导轨足够长。
高考物理中电磁感应的考点和解题技巧有哪些
高考物理中电磁感应的考点和解题技巧有哪些在高考物理中,电磁感应是一个重要且具有一定难度的考点。
理解和掌握电磁感应的相关知识,以及熟练运用解题技巧,对于在高考中取得优异成绩至关重要。
一、电磁感应的考点1、法拉第电磁感应定律法拉第电磁感应定律是电磁感应的核心内容之一。
其表达式为:$E = n\frac{\Delta \Phi}{\Delta t}$,其中$E$ 表示感应电动势,$n$ 为线圈匝数,$\Delta \Phi$ 表示磁通量的变化量,$\Delta t$ 表示变化所用的时间。
这个考点通常会要求我们计算感应电动势的大小,或者根据给定的条件判断感应电动势的变化情况。
2、楞次定律楞次定律用于判断感应电流的方向。
其核心思想是:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
这一定律在解决电磁感应中的电流方向问题时经常用到,需要我们能够准确理解并运用“阻碍”这一概念。
3、电磁感应中的电路问题当导体在磁场中做切割磁感线运动或者磁通量发生变化时,会产生感应电动势,从而形成闭合回路中的电流。
在这类问题中,我们需要根据电路的基本规律,如欧姆定律、串并联电路的特点等,来计算电路中的电流、电压、电阻等物理量。
4、电磁感应中的能量转化问题电磁感应现象中,机械能与电能相互转化。
例如,导体棒在磁场中运动时,克服安培力做功,将机械能转化为电能;而电流通过电阻时,电能又转化为内能。
在解题时,需要运用能量守恒定律来分析能量的转化和守恒关系。
5、电磁感应与力学的综合问题这类问题通常将电磁感应现象与力学中的牛顿运动定律、功和能等知识结合起来。
例如,导体棒在磁场中受到安培力的作用,其运动情况会受到影响,我们需要综合运用电磁学和力学的知识来求解。
6、电磁感应中的图像问题包括磁感应强度$B$、磁通量$\Phi$、感应电动势$E$、感应电流$I$ 等随时间或位移变化的图像。
要求我们能够根据给定的物理过程,准确地画出相应的图像,或者从给定的图像中获取有用的信息,分析物理过程。
电磁感应与力学综合问题归类解新
一4'R -8- 导轨其他部分 电阻不计)导轨 O , ( t l t l . AC的形
状 足 = s ( z(位:) 感 强 =.T 满 y 2n 号 ) m. 应 度B 0 的 i 单 磁 2
匀强 磁场 方 向垂直 于导 轨 平 面. 足 够 长 的金 属 棒 在水 平 一 外力 F作用 下 , 以恒 定 的速 率 一50m s 平 向右在 导轨 . / 水 上从 0点滑 动到 C点 , 与导 轨接触 良好 且始 终保持 与 O 棒 C 导轨垂 直 , 棒 的 电阻. : 不计 求
图 3
2 ( , E B=Bi 号 ) 1 电动势表达式为E s 号 ) — , z 2 s( , 一.r i n — v n 当 5 n =去B ,ol 闭合回 l Ec , ∞ 路中因电 流变化
例 1 如图 1 甲所 示 , 边 长 为 z 正 方 形 线 框 , 量 一 的 质 为 , 电阻为 R, 用细线 将 它悬挂 于有 界磁 场 的边缘 , 属框 金
上半部分处于磁场内, 磁场随时间均匀变化 , 满足关系 B一 愚, £以致细线能承受的最大拉力为 T r . t =2 g 从 =O开始计 a
= _
一
k2 l
;
变, 致使磁场与导体之间的空间位置变化产生制约 , 这种关 系就是电磁感应与力学的综合. 依据实际发生 的场景我们分成 以下四种类 型: 电磁感
应 与力学 平衡 、 电磁感 应与 匀变 速 直线 运动 、 电磁 感 应 与带 电粒 子 的曲线 运动 和 简 谐 振 动 类 问 题 } 据 物 理 方 法 体 系 依 的运 用 , 我们分 成 牛顿运 动定 律 在 电磁 感 应 中 的应 用 、 能 功 由楞 次定律 可知 , 应 电流 由 a 感 — b 以线 框 为 研究 对 象 , 力 如 图 . 受 乙所 示 , T 则 :m +F , 以 F g 安所 安
素养培优6 电磁感应中动力学、能量和动量的综合-2025版二轮复习物理
素养培优6电磁感应中动力学、能量和动量的综合动力学与能量观点在电磁感应中的应用1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。
【典例1】(多选)(2024·吉林高考9题)如图,两条“”形的光滑平行金属导轨固定在绝缘水平面上,间距为L ,左、右两导轨面与水平面夹角均为30°,均处于竖直向上的匀强磁场中,磁感应强度大小分别为2B 和B 。
将有一定阻值的导体棒ab 、cd 放置在导轨上,同时由静止释放,两棒在下滑过程中始终与导轨垂直并接触良好。
ab 、cd 的质量分别为2m 和m ,长度均为L 。
导轨足够长且电阻不计,重力加速度大小为g ,两棒在下滑过程中()A .回路中的电流方向为abcdaB .abC .ab 与cd 加速度大小之比始终为2∶1D .两棒产生的电动势始终相等尝试解答【典例2】(2024·江苏震泽中学模拟)如图所示的是水平平行光滑导轨M 、N 和P 、Q ,M 、N 的间距为L ,P 、Q 的间距为2L 。
M 、N 上放有一导体棒ab ,ab 与导轨垂直,质量为m ,电阻为R 。
P 、Q 上放有一导体棒cd ,cd 也与导轨垂直,质量为2m ,电阻为2R 。
导轨电阻不计。
匀强磁场竖直穿过导轨平面,磁感应强度大小为B 。
初始两导体棒静止,设在极短时间内给ab 一个水平向左的速度v 0,使ab 向左运动,最后ab 和cd 的运动都达到稳定状态。
求:(1)刚开始运动的瞬间,ab 和cd 的加速度大小和方向;(2)稳定后ab 和cd 的速度大小;(3)整个过程中ab 产生的热量。
尝试解答动量观点在电磁感应中的应用角度1动量定理在电磁感应中的应用在导体单杆切割磁感线做变加速运动时,若运用牛顿运动定律和能量观点不能解决问题,可运用动量定理巧妙解决问题。
高考物理二轮复习课件:电磁感应与力学综合问题
【例1】边长为h的正方形金属导线框,从图所示的
位置由静止开始下落,通过一匀强磁场区域,磁场
方向水平,且垂直于线框平面,磁场区域宽度为H, 上、下边界如图中虚线所示,H>h,试分析讨论从 线框开始下落到完全穿过磁场区域的全过程中线框 运动速度的变化情况.
【切入点】分析线圈受力,并将安培力大小与重力 大小比较,得出F 合的大小和方向,再进行讨论.
2.电磁感应中的能量转化综合问题 【例2】如图所示,一边长为 L的正方形闭合金属线框, 其质量为m,回路电阻为R , M 、 N 、 P为磁场区域的边 界,且均为水平,上、下两部分磁场的磁感应强度均为 B,方向如图所示.图示所示位置线框的底边与M重 合.现让线框由图示位置从静止开始下落,线框在穿过 N和P两界面的过程中均为匀速运动.若已知M、N之间 的高度差为h1,h1>L.线框下落过程中线框平面始终保持 竖直,底边始终保持水平,重 力加速度为g,求: (1)线框穿过N与P界面的速度; (2)在整个运动过程中,线框 产生的焦耳热.
(2)设撤去外力时棒的速度为 v,对棒的匀加速运动过 程,由运动学公式得 v2=2ax⑥ 设棒在撤去外力后的运动过程中安培力做功为 W,由 动能定理得 1 2 W=0-2mv ⑦ 撤去外力后回路中产生的焦耳热 Q2=-W⑧ 联产⑥⑦⑧式,代入数据得 Q2=1.8J⑨
(3)由题意知,撤去外力前后回路中产生的焦耳热之比 Q1∶Q2=2∶1,可得 Q1=3.6J⑩ 在棒运动的整个过程中,由功能关系可知 WF=Q1+Q2⑪ 由⑨⑩⑪式得 WF=5.4J
【解析】(1)当 Rx=R 棒沿导轨匀速下滑时,由平衡条件 Mgsinθ=F 安培力 F=BIl Mgsinθ 解得 I= Bl 感应电动势 E=Blv0 E 电流 I=2R 2MgRsinθ 解得 v0= B2l2
电磁感应中动力学、能量转化综合问题[论文]
电磁感应中动力学、能量转化的综合问题摘要:电磁感应过程实质是不同形式的能量转化的过程,弄清楚物体的受力情况和运动状态情况,对解决这类问题至关重要。
本文主要通过几道典型性的例题来说明这个问题。
关键词:导体切割;能量与做功;问题解答定西市教育科学规划课题研究成果(课题编号dx﹝2012﹞ghb94)在电磁感应中由于导体切割磁感线,闭合回路中就会产生的感应电流i,i在磁场中就会受到安培力f的作用,因此,力学知识和运动学知识对解决这类电磁感应问题是很重要的。
所以学好力学知识对电磁学问题的解决很有帮助。
具体主要有以下两种情况。
一、电磁感应现象中的动态分析要把力学知识应用在电磁感应现象中,我们的具体思路是:电源→电路→受力情况→功、能问题。
例1.有一个间距为l的导轨,是金属制成的,固定在地面上,金属导轨接有一个电阻,它的阻值是r。
有一个匀强磁场,其磁感强度的大小是b,方向与导轨垂直,有一个导体棒质量大小是m,在其左侧连有一个弹簧,刚开始,弹簧没有伸长也没有缩短,它以v0的速度朝右滑动,这个导体棒一会儿朝右运动,一会儿朝左运动,但它们的接触很好。
求:1.刚开始时导体棒由于产生电流而在磁场中受到的力。
2.导体棒在运动的过程中,有一时刻速度为零,设这时它的势能为ep,在这一过程中,由于导体中有了电流,故而做功,求它的功w1和产生的热量q1各是多少?3.这个棒来回运动,它最后还是要停下来,问它将停在什么地方?在整个过程中,产生了多少的热量q?【解题分析】这个题考查电磁感应中的有关能量的问题,解答本题的关键是:1.受力分析→确定安培力的大小和方向→确定电流的方向;2.两个棒受到安培力的关系→受力分析→力f的大小;3.产生的热量→电动势→速度→位移。
【解析】1.在刚开始时由于棒切割磁感线,故产生了一个电动势,由于这个电动势而回路中有了电流,对棒分析,可知它受到一个磁场力,对以上各式解方程可得:,由右手定则和左手定则判断可知,安培力方向向左。
高考物理 电磁感与力学的综合小题狂刷
取夺市安慰阳光实验学校狂刷46 电磁感应与力学的综合1.如图所示,竖直放置的两光滑平行金属导轨置于垂直于导轨向里的匀强磁场中,两根质量相同的金属棒A 和B 与导轨紧密接触且可自由滑动。
先固定A ,释放B ,当B 的速度达到10 m/s 时,再释放A ,经1 s 时间A 棒速度达到12 m/s ,(g 取10 m/s 2)则 A .当v A =12 m/s 时,v B =18 m/s B .当v A =12 m/s 时,v B =22 m/sC .若导轨很长,它们最终速度必相同D .它们最终速度不相同,但速度差恒定 【答案】AC2.倾角为α的光滑导电轨道间接有电源,轨道间距为L ,轨道上放一根质量为m 的金属杆ab ,金属杆中的电流为I ,现加一垂直金属杆ab 的匀强磁场,如图所示,ab 杆保持静止,则磁感应强度方向和大小可能为A .方向垂直轨道平面向上时,磁感应强度最小,大小为sin mg ILαB .z 正向,大小为mgILC .x 正向,大小为mgILD .z 正向,大小为tan mg ILθ【答案】ACD【名师点睛】受力分析后,根据平衡条件,写出平衡方程,结合安培力公式,并根据左手定则,即可求解。
3.如图,POQ 是折成60°角的固定于竖直平面内的光滑金属导轨,导轨关于竖的匀强磁场中,磁感应强度随时间变化规律为B =1–8t (T)。
一质量为1 kg 、长为L 、电阻为1Ω、粗细均匀的导体棒锁定于OP 、OQ 的中点a 、b 位置。
当磁感应强度变为B 1=0.5 T 后保持不变,同时将导体棒解除锁定,导体棒向下运动,离开导轨时的速度为v =3.6 m/s 。
导体棒与导轨始终保持良好接触,导轨电阻不计,重力加速度为g =10 m/s 2下列说法正确的是 A .导体棒解除锁定前回路中电流的方向是abOa BC .导体棒滑到导轨末端时的加速度大小是7.3 m/s 2D .导体棒运动过程中产生的焦耳热是2.02 J 【答案】BCA 错误B 正确;滑到导根据牛顿第二定律,有:mg F ma -=C 正确;由能量守恒得212mgh mv Q h =+=,D 错误。
电磁感应问题归类解析
电磁感应问题归类解析摘要:电磁感应的综合问题实际上就是电学、磁学、力学与运动学的综合应用,解答此类问题的关键是要抓住知识点间的衔接。
比如:电路与欧姆定律是电与磁的衔接点;安培力是磁学与力学和运动学的衔接点。
除电磁感应和力学、电学的综合外,电磁学中的图象问题也是高考中的一个重点,本文据此部分出现的重点题型试举例说明。
关键词:物理教学;电磁感应;归类解析在多年的教学经验中,笔者总结了以下三种题型,对电磁感应问题进行归类解析。
通过自己的分析和总结,以期给同仁带来帮助。
题型一:电磁感应现象中的图象问题电流为顺时针方向……选项D正确。
方法总结:解决图象问题,首先要设法看懂图象,从中找出必要的信息,把图象反映的规律对应到实际过程中去;其次要根据实际过程进行抽象,用相应的图象去表达。
用到的方法:利用右手定则或楞次定律判定感应电流的方向,利用法拉第电磁感应定律判定电流的大小变化。
题型二:电磁感应现象中的力学问题电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此电磁感应问题往往跟力学问题联系在一起.解决此类问题的一般思路是:先由法拉笫电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,再求出安培力,再后依照力学问题的处理方法进行,如进行受力情况分析、运动情况分析及功能关系分析等。
1.电磁感应中的平衡问题方法总结:解决电磁感应中平衡问题的基本方法还是力学的研究方法:确定研究对象;进行受力分析;根据平衡条件建立方程.只是受力中多了安培力,而安培力是由于感应电流产生的,故此类问题是将有关电磁感应规律、安培力公式和平衡条件相结合解题。
2.电磁感应中的运动问题在电磁感应中,由于磁场变化或导体杆的运动的速度的变化会引起感应电流的变化,感应电流的变化会引起安培力的变化,安培力的变化又可能引起合外力的变化,从而导致导体的加速度、速度等发生变化,而速度的变化反过来又影响感应电流、磁场力、合外力的变化,最终可能使导体达到稳定状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最初一段时间是匀速的, 线和gh线的距离s gh线的距离 m(取 最初一段时间是匀速的,ef 线和gh线的距离s=11.4 m(取g=10 ).求 m/s2).求: (1)线框进入磁场时匀速运动的速度 线框进入磁场时匀速运动的速度v (1)线框进入磁场时匀速运动的速度v. (2)ab边由静止开始运动到gh线所用的时间t (2)ab边由静止开始运动到gh线所用的时间t. ab边由静止开始运动到gh线所用的时间 线框的运动可分为进入磁场前、 思路点拨 线框的运动可分为进入磁场前、 进入磁场中、完全进入磁场后三个阶段 分 进入磁场中、完全进入磁场后三个阶段,分 析每个阶段的受力,确定运动情况 确定运动情况. 析每个阶段的受力 确定运动情况
(1)导体处于平衡态 导体处于平衡态——静止或匀速直线运动状态. 静止或匀速直线运动状态. 导体处于平衡态 静止或匀速直线运动状态 处理方法:根据平衡条件 合外力等于零列式分析. 处理方法:根据平衡条件——合外力等于零列式分析. 合外力等于零列式分析 (2)导体处于非平衡态 导体处于非平衡态——加速度不等于零. 加速度不等于零. 导体处于非平衡态 加速度不等于零 处理方法:根据牛顿第二定律进行动态分析,或结合功能关系析. 处理方法:根据牛顿第二定律进行动态分析,或结合功能关系析.
M R P a N
m r
b
B
F Q
②感应电流的大小和方向
③使金属棒匀速运动所需的拉力 ④感应电流的功率 ⑤拉力的功率
例、如图B=0.2T,金属棒ab向右匀速运动,v=5m/s, 如图B=0.2T,金属棒ab向右匀速运动,v=5m/s, B=0.2T ab向右匀速运动 L=40cm,电阻R=0.5 R=0.5Ω 其余电阻不计,摩擦也不计, L=40cm,电阻R=0.5Ω,其余电阻不计,摩擦也不计,试 求:①感应电动势的大小 ②感应电流的大小和方向 ③使金属棒匀速运动所需的拉力 ④感应电流的功率 ⑤拉力的功率
(2) B Lv R
B 2 L2 v gsin – θ mR
电磁感应中的力学问题 ①一根导体棒在导轨上滑动问题 B M 模型1 模型1 E P s a Q b N
•棒ab长为L,质量为m,电阻为R;导轨光滑,电阻不计。 棒ab长为L 质量为m 电阻为R 导轨光滑,电阻不计。 0 =30° 【例3】 如图所示,光滑斜面的倾角=30°,在斜面上放置一矩形 线框abcd,ab边的边长l m,bc边的边长l bc边的边长 m,线框的质 线框abcd,ab边的边长l1=1 m,bc边的边长l2=0.6 m,线框的质 abcd,ab边的边长 kg,电阻 电阻R Ω,线框通过细线与重物相 量m=1 kg,电阻R=0.1 Ω,线框通过细线与重物相连,重物质量
电磁感应规律综合应用的常见题型
1、电磁感应中的力学问题 2、电磁感应中的能量问题 3、电磁感应中的电路问题 4、电磁感应中的图象问题
1、电磁感应中的 力学问题
例、如图B=0.1T,金属棒ab向右匀速运动,v=5m/s, 如图B=0.1T,金属棒ab向右匀速运动,v=5m/s, B=0.1T ab向右匀速运动 L=40cm,电阻R=0.5Ω 其余电阻不计,摩擦也不计, L=40cm,电阻R=0.5Ω,其余电阻不计,摩擦也不计,试 R=0.5 求: ①感应电动势的大小
• m1=m2 ,R1=R2 ,L1=L2 ,轨道光滑。 轨道光滑。 v0 运动分析 v 2 t v 1
v0 v= 2
B M 模型4 模型4 1 v0 2 Q N
P • m1=m2 ,R1=R2 ,L1=2L2 ,轨道光滑。 轨道光滑。 v v0 运动分析 v2 1 v1 2 t
v 2 = 2v1
变式练习,如图 (甲)所示,两根足够长的直金属导轨MN、PQ平行放 变式练习, 所示,两根足够长的直金属导轨MN、PQ平行放 MN 置在倾角为的绝缘斜面上, 两导轨间距为L 置在倾角为的绝缘斜面上, 两导轨间距为L.M、P两点间接有阻值为 的电阻.一根质量为m的均匀直金属杆ab放在两导轨上, ab放在两导轨上 R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂 整套装置处于磁感应强度为B的匀强磁场中, 直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面 向下.导轨和金属杆的电阻可忽略. ab杆沿导轨由静止开始下滑 杆沿导轨由静止开始下滑, 向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑, 导轨和金属杆接触良好,不计它们之间的摩擦. 导轨和金属杆接触良好,不计它们之间的摩擦.
v0 v1 = 5 2v0 v2 = 5
B M 模型5 模型5 P 1 2 F Q N
• m1=m2 ,R1=R2 ,L1=L2 ,轨道光滑。 轨道光滑。 v v2 运动分析 v1 2 1 t
a 2 = a1
FR v 2 −v1 = 2 2 B L
B M 模型6 模型6 P 1 2 F N
Q • m1=m2 ,R1=R2 ,L1=L2 ,轨道粗糙且 f1=Ff2=Ff 。 轨道粗糙且F 运动分析 v vm 2 1 Ff<F≤2Ff t v1 F>2Ff v2 2 1 t v
M R P a N
E = BLv
右手定则
m r
b
B
F Q
匀速运动F = FA = ILB
P = Fv = FAv
P=I R
2
1、通电导体在磁场中将受到安培力作用,电磁感应问题往往和力 通电导体在磁场中将受到安培力作用,
学问题联系在一起.解决的基本方法如下: 基本方法如下 学问题联系在一起.解决的基本方法如下: (1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向; 用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向; 用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向 (2)求回路中的电流; 求回路中的电流; 求回路中的电流 (3)分析导体受力情况 包含安培力在内的全面受力分析 ; 分析导体受力情况(包含安培力在内的全面受力分析 分析导体受力情况 包含安培力在内的全面受力分析); (4)根据平衡条件或牛顿第二定律列方程. 根据平衡条件或牛顿第二定律列方程. 根据平衡条件或牛顿第二定律列方程
运动状态的分析
a变化情况
2、注意安培力的特点: 注意安培力的特点: 纯力学问题中只有重力、弹力、摩擦力, 纯力学问题中只有重力、弹力、摩擦力,电磁感应中多一 安培力,安培力随速度变化, 个安培力,安培力随速度变化,部分弹力及相应的摩擦力 也有可能随之而变,导致物体的运动状态发生变化, 也有可能随之而变,导致物体的运动状态发生变化,在分 析问题时要注意上述联系. 析问题时要注意上述联系.
规律总结 此类问题中力现象和电磁现象相互联系,相互制约, 此类问题中力现象和电磁现象相互联系,相互制约,解决问题 首先要建立“ 的思维顺序, 首先要建立“动→电→动”的思维顺序,可概括为 (1)找准主动运动者 找准主动运动者, (1)找准主动运动者,用法拉第电磁感应定律和楞次定律求解电 动势大小和方向. 动势大小和方向. (2)根据等效电路图,求解回路中电流的大小及方向. (2)根据等效电路图,求解回路中电流的大小及方向. 根据等效电路图 (3)分析导体棒的受力情况及导体棒运动后对电路中电学参量的 (3)分析导体棒的受力情况及导体棒运动后对电路中电学参量的 反作用” 即分析由于导体棒受到安培力,对导体棒运动速度、 “反作用”,即分析由于导体棒受到安培力,对导体棒运动速度、 加速度的影响, 从而推理得出对电路中的电流有什么影响, 加速度的影响, 从而推理得出对电路中的电流有什么影响,最后 定性分析出导体棒的最终运动情况. 定性分析出导体棒的最终运动情况. (4)列出牛顿第二定律或平衡方程求解 列出牛顿第二定律或平衡方程求解. (4)列出牛顿第二定律或平衡方程求解.
解决这类问题的关键在于通过运动状态的分析来寻找 过程中的临界状态,如速度、 过程中的临界状态,如速度、加速度取最大值或最小 值的条件等。基本思路是: 值的条件等。基本思路是:
确定电源( 确定电源(E,r) 临界状态
E I= R+r
感应电流 v与a方向关系 与 方向关系
F=BIL
运动导体所 受的安培力 F=ma 合外力
解析 Mg= Mg=FT
(1)在线框进入磁场的最初一段时间内, (1)在线框进入磁场的最初一段时间内,重物 在线框进入磁场的最初一段时间内
和线框受力平衡, 和线框受力平衡,分别有 mgsin +F FT=mgsin α+FA ab边切割磁感线产生的电动势E=Bl1v ab边切割磁感线产生的电动势E 边切割磁感线产生的电动势 E Bl1v 感应电流I 感应电流I= = R R 受到的安培力F 受到的安培力FA=BIl1 B 2l12v 联立得Mg mgsin Mg= 联立得Mg=mgsin α + R 代入数据得v 代入数据得v=6 m/s
θ
(1)由 (1)由b向a方向看到的装置如图(乙)所示,请在此图中画出ab杆下滑 方向看到的装置如图( 所示,请在此图中画出ab杆下滑 ab 过程中某时刻的受力示意图. 过程中某时刻的受力示意图. (2)在加速下滑过程中 在加速下滑过程中, ab杆的速度大小为 杆的速度大小为v 求此时ab ab杆中的电 (2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电 流及其加速度的大小. 流及其加速度的大小. (3)求在下滑过程中,ab杆可以达到的速度最大值 求在下滑过程中,ab杆可以达到的速度最大值. (3)求在下滑过程中,ab杆可以达到的速度最大值.
(2)线框进入磁场前做匀加速直线运动 (2)线框进入磁场前做匀加速直线运动 对M有:Mg-FT=Ma Mgmgsin =ma 对m有:FT-mgsin α =ma 联立解得a 联立解得a= Mg − mg sin α =5 m/s2 M +m 该阶段运动时间为t 该阶段运动时间为t1= v = 6 s=1.2 s a 5 在磁场中匀速运动的时间 t2= l2 = 0.6 s=0.1 s