X射线光谱分析

合集下载

X射线荧光光谱仪的两种分析方法

X射线荧光光谱仪的两种分析方法

X射线荧光光谱仪的两种分析方法X射线荧光光谱仪(X-ray fluorescence spectrometer,XRF)是一种常见的化学分析仪器,可以在不破坏样品的情况下进行非破坏性的化学分析。

在XRF分析中,通过照射样品并测量样品辐射出的荧光X射线,可以确定样品中各种元素的含量。

本文介绍XRF的两种常见分析方法:定量分析和定性分析。

定量分析定量分析是通过测量样品辐射出的荧光X射线的强度,并根据已知标准样品的荧光强度与元素含量的关系,来计算样品中某种元素的含量。

在定量分析中,需要用到标准样品,这些样品已知各种元素的含量,例如NIST(美国国家标准技术研究所)的SRM(标准参考材料)。

定量分析的具体步骤如下:1.样品制备样品需要制备成薄片或颗粒状,通常需要使用磨片机或压片机进行制备。

为了获得准确的分析结果,样品制备时需要注意不要引入其他元素。

2.样品照射将样品放置在X射线荧光光谱仪中,使其受到射线照射,激发出元素的荧光X 射线。

3.测量荧光X射线利用荧光X射线探测器测量样品辐射出的荧光X射线的强度。

4.标准样品校准用标准样品进行校准,建立荧光强度与元素含量之间的关系。

对于每种元素,建立一个标准曲线。

5.计算元素含量利用标准曲线和样品荧光强度计算样品中某种元素的含量。

定性分析定性分析是通过比较样品荧光X射线的能量和强度与已知标准样品的对比,来确定样品中各种元素的类型和含量。

与定量分析不同,定性分析不需要对荧光强度进行精确的量化测量。

定性分析的具体步骤如下:1.样品制备和照射与定量分析相同。

2.测量荧光X射线与定量分析相同。

3.谱图比较将样品荧光X射线的能量和强度与标准样品进行比较,确定样品中含有哪些元素。

4.确定元素类型和含量通过谱图比较确定元素类型,通过谱峰强度的相对大小和谱图形状确定元素含量。

总结定量分析和定性分析是X射线荧光光谱仪中常用的分析方法,在各自的分析领域中都有广泛的应用。

定量分析需要进行精确的荧光强度测量和标准曲线建立,适用于需要准确测量各种元素含量的分析场合,例如矿石、环境样品等。

X射线荧光光谱分析的基本原理

X射线荧光光谱分析的基本原理

X射线荧光光谱分析的基本原理X射线荧光光谱分析(X-ray fluorescence spectroscopy, XRF)是一种常用的非破坏性分析方法,适用于几乎所有元素的测定,具有高精度、高灵敏度和多元素分析能力。

其基本原理可以概括为:当固体或液体样品受到高能X射线照射时,样品中的原子被激发或电离,并散射光子。

这些激发或电离后的原子会重新排列电子态,并产生X射线以释放能量。

这些释放的X射线称为荧光射线。

通过测量荧光射线的能量和强度,可以确定样品中的元素种类和含量。

X射线荧光光谱分析的基本组成分为两大部分:X射线源和荧光谱仪。

X射线源一般采用X射线管,它通过给电子加速并与靶材相互作用,产生高能的X射线。

靶材的选择根据分析需要来确定,常见的靶材有铜、铬、铁等。

荧光谱仪由X射线检测器、能谱仪和数据处理系统组成。

X射线检测器一般选择气体探测器或固体探测器,可以将荧光射线转化为电信号。

能谱仪用于测量荧光射线的能量,并将荧光射线的能谱图转换为电信号。

数据处理系统则对荧光信号进行处理和分析。

X射线荧光光谱分析的原理是基于X射线特性的相互作用。

当样品受到高能X射线照射时,X射线在物质中发生两种主要的相互作用:光电吸收和康普顿散射。

光电吸收是指X射线入射到样品中,被其中的原子内层电子吸收并产生光电子,从而使原子转变为激发态。

光电吸收的截面与元素的原子序数有关,轻元素的光电吸收截面较大,重元素的光电吸收截面较小。

当样品处于激发态时,它会以荧光射线的形式释放出能量。

康普顿散射是指X射线与样品中的自由电子相互作用,它会使一部分X射线的方向改变,而能量减少,从而散射出去。

康普顿散射的强度与X射线的能量和散射角度有关,散射角度越大,康普顿散射强度越大。

康普顿散射并不改变样品中元素的能级结构,因此并不产生荧光射线。

X射线荧光光谱分析仪利用荧光射线和康普顿散射的特性来进行元素的分析。

通常,荧光射线的能量和康普顿散射的能量是分开检测的。

X射线荧光光谱分析法

X射线荧光光谱分析法

X射线荧光光谱分析法X射线荧光光谱分析法(X-ray fluorescence spectroscopy,简称XRF)是一种非破坏性的分析方法,可以用于确定样品中的元素成分和浓度。

这种方法是通过样品中原子受到入射的X射线激发,产生特定能量的荧光X射线,然后测量荧光X射线的强度和能谱来确定元素的类型和浓度。

X射线荧光光谱分析法通常包括两个主要步骤:样品的激发和荧光X射线的检测。

在激发过程中,样品被置于X射线源的束斑中,经过激发后,样品中的原子会发射出特定能量的荧光X射线。

荧光X射线经过一系列的激发、透射和转换后,最终被探测器测量和记录下来。

测量得到的荧光X射线强度和能谱可以通过专门的软件进行分析和解析,从而确定样品中元素的类型和浓度。

XRF分析技术具有许多优点,使其成为一种常用的分析方法。

首先,它是一种非破坏性的分析方法,样品在测试过程中完整保留,不需要额外的处理,可以用作进一步的测试或保存。

其次,XRF方法具有广泛的元素适用范围,可以准确测定周期表中从钍(原子序数90)到氢(原子序数1)的所有元素。

同时,该方法还适用于各种不同的样品类型,包括固体、液体和粉末等。

另外,XRF分析速度快,具有高灵敏度和准确性,可以同时进行多元素分析。

然而,X射线荧光光谱分析法也存在一些局限性。

首先,由于荧光X射线的能量范围有限,该方法无法测定低原子序数的元素,比如锂(原子序数3)以下的元素。

其次,对于高原子序数的元素,如铀和钍,荧光X射线的强度相对较弱,需要较长的测量时间来获取准确的结果。

另外,XRF方法对于样品的准备要求较高,包括取样、研磨和制备等步骤,对样品的形状和尺寸也有一定的要求。

总的来说,X射线荧光光谱分析法是一种广泛应用于材料科学、地质学、环境科学、金属冶金等领域的有效分析方法。

在实际应用中,为了获得准确的结果,需要根据具体的测试要求对仪器进行校准,并对样品进行合理的处理和制备。

此外,随着技术的不断进步,XRF方法也在不断改进,如开发更高分辨率的能谱仪和软件等,以提高分析的灵敏度和准确性。

X射线荧光光谱(XRF)分析

X射线荧光光谱(XRF)分析

消除基体效应
基体效应会影响XRF的测 量结果,因此需要采取措 施消除基体效应,如稀释 样品或添加标准物质。
固体样品的制备
研磨
将固体样品研磨成细粉,以便进行XRF分析。
分选
将研磨后的样品进行分选,去除其中的杂质和粗 颗粒。
压片
将分选后的样品压制成型,以便进行XRF测量。
液体样品的制备
1 2
稀释
将液体样品进行稀释,以便进行XRF分析。
定性分析的方法
标样法
01
通过与已知标准样品的荧光光谱进行比较,确定样品中元素的
种类。
参考法
02
利用已知元素的标准光谱,通过匹配样品中释放的X射线荧光光
谱来识别元素。
特征谱线法
03
通过测量样品中特定元素的特征谱线,与标准谱线进行对比,
确定元素的存在。
定性分析的步骤
X射线照射
使用X射线源照射样品,激发 原子中的电子跃迁并释放出X 射线荧光光谱。
XRF和ICP-AES都是常用的元素分析方法,ICP-AES具有更高的灵敏度和更低 的检测限,适用于痕量元素分析,而XRF具有更广泛的应用范围和更简便的操 作。
XRF与EDS的比较
XRF和EDS都是用于表面元素分析的方法,EDS具有更高的空间分辨率,适用于 微区分析,而XRF具有更广泛的元素覆盖范围和更简便的操作。
XRF分析的局限性
01
元素检测限较高
对于某些低浓度元素,XRF的检 测限相对较高,可能无法满足某 些应用领域的精度要求。
02
定量分析准确性有 限
由于XRF分析基于相对强度测量, 因此对于不同样品基质中相同元 素的定量分析可能存在偏差。
03
对非金属元素分析 能力有限

x射线光谱分析方法标准

x射线光谱分析方法标准

x射线光谱分析方法标准X射线光谱分析方法标准。

X射线光谱分析是一种常用的材料表征方法,通过测量材料中X射线的能谱来分析材料的成分和结构。

在实际应用中,为了保证分析结果的准确性和可比性,需要遵循一定的标准方法进行分析。

本文将介绍X射线光谱分析方法的标准内容,以供相关研究人员参考。

首先,X射线光谱分析方法的标准主要包括样品制备、仪器校准、数据采集和分析等方面。

在样品制备方面,标准通常会规定样品的制备方法、尺寸和形状要求,以及必要的预处理步骤,如研磨、抛光和清洗等。

这些步骤的标准化可以保证不同实验室得到的样品具有可比性,从而提高分析结果的可靠性。

其次,仪器校准是保证分析准确性的关键步骤。

X射线光谱仪器的性能参数需要定期进行校准和验证,以确保其能够准确测量样品的能谱信息。

标准方法通常会规定校准的频率、方法和标准样品的选择,以及校准结果的验证要求。

这些内容的标准化可以有效地避免仪器误差对分析结果的影响。

数据采集和分析是X射线光谱分析的核心步骤,也是标准方法的重点内容。

标准方法通常会规定数据采集的参数设置、测量条件和数据处理的步骤,以及质量控制和结果验证的要求。

这些内容的标准化可以保证不同实验室在数据采集和分析过程中能够得到一致的结果,从而提高分析结果的可靠性和可比性。

除了上述内容外,X射线光谱分析方法的标准还包括安全操作、实验室管理和质量体系等方面的内容。

这些内容的标准化可以保证实验过程的安全性和可控性,从而提高分析结果的可靠性和可比性。

总之,X射线光谱分析方法的标准化对于提高分析结果的可靠性和可比性具有重要意义。

研究人员在进行X射线光谱分析时,应严格遵循相关的标准方法,以确保分析结果的准确性和可比性。

希望本文介绍的内容能够对相关研究人员有所帮助。

X射线荧光光谱分析实验

X射线荧光光谱分析实验

X射线荧光光谱分析实验一、实验原理:X射线荧光光谱分析是一种非破坏性测试方法,它通过X射线的能量转移到样品中的原子上,使得样品中的原子激发产生X射线荧光。

这些荧光射线的能量与样品中元素的种类和数量有关,通过测量这些荧光射线的能谱图,可以确定样品中的元素组成和含量。

二、实验步骤:1.准备样品:将待测样品制备成均匀、光滑的表面,并确保其表面不含杂质和氧化层;2.调试仪器:先将仪器开机预热,待稳定后,调整仪器的工作参数,如加速电压和电流等;3.校正仪器:选择已知元素的标准样品作为参照,进行仪器的校正工作,确保仪器的准确性和稳定性;4.测量样品:将待测样品放入样品台中,调整仪器的工作参数,如扫描速度和扫描范围等,开始测量;5.数据处理:通过仪器软件对测量得到的能量谱图进行处理和分析,提取出所需的信息,如元素的种类和含量等。

三、结果分析:实验测得的能量谱图是实验结果的主要表现形式,通过对能量谱图的分析,可以得到样品中元素的种类和含量。

在分析图谱时,需要考虑以下几个方面:1.荧光峰的识别:根据已知元素的特征能量,识别出荧光峰的位置和强度;2.荧光峰的参比:选取其中一特定元素的荧光峰作为参比峰,根据参比峰的强度与其他峰的比值,可以计算出其他元素的含量;3.元素含量的计算:通过参比峰的比值来计算其他元素的含量,可以采用标准曲线法或者基体效应法等方法。

四、应用:1.金属材料分析:可以对金属材料中的各种元素进行定性和定量分析,用于确定材料组成和质量检测;2.环境监测:可以对土壤、水质等样品中的有害元素进行检测和分析,用于环境监测和污染源溯源;3.矿石矿物分析:可以对矿石和矿物中的元素进行分析,用于找矿和资源评价;4.文物鉴定:可以对文物中的元素进行分析,用于文物的鉴定和分类。

总结:X射线荧光光谱分析是一种常用的物质分析方法,它可以通过测量样品中的荧光射线能谱,确定样品中元素的种类和含量。

该方法具有非破坏性、准确性高等特点,并且在材料科学、环境监测、地质矿产、电子器件、生物医药等领域有广泛的应用。

X射线荧光光谱分析的基本原理

X射线荧光光谱分析的基本原理

X射线荧光光谱分析的基本原理X射线荧光光谱是一种用于材料表面成分分析的非破坏性技术。

它基于物质被X射线激发后产生荧光的原理进行分析。

X射线荧光光谱分析具有高灵敏度、高准确性、广泛适用性等优点,被广泛应用于材料科学、地质学、环境科学和考古学等领域。

1.原子结构:原子由原子核和围绕核运动的电子组成。

原子核由质子和中子组成,电子在不同能级上运动。

2.能级跃迁:X射线荧光光谱分析的本质是利用X射线激发原子的内层电子,使其跃迁到更高的能级。

当激发源产生高能量的X射线,并且与样品发生相互作用时,部分能量将被吸收,使内层电子被激发起跃迁。

3.荧光:当内层电子被激发到较高能级后,它们不会一直保持在这个状态,而是经过一段时间后重新回到基态,释放出余下的能量。

这个能量以X射线或光子的形式被释放出来,称为荧光。

4.元素特征:不同元素的原子结构、电子能级以及荧光特性都是独特的,可以用于确定样品中的元素及其含量。

5.荧光分析:荧光由不同能级上的电子返回基态时产生,其能量正比于电子从高能级到低能级的能量差。

通过测量荧光的能量,可以确定样品中存在的元素及其含量。

6.X射线源:X射线荧光光谱分析需要一个高能量的X射线源来激发样品。

通常使用X射线管或放射性同位素作为X射线源。

7.检测系统:X射线荧光光谱分析需要一个检测系统来测量荧光的能量。

常用的检测系统包括电子学谱仪和晶体谱仪等。

8.分析流程:X射线荧光光谱分析的一般流程包括样品的制备、X射线源的选择和调节、荧光的收集和测量、数据的处理和分析。

X射线荧光光谱分析是一种快速、准确的元素分析方法。

它可以同时分析多种元素并确定其含量,适用于大多数材料,包括固体、液体和气体。

X射线荧光光谱分析在科学研究、工业生产和质量控制等领域具有重要的应用价值。

X射线荧光光谱分析

X射线荧光光谱分析

X射线荧光光谱分析X射线荧光光谱分析(X-ray Fluorescence Spectroscopy, XRF)是一种无损分析技术,常用于元素和化合物的定性和定量分析。

这种技术利用X射线与物质相互作用产生的特殊光谱,通过测量和分析光谱特征来确定物质的组成和浓度。

X射线荧光光谱分析是基于X射线与物质相互作用的原理。

在分析过程中,样品暴露在高能X射线束下,X射线与样品中的原子产生相互作用,使原子内的内层电子被激发。

当激发的电子回到基态时,会发射出特定能量的X射线,这些特定能量的X射线被称为荧光X射线。

每个元素都有其特定的荧光X射线能量,通过测量样品发射的荧光X射线能量和强度,可以确定样品中元素的种类和相对浓度。

X射线荧光光谱分析常用的仪器是X射线荧光光谱仪(XRF spectrometer)。

该仪器由X射线源、样品支撑台、能量分散元件(如闪烁体晶体),以及能量敏感的探测器(如光电倍增管或固态探测器)等部分组成。

X射线荧光光谱仪可根据实验需要分为两种类型,即能量散射型和功率型。

能量散射型X射线荧光光谱仪在分析中使用了X射线与样品相互作用后发生散射的原理。

这种仪器测量荧光X射线的强度和能量,并通过能量散射的方式来确定元素的种类和相对浓度。

能量散射型X射线荧光光谱仪具有较高的分析灵敏度和较低的检测限。

功率型X射线荧光光谱仪则主要利用了荧光X射线的能量和强度之间的关系。

通过测量荧光X射线的强度,并利用特定的标准物质进行校准,可以定量测量样品中的元素浓度。

功率型X射线荧光光谱仪通常具有较高的灵敏度和较低的分析误差。

X射线荧光光谱分析广泛应用于材料科学、地质学、环境监测、医药化学、金属检测等领域。

在材料科学中,X射线荧光光谱分析可用于分析材料中的元素组成和化合物含量,用于质量控制和质量评估;在地质学中,可以用于岩石和矿石的成分分析和矿物鉴定;在环境监测中,可以用于大气颗粒物和土壤中有毒金属元素的测定和分析;在医药化学中,可以用于药物中有害金属元素的检测和分析;在金属检测中,可以用于金属材料成分分析和金属产品质量检测。

X射线荧光光谱分析技术

X射线荧光光谱分析技术

X射线荧光光谱分析技术X射线荧光光谱分析技术(X-ray Fluorescence Spectroscopy,简称XRF),是一种广泛应用于材料分析及质量控制的非破坏性分析技术。

该技术通过照射样品表面的X射线,激发样品中的原子产生特征性的荧光辐射,进而分析样品中元素的成分和含量。

X射线荧光光谱分析技术已被广泛应用于地质学、环境科学、材料科学等领域。

X射线荧光光谱分析技术的原理是基于光谱学的基本原理,即每个元素都有特征性的能级结构。

当样品被高能X射线照射时,样品中的原子会吸收能量,部分原子中的电子被激发到较高能级,然后回到基态时会产生辐射。

这种辐射即为X射线荧光辐射,其能量与原子的能级结构相关,因此可以用来确定样品中各个元素的存在及其含量。

X射线荧光光谱分析技术可以通过改变荧光辐射的特性来确定样品中元素的含量。

荧光辐射的能量与原子的能级结构有关,每个元素都有特定的能级和光谱特征。

通过测量荧光辐射的能谱并与标准样品进行比较,可以确定样品中各个元素的含量。

X射线荧光光谱分析技术可以同时测定多种元素,其分析速度快,准确性高,可靠性强。

1.非破坏性:X射线荧光光谱分析技术不需要对样品进行任何物理或化学处理,对样品几乎没有任何破坏作用,可以做到无损分析。

2.多元分析:X射线荧光光谱分析技术可以同时分析多种元素,可以分析样品中的主要元素和微量元素,能够提供全面的元素信息。

3.快速分析:X射线荧光光谱分析技术具有高分析速度,通过扫描样品表面可以在几秒钟到几分钟之间完成一次分析。

4.范围广:X射线荧光光谱分析技术适用于多种材料,包括固体、液体和气体等,可以应用于各种样品的分析。

5.准确性高:X射线荧光光谱分析技术的结果准确可靠,可以满足许多工业和科学研究对元素分析的要求。

X射线荧光光谱分析技术在各个领域有着广泛的应用。

在地质学中,可以用于矿石和岩石中有害元素的分析,用以评估其对环境的影响;在环境科学中,可以用于水、土壤和空气中有毒金属的监测与分析;在材料科学中,可以用于分析金属、陶瓷、塑料等材料中的元素含量,以保证产品质量。

现代分析测试技术 X射线光谱分析

现代分析测试技术 X射线光谱分析
则可以激发出各个相应元素的特征X射线。
连续转动 在样品上方放置一块分光晶体,利用晶 体衍射把不同的X射线分开。 特定方向产生衍射: 2dsin = 面向衍射束安置一个接收器.便可记录 下不同波长的x射线。
12
在波谱仪中,X射线信号来自样品表层的一个极小的体积,
可将其看作点光源,由此点光源发射的X射线是发散的,故能

定点定性分析 线扫描分析 面扫描分析

定点定量分析
24
1、定点定性分析
对试样某一选定点(区域)进行定性成分分析,以确定
该点区域内存在的元素。
原理如下: 关闭扫描线圈,使电子束定在需要分析的某一点上,激 发试样元素的特征 X 射线。用谱仪探测并显示 X射线谱,根 据谱线峰值位置的波长或能量确定分析点区域的试样中存在
并测得它们的强度射线光谱分析。据此进行材料的成
分分析,这就是X射线光谱分析。
2
用于探测样品受激产生的特征射线的波长和强度的设备,
称为X射线谱仪;有以下两种: 利用特征X射线的波长不同来展谱,实现对不同波长 X射线 检测的波长色散谱仪(WDS),简称波谱仪。 利用特征X射线的能量不同来展谱,实现对不同能量 X射线 检测的能量色散谱仪(EDS),简称能谱仪。 区别:
由于Li离子极易扩散的特性,使用和保存都
要在液氮温度下。
X光子电脉冲信号(脉冲高度与被吸收光子的能量成正比)
6
11.2.2 能量色散谱仪的结构和工作原理
能量色散谱仪主要由Si(Li)半导体探测器、多道脉冲高度
分析器以及脉冲放大整形器和记录显示系统组成。
X光子电流脉冲
电压脉冲
锂漂移硅能谱仪方框图
脉冲高度与被 吸收的光子能 量成正比

X射线荧光光谱分析剖析

X射线荧光光谱分析剖析

X射线荧光光谱分析剖析X射线荧光光谱分析(X-ray fluorescence spectroscopy,XRF)是一种常用的元素分析技术,主要用于研究样品中的化学成分。

通过测量样品中X射线产生的荧光辐射能量和强度,可以确定样品中的元素种类和含量。

X射线荧光光谱分析的原理基于元素吸收和放射的特性。

当X射线通过样品时,会与样品中的原子相互作用,使原子内部的核层电子被激发到高能级。

在电子返回基态时,会放出X射线。

这些放出的X射线称为荧光辐射。

不同元素的荧光辐射能量和强度是唯一的,因此可以根据这些特征来确定元素的种类和含量。

X射线荧光光谱仪是X射线荧光光谱分析的关键设备。

该仪器由X射线源、样品支持台、X射线荧光探测器和数据处理设备等组成。

X射线源通常是一个X射线管,产生高能X射线。

样品支持台用于固定和定位样品,确保X射线能够准确地照射样品。

X射线荧光探测器用于测量荧光辐射的能量和强度。

常用的探测器有气体比例计和固体探测器。

数据处理设备用于接收和分析探测器输出数据,得到样品中元素的种类和含量。

X射线荧光光谱分析具有多种优点。

首先,它是一种非破坏性的分析方法,不需要样品进行预处理或破坏性的取样。

这使得样品可以得到保持完整性的分析,适用于对不可逆样品的分析。

其次,X射线荧光光谱分析可同时测定多个元素。

一次测量过程中,可以得到样品中多个元素的含量信息,提高了分析的效率。

此外,X射线荧光光谱分析具有较高的灵敏度和精确度,能够达到百万分之几甚至更高的检测限。

然而,X射线荧光光谱分析也存在一些限制。

首先,它只能检测样品表面的元素。

因为X射线的穿透能力有限,只能测量样品表面几微米范围内的元素含量。

其次,不同元素的荧光辐射能量和强度有一定的重叠,可能导致分析结果的干扰和误判。

为了解决这个问题,需要进行适当的仪器校准和数据处理。

最后,X射线荧光光谱分析的仪器设备较为昂贵,并且需要专业技术人员来操作和维护。

X射线荧光光谱分析在许多领域中得到广泛应用。

X射线荧光光谱分析

X射线荧光光谱分析
K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃 迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系 辐射(见图10.2)。如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释 放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线,L系射线 等。
X射线荧光光谱法进行定量分析的依据是元素的荧光X射线强度I1与试样中该元素的含量Wi成正比:
(10.2)
式中,为 =100%时,该元素的荧光X射线的强度。根据式(10.2),可以采用标准曲线法,增量法,内标法等 进行定量分析。但是这些方法都要使标准样品的组成与试样的组成尽可能相同或相似,否则试样的基体效应或共 存元素的影响,会给测定结果造成很大的偏差。所谓基体效应是指样品的基本化学组成和物理化学状态的变化对X 射线荧光强度所造成的影响。化学组成的变化,会影响样品对一次X射线和X射线荧光的吸收,也会改变荧光增强 效应。例如,在测定不锈钢中和等元素时,由于一次X射线的激发会产生荧光X射线,在样品中可能被吸收,使激 发产生,测定 i时,因为Fe的吸收效应使结果偏低,测定时,由于荧光增强效应使结果偏高。但是,配置相同的 基体又几乎是不可能的。为克服这个问题,目前射荧光光谱定量方法一般采用基本参数法。该办法是在考虑各元 素之间的吸收和增强效应的基础上,用标样或纯物质计算出元素荧光X射线理论强度,并测其荧光射线的强度。将 实测强度与理论强度比较,求出该元素的灵敏度系数,测未知样品时,先测定试样的荧光X射线强度,根据实测强 度和灵敏度系数设定初始浓度值,再由该浓度值计算理论强度。将测定强度与理论强度比较,使两者达到某一预 定精度,否则要再次修正,该法要测定和计算试样中所有的元素,并且要考虑这些元素间相互干扰效应,计算十 分复杂。因此,必须依靠计算机进行计算。该方法可以认为是无标样定量分析。当欲测样品含量大于1%时,其相 对标准偏差可小于1%。

X射线荧光光谱分析法

X射线荧光光谱分析法

X射线荧光光谱分析法X射线荧光光谱分析法(X-ray fluorescence spectroscopy,简称XRF)是一种利用样品被X射线辐照后发出的荧光光谱进行化学元素定性和定量分析的方法。

它是一种非破坏性的分析技术,适用于固体、液体和气体样品。

X射线荧光光谱分析法基于X射线与物质相互作用的原理。

当样品受到X射线辐照后,其内部的原子会吸收部分X射线能量,随后再以荧光的形式发射出来。

这些发出的荧光光谱可以通过光谱仪进行检测和分析。

不同元素的荧光光谱特征不同,因此可以根据光谱特征来确定样品中的元素成分。

在X射线荧光光谱分析法中,首先需要制备样品,将其制备成均匀的固体、液体或气体形态。

为了提高分析的精确度,还可以选择加入一定的荧光剂,以增加荧光光谱的信号强度。

接下来,样品将被放置于X射线辐照源下,如X射线管,发射出的X 射线将通过样品,并激发样品中的原子产生荧光。

这些荧光将被荧光仪器所记录下来,并转换成一个荧光光谱。

荧光光谱中的特征峰可以通过对样品中各元素的荧光峰进行定性和定量分析。

对于定性分析,可以通过比对荧光峰的位置和强度与已知标准峰进行比较来确定样品中的元素成分。

对于定量分析,可以通过测量荧光峰的强度,并使用已知浓度的标准样品制备的校准曲线进行计算。

X射线荧光光谱分析法具有许多优点。

首先,它是一种非破坏性的分析方法,不需要对样品进行破坏性的处理,可以重复使用。

其次,它具有高分析速度和较高的灵敏度,可以在较短的时间内分析大量的样品,并且可以检测到低至ppm级别的元素含量。

此外,X射线荧光光谱分析法还具有广泛的适用性,可以用于各种类型的样品,包括金属、岩石、矿石、玻璃、陶瓷、塑料等。

尽管X射线荧光光谱分析法具有上述的优点,但也存在一些局限性。

首先,X射线荧光光谱分析法对于一些轻元素,如氢、碳、氮等,不敏感。

其次,由于X射线荧光光谱分析法使用的是非单一元素的基线和互作用效应,因而分析结果可能受到谱线重叠和基线的干扰。

X射线荧光光谱分析基本原理

X射线荧光光谱分析基本原理

X射线荧光光谱分析基本原理X射线荧光光谱分析的基本原理是利用材料在受到高能X射线照射后会发射出特定能量的荧光X射线的特性。

当样品受到高能X射线的照射后,X射线与样品中的原子发生作用,激发其内层电子跃迁到高能级。

随后,被激发的电子会在极短的时间内回到基态,释放出荧光X射线。

荧光X射线的能量特征与被激发电子原先所处的能级差有关,因此不同的元素会产生特定的荧光X射线能量。

X射线荧光光谱分析仪通常包括一个X射线源和一个能量分辨的固态探测器。

X射线源产生高能X射线,其中一部分照射到待测样品上。

样品吸收部分入射X射线,并发射出对应的荧光X射线。

这些荧光X射线通过X射线波长选择装置进入探测器。

探测器中的固态探测器一般采用晶体材料,如硅或锗。

当荧光X射线入射到探测器上时,它们会激发探测器内的电子。

被激发的电子跃迁到高能级,产生能电离状态。

这些能电离态会衰变为基态,同时释放出能量。

这些能量从探测器输出的电流信号中测量。

在X射线荧光光谱分析中,探测器的信号输出被称为光谱。

光谱通过能量分辨设备进行解析,以区分不同元素荧光X射线的能量。

光子能量的分辨率取决于探测器的性能和实验条件。

较好的分辨率可以提高元素的分辨能力,从而提高分析结果的准确性和灵敏度。

为了提高分析的准确性和可靠性,常常需要校正仪器。

仪器校正通常包括两个步骤:能量刻度和反漂移校正。

能量刻度通过使用标准荧光样品,如硅,来确定能量与能量峰位置之间的关系。

反漂移校正用于校正由于时间和温度变化引起的仪器漂移。

X射线荧光光谱分析广泛应用于不同领域的科学研究和工业控制中。

它可用于分析材料的元素组成、碳氢含量、表面产物分析、杜仲树环境激病生理机制分析等等。

它还可以用于分析矿石、矿渣和环境样品中的重金属含量,用于质量控制、研发和材料鉴定等。

综上所述,X射线荧光光谱分析是一种常用的非破坏性分析技术,可以用于确定样品中元素的种类和相对含量。

它的基本原理是利用材料在受到高能X射线照射后发射特定能量的荧光X射线。

X射线光谱分析的原理和应用

X射线光谱分析的原理和应用

X射线光谱分析的原理和应用X射线光谱分析是一种重要的分析技术,它基于X射线的特性对物质进行研究和分析。

本文将介绍X射线光谱分析的原理和应用,并探讨其在不同领域的具体应用案例。

一、X射线光谱分析的原理X射线光谱分析依据X射线与物质的相互作用来获得样品的信息。

其原理主要包括以下几点:1. X射线产生:通过X射线发射管产生高能的X射线,发射管中的阴极产生电子,经过加速后,撞击阳极产生X射线。

2. 样品与X射线的相互作用:高能的X射线与样品中的原子发生相互作用。

主要有光电效应、康普顿散射、孤立子散射等作用,其效应形成了X射线谱。

3. X射线谱的测量:通过光电探测器、康普顿散射探测器等,测量X射线谱。

根据不同能量的X射线能够穿透不同厚度的物质,从而获取元素组成和样品内部结构的信息。

4. 数据分析:通过分析X射线谱,利用标准样品建立光谱库,进行定量和定性分析。

二、X射线光谱分析的应用X射线光谱分析广泛应用于材料科学、环境监测、生物医学等领域。

下面将详细介绍其应用案例:1. 材料分析材料科学中的成分分析是非常重要的,X射线光谱分析可以快速准确地分析材料的元素组成。

例如,对金属材料中的微量杂质进行分析,可以检测到不同元素的含量,从而评估材料的质量和适用性。

2. 环境监测X射线光谱分析可用于环境中有害物质的检测与定量。

例如,对水体中重金属的检测可以使用X射线光谱分析,通过分析不同元素的能谱,判断水体中是否含有有害物质,保护环境的安全。

3. 考古研究考古学中,X射线光谱分析被用于物质的鉴定和年代的确定。

例如,对古陶瓷进行分析,可以了解其成分和生产工艺,推断其年代和来源。

4. 生物医学X射线光谱分析在生物医学领域具有重要作用。

例如,对人体内部的钙、铁等元素进行定量分析,有助于研究骨质疏松等疾病的发生机制,并提供治疗方案的依据。

5. 其他应用领域除了上述应用,X射线光谱分析还被广泛应用于材料的物相分析、催化剂研究、地质学、电子元器件检测等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/4/15
.
2.X射线光谱
(1) 连续X射线光谱
电子→靶原子,产生连 续的电磁辐射,连续的X射 线光谱;成因:
大量电子的能量转换是 一个随机过程,多次碰撞;
阴极发射电子方向差异 ,能量损失随机;
Ee eU12m0
ImKZiU2
2020/4/15
.
(2)X射线特征光谱
特征光谱产生: 碰撞→跃迁↑(高) →空穴→跃迁↓(低)
(1)主量子数 n≠0
(2)角量子数 L=±1
(3)内量子数 J=±1,0
J为L与磁量子数矢量和S;
n=1,2,3,线系, 线系,
线系;
L→K层K; K1 、 K2 M→K层K ; K1 、 K2 N→K层K ; K 1 、 K 2 M→ L 层L ; L1 、 L2 N→L层L ; L 1 、 L 2 N→M层M; M1 、 M2
2020/4/15
.
特征光谱——定性依据
n1 n2E n1 hE n2 c(R Z)2 n2 2 1n1 2
L→K层;K 线系; n1 =2,n2 =1;
K(43)cR(Z)2 KcK 3R(Z4)2
不同元素具有自己的特征谱 线 ——定性基础;
谱线强度——定量;Leabharlann 2020/4/15.
三、X射线的吸收、散射与衍射
absorption, diffuse and diffraction of X-ray
1. X射线的吸收
dI0=-I0 l dl dI0=-I0 m dm dI0=-I0 n dn
l:线性衰减系数; m:质量衰减系数; n:原子衰减系数;
衰减系数的物理意义:单位路程 (cm)、单位质量(g)、单 位截面(cm2) 遇到一个原子时,强度的相对变化(衰减);
2020/4/15
.
二、X射线与X射线光谱
X-ray and X-ray spectrum
1. 初级X射线的产生
X-射线:波长0.001~50nm的电磁波;
0.01~24 nm ; (超铀K系谱线) ~ (锂K系谱线)
高速电子撞击阳极(Cu、Cr等重金属):热能(99%)+X射线(1%)
高速电子撞 击使阳极元素的 内层电子激发; 产生X射线辐射;
无相干
X射线
非弹性碰撞
反冲电子
= - = K (1-cos)
K 与散射体和入射线波长 有关的常数;
Z↓,非相干散射↑; 衍射图上出现连续背景。
2020/4/15
.
3. X射线的衍射
相干散射线的干涉现象;
相等,相位差固定,方向同, n 中n不同,产生干涉。
X射线的衍射线: 大量原子散射波的
能级(M→K)↓, 吸收限(波长)↓, 激发需要的能量↑。
2020/4/15
.
2.X射线的散射
X射线的强度衰减:吸收+散射;
X射线的 ↑; Z ↑,越易吸收,吸收>>散射;吸收为主; ↓, Z↓;穿透力越强;对轻元素N,C,O,散射为主;
(1)相干散射(Rayleigh散射,弹性散射)
X射线
碰撞
改变的常数;Z:吸收元素的原子序数; :波长;
X射线的 ↑; Z ↑,越易吸收; ↓,穿透力越强;
2020/4/15
.
元素的X射线吸收光谱
吸收限(吸收边):一个 特征X射线谱系的临界激发 波长;
在元素的X射线吸收光谱 中, 质量吸收系数发生突 变;呈现非连续性;上一个 谱系的吸收结束,下一个谱 系的吸收开始处;
第十五章 X射线光谱与电 子能谱分析法
X-ray spectrometry and electron spectroscopy
第一节 X射线和X射线
光谱分析
X-ray and X-ray spectrum analysis
一、概述 generalization 二、X射线与X射线谱 X-ray and X-ray spectrum 三、X射线的吸收、散射和 衍射 absorption, diffuse and diffraction of X-ray
叠加、干涉而产生最 大程度加强的光束; Bragg衍射方程: DB=BF=d sin
n = 2d sin 光程差为 的整数
倍时相互加强;
2020/4/15
.
Bragg衍射方程及其作用
n = 2d sin
| sin | ≤1;当n = 1 时, n / 2d = | sin | ≤1,
即 ≤ 2d ; 只有当入射X射线的波长 ≤2倍晶面间距时,才能产生衍射
2020/4/15
.
电子能谱分析
利用元素受激发射的内层电子或价电子的能量分布进行元 素的定性、定量分析;固体表面薄层成分分析;
电子能谱分析 X-射线光电子能谱 紫外光电子能谱
Auger电子能谱
2020/4/15
.
共同点
(1) 属原子发射光谱的范畴; (2) 涉及到元素内层电子; (3) 以X-射线为激发源; (4) 可用于固体表层或薄层分析
符合光吸收定律:
I = I0 exp(- l l )
固体试样时,采用 m = l /
( :密度);
2020/4/15
.
X射线的吸收
X射线的强度衰减:吸收+散射;
总的质量衰减系数m : m = m + m
m :质量吸收系数; m :质量散射系数;
m
kZ43
NA Ar
NA:Avogadro常数;Ar :相对原子质量;k:随吸收限
新振动波源群
相干散射
E 较小、 较长的X射线 →碰撞(原子中束缚较紧、Z较大
电子)→新振动波源群(原子中的电子);与X射线的周期、 频率相同,方向不同。
实验可观察到该现象;测量晶体结构的物理基础;
2020/4/15
.
(2)非相干散射
Comptom 散射、非弹性散射;Comptom-吴有训效应;
,方向,变 波长、周相不同,
2020/4/15
.
一、概述
generalization
X-射线:波长0.001~50nm; X-射线的能量与原子轨道能级差的数量级相同;
X-射线荧光分析
利用元素内层电子跃迁产生的荧光光谱,应用于元素的定 性、定量分析;固体表面薄层成分分析;
X-射线光谱
X-射线吸收光谱 X-射线荧光分析 X-射线衍射分析
特征谱线的频率:
n 1 n 2E n 1 hE n 2c(R Z)2 n 2 2 1n 1 2
R=1.097×107 m-1,Rydberg常数;
σ核外电子对核电荷的屏蔽常数;
n电子壳层数;c光速;Z原子序数;
不同元素具有自己的特征谱线 ——定性基础 。
2020/4/15
.
跃迁定则:
相关文档
最新文档