长沙理工大学理论力学练习册答案
理论力学习题及答案1-7整理
第1章静力分析习题1.是非题(对画√,错画×)1-1.凡在二力作用下的约束称为二力构件。
()1-2.在两个力作用下,使刚体处于平衡的必要条件与充分条件式这两个力等值、反向、共线。
()1-3.力的可传性只适用于一般物体。
()1-4.合力比分力大。
()1-5.凡矢量都可以用平行四边形法则合成。
()1-6.汇交的三个力是平衡力。
()1-7.约束力是与主动力有关的力。
()1-8.作用力与反作用力是平衡力。
()1-9.画受力图时,对一般的物体力的可沿作用现任以的滑动。
()1-10. 受力图中不应出现内力。
()2.填空题(把正确的答案写在横线上)1-11.均质杆在A、B两点分别于矩形光滑槽接触,并在如图所示情况下平衡。
A点的受力方向为,B点的受力方向为。
1-12.AB杆自重不计,在5个已知力作用下处于平衡,则作用于B点的四个力的合力F R的大小F R= ,方向沿。
题1-11图F3R题1-12图3. 简答题1-13.如图所示刚体A、B自重不计,在光滑斜面上接触。
其中分别作用两等值、反向、共线的力F1和F2,问A、B是否平衡?若能平衡斜面是光滑的吗?1-14.如图所示,已知A点作用力F,能否在B点加一力使AB杆平衡?若能平衡A点的力F的方向应如何?1-15.如图所示刚架AC和BC,在C 处用销钉连接,在A、B处分别用铰链支座支承构件形成一个三铰拱。
现将作用在杆BC上的力F沿着其作用线移至刚体AC上。
不计三铰刚架自重。
试问移动后对A、B、C约束反力有没有影响?为什么?1-16.在刚体上的加上任意个的平衡力系,能改变原来力系对刚体的作用吗?但对于变形体而言又是如何?1-17.为什么说二力平衡条件、加减平衡力系原理和力的可传性等只能适用于刚体?1-18.如何区分二力平衡力和作用力与反作用力?1-19.为什么受力图中不画内力?如何理解?1-20.如何判定二力体或者二力杆?(a)(c)(d) (e)(g)(h)题1-21图题1-13图题1-14图题1-15图4.受力分析题1-21.画出下列标注字母物体的受力图,未画重力的各物体其自重不计,所有接触面均为光滑接触。
理论力学课后习题答案
理论力学课后习题答案理论力学课后习题答案引言:理论力学是物理学的基础课程之一,对于理解和应用物理学的原理和方法具有重要意义。
在学习理论力学的过程中,课后习题是巩固知识、提高能力的重要途径。
本文将针对理论力学课后习题进行解答,帮助读者更好地理解和掌握这门课程。
第一章:牛顿力学1. 一个物体以初速度v0沿直线运动,加速度为a,求物体的位移与时间的关系。
答:根据牛顿第二定律F=ma,可得物体所受合力F=ma=mv/t,其中m为物体的质量,v为物体的速度,t为时间。
由此可得物体的位移s=vt+1/2at^2。
2. 一个质点在重力作用下自由下落,求它在t时刻的速度和位移。
答:在重力作用下,质点的加速度为g,即a=g。
根据牛顿第二定律F=ma,可得质点所受合力F=mg。
根据牛顿第一定律,质点的速度随时间的变化率为v=g*t,位移随时间的变化率为s=1/2gt^2。
第二章:拉格朗日力学1. 一个质点沿半径为R的圆周运动,求它的动能和势能。
答:质点的动能由动能定理可得,即K=1/2mv^2,其中m为质点的质量,v为质点的速度。
质点的势能由引力势能可得,即U=-GmM/R,其中G为引力常数,M为圆周的质量。
2. 一个质点在势能为U(r)的力场中运动,求它的运动方程。
答:根据拉格朗日方程可得,质点的运动方程为d/dt(dL/dv)-dL/dr=0,其中L=T-U,T为质点的动能,U为质点的势能。
第三章:哈密顿力学1. 一个质点在势能为U(x)的力场中运动,求它的哈密顿量和哈密顿运动方程。
答:质点的哈密顿量由哈密顿定理可得,即H=T+U,其中T为质点的动能,U为质点的势能。
质点的哈密顿运动方程为dp/dt=-dH/dx,其中p为质点的动量。
2. 一个质点在势能为U(x)的力场中运动,求它的哈密顿正则方程。
答:质点的哈密顿正则方程为dx/dt=dH/dp,dp/dt=-dH/dx,其中x为质点的位置,p为质点的动量。
结论:通过对理论力学课后习题的解答,我们可以更深入地理解和应用物理学的原理和方法。
理论力学复习题答案.doc
一、选择题1、A (4分)2、D (4分)3、B (4分)4、A (4分)二、填空题1、ωml 21,ω231ml 2、2243ωmR , ω223mR 3、 2/15三、判断题1、( × )2、( √ )3、( √ )四、计算题解:分别取CD 和整体为研究对象,列CD 杆平衡方程:02sin ,0=⨯-+⨯⇒=∑a F M a F M B C β (3分) )(5sin 2↑=-=KN aMF F B β(向上) (1分)列整体平衡方程:23sin 43,00sin ,00cos ,02=--++⇒=∑=+⨯-+⇒=∑=+⇒=∑qa Fa a F M M M F a q F F F F F F B A A NB AY Y AX X βββ (7分)将ο30,4,/1,.20,10=====βm a m KN q m KN M KN F 代入方程,联立求解,可得)(35←-=KN F AX (水平向右) , )(4↑=KN F AY (铅直向上), m KN M A .24= (逆时针) (4分)五、计算题解:动点:套筒A动系:固连在O 2B 上 (1分) 作速度平行四边形 (4分)r e a V V V += (2分)s cm V a /40=s rad A O /41=ω (3分)s cm V r /320= (2分)2/340s cm a C = (3分)六、计算题解: AB 作平面运动,以A 为基点,分析B 点的速度。
由图中几何关系得:(4分)(4分)(2分)B A BA =+r r rv v v cot30103cm/s B A v v ==o 20cm/s sin 30A BA vv ==o 1rad sBAAB v lω==方向如图所示。
七、计算题解:用动能定理求运动以杆为研究对象。
由于杆由水平位置静止开始运动,故开始的动能为零,即:01=T (1分)杆作定轴转动,转动到任一位置时的动能为222222181)32(1212121ωωml l l m ml J T O =⎥⎦⎤⎢⎣⎡-+==(1分) 在此过程中所有的力所作的功为ϕsin 6112mgl mgh W ==∑ (1分) 由2112T T W -=∑得22110sin 186ml mgl ωϕ-=23sin g l ωϕ=ω= (2分)将前式两边对时间求导,得:d 3d 2cos d d g t l tωϕωϕ= 3cos 2gl αϕ= (1分)A现求约束反力:质心加速度有切向和法向分量:tcos 4C g a OC αϕ=⋅=n2sin 2C g a OC ωϕ=⋅= (2分) 将其向直角坐标轴上投影得:t n3sin cos sin cos 4Cx C C ga a a ϕϕϕϕ=--=-t n23cos sin (13sin )4Cy C C g a a a ϕϕϕ=-+=-- (2分)由质心运动定理可得;,Cx x Cy y ma F ma F =∑=∑3sin cos 4Ox mgF ϕϕ-= 23(13sin )4Oy mg F mg ϕ--=- (3分)解得:3sin 28Ox mg F ϕ=-2(19sin )4Oy mgF ϕ=+ (2分)一、选择题(每题 4 分,共 16 分)1、A (4分)2、A (4分)3、C (4分)4、C (4分)二、填空题(每空 4 分,共 20 分)1、杆的动量为ωml 21,杆对O 轴的动量矩为ω231ml , 2、 此瞬时小环M 的牵连加速度a e 为 2ωR ,小环M 科氏加速度a C 为 r V ω2 3、夹角θ应该满足的条件是 f φθ2≤三、判断题(每空 3 分,共 9 分)1、( × )2、( √ )3、( √ )四、计算题(共 15 分)解:)(↑=-⨯+⨯=kN 35)22(1M aqa a F a F B ;(5分) )(kN 40←==qa F Cx ,)(↑=-=-=kN 53540B Cy F F F ;(5分))(kN 80←=Ax F ,)(kN5↑=Ay F ,m kN 240⋅=A M (逆时针)。
理论力学习题及答案1-7.doc
第1章静力分析习题1.是非题(对画√,错画×)1-1.凡在二力作用下的约束称为二力构件。
()1-2.在两个力作用下,使刚体处于平衡的必要条件与充分条件式这两个力等值、反向、共线。
()1-3.力的可传性只适用于一般物体。
()1-4.合力比分力大。
()1-5.凡矢量都可以用平行四边形法则合成。
()1-6.汇交的三个力是平衡力。
()1-7.约束力是与主动力有关的力。
()1-8.作用力与反作用力是平衡力。
()1-9.画受力图时,对一般的物体力的可沿作用现任以的滑动。
()1-10. 受力图中不应出现内力。
()2.填空题(把正确的答案写在横线上)1-11.均质杆在A、B两点分别于矩形光滑槽接触,并在如图所示情况下平衡。
A点的受力方向为,B点的受力方向为。
1-12.AB杆自重不计,在5个已知力作用下处于平衡,则作用于B点的四个力的合力F R的大小F R= ,方向沿。
题1-11图F3R题1-12图3. 简答题1-13.如图所示刚体A、B自重不计,在光滑斜面上接触。
其中分别作用两等值、反向、共线的力F1和F2,问A、B是否平衡?若能平衡斜面是光滑的吗?1-14.如图所示,已知A点作用力F,能否在B点加一力使AB杆平衡?若能平衡A点的力F的方向应如何?1-15.如图所示刚架AC和BC,在C 处用销钉连接,在A、B处分别用铰链支座支承构件形成一个三铰拱。
现将作用在杆BC上的力F沿着其作用线移至刚体AC上。
不计三铰刚架自重。
试问移动后对A、B、C约束反力有没有影响?为什么?1-16.在刚体上的加上任意个的平衡力系,能改变原来力系对刚体的作用吗?但对于变形体而言又是如何?1-17.为什么说二力平衡条件、加减平衡力系原理和力的可传性等只能适用于刚体?1-18.如何区分二力平衡力和作用力与反作用力?1-19.为什么受力图中不画内力?如何理解?1-20.如何判定二力体或者二力杆?(a)(c)(d) (e)(g)(h)题1-21图题1-13图题1-14图题1-15图4.受力分析题1-21.画出下列标注字母物体的受力图,未画重力的各物体其自重不计,所有接触面均为光滑接触。
理论力学习题及答案(全)
第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
长沙理工大学大学物理练习册力学答案
以 A为研究对象
B
N
f1
f2
N1
A y
A
f 2
B
mg
f1
N Mg
x
N1
回上页 下一页
回首页
A
x y
f1 f1 mg cos
解方程
f 2 N sin f1cos 0 N1 Mg N cos f1sin 0
f 2 mg sin cos mg cos2 A对地面的摩擦力 f 2
回首页 回上页 下一页
力学 练习四
一、选择题
1. (A) 2. (D) 3. (C)
二、填空题 4. 0.003•s 0.6•N s 2•g
5. 6.
4.7•N s 与速度方向相反
(1 2)m gy0 1 mv0 2
回首页
回上页
下一页
三、计算题
7. 如图,用传送带 A输送煤粉,料斗口在 A上方高h 0.5m 处,煤粉自料斗口自由落在 A上。设料斗口连续卸煤的流 量为 qm 40kg / s, A以v 2.0m / s 的水平速度匀速向右移 动。求装煤的过程中,煤粉对 A的作用力的大小和方向。 (不计相对传送带静止的煤粉质重)
dv 4t dv 4tdt dt v t dv 4tdt 2t 2 v 0 0 dx dx vdt 2t 2 dt v dt
x
x0
dx 2t 2 dt
0
t
2 3 2 3 ( x t x0 t 10••SI ) 3 3
回首页
或根据动能定理
1 1 2 M r 0 ( ml ml 2 ) 2 2 3
理论力学习题及解答1
理论力学习题及解答第一章静力学的基本概念及物体的受力分析1-1 画出指定物体的受力图,各接触面均为光滑面。
1-2 画出下列指定物体的受力图,各接触面均为光滑,未画重力的物体的重量均不计。
1-3 画出下列各物体以及整体受力图,除注明者外,各物体自重不计,所有接触处均为光滑。
(a) (b)(c) (d)(e) (f)第二章平面一般力系2-1 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D 上,如图所示。
转动铰车,物体便能升起,设滑轮的大小及滑轮转轴处的摩擦忽略不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,试求拉杆AB和支杆CB所受的力。
2-2 用一组绳悬挂重P=1kN的物体,求各绳的拉力。
2-3 某桥墩顶部受到两边桥梁传来的铅直力P1=1940kN,P2=800kN及制动力T=193kN,桥墩自重W=5280kN,风力Q=140kN。
各力作用线位置如图所示,求将这些力向基底截面中心O简化的结果,如能简化为一合力,试求出合力作用线的位置。
2-4 水平梁的支承和载荷如图所示,试求出图中A、B处的约束反力。
2-5 在图示结构计算简图中,已知q=15kN/m,求A、B、C处的约束力。
2-6 图示平面结构,自重不计,由AB、BD、DFE三杆铰接组成,已知:P=50kN,M=40kN·m,q=20kN/m,L=2m,试求固定端A的反力。
图2-6 图2-72-7 求图示多跨静定梁的支座反力。
2-8 图示结构中各杆自重不计,D、E处为铰链,B、C为链杆约束,A为固定端,已知:q G=1kN/m,q=1kN/m,M=2kN·m,L1=3m,L2=2m,试求A、B、C 处约束反力。
图2-8 图2-92-9 支架由两杆AO、CE和滑轮等组成,O、B处为铰链,A、E是固定铰支座,尺寸如图,已知:r=20cm,在滑轮上吊有重Q=1000N的物体,杆及轮重均不计,试求支座A和E以及AO杆上的O处约束反力。
长沙理工大学材料力学练习册答案-章
长沙理工大学材料力学练习册答案1-5章材料力学分析与思考题集第一章绪论和基本概念一、选择题1.关于确定截面内力的截面法的适用范围,有下列四种说法:【D.适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普通情况。
2.关于下列结论的正确性:【C 1.同一截面上正应力?与剪应力?必须相互垂直3.同一截面上各点的剪应力必相互平行。
】3.下列结论中那个是正确的:【B.若物体各点均无位移,则该物体必定无变形】4.根据各向同性假设,可认为构件的下列量中的某一种量在各方向都相同:【B 材料的弹性常数】5.根据均匀性假设,可认为构件的下列量中的某个量在各点处都相同:【C 材料的弹性常数】6.关于下列结论:【C 1.应变分为线应变?和切应变? 2.应变为无量纲量 3.若物体的各部分均无变形,则物体内各点的应变均为零】7.单元体受力后,变形如图虚线所示,则切应变?为【B 2?】二、填空题1.根据材料的主要性能作如下三个基本假设连续性假设,均匀性假设和各向同性假设。
2.构件的承载能力包括强度、刚度和稳定性三个方面。
3.图示结构中,杆1发生轴向拉伸变形,杆2发生轴向压缩变形,杆3发生弯曲变形。
4.图示为构件内A点处取出的单元体,构件受力后单元体的位置为虚线表示,则称du/dx为A点沿x方向的线应变,dv/dy为【A点沿y方向的线应变】,(a1?a2)为【A在xy平面内的角应变】。
5.认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为连续性假设。
根据这一假设,构件的应力、应变和位移就可以用坐标的连续性函数来表示。
6.在拉(压)杆斜截面上某点处分布内力集度称为应力(或全应力),它沿着截面法线方向的分量称为正应力,而沿截面切线方向的分量称为切应力。
第二章杆件的内力分析一、选择题1.单位宽度的薄壁圆环受力如图所示,p为径向压强,其n-n截面上的内力【B FN有四个答案:pD/2】2.梁的内力符号与坐标系的关系是:【B 剪力、弯矩符号与坐标系无关】3.梁的受载情况对于中央截面为反对称(如图)。
长沙理工大学力学参考练习
力学参考练习一、选择题1.图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比较是(A) 到a 用的时间最短. (B) 到b 用的时间最短.(C) 到c 用的时间最短.(D) 所用时间都一样. [ ]2. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ ]3. 对于沿曲线运动的物体,以下几种说法中哪一种是正确的: (A) 切向加速度必不为零. (B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零. (D) 若物体作匀速率运动,其总加速度必为零.(E) 若物体的加速度a为恒矢量,它一定作匀变速率运动. [ ]4. 在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断? (A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g . (D) a 1+g . [ ]5 如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为(A) g sin θ. (B) g cos θ.(C) g ctg θ. (D) g tg θ. [ ]6. 质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s . (C)10 N·s . (D) -10 N·s . [ ]7. 一质量为M 的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将(A) 保持静止. (B) 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动. [ ]a p8. A 、B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一轻弹簧连接后静于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为(A) 21. (B)2/2.(C) 2. (D) 2.[ ]9. 人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒. (B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ]10. 已知两个物体A 和B 的质量以及它们的速率都不相同,若物体A 的动量在数值上比物体B 的大,则A 的动能E KA 与B 的动能E KB 之间(A) E KB 一定大于E KA . (B) E KB 一定小于E KA .(C) E KB =E KA . (D) 不能判定谁大谁小. [ ]11. 如图所示,子弹射入放在水平光滑地面上静止的木块而不穿出.以地面为参考系,下列说法中正确的说法是 (A) 子弹的动能转变为木块的动能. (B) 子弹─木块系统的机械能守恒.(C) 子弹动能的减少等于子弹克服木块阻力所作的功.(D) 子弹克服木块阻力所作的功等于这一过程中产生的热. [ ]12. 一质量为m 的滑块,由静止开始沿着1/4圆弧形光滑的木槽滑下.设木槽的质量也是m .槽的圆半径为R ,放在光滑水平地面上,如图所示.则滑块离开槽时的速度是 (A) Rg 2. (B) Rg 2. (C)Rg .(D) Rg21.(E) Rg221. [ ]13. 两质量分别为m 1、m 2的小球,用一劲度系数为k 的轻弹簧相连,放在水平光滑桌面上,如图所示.今以等值反向的力分别作用于两小球,则两小球和弹簧这系统的 (A) 动量守恒,机械能守恒. (B) 动量守恒,机械能不守恒. (C) 动量不守恒,机械能守恒. (D) 动量不守恒,机械能不守恒. [ ]m m14. 如图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体(A) 动能不变,动量改变.(B) 动量不变,动能改变.(C) 角动量不变,动量不变. (D) 角动量改变,动量改变.(E) 角动量不变,动能、动量都改变. [ ]15. 两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则 (A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ ]16. 一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断.[ ]17. 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒. (B) 机械能守恒. (C) 对转轴的角动量守恒. (D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]二、填空题18. 一质点沿半径为 0.1 m 的圆周运动,其角位移θ 随时间t 的变化规律是 θ = 2 + 4t 2 (SI).在t =2 s 时,它的法向加速度a n =______________;切向加速度a t =________________.19. 一质点从静止出发,沿半径R =3 m 的圆周运动.切向加速度=t a 3 m/s 2保持不变,当总加速度与半径成角45 o 时,所经过的时间=t __________,在上述时间内质点经过的路程S =____________________.20. 设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到 2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=__________________.21. 质量为m 的物体,从高出弹簧上端h 处由静止自由下落到竖直放置在地面上的轻弹簧上,弹簧的劲度系数为k ,则弹簧被压缩的最大距离=x ______________________.22. 一质点在二恒力共同作用下,位移为j i r 83+=∆ (SI);在此过程中,动能增量为24 J ,已知其中一恒力j i F 3121-=(SI),则另一恒力所作的功为__________.23. 一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s ,再转60转后角速度为ω2=30π rad /s ,则角加速度β =_____________,转过上述60转所需的时间Δt =________________.24. 一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动.开始杆与水平方向成某一角度θ,处于静止状态,如图所示.释放后,杆绕O 轴转动.则当杆转到水平位置时,该系统所受到的合外力矩的大小M =_____________________,此时该系统角加速度的大小β =______________________.25. 长为l 的杆如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一子弹水平地射入杆中.则在此过程中,_____________系统对转轴O的_______________守恒.26. 一杆长l =50 cm ,可绕通过其上端的水平光滑固定轴O 在竖直平面内转动,相对于O 轴的转动惯量J =5 kg ·m 2.原来杆静止并自然下垂.若在杆的下端水平射入质量m =0.01 kg 、速率为v =400 m/s 的子弹并嵌入杆内,则杆的角速度为ω=__________________.三、计算题27. 一条轻绳跨过一轻滑轮(滑轮与轴间摩擦可忽略),在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地面的加速度各是多少?环与绳间的摩擦力多大?28. 如图所示,质量为m A 的小球A 沿光滑的弧形轨道滑下,与放在轨道端点P 处(该处轨道的切线为水平的)的静止小球B发生弹性正碰撞,小球B 的质量为m B ,A 、B 两小球碰撞后同时落在水平地面上.如果A 、B 两球的落地点距P 点正下方O点的距离之比L A / L B =2/5,求:两小球的质量比m A /m B .29. 如图,两个带理想弹簧缓冲器的小车A 和B ,质量分别为m 1和m 2.B 不动,A 以速度0v 与B 碰撞,如已知两车的缓冲弹簧的劲度系数分别为k 1和k 2,在不计摩擦的情况下,求两车相对静止时,其间的作用力为多大?(弹簧质量略而不计)30. 质量为m = 5.6 g 的子弹A ,以v 0 = 501 m/s 的速率水平地射入一静止在水平面上的质量为M =2 kg 的木块B 内,A 射入B 后,B 向前移动了S =50 cm 后而停止,求: (1) B 与水平面间的摩擦系数. (2) 木块对子弹所作的功W 1. (3) 子弹对木块所作的功W 2. (4) W 1与W 2的大小是否相等?为什么?31. 质量m =1.1 kg 的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动,对轴的转动惯量J =221mr (r 为盘的半径).圆盘边缘绕有绳子,绳子下端挂一质量m 1=1.0 kg 的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v 0=0.6 m/s 匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.32. 两个大小不同、具有水平光滑轴的定滑轮,顶点在同一水平线上.小滑轮的质量为m',半径为r',对轴的转动惯量J=221mr.大滑轮的质量m=2m,半径r=2r,对轴的转动惯量221rmJ''='.一根不可伸长的轻质细绳跨过这两个定滑轮,绳的两端分别挂着物体A和B.A的质量为m,B的质量m'=2m.这一系统由静止开始转动.已知m=6.0 kg,r =5.0 cm.求两滑轮的角加速度和它们之间绳中的张力.'力学参考练习答案一.选择题1、 (D)2、(B)3、(B)4、(C)5、(C)6、(A)7、(A)8、(D)9、(C) 10、(D)11、(C) 12、(C) 13、(B) 14、(E) 15、(B) 16、(C) 17、(C)二、填空题18、25.6 m/s 2 0.8 m/s 2 19、1 s 1.5 m 20、18 N ·s21、k mghk mg k mg x 2)(2++=22、12 J 23、6.54 rad / s 24.8 s 24、mgl 21 2g / (3l )25、杆和子弹 角动量 26、0.4 rad ·s -1三、计算题27、解:因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力T .设m 2相对地面的加速度为2a ',取向上为正;m 1相对地面的加速度为a 1(即绳子的加速度),取向下为正. 111a m T g m =-222a m g m T =-212a a a -=' 解得 2122211)(m m a m g m m a ++-=21212)2(m m m m a g T +-=2121212)(m m a m g m m a +--='28、解:A 、B 两球发生弹性正碰撞,由水平方向动量守恒与机械能守恒,得 B B A A A A m m m v v v +=0 ①2220212121B B A A A A m m m v v v += ② 联立解出 0A B A B A A m m m m v v +-=, 02A B A AB m m m v v +=由于二球同时落地,∴ 0>A v ,B A m m >;且B B A A L L v v //=∴ 52==B A BA L L v v , 522=-AB A m m m 解出 5/=B A m m29、解:两小车碰撞为弹性碰撞,在碰撞过程中当两小车相对静止时,两车速度相等. 在碰撞过程中,以两车和弹簧为系统,动量守恒,机械能守恒.v v )(2101m m m += ①2222112212012121)(2121x k x k m m m +++=v v ②x 1、x 2分别为相对静止时两弹簧的压缩量.由牛顿第三定律 2211x k x k =2/1211221211])([v k k k k m m m m x +⋅+=相对静止时两车间的相互作用力2/12121212111][v k k kk m m m m x k F +⋅+== 30、解:(1) 设A 射入B 内,A 与B 一起运动的初速率为0v ,则由动量守恒00)(v v m M m += ① 0v =1.4 m/s根据动能定理 20)(21v M m s f +=⋅ ②g M m f )(+=μ ③①、②、③联立解出μ =0.196(2)703212120201-=-=v v m m W J (3) 96.121202==v M W J(4) W 1、W 2大小不等,这是因为虽然木块与子弹之间的相互作用力等值反向,但两者的位移大小不等.31、解:撤去外加力矩后受力分析如图所示.m 1g -T = m 1aTr =J βa =r β a = m 1gr / ( m 1r + J / r ) 代入J =221mr , a =m m g m 2111+= 6.32 ms -2 ∵ v 0-at =0 ∴ t =v 0 / a =0.095 s 32、解:各物体受力情况如图. T A -mg =ma (2m)g -T A =(2m )a (T -T A )r =β221mr (T B -T )(2r )=21(2m )(2r )2β' a =r β=(2r )β'由上述方程组解得:a 'β=2g / (9r)=43.6 rad·s-2β'=β21=21.8 rad·s-2T=(4/3)mg=78.4 N。
理论力学课后习题部分答案
B
A FAC FBA
P
(l)
(l1)
(l2)
(l3)
图 1-1
1-2 画出下列每个标注字符的物体的受力图。题图中未画重力的各物体的自重不计,所 有接触处均为光滑接触。
(a)
B
FN1
C
FN 2
P2 P1
FAy
A
FAx
(a2)
(b)
FN1
A
P1
FN
(b2)
C
FN′
P2
(a1)
B
FN1
FN 2
FN
P1
F Ay
FCy
FAx (f2)
C FC′x
FC′y F2
FBy
FBx B (f3)
FAy A FAx
FB
C B
(g)
FAy
FAx A
D FT C FCx
(g2)
FB
B
F1
FB′ B
FAy
A
FAx
(h)
(h1)
P (g1)
FC′y
FT
C
FC′x
P (g3)
D
FCy
FB
F2
C FCx
B
(h2)
A FAx
FAy
FCy
D FAy
A
FAx
(k3)
6
FB
F1
FB′
B B
FD D
(l) FD′ D
A FA
(l1) F2
C
FC (l2)
F1
D
F2
B
A
E
FE
FA
(l3) 或
F1
FB′
理论力学课后习题及答案解析..
第一章习题4-1.求图示平面力系的合成结果,长度单位为m。
解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
习题4-3.求下列各图中平行分布力的合力和对于A点之矩。
解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力R B和一个力偶M B,且:如图所示;将R B向下平移一段距离d,使满足:最后简化为一个力R,大小等于R B。
其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。
(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力R A和一个力偶M A,且:如图所示;将R A向右平移一段距离d,使满足:最后简化为一个力R,大小等于R A。
其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
习题4-4.求下列各梁和刚架的支座反力,长度单位为m。
解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。
解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。
习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。
完整word版理论力学课后习题及答案解析
理论力学教科书课后习题及解析第一章偶,大小是260Nm,转向是逆时针。
.求图示平面力系的合成结果,长度单位为m1习题4-习题4-3.求下列各图中平行分布力的合力和对于A点之矩。
A点的矩是:(1) 解:平行力系对O(1) 解:取点为简化中心,求平面力系的主矢:B取点为简化中心,平行力系的主矢是:求平面力系对点的主矩:O 点的主矩是:B 平行力系对B RB向点简化的结果是一个力,且:M和一个力偶合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力(2) B.理论力学教科书课后习题及解析A,且:M向A点简化的结果是一个力如图所示;R和一个力偶A如图所示;将,使满足:d R向下平移一段距离B的大小等于载荷分布的其几何意义是:。
R最后简化为一个力R,大小等于R B,使满足:d R将向右平移一段距离A矩形面积,作用点通过矩形的形心。
A(2) 取点为简化中心,平行力系的主矢是:的大小等于载荷分布的R。
其几何意义是:RR最后简化为一个力,大小等于A三角形面积,作用点通过三角形的形心。
点的主矩是:A平行力系对.理论力学教科书课后习题及解析列平衡方程:。
.求下列各梁和刚架的支座反力,长度单位为习题4-4m解方程组:反力的实际方向如图示。
校核:解:(1) 研究AB杆,受力分析,画受力图:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:理论力学教科书课后习题及解析(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:列平衡方程:反力的实际方向如图示。
校核:解方程组:结果正确。
.理论力学教科书课后习题及解析反力的实际方向如图示。
校核:结果正确。
的约束反力A.重物悬挂如图,已知习题4-5G=1.8kN,其他重量不计;求铰链和杆BC所受的力。
列平衡方程:解方程组:BC是二力杆),画受力图:研究整体,受力分析((1) 解:反力的实际方向如图示。
理论力学习题册答案
.第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。
()4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)b(杆ABa(球A ))c(杆AB、CD、整体)d(杆AB、CD、整体)e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)a(球A、球B、整体)b(杆BC、杆AC、整体.第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体.第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’,所以力偶的合力等于零。
()2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。
()3、力偶矩就是力偶。
()二.电动机重P=500N,放在水平梁AC的中央,如图所示。
理论力学练习册及答案
由速度合成定理 作速度平行四边形。
由加速度合成定理 作加速度图。
取 方向投影,得:
再取动点杆O1C上C点,动系固连套筒B上,定系固连机架。
由速度合成定理 作速度平行四边形。
由加速度合成定理:
作加速度图。
取 方向投影,得:
取 方向投影,得:
第八章 刚体平面运动
8-1.已知图示机构滑块B,沿水平方向按规律SB=0.01t2+0.18t m移动,通过连杆AB带动半径R=0.1 m的轮子沿水平方向只滚不滑。求当t=1 s时,点A和点C在图示位置的速度和加速度。
解:当 时,
由于杆AB作瞬时平动,且P为轮C
的速度瞬心,故有:
8-2.曲柄OA=17 cm,绕定轴O转动的角速度ωOA=12 rad/s,AB=12 cm,BD=44 cm,滑块C、D分别沿着铅垂与水平滑道运动,在图示瞬时OA铅垂,求滑块C与D的速度。
2、研究滑块A运动副,求 ,
3、分别作套筒o运动副、滑块A运动副
加速度图,
4、研究杆BE,作O、A加速度图,
5、分别列O、A点加速度投影式求解
7-7.圆盘半径OA=r,可绕其边缘上一点A转动,从而带动直杆BC绕B点转动,AB=3r,且直杆与圆盘始终相切,当圆盘中心运动到AB连线上时,圆盘转动的角速度为ω,角加速度为ε,求此瞬时直杆BC的角速度和角加速度。
8-5.滑块B、D在铅直导槽中滑动,通过连杆BA及CD与轮子A相连,各连接处都是光滑铰链。轮A放在水平面上,AB=10 cm,CD=13 cm。在图示瞬时,即轮心A至两铅垂导槽的距离均为8 cm时,可在水平面上自由滚动的轮子,其轮心速度νA=30 cm/s,方向水平向右。求此时滑块D的速度。
理论力学习题答案第三章
第三章思考题解答3.1 答:确定一质点在空间中得位置需要3个独立变量,只要确定了不共线三点的位置刚体的位置也就确定了,故须九个独立变量,但刚体不变形,此三点中人二点的连线长度不变,即有三个约束方程,所以确定刚体的一般运动不需3n 个独立变量,有6个独立变量就够了.若刚体作定点转动,只要定出任一点相对定点的运动刚体的运动就确定了,只需3个独立变量;确定作平面平行运动刚体的代表平面在空间中的方位需一个独立变量,确定任一点在平面上的位置需二个独立变量,共需三个独立变量;知道了定轴转动刚体绕转动轴的转角,刚体的位置也就定了,只需一个独立变量;刚体的平动可用一个点的运动代表其运动,故需三个独立变量。
3.2 答物体上各质点所受重力的合力作用点即为物体的重心。
当物体的大小远小于地球的线度时物体上各质点所在点的重力加速度都相等,且方向彼此平行即重力场为均匀场,此时质心与重心重合。
事实上但物体的线度很大时各质点所在处g 的大小是严格相等,且各质点的重力都指向地心,不是彼此平行的,重心与质心不和。
3.3答 当物体为均质时,几何中心与质心重合;当物体的大小远小于地球的线度时,质心与重心重合;当物体为均质且大小远小于地球的线度时,三者都重合。
3.4 答 主矢F 是力系各力的矢量和,他完全取决于力系中各力的大小和方向,故主矢不随简化中心的位置而改变,故而也称之为力系的主矢;简化中心的位置不同,各力对简化中心的位矢i r 也就不同则各力对简化中心的力矩也就不同,故主矩随简化中心的位置而变,被称之为力系对简化中心的主矩。
分别取O 和O '为简化中心,第i 个力i F 对O 和O '的位矢分别为i r 和i r ',则i r =i r '+O O ',故()()iii ii i O F O O r F r M ⨯'-'=⨯'=∑∑'()∑∑⨯'-⨯'=ii ii i F O O F r ∑⨯'+=ii o F O O M即o o M M ≠'主矢不变,表明刚体的平动效应不变,主矩随简化中心的位置改变,表明力系的作用对刚体上不同点有不同的转动效应,但不改变整个刚体的转动规律或者说不影响刚体绕质心的转动。
理论力学作业本答案(1)
【ACD和D】
M
(7)
C
0, Q 1.3 Q 0.3 YA 1 0 YA 100kN ()
由()可得: 1 YB 200kN ()
P 5kN
q 2.5kN / m
M 5kN m
q 2.5kN / m
M 5kN m
XA
A
YA
B
C
D
E
15cm
va
D
vr
ve
ae
a
n e
ar
O
(a)速度分析图 速度分析(如图 a) :
(b)加速度分析图
(c)速度分析图
va =
大小 方向 可求得: va ve tan 30 ? 沿 DE
ve +
vr
? 沿 BC
OA 30
OA
10 10cm / s 30
n
加速度分析(如图 b) :牵连运动为平动
aa =
大小 方向 ? 沿 DE
ae +
ae +
OA 45
OA
ar
? 沿 BC
2 OA 60
沿 OA
n 在 a r 的方向投影: aa cos ae sin ae cos aa ae tan aen 15 60 45cm / s 2 ()
(6)AB 杆与齿轮 I 平动,其他元件定轴转动。 齿轮 I 上任一点的速度: v O1 A 2r (方向垂直 O1 A ) ; 齿轮 I 上任一点的加速度: a a n 2 O1 A 2 2 r (方向平行 O1 A ) 。 齿轮 II 上任一点的速度: v O1 A 2r (方向垂直齿轮 II 的半径) ,齿轮 II 也是匀角速度转动。 齿轮 II 上任一点的加速度: a a n II 2 r 4 2 r (7) 解:以 ED 杆的 D 端为动点,动系与 ABC 固连,则绝对运动、相对运动均为直线运动,牵连运动为平动。