红外光谱的定量分析

合集下载

红外光谱的分析实验报告

红外光谱的分析实验报告

红外光谱的分析实验报告红外光谱的分析实验报告引言:红外光谱是一种重要的分析技术,广泛应用于化学、材料科学、生物医学等领域。

本实验旨在通过红外光谱仪对不同化合物进行分析,探索其在结构鉴定和物质性质研究中的应用。

实验方法:1. 实验仪器:红外光谱仪2. 实验样品:甲醇、乙醇、苯酚、苯甲酸3. 实验步骤:a. 将样品制备成均匀的固体样品,并放置于红外光谱仪的样品室中。

b. 启动红外光谱仪,选择合适的波数范围和扫描速度。

c. 点击开始扫描按钮,记录红外光谱图。

实验结果与分析:通过红外光谱仪获得了甲醇、乙醇、苯酚和苯甲酸的红外光谱图。

根据图谱中的吸收峰和波数,可以初步判断样品的官能团和分子结构。

1. 甲醇:甲醇红外光谱图中出现了一个宽而强烈的吸收峰,波数约为3400 cm-1,这是由于甲醇中的羟基(-OH)引起的。

另外,还可以观察到波数约为1050 cm-1处的吸收峰,这是由于甲醇中的C-O键引起的。

这些特征峰表明样品中存在醇官能团。

2. 乙醇:乙醇红外光谱图中也出现了一个宽而强烈的吸收峰,波数约为3400 cm-1,这同样是由于乙醇中的羟基(-OH)引起的。

此外,还可以观察到波数约为2900 cm-1处的吸收峰,这是由于乙醇中的C-H键引起的。

这些特征峰进一步验证了样品中存在醇官能团。

3. 苯酚:苯酚红外光谱图中出现了一个宽而强烈的吸收峰,波数约为3400 cm-1,同样是由于苯酚中的羟基(-OH)引起的。

此外,还可以观察到波数约为1600 cm-1处的吸收峰,这是由于苯酚中的芳香环引起的。

这些特征峰表明样品中存在酚官能团和芳香环。

4. 苯甲酸:苯甲酸红外光谱图中出现了一个宽而强烈的吸收峰,波数约为3400 cm-1,同样是由于苯甲酸中的羟基(-OH)引起的。

此外,还可以观察到波数约为1700 cm-1处的吸收峰,这是由于苯甲酸中的羧基(-COOH)引起的。

这些特征峰表明样品中存在羧酸官能团。

结论:通过红外光谱分析,我们成功地鉴定了甲醇、乙醇、苯酚和苯甲酸样品中的官能团和分子结构。

红外光谱定量分析

红外光谱定量分析

在做红外光谱(IR)测试时,科学指南针检测平台工作人员在与很多同学沟通中了解到,好多同学对IR不太了解,针对此,科学指南针检测平台团队组织相关同事对网上海量知识进行整理,希望可以帮助到科研圈的伙伴们;定量分析红外光谱定量分析法的依据是朗伯——比尔定律。

红外光谱定量分析法与其它定量分析方法相比,存在一些缺点,因此只在特殊的情况下使用。

它要求所选择的定量分析峰应有足够的强度,即摩尔吸光系数大的峰,且不与其它峰相重叠。

红外光谱的定量方法主要有直接计算法、工作曲线法、吸收度比法和内标法等,常常用于异构体的分析。

随着化学计量学以及计算机技术等的发展,利用各种方法对红外光谱进行定量分析也取得了较好的结果,如最小二乘回归,相关分析,因子分析,遗传算法,人工神经网络等的引入,使得红外光谱对于复杂多组分体系的定量分析成为可能。

量子力学研究表明,分子振动和转动的能量不是连续的,而是量子化的;即限定在一些分立的、特定的能量状态或能级上。

以最简单的双原子为例,如果认为原子间振动符合简谐振动规律,则其振动能量Ev可近似地表示为:式中h为普朗克常数;v为振动量子数(取正整数);v0为简谐振动频率。

当v=0时,分子的能量最低,称为基态。

处于基态的分子受到频率为v0的红外射线照射时,分子吸收了能量为hv0的光量子,跃迁到第一激发态,得到了频率为v0的红外吸收带。

反之,处于该激发态的分子也可发射频率为v0的红外射线而恢复到基态。

v0的数值决定于分子的约化质量μ和力常数k。

k决定于原子的核间距离、原子在周期表中的位置和化学键的键级等。

分子越大,红外谱带也越多,例如含12个原子的分子,它的简正振动应有30种,它的基频也应有30条谱带,还可能有强度较弱的倍频、合频、差频谱带以及振动能级间的微扰作用,使相应的红外光谱更为复杂。

如果假定分子为刚性转子,则其转动能量Er为:式中j为转动量子数(取正整数);i为刚性转子的转动惯量。

在某些转动能级间也可以发生跃迁,产生转动光谱。

红外光谱

红外光谱

图4 聚乙烯IDPE 的红外光谱图
图5 (a)等规聚苯乙烯结晶态差减红外光谱
(b)无规聚苯乙烯红外光谱
• 测量聚合物的结晶度,应选择对结构变化 敏感的谱带作为分析对象,如晶带,亦可 是非晶带。 • 结晶带一般比较尖锐,强度也较大,因此 有较高的测量灵敏度。 • 使用非晶带来测量高聚物的结晶度,这时 样品取向的影响就不重要了。非晶带一般 较弱,因此可使用较厚的样品薄膜,这对 于准确地测量薄膜厚度是有利的。
计算机差谱技术是应用光学随计算机发展 而出现的新的研究方法,是对存储的谱图进行 数据处理的一种计算机软件功能,通过一定的 数据处理,以达到溶剂、基体及干扰组分光谱 的分离等。
差谱即从混合物X的谱图中差减已知组分 Y后,得到纯组分Z的谱图。Z=X-kY,k是比 例系数,由计算机给出,然后由人工选择。
图6 聚氯丁二烯的红外光谱图
ห้องสมุดไป่ตู้
5. 无机非金属材料的分析
四乙氧基硅(TEOS)可以通过水解和缩
聚形成氧化硅薄膜,利用这种溶胶凝胶反
应在多孔硅表面形成一层氧化硅的包覆层,
具体反应过程如下:
SiOC2H5 +H2OSi-OH+ C2H5OH
SiOC2H5 +HO-Si Si-O-Si+ C2H5OH
三、红外光谱技术进展
1.FTIR与其它技术联用:
与热重(TG)联用,将样品置于TG分析仪中进
行测试,得到试样的TG曲线,样品因加热而分解
的产物不需要经过任何物理或化学处理而直接进
入红外光谱仪,经测试可得到产物的红外光谱, 根据试样的TG曲线和分解产物的红外光谱,可以 对试样的热分解过程进行定量的评价。
HNP密封膜的红外光谱数据

红外光谱法的定性分析

红外光谱法的定性分析

红外光谱法的定性分析红外光谱法简介红外光谱法(IR)是一种分析物质结构的无损检测手段,其原理是通过分析物质吸收、反射或透射红外辐射的特点,推断其结构。

这种检测方法可以用于有机化学、生化学、材料科学、地球科学等领域的分析工作,是一种常见的定性和定量分析工具。

红外光谱法通常使用红外光谱仪来进行分析。

光谱仪会将可见光和红外光经过相应的光学元件后,照射到样品上,收集样品吸收、反射或透射的辐射,并将其转化成光谱图形。

红外光谱图展示了样品中不同频率(波数)下,吸收或透射的光量,通过对光谱图的分析,就可以推断样品的结构。

红外光谱法的主要应用红外光谱法通过检测样品中不同波数下的吸收和透射情况,从而推断分子的结构,其主要应用于以下几个领域:1. 化学分析在化学分析中,红外光谱法常常用于鉴别无机和有机物质、确定结构等方面。

鉴别无机物质时,我们可以检测样品中不同波数下的吸收情况,通过波谷或者峰值的位置判断是否为一定的无机物质。

确定有机物质的结构时,我们可以先将不同的有机物质进行红外光谱测试,然后通过比对其红外光谱图,推断其结构。

2. 材料科学在材料科学中,红外光谱法可以用于分析分子中的化学键以及表面化学性质,从而评估材料的性能。

例如,在聚合物材料的分析中,我们可以通过分析材料中特有的吸收峰值,判断材料的结构和组分。

3. 药物分析在药物分析中,红外光谱法常常用于定量和质量控制方面。

可以通过样品中不同波数下的吸收来确认药物的结构,进而进行质量控制。

同时,还可以进行药物的成分鉴别,判断其是否为假药或劣质药品。

红外光谱法的优势红外光谱法作为一种无损检测手段,具有如下几个优势:1. 非破坏性和其他常见的分析手段相比,红外光谱法不会破坏样品,因此样品可以重复使用,具有很高的经济性。

2. 非接触性红外光谱法可以在不接触样品的情况下进行测试,避免了样品受到污染、变形或损坏等问题,同时样品的数量也可以任意调整。

3. 快速、精准性高红外光谱法的测试速度很快,而且在测试过程中也不需要在样品表面上增加或者减少任何物质。

近红外光谱定量分析的流程和步骤

近红外光谱定量分析的流程和步骤

近红外光谱定量分析的流程和步骤下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!近红外光谱定量分析流程步骤。

1. 样品制备。

将样品研磨成细粉或均匀溶液。

近红外光谱法定量分析及其应用研究

近红外光谱法定量分析及其应用研究

近红外光谱法定量分析及其应用研究一、本文概述随着科学技术的发展,光谱分析技术以其独特的优势在多个领域得到了广泛的应用。

其中,近红外光谱法作为一种重要的光谱分析技术,因其无损、快速、环保等特点,在定量分析领域具有独特的优势。

本文旨在深入探讨近红外光谱法定量分析的基本原理、方法、技术及其在各个领域的应用研究,以期为该领域的研究者提供有益的参考和启示。

本文将简要介绍近红外光谱法的基本原理和定量分析的基本方法,包括光谱数据的获取、预处理、特征提取以及模型的建立与优化等。

本文将重点分析近红外光谱法在农业、食品、医药、石油化工等领域的应用案例,探讨其在实际应用中的优势和局限性。

本文还将对近红外光谱法定量分析的发展趋势和前景进行展望,以期为该领域的发展提供新的思路和方向。

通过本文的研究,我们期望能够为近红外光谱法定量分析的理论研究和实际应用提供有益的参考,同时也希望能够推动该领域的技术创新和发展。

二、近红外光谱法的基本原理与技术近红外光谱法(Near-Infrared Spectroscopy,NIRS)是一种利用物质在近红外区(波长范围通常为780-2500nm)的吸收特性进行定性和定量分析的技术。

其基本原理主要基于分子振动产生的吸收光谱,这些光谱信息能够反映分子内部的结构和组成。

近红外光谱法的基本原理是物质对近红外光的吸收与其内部的分子结构、化学键合状态以及分子间的相互作用有关。

当近红外光通过物质时,某些特定波长的光会被物质吸收,这些被吸收的波长与物质的特定化学成分和分子结构密切相关。

因此,通过测量物质在近红外区的吸收光谱,可以获取到关于物质成分和结构的信息。

近红外光谱法的技术包括光谱采集、光谱预处理、模型建立与验证等步骤。

光谱采集是使用近红外光谱仪对样品进行扫描,得到其近红外吸收光谱。

光谱预处理是为了消除光谱中的噪声和干扰,提高光谱的质量和可靠性。

模型建立与验证是通过化学计量学方法,如多元线性回归、主成分回归、偏最小二乘回归等,建立光谱数据与物质成分之间的定量关系模型,并对模型进行验证和优化。

红外光谱图像的定量分析方法研究

红外光谱图像的定量分析方法研究

红外光谱图像的定量分析方法研究光谱图像是化学和物理领域中常用的研究手段,其可以用于定性和定量分析物质结构和成分。

其中红外光谱图像是一种重要的光谱图像,可以帮助人们鉴别和识别不同物质之间的差异,提高研究的准确性和可靠性。

然而,在使用红外光谱图像进行定量分析时,如何选取合适的方法和技术是一个关键性的问题。

本文就红外光谱图像的定量分析方法进行研究和探讨。

一、红外光谱图像的定量分析方法概述红外光谱图像是指在不同的红外波段下,物质吸收和反射光谱的记录图像。

使用红外光谱图像进行物质定量分析可以将物质结构和化学组成作为关键参数来衡量和评估分析结果。

红外光谱图像的定量分析方法可以分为峰型定量和全谱直接定量两类。

峰型定量是指针对红外光谱图像中一个个单独的谱带进行计算和分析,通过提取谱带的高度、面积、积分峰值等关键参数来计算物质的定量程度。

这种方法精度较高,但是需要选择合适的谱带进行分析,对于谱带未知和复杂混合物分析较难。

全谱直接定量是指利用数学模型和计算方法对整个红外光谱图像进行处理和计算,得出物质成分和含量信息。

虽然这种方法不需要谱带的选择,但是其物质定量的模型和算法需要更为复杂和精细,且对于新样品的模型选择和拟合也具有一定的成本和挑战性。

二、红外光谱图像定量分析方法的应用实例在生物医学、材料科学、环境科学等领域中,红外光谱图像的定量分析方法得到了广泛的应用和推广。

例如,在生物医学中,研究人员可以利用红外光谱图像对蛋白质、病毒、细胞等生物分子结构及其含量进行分析,对于诊断和治疗疾病、研究生物组织的分子结构特征具有重要的指导意义。

在材料科学中,红外光谱图像可以帮助人们对新型材料的合成、性能和构成进行分析和评估,其中包括陶瓷材料、纤维材料、光传输材料等。

在环境科学中,红外光谱图像可以用于分析和监测大气、水、土壤等环境中存在的污染物种类和含量,帮助人们制定环境保护措施和评估其效果。

三、红外光谱图像定量分析方法的成果展望尽管红外光谱图像定量分析方法具有广泛的应用场景和潜在的发展前景,但是仍然存在一些挑战和难点。

如何进行红外光谱解析

如何进行红外光谱解析

如何进行红外光谱解析红外光谱解析是一种广泛应用于化学、生物、材料科学等领域的测试技术,通过分析物质在红外光波段的吸收和散射特性,可以获得物质的结构信息、成分组成以及其他相关性质。

本文将介绍红外光谱解析的基本原理、实验操作步骤以及数据分析方法,帮助读者了解如何进行红外光谱解析。

一、基本原理红外光谱解析的基本原理是物质分子在吸收红外光时,会发生振动和转动,并发生状态之间的转变。

这些振动和转动产生的谐振频率,与分子内部的键长、键角等结构参数有关,因此可以通过测量红外光谱图谱来了解物质的结构特征。

二、实验操作步骤1. 仪器准备:将红外光谱仪连接电源并打开。

根据待测物的性质,选择适当的样品盒(液态或固态)和检测模式(透射或反射)。

2. 样品处理:对于液态样品,取少量样品加入透射池中,移除气泡并将其密封;对于固态样品,将样品压制成片或粉碎并放置在反射盒中。

3. 启动仪器:根据仪器操作手册,进行光谱仪的启动和样品检测参数的设置。

4. 开始检测:点击仪器软件上的“开始”按钮,红外光谱仪开始发送红外光,并通过探测器接收返回的信号。

5. 数据采集:红外光谱仪会将接收到的信号转化为电信号,并通过数据采集软件记录下来。

采集过程通常需要数秒至数分钟。

6. 数据处理:获取红外光谱图谱后,使用特定的数据处理软件进行谱图展示和数据分析。

三、数据分析方法1. 谱图展示:使用数据处理软件将红外光谱图谱进行展示,在横轴上表示波数,纵轴表示吸收强度。

确保谱图的分辨率和信噪比足够高,以保证后续的数据分析准确性。

2. 峰值鉴定:根据谱图上的吸收峰,确定物质的各种官能团或键的存在。

通过比对已知物质的红外光谱数据库,寻找吸收峰的对应官能团或键。

3. 定量分析:利用谱图上的吸收峰的强度,可以进行物质的定量分析。

通过校正曲线或比色法等方法,计算物质的浓度或含量。

4. 结构确定:根据红外吸收峰的波数和强度,可以获得物质的结构信息。

通过对比不同官能团或键的红外吸收谱图,推测和确认物质的结构特征。

红外光谱的定量

红外光谱的定量

红外光谱的定量分析是一种基于红外吸收峰强度与被测物浓度之间关系的定量方法。

下面给出一些常用的红外光谱定量分析方法:
标准曲线法:通过制备一系列不同浓度的标准样品,测量它们的红外光谱吸光度,并绘制样品浓度与吸光度之间的标准曲线。

然后,通过测量未知样品的吸光度,根据标准曲线确定其浓度。

内标法:选择一个与被测物相互无干扰的内标物质,将其加入到被测物中制备样品。

测量样品的红外吸光度,计算被测物与内标物质的吸光度比值,并与已知浓度的标准样品的吸光度比值进行比较,从而确定被测物的浓度。

多元回归分析法:通过建立多元回归模型,将多个红外吸收峰的强度与被测物的浓度建立数学关系。

通过对已知浓度的标准样品测量吸光度,并根据模型推算出浓度,并与已知浓度进行比较,确定被测物的浓度。

这些方法都有其局限性和适应范围,具体选择哪种方法应根据具体样品和实验条件来确定。

此外,还需要注意样品的制备和测量条件的控制,以确保准确性和可靠性。

红外光谱测定注意事项及定性分析

红外光谱测定注意事项及定性分析

.
指纹区(可分为两个区)
单、双键伸缩振动 (不含氢)
苯衍生
物 的 泛 2000-1650

强峰。是判断酮、醛、酸、酯及酸酐的 特征吸收峰,其中酸酐因振动偶合而具 有双峰。 峰较弱(对称性较高)。在 1600 和 1500 附近有 2-4 个峰(苯环骨架振动),用于 识别分子中是否有芳环。 C-H 面外、C=C 面内变形振动,很弱, 但很特征(可用于取代类型的表征)。
红外光谱测定注意事项 及定性分析
.
红外光谱基本概念 傅立叶红外光谱仪 样品制备及注意事项 定性分析
.
一、红外光谱基本概念
1、红外光谱
又称分子振动转动光谱,属分子吸收光谱。样品受 到频率连续变化的红外光照射时,分子吸收其中一些 频率的辐射,分子振动或转动引起偶极矩的变化,使 振-转能级从基态跃迁到激发态,相应于这些区域的
键 RCCH
2100-2140
及 RCCR’ 2196-2260
R=R’则无红外吸收

2240-2260
分子中有 N,H,C,峰
积 CN
(非共轭) 强且锐;

2220-2230
有 O 则弱,离基团越近

(共轭) 则越弱。

.
双键伸缩振动区(1900~1200cm-1)
C=O 1900-1650
C=OC 1680-1620
振动 特点:吸收峰稀疏、较强,易辨认 指纹区: 1250~400cm-1的低频区 ➢ 包含C—X(X:O,H,N)单键的伸缩振动及各种面内弯 曲 振动 特点:吸收峰密集、难辨认→指纹 在红外分析中,通常一个基团有多个振动形式,同时产 生多个谱峰(基团特征峰及指纹峰),各类峰之间相互 依存、相互佐证。通过一系列的峰才能准确确定一个基 团 的 存 在 。 ( 如 水 的 变 曲 振 动 1645cm-1, 伸 缩 振 动

红外光谱分析

红外光谱分析

红外光谱分析一.基本原理红外吸收光谱(Infrared Absorption Spectrum,IR)是利用物质的分子吸收了红外辐射后,并由其振动或转动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,得到分子振动能级和转动能级变化产生的振动-转动光谱,因为出现在红外区,所以称之为红外光谱。

利用红外光谱进行定性、定量分析及测定分子结构的方法称为红外吸收光谱法。

当分子受到红外光的辐射,产生振动能级的跃迁,在振动时伴有偶极矩改变者就吸收红外光子,形成红外吸收光谱。

若用单色的可见光照射(今采用激光,能量介于紫外光和红外光之间),入射光被样品散射,在入射光垂直面方向测到的散射光,构成拉曼光谱。

通常将红外光谱区按波长分为3个区域,即近红外区、中红外区、远红外区,如下表所示:1. 分子振动类型有机分子中诸原子通过各类化学键联结为一个整体,当它受到光的辐射时,发生转动和振动能级的跃迁。

简单的双原子化合物如A-B 的振动方式是A 和B 两个原子沿着键的方向作节奏性伸和缩的运动,可以形象地比作连着A、B 两个球的弹簧的谐振运动。

为此A-B 键伸缩振动的基频可用胡克定律推导的公式计算其近似值式中,f 是键的振动基频,单位为cm-1;c 是光速;k 是化学键力常数,相当于胡克弹簧常数,是各种化学键的属性,代表键伸缩和张合的难易程度,与原子质量无关;m 是原子的折合质量,即m=m1·m2/(m1+m2)。

上式表明键的振动基频与力常数成正比,力常数越大,振动的频率越高。

振动的基频与原子质量成反比,原子质量越轻,连接的键振动频率越高。

上述是双原子化合物。

多原子组成的非线型分子的振动方式就更多。

含有n 个原子就得用3n 个坐标描述分子的自由度,其中3 个为转动、3 个为平动、剩下3n-6 个为振动自由度。

每一种振动按理在红外光谱中都应该有其吸收峰,但是事实上只有在分子振动时有偶极矩的改变才会产生明显的吸收峰。

有机物的红外光谱分析方法

有机物的红外光谱分析方法

有机物的红外光谱分析方法随着科学技术的发展,红外光谱分析方法在有机化学领域中的应用越来越广泛。

本文将介绍有机物的红外光谱分析方法,并探讨其在化学研究和工业生产中的重要性。

一、红外光谱分析原理红外光谱分析是利用有机物分子在红外光的作用下,吸收或发射特定的光谱带来进行分析的一种方法。

红外光谱分析仪器主要由光源、光学组件、光谱仪和检测器等部分组成。

有机物分子中存在许多共振式结构,当红外光波长和化学键振动频率匹配时,分子将吸收红外光,并产生特定的光谱峰。

这些光谱峰的位置和强度能够提供有机物分子结构和功能团信息。

二、红外光谱仪的原理和操作红外光谱仪是分析有机物红外光谱的关键设备。

它通过使用红外光源发射红外光束,经过样品后,光学组件将红外光束分解为不同波长的光,然后使用检测器检测吸收或发射的光信号。

操作时,需要将待测样品放置在红外光谱仪中,并进行光谱扫描和数据分析。

三、红外光谱分析方法的应用3.1 结构确定有机物的红外光谱分析方法可以用于确定分子的结构。

利用红外光谱仪测得的光谱图谱,通过对比光谱峰的位置和强度,可以确定有机物中存在的功能团和官能团,从而推断出分子的结构。

这对于有机化学研究和新药物的研发具有重要意义。

3.2 定量分析红外光谱分析方法还可以进行定量分析。

在标定好的条件下,可以利用红外光谱仪对待测样品的红外光吸收进行定量测定。

通过建立标准曲线或使用专用分析软件,可以快速准确地确定有机物在混合物中的含量。

3.3 质谱联用分析红外光谱分析方法还可以与质谱等其他分析方法联用,来进行复合分析。

通过将红外光谱仪与质谱仪等设备连接,可以同时获得有机物的红外光谱和质谱信息,进一步提高分析的准确性和可靠性。

四、红外光谱分析方法的优势和局限性红外光谱分析方法具有以下优势:非破坏性、快速、灵敏、可靠、简便等。

同时,红外光谱仪的设备成本也越来越低,适用于各种实验室和工业生产环境。

然而,红外光谱分析方法也存在一定的局限性,比如在某些特殊情况下,有机物的红外光谱会受到其他因素的影响,导致分析结果的准确性下降。

红外分析的实验报告

红外分析的实验报告

一、实验题目红外光谱分析实验二、实验目的1. 理解红外光谱分析的基本原理和操作方法。

2. 掌握使用红外光谱仪对样品进行定性和定量分析的能力。

3. 通过实验,加深对红外光谱图的理解和解析能力。

三、实验原理红外光谱分析是一种基于分子振动和转动能级跃迁的物理分析方法。

当分子吸收特定波长的红外光时,分子内部的化学键会振动或转动,从而产生红外光谱。

红外光谱反映了分子内部的结构信息,因此可以用于物质的定性和定量分析。

四、实验仪器与试剂1. 仪器:傅里叶变换红外光谱仪(FTIR)、样品池、真空泵、电子天平。

2. 试剂:待测样品(如聚合物、有机化合物等)、KBr压片机、分析纯KBr。

五、实验步骤1. 样品制备:将待测样品与KBr按一定比例混合,充分研磨后,使用KBr压片机压制样品片。

2. 样品测试:将制备好的样品片放入红外光谱仪中,进行扫描,记录红外光谱图。

3. 数据处理:将扫描得到的红外光谱图与标准光谱图进行比对,分析样品的结构特征。

六、实验结果与分析1. 样品A的红外光谱分析样品A的红外光谱图显示,在2920cm-1和2850cm-1处出现了两个较强的吸收峰,这表明样品A中含有C-H键。

在1730cm-1处出现了一个明显的吸收峰,这表明样品A中含有C=O键。

在1020cm-1处出现了一个吸收峰,这表明样品A中含有C-O键。

通过对样品A红外光谱的分析,可以确定样品A是一种含有C-H、C=O和C-O键的有机化合物。

2. 样品B的红外光谱分析样品B的红外光谱图显示,在3400cm-1处出现了一个宽而强的吸收峰,这表明样品B中含有O-H键。

在1640cm-1处出现了一个明显的吸收峰,这表明样品B中含有C=O键。

在1380cm-1处出现了一个吸收峰,这表明样品B中含有C-N键。

通过对样品B红外光谱的分析,可以确定样品B是一种含有O-H、C=O和C-N键的有机化合物。

七、实验讨论1. 红外光谱分析是一种快速、简便、灵敏的物理分析方法,在化学、材料科学、生物医学等领域有着广泛的应用。

红外光谱定性分析示例

红外光谱定性分析示例

红外光谱定性分析示例红外光谱法无论是在科学技术方面,还是结构关系的研究方面都比较成熟,因此,应用也相当广泛,是现代物质研究的重要工具之一。

红外光谱的最大特点是具有特征性,谱图上的每个吸收峰代表了分子中某个基团的特定振动形式。

基于这一点我们可以通过红外光谱图对物质进行定性和定量分析。

1.定性分析1.1鉴定化合物在鉴定是否为已知的化合物时,通常又有这二种情况:一种是用已知的标准样品与样品在同样条件下测试,所得的红外光谱图,如果官能团区和指纹区的吸收峰及其相对强度完全吻合,则样品即被认为与该标准品为同一化合物。

另一种情况是没有标准样品时,可查阅有关的红外光谱的标准图谱。

一般来说官能团区和指纹区的吸收峰及其相对强度都完全吻合,则可以认为是同一化合物。

对于一个文献上没有的全新化合物的鉴定工作,则是一项很复杂的工作,仅凭一种红外光谱图是不能完全解决的,但是红外光谱图可以给我们提供一些很有用的官能团信息。

再用其他波谱方法,经典化学法,以及各项物理常数的测定等配合,然后经过多方面判断、推理综合考虑后才能下结论。

1.2.判断有机化合物的结构用红外光谱图判断化合物的结构通常是用的较多的。

下面我们将应用一些实例来讨论应用红外光谱判断化合物结构的方法:计算有机物的不饱和度不饱和度表示有机物中碳原子的饱和程度。

通过不饱和度的计算,可以缩小判断结构的范围。

提供可能结构的线索。

所以在测定结构时非常有用。

计算不饱和度u的经验公式为:u=1+n4+(n3–n1)/2式中n1,n3,n4分别表示分子中一价,三价和四价原子的数目。

通常规定双键(如C=C,C=O等)和饱和环的不饱和度为1;(C≡C,C≡N)的不饱和度为2,苯环的不饱和度为4(可理解为一个环加三个双键),但是应注意式中对二价原子不做考虑。

红外谱图解析根据不饱和度的计算,估计可能的基团,在谱图的不同区域查找该基团特征吸收峰存在的佐证。

下图是C7H9N的红外光谱图,我们根据该图谱可推断出该化合物的结构为邻甲苯胺。

红外光谱分析

红外光谱分析

红外光谱分析红外光谱分析是一种重要的分析技术,广泛应用于化学、生物、材料等领域。

通过测量物质在红外光谱范围内的吸收和发射特性,可以得到物质分子的结构信息,实现物质的鉴定、定量分析和质量控制等目的。

本文将从红外光谱的基本原理、仪器设备、样品制备和数据解析等方面介绍红外光谱分析的相关知识。

一、基本原理红外光谱分析基于物质对红外辐射的吸收特性。

红外辐射是电磁波谱中的一部分,波长范围在0.78μm至1000μm之间,对应的频率范围在3000GHz至0.3THz之间。

物质分子由原子组成,原子核围绕电子运动,当受到外界的电磁波激发时,分子内部的键振动和转动将发生改变,导致物质吸收特定波长的红外辐射。

不同物质的分子结构和化学键在红外光谱图上表现出特征性的吸收峰,通过观察这些吸收峰的位置和强度可以确定物质的成分和结构。

二、仪器设备进行红外光谱分析需要使用红外光谱仪。

常见的红外光谱仪包括傅立叶变换红外光谱仪(FTIR)和光散射式红外光谱仪(IR)。

FTIR光谱仪通过傅立叶变换技术将红外辐射转换为光谱图,具有高灵敏度和快速测量的优点,适用于定性和定量分析。

光散射式红外光谱仪则通过散射光信号进行检测,适用于固态样品和表面分析。

三、样品制备在进行红外光谱分析前,需要对样品进行适当的制备处理。

液态样品可以直接涂覆在透明吸收的样品基底上进行测试,固态样品通常需要将样品捣碎并与适当的载体混合后进行测试。

在取样和制备过程中需要避免空气和水分的干扰,避免发生氧化和水解反应,影响测试结果的准确性。

四、数据解析红外光谱分析得到的数据通常以吸收光谱图的形式呈现。

吸收光谱图的横轴表示波数或波长,纵轴表示吸收强度,吸收峰的位置和形状反映了物质的分子结构。

数据解析是红外光谱分析的关键步骤,需要借助专业的光谱库和软件进行分析和比对,以确定样品的成分和结构信息。

在实际应用中,红外光谱分析可用于鉴定有机化合物、无机物质、生物大分子等多种样品,广泛应用于医药、食品、环境、材料科学等领域。

(完整版)红外光谱的定量分析

(完整版)红外光谱的定量分析

红外光谱的定量分析红外光谱法在分析和另一应用是对混合物中各组分进行定量分析。

红外光谱定量分析是借助于对比吸收峰强度来进行的,只要混合物中的各组分能有一个持征的,不受其他组分干扰的吸收峰存在即可。

原则上液体、圆体和气体样品都对应用红外光谱法作定量分析:1.定量分析原理红外定量分析的原理和可见紫外光谱的定量分析一样,也是基于比耳-朗勃特(Beer-Lambert)定律。

Beer定律可写成:A=abc式和A为吸光度(absorbance),也可称光密度(optical density),它没有单位。

系数a称作吸收系数(absorptivity),也称作消光系数(extinction coeffieient),是物质在单位浓度和单位厚度下的吸光度,不同物质有不同的吸收系数a值。

且同一物质的不同谱带其a值也不相同,即a值是与被测物质及所选波数相关的一个系数。

因此在测定或描述吸收系数时,一定要注意它的波数位置。

当浓度c选用mol·L-1为单位,槽厚b以厘米为单位时,则a值的单位为:L·cn-1·mol-1,称为摩尔吸收系数,并常用ε表示。

吸收系数是物质具有的特定数值,文献中的数值理应可以通用。

但是,由于所用仪器的精度和操作条件的不同,所得数值常有差别,因此在实际工作中,为保证分析的准确度,所用吸收系数还得借助纯物质重新测定。

在定量分析中须注意下面两点:1)吸光度和透过率是不同的两个概念、透过率和样品浓度没有正比关系,但吸光度与浓度成正比。

2)吸光度的另一可贵性使它具有加和性。

若二元和多元混合物的各组分在某波数处都有吸收,则在该波数处的总吸光度等于各级分吸光度的算术和:但是样品在该波数处的总透过率并不等于各组分透过率的和;2.定量分析方法的介绍红外光谱定量方法主要有测定谱带强度和测量谱带面积购两种。

此外也有采用谱带的一阶导数和二阶导数的计算方法,这种方法能准确地测量重叠的谱带,甚至包括强峰斜坡上的肩峰。

红外光谱 定量

红外光谱 定量

红外光谱定量红外光谱量化定量分析是一种常用的分析方法,可以用于确定化学物质的组成和结构。

本文将从基本概念、原理和仪器设备、样品制备与分析方法、数据处理和应用等方面详细介绍红外光谱的定量分析方法。

一、基本概念红外光谱是一种利用红外辐射与物质相互作用而产生的谱图。

物质吸收红外辐射时,其分子内部的共振和振动状态会发生变化,这种变化会产生特定的红外光谱。

红外辐射的频率范围通常在4000到400 cm-1之间,根据分子中不同的化学键和官能团存在的振动模式不同,吸收峰的位置和强度也会有所不同。

二、原理和仪器设备红外光谱仪的核心部分是红外光源、样品室、光学系统和探测器。

光源产生的红外辐射通过样品室中的样品,然后经过光学系统聚焦和分光,最后被探测器检测到。

仪器通过记录吸收峰的频率和强度来获取红外光谱。

三、样品制备与分析方法样品制备对红外光谱的准确性和重复性有着重要的影响。

常见的样品制备方法包括固体样品片的制备、液体样品的制备和气体样品的制备。

其中,固体样品片可通过机械压片法、涂布法等制备;液体样品可直接放置在透明的红外吸收小皿中;气体样品可通过气相色谱连接红外光谱仪进行分析。

红外光谱的定量分析方法主要包括基准法和多重回归分析方法。

基准法是通过将待测物质的红外光谱与已知浓度的标准品的红外光谱进行比较,根据吸收峰的强度差异来进行定量分析。

多重回归分析方法则是通过建立标准曲线,在已知浓度的标准品上建立吸收峰与浓度之间的线性关系,进而预测待测样品的浓度。

四、数据处理和应用红外光谱的原始数据通常是吸收率与波数之间的关系,为了得到有用的化学信息,需要进行数据处理。

常见的数据处理方法包括基线校正、谱峰拟合和定量计算。

基线校正是去除谱图背景中的杂散光干扰,谱峰拟合是对吸收峰进行拟合,定量计算则是根据拟合曲线对吸收峰的面积进行计算,从而得到目标化合物的浓度。

红外光谱的定量分析方法在许多领域中有着广泛的应用。

例如,食品行业可以通过红外光谱定量分析法来检测食品中的添加剂和污染物;药品行业可以利用定量分析方法来测定药物中的不同组分的含量;环境保护领域可以通过红外光谱定量分析法来监测大气中的有害气体等。

红外光谱(IR)分析

红外光谱(IR)分析
21
第二节
基本原理
就吸收一定频率的红外光,产生振动跃迁。如果用连续 改变频率的红外光照射某样品,由于试样对不同频率的 红外光吸收程度不同,使通过试样后的红外光在一些波 数范围减弱,在另一些波数范围内仍然较强,用仪器记 录该试样的红外吸收光谱,进行样品的定性和定量分析。
二、双原子分子的振动
分子中的原子以平衡点为中心,以非常小的振幅 (与原子核之间的距离相比)作周期性的振动,可近似 的看作简谐振动。这种分子振动的模型,以经典力学的 方法可把两个质量为m1和m2的原子看成钢体小球,连接
15
第二节
基本原理
等于分子振动能级的能量差(△Ev)时,则分子将吸收 红外辐射而跃迁至激发态,导致振幅增大。分子振动能 级的能量差为 △Ev = △h 又光子能量为
EL=h L 于是可得产生红外吸收光谱的第一条件为: EL =△Ev 即
L=△
16
第二节
基本原理
因此,只有当红外辐射频率等于振动量子数的差值 与分子振动频率的乘积时,分子才能吸收红外辐射,产 生红外吸收光谱。 分子吸收红外辐射后,由基态振动能级(=0)跃迁 至第一振动激发态(=1)时,所产生的吸收峰称为基频 峰。因为△=1时,L=,所以 基频峰的位置(L)等于 分子的振动频率。 在红外吸收光谱上除基频峰外,还有振动能级由基态 ( =0)跃迁至第二激发态( =2)、第三激发态( =3) ,所产生的吸收峰称为倍频峰。
4
第一节
概述
为若干个J = 0、1、2、3……的转动能级。 物质对不同波长的光线具有不同的吸收能力,物质 也只能选择性地吸收那些能量相当于该分子振动能变 化△Ev 、转动能变化△Er以及电子运动能量变化△Ee总 和的辐射。 由于各种物质分子内部结构的不同,分子的能级 也千差万别,各种能级之间的间隔也互不相同,这样 就 决定了它们对不同波长光线的选择吸收。 如果改变通过某一吸收物质的入射光的波长,并 记录该物质在每一波长处的吸光度(A),然后以波长

04 红外光谱分析

04 红外光谱分析
红外光谱又称为分子振动转动光谱,也是 一种分子吸收光谱。 红外光照射时,分子吸收某些频率的辐射, 并由其振动或转动运动引起偶极矩的净变化, 产生分子振动和转动能级从基态到激发态的跃 迁。
E E2 E1 光子 hv Ee Ev E j
分子的三种能级跃迁示意图
一、红外光区的划分
不饱和度: =1+n4+(n3-n1)/2 式中n4、n3、n1、分别为分子中所含的四价、 三价和一价元素原子的数目。 二价原子如S、O 等不参加计算。 =0时,表示分子是饱和的,不含双键; =1时,可能有一个双键或脂环; =2时,可能有两个双键和脂环,也可能有一 个叁键; =4时,可能有一个苯环等。
红外光谱在可见光区和微波光区之间,波长 范围约为 0.75 ~ 1000µ m。
红外光谱的三个波区
区域 近红外区(泛频区) 波长/nm 0.75~2.5 波数/cm-1 13158~4000 4000~400 400~10 能级跃迁类型 键的倍频吸收 分子振动,伴 随转动 分子转动
中红外区(基本振动区) 2.5~25 远红外区(转动区) 25~1000
硅碳棒

投射样品池 检测器:对红外光响应 真空热电偶:温差转变为电势 热释电检测器(硫酸三苷肽TGS): 温度升高释放电荷,响应速度快 碲镉汞(MCT)检测器: 灵敏度高,响应速度快

二、Fourier变换红外光谱仪(FTIR) 与色散型红外光度计的主要区别在于干涉仪和 电子计算机两部分。 Fourier变换 红外光谱仪 没有色散元件,主
色散型红外光谱仪的组成部件与紫外-可见分 光光度计相似,但每一个部件的结构、所用的材 料及性能不同。 红外光谱仪的样品是放在光源和单色器之间; 而紫外-可见分光光度计是放在单色器之后。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外光谱的定量分析
红外光谱法在分析和另一应用是对混合物中各组分进行定量分析。

红外光谱定量分析是借助于对比吸收峰强度来进行的,只要混合物中的各组分能有一个持征的,不受其他组分干扰的吸收峰存在即可。

原则上液体、圆体和气体样品都对应用红外光谱法作定量分析:1.定量分析原理
红外定量分析的原理和可见紫外光谱的定量分析一样,也是基于比耳-朗勃特(Beer-Lambert)定律。

Beer定律可写成:A=abc
式和A为吸光度(absorbance),也可称光密度(optical density),它没有单位。

系数a 称作吸收系数(absorptivity),也称作消光系数(extinction coeffieient),是物质在单位浓度和单位厚度下的吸光度,不同物质有不同的吸收系数a值。

且同一物质的不同谱带其a 值也不相同,即a值是与被测物质及所选波数相关的一个系数。

因此在测定或描述吸收系数时,一定要注意它的波数位置。

当浓度c选用mol·L-1为单位,槽厚b以厘米为单位时,则a值的单位为:L·cn-1·mol-1,称为摩尔吸收系数,并常用ε表示。

吸收系数是物质具有的特定数值,文献中的数值理应可以通用。

但是,由于所用仪器的精度和操作条件的不同,所得数值常有差别,因此在实际工作中,为保证分析的准确度,所用吸收系数还得借助纯物质重新测定。

在定量分析中须注意下面两点:
1)吸光度和透过率是不同的两个概念、透过率和样品浓度没有正比关系,但吸光度与浓度成正比。

2)吸光度的另一可贵性使它具有加和性。

若二元和多元混合物的各组分在某波数处都有
吸收,则在该波数处的总吸光度等于各级分吸光度的算术和:但是样品在该波数处的总透过率并不等于各组分透过率的和;
2.定量分析方法的介绍
红外光谱定量方法主要有测定谱带强度和测量谱带面积购两种。

此外也有采用谱带的一阶导数和二阶导数的计算方法,这种方法能准确地测量重叠的谱带,甚至包括强峰斜坡上的肩峰。

红外光谱定量分忻可以采用的方沦很多,下面我们介绍几种常用的测定方法。

(1)直接计算法
这种方法适用于组分简单、特征吸收带不重叠、且浓度与吸收度呈线性关系的样品。

应用(4-35)式,从谱图上读取透过率数值,按A=ln(I0/I)(I0为入射光强度,I为透射光强度)的关系计算出A值,再按(4-35)式算出组分含量c,从而推算出质量分数。

这一方法的前提是需用标准样品测得a值。

分析精度要求不高时,可用文献报导的a值。

(2)工作曲线法
这种方法适用于组分简单.特征吸收谱带重叠较少,而浓度与吸收度不完全呈线性关系的样品。

将一系列浓度的标准样品的湾液.在同一吸收池内测出需要的谱带,计算出吸收度值作为纵坐标,再以浓度为横坐标,作出徊应的工作曲线。

由于是在同一吸收池内测量,故可获得A~c的实际变化曲线。

由于工作曲线是从实际测定中获得的,它真实地反映了被侧组分的浓度与吸收度的关系。

因此即使被测组分在样品中不服从Beer定律,只要浓度在所测的工作曲线范围内、也
能得到比较准确的结果。

同时,这种方法可以排除许多系统误差,同时在这种定量方法中,分析波数的选择同样是重要的,分析波数只能选在被测组分的特征吸收峰处。

溶剂和其他组分在这里不应有吸收峰出现,否则将引起较大的误差。

(3)解联方方程法
解联立方程法运用的对象是组分众多而波带又彼此严重重叠的样品,通常无法选出较好的特征吸收谱带。

采用这一方法的条件是必须具备各个组分的标准样品且各组分在溶液中是遵守Beer定律的。

定量分析可以根据吸光度的加和特证来进行。

例如某一混合物由n个组分所组成.各组分的浓度分别为c1,c2,c3,…,c n,它们在分析波数ν处的吸收系数各为a v1,a v2,…,a vn,则样品在这个分析波数处的总吸光度为:
样品中共有n个组分,每一组分都有一个以它为主要贡献的谱带和对应的波数值,可列出下列方程组:
式中,v1,v2,…,v n,表示与各组分别对应的波带的波数值;A vn表示在v n波数点处的吸光度总和值;a1vn表示第—个组分在v n波数点处的吸收系数;b为已知的吸收池厚度。

如测出各个a值,则各个未知浓度c就可从上列联立方程式中解得。

a值的求法是将样品配成一定浓度后测出红外光谱,再求出某一波数处的吸光度值,由于c利b是已知的实验值,用Beer定律A=abc关系即可求得各a值。

联立方程定量分析应注意以下几点。

1)选择合适的波数点。

在此点波数只应以某—组分的贡献为主,其他组分在此都只有较小的吸收贡献,
2)读准吸光度。

在实验时必须读谱图上那些没有吸收峰值的某波数上的吸光度数值。

在谱带的斜坡上更需注意所读数据的准确性。

3)求a值时选取合适的浓度。

在测定a值时。

各组分的纯品配制浓度应接近未知样品中该组分的浓度,且应在该量附近配制4~5个点以求出较为可靠的a值,或据此绘出工作曲线。

由于解联立方程的计算工作量很大,现代的红外光谱仪器均带有功能良好的计算机,借助所配备的计算机,运用线件代数中矩阵法解联立方程成为十分实用的方法。

红外定量分析的准确度,若不考虑样品称量、溶液配制和槽厚在测定中所引起的误差。

主要考虑吸光度的测定所引起的误差,±1%的误差是它的最佳极限值,实际上是比±1%大,因此红外光谱用得最多的还是定性分析。

相关文档
最新文档