应用回归分析试卷

合集下载

(完整版)数学必修三回归分析经典题型(带答案)

(完整版)数学必修三回归分析经典题型(带答案)

数学必修三回归分析经典题型1.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为93.7319.7ˆ+=x y用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) A.身高一定是145.83cm B.身高在145.83cm 以上 C.身高在145.83cm 以下 D.身高在145.83cm 左右 【答案】D【解析】解:把x=10代入可以得到预测值为145.83,由于回归模型是针对3-9岁的孩子的,因此这个仅仅是估计值,只能说左右,不能说在上或者下,没有标准。

选D2.对有线性相关关系的两个变量建立的线性回归方程$y =$a+b $x ,关于回归系数b $,下面叙述正确的是________.①可以小于0;②大于0;③能等于0;④只能小于0. 【答案】①【解析】由b$和r 的公式可知,当r =0时,这两变量不具有线性相关关系,但b 能大于0也能小于0.3.对具有线性相关关系的变量x 、y 有观测数据(x i ,y i )(i =1,2,…,10),它们之间的线性回归方程是$y =3x +20,若101i i x =∑=18,则101i i y =∑=________.【答案】254【解析】由101i i x =∑=18 1.8.因为点在直线$y =3x +2025.4. 所以101i i y =∑=25.4×10=254.4.下表是某厂1~4由散点图可知,用水量其线性回归直线方程是y =-0.7x +a ,则a 等于________. 【答案】5.252.53.5,∵回归直线方程过定点, ∴3.5=-0.7×2.5+a. ∴a =5.25.5.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到线性回归方程$y =b$x +$a ,那么下列说法正确的是________.①直线$y =b$x +$a 必经过点(x ,y ); ②直线$y =b$x +$a 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点; ③直线$y =b$x +$a 的斜率为1221ni ii nii x ynx y xnx==--∑∑;④直线$y =b $x +$a 和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差$21()ni i i b a y x =⎡⎤⎣⎦∑$-+是该坐标平面上的直线与这些点的最小偏差.【答案】①③④【解析】回归直线的斜率为b ,故③正确,回归直线不一定经过样本点,但一定经过样本中心,故①正确,②不正确.6.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm. 【答案】185【解析】设父亲身高为173176,b$= $a=-b $ 176-1×173=3, ∴$y =x +3,当x =182时,$y =185.7.下表是关于宿州市服装机械厂某设备的使用年限(年)和所需要的维修费用y (万元)的几组统计数据:)请根据上表提供的数据,用最小二乘法求出y 关于的线性回归方程;(2)估计使用年限为10年时,维修费用为多少?【答案】解:(1)0.08 1.23yx =+线性回归方程为 (2)估计使用年限为10年时,维修费用为12.38万元. 【解析】(1)先求然后利用公可求出回归直线y ax b =+方程.(2)把x=10代入回归直线方程可得y 的值,就可得所求的值.解:(1906543222222512=++++=∑=i ixΘ又x y 23.108.0+=∴线性回归方程为 (2)把10=x 代入回归方程得到:38.121023.108.0=⨯+=y∴估计使用年限为10年时,维修费用为12.38万元.。

数学课后训练:回归分析的基本思想及其初步应用

数学课后训练:回归分析的基本思想及其初步应用

课后训练一、选择题1.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做了100次和150次试验,并且利用线性回归方法,求得回归直线分别为l1和l2.已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()A.l1和l2有交点(s,t)B.l1与l2相交,但交点不一定是(s,t)C.l1与l2必定平行D.l1与l2必定重合2.下列四个命题中正确的是( )①在线性回归模型中,e是bx+a预报真实值y的随机误差,它是一个观测的量;②残差平方和越小的模型,拟合的效果越好;③用R2来刻画回归方程,R2越小,拟合的效果越好;④在残差图中,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,若带状区域宽度越窄,说明拟合精度越高,回归方程的预报精度越高.A.①③B.②④C.①④D.②③3.已知x,y取值如下表:若x,y y=0.95x+a,则a=( )A.0.325 B.2。

6C.2。

2 D.04.某学校开展研究性学习活动,某同学获得一组实验数据如下表:对于表中数据,( )A .y =2x -2B .12xy ⎛⎫= ⎪⎝⎭C .y =log 2xD .y =12(x 2-1)5.若某地财政收入x 与支出y 满足线性回归方程y =bx +a +e (单位:亿元),其中b =0.8,a =2,|e |≤0。

5.如果今年该地区财政收入10亿元,年支出预计不会超过( )A .10亿B .9亿C .10.5亿D .9.5亿6.某产品的广告费用x 与销售额y 的统计数据如下表:y bx a =+b 费用为6万元时销售额为( )A .63.6万元B .65。

5万元C .67.7万元D .72.0万元 二、填空题7.在研究身高和体重的关系时,求得R 2≈______,可以叙述为“身高解释了64%的体重变化,而随机误差贡献了剩余的36%”,所以身高对体重的效应比随机误差的效应大得多.8.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y之间的关系:小李这5的方法,预测小李该月6号打6小时篮球的投篮命中率为__________.三、解答题9.恩格尔系数=食物支出金支出金额总额×100%.在我国,据恩格尔系数判定生活发展阶段的标准为:贫困:>60%,温饱:50%~60%,小康:40%~50%,富裕:<40%.据国家统计局统计显示,随着中国经济的不断发展,城镇居民家庭恩格尔系数不断下降,居民消费已从温饱型向享受型、发展型转变.如下表:(2)预报2013年的恩格尔系数;(3)求R2;(4)作出残差图.10.关于x与y有以下数据:已知x与y 6.5b ,(1)求y与x的线性回归方程;(2)现有第二个线性模型:y=7x+17,且R2=0。

应用回归分析期末试题

应用回归分析期末试题

应用回归分析期末试题一元线性回归分析1.讨论家庭收入x 影响家庭消费支出y 的问题。

现已建立εββ++=x y o 1的数学模型,已知5400=x ,2997=y ,3490800002=∑x ,1234929002=∑y,193836000=∑xy ,求回归方程。

答:∧0β,∧1β的表达式如下:⎪⎪⎩⎪⎪⎨⎧=-=∧∧∧xx xyl l x y 110βββ 得:⎪⎩⎪⎨⎧==∧∧4845.053.38010ββ则回归方程为x y 4845.053.380+=∧。

2.在给定样本(){}n i y x i i ,...,1,,=后,一元线性回归模型为i i i x y εββ++=10(已经符合一元线性回归模型的假设),求0β,1β的最小二乘估计∧0β,∧1β。

答:要求0β,1β的最小二乘估计∧0β,∧1β,即求使得离差平方和()10,ββQ 达到最小时的10,ββ,满足),(min ),(10,1010ββββββQ Q =∧∧由于()10,ββQ 是一个非负二次型,对10,ββ的偏导存在,下求偏导⎪⎪⎩⎪⎪⎨⎧=---=∂∂=---=∂∂∑∑==ni ii i ni i i x x y Q x y Q110111000)(20)(2ββββββ 求解得⎪⎪⎩⎪⎪⎨⎧=-=∧∧∧xx xyl l x y 110βββ 其中∑==ni i x n x 11,∑==n i i y n y 11,2)(∑-=x x l i xx ,)()(y y x x l i i xy --=∑。

3.证明:最小二乘法的参数估计1ββ和o 具有线性性和无偏性。

答(1)线性性:估计量0β和1β为随机变量i y 的线性函数 1β:由0)(=-∑x x i ,有∑=∧-==ni i xxi xxxy y l xx l l 11)(β,所以1β是i y 的线性组合。

0β:i ni xx iy x l xx n x y ∑=∧∧--=-=110)1(ββ,可见0β也是i y 的线性组合。

《应用回归分析》试卷

《应用回归分析》试卷

《应用回归分析》试卷★要求将答案做在答题纸上,做在别处无分。

一、(50分)单项选择题(每题1分)1.回归分析的建模依据为()A.统计理论B.预测理论C.经济理论D.数学理论2.随机方程式构造依据为()A.经济恒等式 B.政策法规 C.变量间的技术关系 D.经济行为3. 回归模型的被解释变量一定是()A.控制变量 B.政策变量 C.内生变量 D.外生变量4.在同一时点或时期上,不同统计单位的相同统计指标组成的数据是()A.时期数据 B.时点数据 C.时序数据 D.截面数据5.回归分析的目的为()A.研究解释变量对被解释变量的依赖关系 B.研究解释变量和被解释变量的相关关系C.研究被解释变量对解释变量的依赖关系D.以上说法都不对6.在回归分析中,有关被解释变量Y和解释变量X的说法正确的为()A.Y为随机变量,X为非随机变量 B. Y为非随机变量,X为随机变量C.X、Y均为随机变量D. X、Y均为非随机变量7.在X与Y的相关分析中()A.X是随机变量,Y是非随机变量 B. Y是随机变量,X是非随机变量C.X和Y都是随机变量D. X和Y均为非随机变量8.总体回归线是指()A.解释变量X取给定值时,被解释变量Y的样本均值的轨迹。

B.样本观测值拟合的最好的曲线。

C.使残差平方和最小的曲线D.解释变量X取给定值时,被解释变量Y的条件均值或期望值的轨迹。

9.最小二乘准则是指()A.随机误差项ε的平方和最小 B. Y与它的期望值E(Y/X)的离差平方和最小C. X与它均值E(X)的离差的平方和最小D.残差e的平方和最小10.按照经典假设,线性回归模型中的解释变量应为非随机变量,且( )A.与被解释变量Y不相关B.与随机误差项ε不相关C. 与回归值ˆY不相关D.以上说法均不对11.有效估计量是指( )A.在所有线性无偏估计中方差最大B.在所有线性无偏估计量中变异系数最小C.在所有线性无偏估计量中方差最小D.在所有线性无偏估计量中变异系数最大12.在一元线性回归模型中, 2σ的无偏估计量2ˆσ为( )A.21niien=∑B.211niien=-∑C.212niien=-∑D.213niien=-∑13判定系数2R的取值范围为( )A.202R ≤≤ B. 201R ≤≤C. 204R ≤≤D. 214R ≤≤14.回归系数1β通过了t 检验,表示( )A.10β≠B.1ˆ0β≠ C.11ˆ0,0ββ≠= D.11ˆ0,0ββ=≠ 15.个值区间预测就是给出( )A.预测值0ˆY 的一个置值区间 B.实际值0Y 的一个置值区间 C.实际值0Y 的期望值的一个置值区间 D.实际值0X 的一个置值区间16.一元线性回归模型01Y X ββε=++中, 0β的最小二乘估计是( )A.01ˆˆY X ββ=+B. 01ˆˆY X ββ=+ C. 01ˆˆY X ββ=- D. 01ˆˆY X ββ=+ 17.回归分析中简单回归指的是_____A.两个变量之间的回归B.三个以上变量的回归C.两个变量之间的线性回归D.变量之间的线性回归 18.运用OLSE ,模型及相关变量的基本假定不包括_____A.E(εi)=0B.cov(εi, εj)=0 i ≠j,i,j=1,2,3,……,nC.var(εi)=0 i=1,2……,nD.解释变量是非随机的 19. R 2(调整R 2)的计算公式是_____ A.R 2= 1-11n n p ---.SSE SST B. R 2=1-11n p n ---.SSE SST C. R 2=1-12n n p ---.SSE SST D. R 2=1-21n p n ---.SSE SST20.下列选项哪个是用来检验模型是否存在异方差问题_____A.方差扩大化因子VIFB.DW 检验C.等级相关系数D.连贯检验 21.在多元线性回归模型中,调整后的判定系数2R 与判定系数2R 的关系为()A.22R R <B. 22R R <C. 22R R ≤D. 22R R ≤ 22.下列哪种情况说明存在异方差( )A.()0i E ε=B.()0,i j E i j εε=≠C.22()i E εσ=(常数)D. 22()i i E εσ=23.当模型存在异方差时,使用普通最小二乘法得到的估计量是( )A.有偏估计量B.有效估计量C.无偏估计量D.渐进有效估计量24.下列哪种方法不是检验异方差的方法( )A.残差图分析法B.等级相关系数法C.样本分段比检验D.DW 检验法 25.异方差情形下,常用的估计方法是( )A.一阶差分法 B 广义差分法 C. 工具变量法 D.加权最小二乘法 26.下列那种情况属于存在序列相关( )A.(,)0,i j Cov i j εε=≠B. (,)0,i j Cov i j εε≠≠C. 2(,),i j Cov i j εεσ== D. 2(,),i j i Cov i j εεσ==27.若线性回归模型的随机误差项存在序列相关时,直接用普通最小二乘法估计参数,则参数估计量为( )A.有偏估计量B.有效估计量C.无效估计量D.渐进有效估计量28.下列哪种方法不是检验序列有效的方法( )A.残差图分析法B.自相关系数法C.方差扩大因子法D. DW 检验法29. DW 检验适用于检验( )A.异方差B.序列相关C.多重共线性D.设定误差 30.若计算的DW 的统计量为2,则表明该模型( ) A.不存在序列相关 B.存在一阶正序列相关 C.存在一阶负序列相关 D.存在高阶相关 31.DW 检验的原假设为( )A. DW=0B. 0ρ=C. DW=1D. 1ρ= 32.DW 统计量的取范围是()A. 10DW -≤≤B. 11DW -≤≤C. 22DW -≤≤D. 04DW ≤≤33.根据20个观测值估计的一元线性回归模型的 DW=2.3,在样本容量 n =20,解释变量个数 k =1(不包含常数项),显著型水平α=0.05时,查得dL=1.201,dU=1.411,则可以判断该模型( )A.不存在一阶自相关B.有正的一阶自相关C.有负的一阶自相关D.无法确定 34.当模型存在一阶自相关情况下,常用的估计方法是( )A.加权最小二乘法B.广义差分法C.工具变量法D.普通最小二乘法 35.采用一阶差分法估计一阶自相关模型,适合于( ) A. 1ρ≈ B. 0ρ≈ C. 10ρ-<< D. 01ρ<<36.在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近1,则表明模型中存在( )A.异方差B.自相关C.多重共线性D.设定误差37.在线性回归模型中,若解释变量1X 和2X 的观测值成比例,即有12i i X kX =,其中k 为非零常数,则表明模型中存在( ) A.异方差 B.严格共线性 D 序列相关 D.高度共线性38.经验认为,某个解释变量与其他解释变量间多重共线性很严重的判别标准是这个解释变量的方差扩大化因子( ) A.大于零 B 小于1 C 大于10 D 小于5 39.若查表得到dL 和dU ,则不存在序列相关的区间为( )A.0DW dL ≤≤B. 4dU DW dU ≤≤-C. 44dU DW dL -≤≤-D. 44dU DW -≤≤ 40.设01Y X ββε=++,Y 表示居民消费支出,X 表示居民收入,D=1代表城镇居民,D=0代表农村居民,则截距变动模型为( )A. 012Y X D βββε=+++B. 021()Y X βββε=+++C. 012()Y X βββε=+++D. 012(*)Y X D X βββε=+++41.设01Y X ββε=++,Y 表示居民消费支出,X 表示居民收入,D=1代表城镇居民,D=0代表农村居民,则斜率变动模型为( )A. 012Y X D βββε=+++B. 021()Y X βββε=+++C. 012()Y X βββε=+++D. 012(*)Y X D X βββε=+++42.设虚拟变量D 影响线性回归模型中X 的斜率,如何引进虚拟变量,使模型成为斜率变动模型( )A.直接引进DB.按新变量D*X 引进C.按新变量(D+X)引进D.无法引进43.虚拟变量的赋值原则是( )A.给定某一质量变量的某属性出现为1,未出现为0B.不用赋值C.按照某一质量变量属性种类编号赋值D. 以上说法都不正确44.有关虚拟变量的表述正确的是( )A.用来代表质的因素,有时候也可以代表数量因素B.只能用来代表质的因素C.只能用来代表数量因素D.以上说法都不正确45.如果一个回归模型包含截距项,对一个具有M 个特征的质的因素需要引入的虚拟变量的个数为( )A.MB.(M-1)C.(M-2)D.(M+1)46.设个人消费函数01Y X ββε=++中,消费支出Y 不仅与收入X 有关,而且与消费者的性别、年龄构成有关,年龄构成可以分为老,中,青三个层次,假定边际消费倾向不变,该消费函数引入虚拟变量的个数为( )A.1个B.2个C.3个D.4个47.在一个包含截距项的回归模型01Y X ββε=++中,如果将一个具有M 个特征的质的因素设定M 个虚拟变量,则会产生的问题是( )A.异方差B.序列相关C.不完全多重线性相关D.完全多重线性相关48.设消费函数为012Y X D βββε=+++,式中Y 表示某年居民的消费水平,X 表示同年居民的收入水平,D 为虚拟变量,D=1表示正常年份,D=0表示非正常年份,则( )A.该模型为截距、斜率同时变动模型B.该模型为截距变动模型C.该模型为斜率变动模型D.该模型为时间序列模型49.设截距和斜率同时变动模型为0123(*)Y X D D X ββββε=++++,对模型做t 检验,下面哪种情况成立时,该模型为截距变动模型( )A.230,0ββ≠≠B. 230,0ββ==C. 230,0ββ≠=D. 230,0ββ=≠50.根据样本资料建立的消费函数如下:ˆ110.5650.5t tC D X =++,其中,C 为消费,X 为收入,虚拟变量D=1表示城镇家庭,D=0表示农村家庭,所有参数均检验显著,则城镇家庭的消费函数为( )A. ˆ110.50.5t t C X =+B. ˆ175.50.5t t C X =+C. ˆ110.565.5t t C X =+D. ˆ1300.5t tC X =+ 二、(10分)判断题(每题1分,做出判断即可)1. 最小二乘估计量具有最小方差。

相关分析与回归分析练习试卷1(题后含答案及解析)

相关分析与回归分析练习试卷1(题后含答案及解析)

相关分析与回归分析练习试卷1(题后含答案及解析) 题型有:1. 单选题 2. 多选题单项选择题以下每小题各有四项备选答案,其中只有一项是正确的。

1.根据散点图8-1,可以判断两个变量之间存在( )。

A.正线性相关关系B.负线性相关关系C.非线性关系D.函数关系正确答案:A 涉及知识点:相关分析与回归分析2.假设某品牌的笔记本市场需求只与消费者的收入水平和该笔记本的市场价格水平有关。

则在假定消费者的收入水平不变的条件下,该笔记本的市场需求与其市场价格水平的相关关系就是一种( )。

A.单相关B.复相关C.偏相关D.函数关系正确答案:C解析:在某一现象与多种现象相关的场合,假定其他变量不变,专门考察其中两个变量的相关关系称为偏相关。

在假定消费者的收入水平不变的条件下,该笔记本的市场需求与其市场价格水平的关系就是一种偏相关。

知识模块:相关分析与回归分析3.相关图又称( )。

A.散布表B.折线图C.散点图D.曲线图正确答案:C解析:相关图又称散点图,是指把相关表中的原始对应数值在乎面直角坐标系中用坐标点描绘出来的图形。

知识模块:相关分析与回归分析4.下列相关系数取值中错误的是( )。

A.-0.86B.0.78C.1.25D.0正确答案:C解析:相关系数r的取值介于-1与1之间。

知识模块:相关分析与回归分析5.如果相关系数r=0,则表明两个变量之间( )。

A.相关程度很低B.不存在任何关系C.不存在线性相关关系D.存在非线性相关关系正确答案:C解析:相关系数r是根据样本数据计算的度量两个变量之间线性关系强度的统计量。

如果相关系数r=0,说明两个变量之间不存在线性相关关系。

知识模块:相关分析与回归分析6.当所有观测值都落在回归直线上,则两个变量之间的相关系数为( )。

A.1B.-1C.+1或-1D.大于-1,小于+1正确答案:C解析:当所有观测值都落在回归直线上时,说明两个变量完全线性相关,所以相关系数为+1或-1。

《应用回归试分析》试题答案

《应用回归试分析》试题答案

一、一家保险公司十分关心其总公司营业部加班的程度,决定认真调查现状。

经十周时间,收集了每周加班时间的数据和签发的新保单数目,x 为每周签发的新保单数目,y 为每周加(3)设回归方程为01y x ββ∧∧∧=+11221(2637021717)0.0036(71043005806440)()ni ii nii x y n x yxn x --=-=--β===--∑∑01 2.850.00367620.1068y x ββ-∧-=-=-⨯=0.10680.0036y x∧∴=+可得回归方程为(4) 22n i=11()n-2i i y y σ∧∧=-∑ 2n01i=11(())n-2i y x ββ∧∧=-+∑=0.2305 σ∧=0.4801(5) 由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。

因而/2|(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为0.4801/⨯⨯(0.0036-1.8600.0036+1.860即为:(0.0028,0.0044)22001()(,())xxx N n L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。

因而/2(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 095%0.3567,0.5703β∧-可得的置信度为的置信区间为()(6)x 与y 的决定系数 22121()()nii nii y y r y y ∧-=-=-==-∑∑16.8202718.525=0.908(7)ANOV Ax平方和 df均方F 显著性组间(组合) 1231497.500 7 175928.214 5.302.168 线性项 加权的1168713.036 1 1168713.036 35.222 .027 偏差62784.464 6 10464.077 .315.885组内 66362.500 2 33181.250 总数1297860.0009由于(1,9)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。

应用回归分析试题

应用回归分析试题

1、对于一元线性回归01(1,2,...,)i i i y x i n ββε=++=,()0i E ε=,2var()i εσ=,cov(,)0()i j i j εε=≠,下列说法错误的是(A)0β,1β的最小二乘估计0ˆβ,1ˆβ 都是无偏估计; (B)0β,1β的最小二乘估计0ˆβ,1ˆβ对1y ,2y ,...,n y 是线性的; 2、在回归分析中若诊断出异方差,常通过方差稳定化变化对因变量进行变换. 如果误差方差与因变量y 的期望成正比,则可通过下列哪种变换将方差常数化 (A)1y;(B) (C) ln(1)y +;(D)ln y .3、下列说法错误的是 (A)强影响点不一定是异常值;(B)在多元回归中,回归系数显着性的t 检验与回归方程显着性的F 检验是等价的; (C)一般情况下,一个定性变量有k 类可能的取值时,需要引入k-1个0-1型自变量; (D)异常值的识别与特定的模型有关.4、下面给出了4个残差图,哪个图形表示误差序列是自相关的(A)(B)(C) (D)5、下列哪个岭迹图表示在某一具体实例中最小二乘估计是适用的应用回归分析试题(一)一、选择题.(每题3分,共15分)(C)0β,1β的最小二乘估计0ˆβ,1ˆβ之间是相关的; (D)若误差服从正态分布,0β,1β的最小二乘估计和极大似然估计是不一样的.(A) (B) (C) (D)二、填空题(每空2分,共20分)1、考虑模型y X βε=+,2var()n I εσ=,其中:X n p '⨯,秩为p ',20σ>不一定已知,则ˆβ=__________________, ˆvar()β=___________,若ε服从正态分布,则 22ˆ()n p σσ'-:___________,其中2ˆσ是2σ的无偏估计. 2、下表给出了四变量模型的回归结果:则残差平方和=_________,总的观察值个数=_________,回归平方和的自由度=________. 3、已知因变量y 与自变量1x ,2x ,3x ,4x ,下表给出了所有可能回归模型的AIC 值,则最优子集是_____________________.4、在诊断自相关现象时,若0.66DW =,则误差序列的自相关系数ρ的估计值=_____ ,若存在自相关现象,常用的处理方法有迭代法、_____________、科克伦-奥克特迭代法.5、设因变量y 与自变量x 的观察值分别为12,,...,n y y y 和12,,...,n x x x ,则以*x 为折点的折线模型可表示为_____________________.三、(共45分)研究货运总量y (万吨)与工业总产值1x (亿元)、农业总产值2x (亿元)、居民非商品支出3x (亿元)的线性回归关系.观察数据及残差值i e 、学生化残差i SRE 、删除学生化残差()i SRE 、库克距离i D 、杠杆值ii ch 见表一表一表二 参数估计表已知0.025(6) 2.447t =,0.025(7) 2.365t =,0.05(3,6) 4.76F =,0.05(4,7) 4.12F =,根据上述结果,解答如下问题:1、计算误差方差2σ的无偏估计及判定系数2R .(8分)2、对1x ,2x ,3x 的回归系数进行显着性检验.(显着性水平0.05α=)(12分)3、对回归方程进行显着性检验.(显着性水平0.05α=)(8分)4、诊断数据是否存在异常值,若存在,是关于自变量还是关于因变量的异常值(10分)5、写出y 关于1x ,2x ,3x 的回归方程,并结合实际对问题作一些基本分析(7分) 四、(共8分)某种合金中的主要成分为金属A 与金属B ,研究者经过13次试验,发现这两种金属成分之和x 与膨胀系数y 之间有一定的数量关系,但对这两种金属成分之和x 是否对膨胀系数y 有二次效应没有把握,经计算得y 与x 的回归的残差平方和为,y 与x 、2x 的回归的残差平方和为,试在的显着性水平下检验x 对y 是否有二次效应 (参考数据0.050.05(1,10) 4.96,(2,10) 4.1F F ==)五、(共12分)(1)简单描述一下自变量12,,...,p x x x 之间存在多重共线性的定义;(2分) (2)多重共线性的诊断方法主要有哪两种(4分) (3)消除多重共线性的方法主要有哪几种(6分)应用回归分析试题(二)一、选择题1. 某同学由x 与y 之间的一组数据求得两个变量间的线性回归方程为y bx a =+,已知:数据x 的平均值为2,数据y 的平均值为3,则 ( A )A .回归直线必过点(2,3)B .回归直线一定不过点(2,3)C .点(2,3)在回归直线上方D .点(2,3)在回归直线下方2. 在一次试验中,测得的四组值分别是,则Y 与X 之间的回归直线方程为( A )A . B . C . D.3. 在对两个变量x ,y 进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释; ②收集数据(i x 、i y ),1,2i =,…,n ;③求线性回归方程; ④求未知参数; ⑤根据所搜集的数据绘制散点图如果根据可行性要求能够作出变量,x y 具有线性相关结论,则在下列操作中正确的是( D ) A .①②⑤③④ B .③②④⑤① C .②④③①⑤ D .②⑤④③① 4. 下列说法中正确的是(B )A .任何两个变量都具有相关关系B .人的知识与其年龄具有相关关系C .散点图中的各点是分散的没有规律D .根据散点图求得的回归直线方程都是有意义的 5. 给出下列结论:(1)在回归分析中,可用指数系数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好; (2)在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好; (3)在回归分析中,可用相关系数r 的值判断模型的拟合效果,r 越小,模型的拟合效果越好; (4)在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高. 以上结论中,正确的有(B )个.A .1B .2C .3D .4 6. 已知直线回归方程为2 1.5y x =-,则变量x 增加一个单位时(C)A.y 平均增加1.5个单位 B.y 平均增加2个单位C.y 平均减少1.5个单位 D.y 平均减少2个单位7. 下面的各图中,散点图与相关系数r 不符合的是(B )8. 一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归直线方程为ˆ7.1973.93yx =+,据此可以预测这个孩子10岁时的身高,则正确的叙述是( D )A .身高一定是B .身高超过C .身高低于D .身高在左右 9. 在画两个变量的散点图时,下面哪个叙述是正确的( B ) (A)预报变量在x 轴上,解释变量在y 轴上 (B)解释变量在x 轴上,预报变量在y 轴上(C)可以选择两个变量中任意一个变量在x 轴上 (D)可以选择两个变量中任意一个变量在y 轴上10. 两个变量y 与x 的回归模型中,通常用2R 来刻画回归的效果,则正确的叙述是( D )A. 2R 越小,残差平方和小B. 2R 越大,残差平方和大C.2R 于残差平方和无关 D. 2R 越小,残差平方和大11. 两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( A )A.模型1的相关指数2R 为 B.模型2的相关指数2R 为 C.模型3的相关指数2R 为 D.模型4的相关指数2R 为12. 在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( B ) A.总偏差平方和 B.残差平方和C.回归平方和D.相关指数R 213.工人月工资(元)依劳动生产率(千元)变化的回归直线方程为ˆ6090y x =+,下列判断正确的是(C ) A.劳动生产率为1000元时,工资为50元 B.劳动生产率提高1000元时,工资提高150元 C.劳动生产率提高1000元时,工资提高90元 D.劳动生产率为1000元时,工资为90元 14. 下列结论正确的是(C )①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. A.①②B.①②③C.①②④D.①②③④15. 已知回归直线的斜率的估计值为,样本点的中心为(4,5),则回归直线方程为( C ) A.B. C.D.二、填空题 16. 在比较两个模型的拟合效果时,甲、乙两个模型的相关指数的值分别约为和,则拟合效果好的模型是甲 .17. 在回归分析中残差的计算公式为列联表、三维柱形图、二维条形图.18. 线性回归模型(和为模型的未知参数)中,称为 随机误差 .19. 若一组观测值(x 1,y 1)(x 2,y 2)…(x n ,y n )之间满足y i =bx i +a+e i (i=1、2.…n)若e i 恒为0,则R 2为___e i 恒为0,说明随机误差对y i 贡献为0.三、解答题20. 调查某市出租车使用年限x 和该年支出维修费用y (万元),得到数据如下:(2)由(1)中结论预测第10年所支出的维修费用.(121()()()ni i i ni i x x y y b x x a y bx==⎧-⋅-⎪⎪=⎨-⎪⎪=-⎪⎩∑∑) 20. 解析: (1)列表如下:于是23.145905453.112552251251=⨯-⨯⨯-=--=∑∑==xx yx yx b i i i ii ,∴线性回归方程为:08.023.1^+=+=x a bx y (2)当x=10时,38.1208.01023.1^=+⨯=y (万元)即估计使用10年时维修费用是1238万元 回归方程为: 1.230.08y x =+ (2) 预计第10年需要支出维修费用12.38 万元.21. 以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为2150m 时的销售价格. (4)求第2个点的残差。

回归分析试题答案

回归分析试题答案

诚信应考 考出水平 考出风格浙江大学城市学院2011 — 2012 学年第一学期期末考试卷《 回归分析 》开课单位: 计算分院 ;考试形式:开卷(A4纸一张);考试时间:2011年01月6日; 所需时间: 120 分钟一.计算题(10分。

)1,考虑过原点的线性回归模型1,1,2,...,i i i y x i n βε=+=误差1,...,n εε仍满足基本假定。

求1β的最小二乘估计。

并求出1β 的期望和方差,写出1β的分布。

1221111111121,1,2,...,ˆ()()2()0ˆi i i nni i i i i i ni i i i ni ii nii y x i n Q y yy x Qy x x x yxβεββββ======+==-=-∂=--=∂=∑∑∑∑∑解:第1页共 6 页二. 证明题(本大题共2小题,每小题7分,共14分。

)1,证明:(1)22()1var()[1]i i xxx x e n L σ-=--(2)2211ˆˆ()2n i ii y y n σ==--∑是2σ的无偏估计。

011111122ˆˆˆ()()1()()1var()var[()()]()1var()var((()))()12cov[,(())](1(i i i i i nn i i j j jj j xx ni i i j j j xx ni i j j j xx ni i j j j xxe y y y x x x x y y x x y n L x x e y x x y n L x x y x x y n L x x y x x y n L x n ββσσ======-=----=----=-+--=++---+-=++∑∑∑∑∑解(1):222122222221212211)()1())2()()()11(12()]()1[1]1ˆˆ(2)()(())21ˆ[()]2()111var()[1]2212n i i j j xx xxi i xx xxi xx ni i i ni i i n n i i i i xx x x x x x L n L x x x x n L n L x x n L E E y y n E y y n x x e n n n L n σσσσσ=====----+--=++-+-=--=--=---==----=-∑∑∑∑∑22(11)n σσ--=三.填空题.(每空2分,共46分)1.为了研究家庭收入和家庭消费的关系,通过调查得到数据如下:6.22893,29.12349,43008,97.29,5422=====∑∑∑xy yxy x1)用最小二乘估计求出线性回归方程的参数估计值0ˆβ= 。

回归分析期末考试试卷

回归分析期末考试试卷

回归分析期末考试试卷1. 简答题(40分)a) 请解释回归分析的基本原理和应用范围。

(10分)b) 比较线性回归和多元回归分析,包括它们的定义、特点和适用情况。

(10分)c) 什么是多重共线性?它对回归分析有什么影响?如何检测和处理多重共线性?(10分)d) 请解释R方统计量在回归分析中的作用和意义。

(10分)2. 计算题(60分)以下数据是一家公司过去10年的销售额和广告费用(单位:百万元):| 年份 | 销售额 | 广告费用 ||------|-------|---------|| 2001 | 20 | 2.5 || 2002 | 25 | 3.0 || 2003 | 30 | 3.5 || 2004 | 35 | 4.0 || 2005 | 40 | 4.5 || 2006 | 45 | 5.0 || 2007 | 50 | 5.5 || 2008 | 55 | 6.0 || 2009 | 60 | 6.5 || 2010 | 65 | 7.0 |a) 请计算销售额和广告费用的平均值和标准差。

(10分)b) 请绘制销售额和广告费用之间的散点图,并添加趋势线。

(10分)c) 进行简单线性回归分析,求出回归方程和相关系数的值。

(10分)d) 对回归方程进行假设检验,判断广告费用对销售额是否有显著影响。

(10分)e) 求出回归方程的可决系数R方,并解释其意义。

(10分)f) 利用回归方程预测2011年的销售额。

(10分)3. 应用题(60分)某医药公司想通过回归分析来预测某种药物的疗效得分(Y)。

他们收集了200个患者的数据,其中包括药物的剂量(X1,以mg为单位)、患者的年龄(X2,以岁为单位)、性别(X3,1代表女性,0代表男性)和治疗时间(X4,以周为单位)。

使用SPSS软件进行多元回归分析,得到回归方程:Y = 2.1X1 + 0.9X2 - 1.5X3 + 0.4X4 + 5.2a) 请解释回归方程中各变量的系数和常数项的含义。

相关分析与回归分析同步练习试卷2(题后含答案及解析)

相关分析与回归分析同步练习试卷2(题后含答案及解析)

相关分析与回归分析同步练习试卷2(题后含答案及解析)题型有:1. 单项选择题 3. 名词解释题 4. 简答题 5. 计算分析题单项选择题每小题1分,在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

多选无分。

1.总体总量指标的点估计值是()A.平均数乘以样本成数B.样本容量乘以样本成数C.样本指标值乘以总体单位数D.样本指标的区间估计值乘以总体单位数正确答案:C 涉及知识点:相关分析与回归分析2.理论上最符合抽样调查随机原则的形式是()A.整群抽样B.类型抽样C.阶段抽样D.简单随机抽样正确答案:D 涉及知识点:相关分析与回归分析3.()是其他抽样方式的基础,也是衡量其他抽样方式抽样效果的标准。

()A.简单随机抽样B.等距抽样C.类型抽样D.整群抽样正确答案:A 涉及知识点:相关分析与回归分析4.为了解职工家庭生活水平状况,决定采用等距抽样进行调查,首先把职工按工资水平的高低进行排队,此种排队方法属于A.按无关标志排队B.按有关标志排队C.按简单标志排队D.按复杂标志排队正确答案:B 涉及知识点:相关分析与回归分析5.产品的单位成本随着劳动生产率的不断提高而下降,此种现象属于()A.完全相关B.不完全相关C.正相关D.负相关正确答案:D 涉及知识点:相关分析与回归分析6.只反映一个自变量和一个因变量韵相关关系是()A.正相关B.负相关C.单相关D.复相关正确答案:C 涉及知识点:相关分析与回归分析7.当相关关系的—个变量变动时,另—变量也相应地发生大致均等的变动,这种相关关系称为()A.线性相关B.非线性相关C.单相关D.完全相关正确答案:A 涉及知识点:相关分析与回归分析8.完全相关关系就是()A.函数关系B.因果关系C.狭义的相关关系D.广义的相关关系正确答案:A 涉及知识点:相关分析与回归分析9.大多数相关关系属于()A.不相关B.完全相关C.不完全相关D.无法判断正确答案:C 涉及知识点:相关分析与回归分析10.制作双变量分组相关表,应将自变量放在()A.横栏B.纵栏C.中间栏D.任意一栏正确答案:A 涉及知识点:相关分析与回归分析11.相关系数的取值范围是()A.-1≤r≤lB.-1≤r≤lC.-1&lt;r&lt;lD.-1≤r&lt;1正确答案:B 涉及知识点:相关分析与回归分析12.两个变量问的相互依存程度越高,则二者之间的相关系数值越接近于()A.1B.-1C.0D.1或-1正确答案:D 涉及知识点:相关分析与回归分析13.两个现象之间相互依存关系程度越弱,则相关系数r()A.越接近于0B.越接近于-1C.越接近于1D.越接近于0.5正确答案:A 涉及知识点:相关分析与回归分析14.在相关分析中,要求相关的两个变量()A.至少有一个是随机变量B.因变量是随机变量C.都不是随机变量D.自变量是随机变量正确答案:A 涉及知识点:相关分析与回归分析名词解释题每小题3分15.一元线性回归模型正确答案:一元线性回归模型又称简单直线回归模型,它是根据两个变量的成对数据,配合直线方程式,再根据自变量的变动值,来推算因变量的估计值的一种统计分析方法。

回归分析的初步应用(人教A版)(含答案)

回归分析的初步应用(人教A版)(含答案)

回归分析的初步应用(人教A版)一、单选题(共7道,每道14分)1.下列结论:①函数关系是一种确定性关系;②相关关系是一种非确定关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.其中正确的是( )A.①②B.①②③C.①②④D.①②③④答案:C解题思路:试题难度:三颗星知识点:回归分析的初步应用2.在回归分析中,残差图中纵坐标为( )A.残差B.样本编号C. D.答案:A解题思路:试题难度:三颗星知识点:回归分析的初步应用3.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( )A.总偏差平方和B.残差平方和C.回归平方和D.相关指数答案:B解题思路:试题难度:三颗星知识点:回归分析的初步应用4.给出下列结论:①在回归分析中,可用指数系数的值判断模型的拟合效果,越大,模型的拟合效果越好;②在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;③在回归分析中,可用相关系数的值判断模型的拟合效果,越大,模型的拟合效果越好;④在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域内,说明这样的模型比较适合,带状区域的宽度越窄,说明模型的拟合精度越高.其中正确的共有( )A.1个B.2个C.3个D.4个答案:B解题思路:试题难度:三颗星知识点:回归分析的初步应用5.下列四个命题:①将一组数据中的每个数据都加上同一个常数,方差不变;②已知回归方程,则当变量增加一个单位时,平均减少5个单位;③将一组数据中的每个数据都加上一个常数,均值不变;④在回归分析中,我们常用来反映拟合效果,越大,残差平方和就越小,拟合的效果就越好.其中错误的共有( )A.0个B.1个C.2个D.3个答案:B解题思路:试题难度:三颗星知识点:回归分析的初步应用6.为了研究两个变量之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为,已知两个人在试验中发现,变量的观测数据的平均值都是,变量的观测数据的平均值都是,那么下列说法正确的是( )A.必定平行B.必定重合C.有交点D.相交,但交点不一定是答案:C解题思路:试题难度:三颗星知识点:回归分析的初步应用7.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据,求得线性回归方程为.若在这些样本点中任取一点,则它在回归直线左下方的概率为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:回归分析的初步应用。

应用回归分析试题

应用回归分析试题

应用回归分析试题(一)一、选择题1. 两个变量与x的回归模型中,通常用2R来刻画回归的效果,则正确的叙述是( D )A. 2R越小,残差平方和越小B. 2R越大,残差平方和越大C. 2R与残差平方和无关D. 2R越小,残差平方和越大2.下面给出了4个残差图,哪个图形表示误差序列是自相关的(B)(A) (B)(C)(D)3.在对两个变量x,y进行线性回归分析时,有下列步骤:i ,…,①对所求出的回归直线方程作出解释; ②收集数据(i x,i y),1,2n;③求线性回归方程; ④求未知参数; ⑤根据所搜集的数据绘制散点图如果根据可行性要求能够作出变量,x y具有线性相关结论,则在下列操作中正确的是( D )A.①②⑤③④ B.③②④⑤①C.②④③①⑤ D.②⑤④③①4.下列说法中正确的是(B )A.任何两个变量都具有相关关系B.人的知识与其年龄具有相关关系C.散点图中的各点是分散的没有规律 D.根据散点图求得的回归直线方程都是有意义的5. 下面的各图中,散点图与相关系数r不符合的是(B )二、填空题1. OLSE估计量的性质线性、无偏、最小方差。

2. 学习回归分析的目的是对实际问题进行预测和控制。

3. 检验统计量t 值与P 值的关系是P(|t |>|t 值|)=P 值,P 值越小,|t 值| 越大 ,回归方程越显著。

4. 在一元线性回归中,SST 自由度为n-1, SSE 自由度为n-2, SSR 自由度为1。

5. 在多元线性回归中,样本决定系数2R = 1SSR SSESSTSST =-。

三、叙述题1. 叙述一元线性回归模型中回归方程系数的求解过程及结果(OLSE 法)答案:定义离差平方和2^1)()(i ni i y y Q ∑=-=β最小二乘思想找出参数10,ββ的估计值^1^0,ββ。

使得离差平方和最小,使^1^0,ββ满足下述条件:∑∑==--=-=ni i i ni i i x y x y Q 1210,121^^010)(min ),(),(1ββββββββ根据微分中值定理可得:0)(2|0)(2|^11^01^11^11^00^00=---=∂∂=---=∂∂∑∑====i i n i i i n i i x x y Qx y Qββββββββββ求解正规方程组得到:⎪⎪⎪⎩⎪⎪⎪⎨⎧---=-=∑∑=-=----n i i n i i i x x y y x x xy 121^11^^0)())((βββ 令 --=-=--==--=--=-=-=∑∑∑∑y x n y x y y x x L xn x x x L ni i i i ni i xy ni ini i xx 1121212)()()(则一元线性回归模型中回归方程系数可表示为⎪⎪⎩⎪⎪⎨⎧=-=--xx xy L L x y ^1^1^0βββ2. 叙述多元线性回归模型的基本假设 答案:假设1.解释变量12,,,K X X X L 是非随机的 假设(i ε)=0;假设(i ε)=2σ,i =1,2,……ncov(,i j εε)=0,i j ≠, ,i j =1,2,……n; 假设4.解释变量12,,,K X X X L 线性无关;假设5.2(0,)i N εσ:3. 回归模型中随机误差项ε的意义是什么?答案:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y 与12,,px x x L 的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

回归分析练习题及参考答案

回归分析练习题及参考答案

1 下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据:地区人均GDP/元人均消费水平/元北京辽宁上海江西河南贵州陕西 224601122634547485154442662454973264490115462396220816082035求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。

(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。

(3)求出估计的回归方程,并解释回归系数的实际意义。

(4)计算判定系数,并解释其意义。

(5)检验回归方程线性关系的显著性(0.05α=)。

(6)如果某地区的人均GDP为5000元,预测其人均消费水平。

(7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。

解:(1)可能存在线性关系。

(2)相关系数:(3)回归方程:734.6930.309y x=+回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(4)模型汇总模型R R 方调整 R 方标准估计的误差1 .998a.996 .996 247.303a. 预测变量: (常量), 人均GDP。

人均GDP对人均消费的影响达到99.6%。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

应用回归分析试题(二)

应用回归分析试题(二)

应用回归分析试题(二)一、选择题1.对两个变量X和y进行线性回归分析时,有以下步骤:yii?2,1,①对所求出的回归直线方程作出解释;②收集数据(xi、),…,N③ 找出线性回归方程;④ 寻找未知参数;⑤ 根据收集的数据进行绘制散点图。

根据可行性要求,如果可以得出变量X和y具有线性相关性的结论,则以下操作中正确的变量为(d)a.①②⑤③④b.③②④⑤①c.②④③①⑤d.②⑤④③①2.下列说法中正确的是(b)a.任何两个变量都具有相关关系b.人的知识与其年龄具有相关关系c.散点图中的各点是分散的没有规律d、从散点图得到的回归线性方程是有意义的3.下面的各图中,散点图与相关系数r不符合的是(b)4.一位母亲记录了她3到9岁儿子的身高,并建立了身高和年龄之间的关系7.19x?73.93,归直线方程为y据此可以预测这个孩子10岁时的身高,正确的说法是(d)a.身高一定是145.83cmb.身高超过146.00cmc.身高低于145.00cmd.身高在145.83cm左右5.在画两个变量的散点图时,下面哪个叙述是正确的(b)(a)预报变量在x 轴上,解释变量在y轴上(b)解释变量在x轴上,预报变量在y轴上(c)可以选择两个变量中任意一个变量在x轴上(d)可以选择两个变量中任意一个变量二、填空题m21。

y变量是否存在m个可能的回归方程?1.2.h是帽子矩阵,则tr(h)=p+1。

3.回归分析可分为单变量和多变量。

4.回归模型的一般形式为y??0 1x1??2x2pxp5.冠状病毒(e)??2(I?H)(E是多元回归的残差矩阵)。

3、叙事问题1.引起异常值消除的方法(至少5个)?答案:异常值消除方法:(1)重新核实数据;(2)重新测量数据;(3)删除或重新观测异常值数据;(4)增加必要的自变量;(5)增加观测数据,适当扩大自变量的取值范围;(6)采用加权线性回归;(7)采用非线性回归模型;2.自相关引起的问题?答案:(1)参数的估计值不再具有最小方差线性无偏性;(2)均方差(mse)可能严重低估误差项的方差;(3) T值容易被高估,常用的F检验和T检验均失败;(4)当存在序列相关性时,?还无偏估计,但在任何特定样本中;?可能会被严重扭曲?也就是说,最小二乘估计对采样波动变得非常敏感;(5)如果不加处理的运用普通最小二乘估计模型参数,用此模型进行预测和结构分析会带来较大的方差甚至错误的解释。

应用回归分析证明题及答案

应用回归分析证明题及答案

应用回归分析证明题及答案第一篇:应用回归分析证明题及答案应用回归分析证明题及答案nn一.证明残差满足的约束条件:∑ei=0,∑xiei=0。

i=1i=1证明:由偏导方程即得该结论:∂Q=-2nˆ0β0=βˆ0∑(yi=1i-β0-βˆ1xi)=0∂Q=-2n(y-βˆ-βˆx)x1β1=βˆ1∑i=1i01ii=0证毕.二.证明平方和分解式:SST=SSR+SSE。

证明:nSST=∑(y2n(yˆ2i-)=∑i-yi+yˆi-)i=1i=1nˆ2nn=∑(yi-)+i=1∑(yi-yˆi)2+2i=1∑(yi-yˆi)(yˆi-)i=1上式第三项=2⎛n ⎝∑eiyˆn⎫ni-∑ei⎪=2∑ei(βˆ0+βˆ1xi)-0i=1i=1⎭i=1n=2⎛⎝βˆ0∑ei+βˆn1xe⎫i=1∑iii=1⎪⎭=0nˆn即SST=∑(y2i-)+i=1∑(yi-yˆi)i=1=SSR+SSE证毕.三.证明三种检验的关系:(1)SSR/1βˆ2L;(2)F=SSE/(n-2)=1xxσˆ2=t2证明:由于r=L=ˆ=SSR =⎡⎣β2=r2SST,σˆ2=e2in-2=SST-SSRn-2所以t==;F=SSR/1SSE/(n-2)=βˆ21Lxxσˆ2.证毕.)=⎡⎢1(x2四.证明:Var(ei-)⎤i⎢1-σ2 。

⎣n-(x)2⎥i-⎦⎥证明:由于ei=yi-yˆi=yi-(βˆ0+βˆ1xi)=yi--βˆ1(xi-)=y1ni-(xi-)yin∑yi-(xi-)i=1Lxx于是Var(e⎡1ni)=Var⎢y⎣i-n∑yi-(xi-)yi(xi-)⎤⎥i=1Lxx⎦=Var(y)+1⎛n⎫⎡(xi-)yi⎤in2Var ⎝∑yi⎪+Var⎢(xi-)⎥i=1⎭⎣Lxx⎦-2Cov⎡⎡⎢⎣y1n⎤(xi-)yi⎤i,n∑yii=1⎥⎦-2Cov⎢y⎣i,L(xi-)⎥xx⎦+2Cov⎡⎢1n(xi-)yi(x⎣n∑yi,i=1Li-)⎤⎥xx⎦=σ2+1(x22i-)2nσ+(xi-)2212Lσ-2σ-2σxxnLxx=⎡⎢1⎣1-n-(xi-)2⎤L⎥σ2xx⎦证毕.五.证明:在一元回归中,Cov(βˆ0,βˆ1)=-Lσ2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、对于一元线性回归01(1,2,...,)i i i y x i n ββε=++=,()0i E ε=,2var()i εσ=,cov(,)0()i j i j εε=≠,下列说法错误的是(A)0β,1β的最小二乘估计0ˆβ,1ˆβ 都是无偏估计; (B)0β,1β的最小二乘估计0ˆβ,1ˆβ对1y ,2y ,...,n y 是线性的;2、在回归分析中若诊断出异方差,常通过方差稳定化变化对因变量进行变换. 如果误差方差与因变量y 的期望成正比,则可通过下列哪种变换将方差常数化 (A) 1y;(C) ln(1)y +;(D)ln y .3、下列说法错误的是(A)强影响点不一定是异常值;(B)在多元回归中,回归系数显着性的t 检验与回归方程显着性的F 检验是等价的; (C)一般情况下,一个定性变量有k 类可能的取值时,需要引入k-1个0-1型自变量; (D)异常值的识别与特定的模型有关.4、下面给出了4个残差图,哪个图形表示误差序列是自相关的(A)(C) 5应用回归分析试题(一)(C)0β,1β的最小二乘估计0ˆβ,1ˆβ之间是相关的; (D)若误差服从正态分布,0β,1β的最小二乘估计和极大似然估计是不一样的.(A) (B)(C) (D)二、填空题(每空2分,共20分)1、考虑模型y X βε=+,2var()n I εσ=,其中:X n p '⨯,秩为p ',20σ>不一定已知,则ˆβ=__________________, ˆvar()β=___________,若ε服从正态分布,则 22ˆ()n p σσ'-:___________,其中2ˆσ是2σ的无偏估计. 2、下表给出了四变量模型的回归结果:则残差平方和=_________,总的观察值个数=_________,回归平方和的自由度=________. 3、已知因变量y 与自变量1x ,2x ,3x ,4x ,下表给出了所有可能回归模型的AIC 值,则最优子集是_____________________.4、在诊断自相关现象时,若0.66DW =,则误差序列的自相关系数ρ的估计值=_____ ,若存在自相关现象,常用的处理方法有迭代法、_____________、科克伦-奥克特迭代法.5、设因变量y 与自变量x 的观察值分别为12,,...,n y y y 和12,,...,n x x x ,则以*x 为折点的折线模型可表示为_____________________.三、(共45分)研究货运总量y (万吨)与工业总产值1x (亿元)、农业总产值2x (亿元)、居民非商品支出3x (亿元)的线性回归关系.观察数据及残差值i e 、学生化残差i SRE 、删除学生化残差()i SRE 、库克距离i D 、杠杆值ii ch 见表一表一表二 参数估计表已知0.025(6) 2.447t =,0.025(7) 2.365t =,0.05(3,6) 4.76F =,0.05(4,7) 4.12F =,根据上述结果,解答如下问题:1、计算误差方差2σ的无偏估计及判定系数2R .(8分)2、对1x ,2x ,3x 的回归系数进行显着性检验.(显着性水平0.05α=)(12分)3、对回归方程进行显着性检验.(显着性水平0.05α=)(8分)4、诊断数据是否存在异常值,若存在,是关于自变量还是关于因变量的异常值?(10分)5、写出y 关于1x ,2x ,3x 的回归方程,并结合实际对问题作一些基本分析(7分) 四、(共8分)某种合金中的主要成分为金属A 与金属B ,研究者经过13次试验,发现这两种金属成分之和x 与膨胀系数y 之间有一定的数量关系,但对这两种金属成分之和x 是否对膨胀系数y 有二次效应没有把握,经计算得y 与x 的回归的残差平方和为,y 与x 、2x 的回归的残差平方和为,试在的显着性水平下检验x 对y 是否有二次效应? (参考数据0.050.05(1,10) 4.96,(2,10) 4.1F F ==)五、(共12分)(1)简单描述一下自变量12,,...,p x x x 之间存在多重共线性的定义;(2分) (2)多重共线性的诊断方法主要有哪两种?(4分) (3)消除多重共线性的方法主要有哪几种?(6分)应用回归分析试题(二)一、选择题1. 某同学由x 与y 之间的一组数据求得两个变量间的线性回归方程为y bx a =+,已知:数据x 的平均值为2,数据y 的平均值为3,则 ( A )A .回归直线必过点(2,3)B .回归直线一定不过点(2,3)C .点(2,3)在回归直线上方D .点(2,3)在回归直线下方2. 在一次试验中,测得的四组值分别是,则Y 与X 之间的回归直线方程为( A )A . B . C . D.3. 在对两个变量x ,y 进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释; ②收集数据(i x 、i y ),1,2i =,…,n ;③求线性回归方程; ④求未知参数; ⑤根据所搜集的数据绘制散点图如果根据可行性要求能够作出变量,x y 具有线性相关结论,则在下列操作中正确的是( D )A .①②⑤③④B .③②④⑤①C .②④③①⑤D .②⑤④③①4. 下列说法中正确的是(B )A .任何两个变量都具有相关关系B .人的知识与其年龄具有相关关系C .散点图中的各点是分散的没有规律D .根据散点图求得的回归直线方程都是有意义的5. 给出下列结论:(1)在回归分析中,可用指数系数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好;(2)在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;(3)在回归分析中,可用相关系数r 的值判断模型的拟合效果,r 越小,模型的拟合效果越好;(4)在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高. 以上结论中,正确的有(B )个.A .1B .2C .3D .4 6. 已知直线回归方程为2 1.5y x =-,则变量x 增加一个单位时(C )A.y 平均增加1.5个单位B.y 平均增加2个单位C.y 平均减少1.5个单位D.y 平均减少2个单位7. 下面的各图中,散点图与相关系数r 不符合的是(B )8. 一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归直线方程为ˆ7.1973.93yx =+,据此可以预测这个孩子10岁时的身高,则正确的叙述是( D ) A .身高一定是 B .身高超过C .身高低于D .身高在左右9. 在画两个变量的散点图时,下面哪个叙述是正确的( B ) (A)预报变量在x 轴上,解释变量在y 轴上 (B)解释变量在x 轴上,预报变量在y 轴上 (C)可以选择两个变量中任意一个变量在x 轴上 (D)可以选择两个变量中任意一个变量在y 轴上10. 两个变量y 与x 的回归模型中,通常用2R 来刻画回归的效果,则正确的叙述是( D ) A. 2R 越小,残差平方和小 B. 2R 越大,残差平方和大 C. 2R 于残差平方和无关 D. 2R 越小,残差平方和大11. 两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( A )A.模型1的相关指数2R 为 B.模型2的相关指数2R 为 C.模型3的相关指数2R 为 D.模型4的相关指数2R 为12. 在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( B ) A.总偏差平方和 B.残差平方和C.回归平方和D.相关指数R 213.工人月工资(元)依劳动生产率(千元)变化的回归直线方程为ˆ6090y x =+,下列判断正确的是(C ) A.劳动生产率为1000元时,工资为50元 B.劳动生产率提高1000元时,工资提高150元 C.劳动生产率提高1000元时,工资提高90元 D.劳动生产率为1000元时,工资为90元14. 下列结论正确的是(C )①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.A.①② B.①②③ C.①②④ D.①②③④15. 已知回归直线的斜率的估计值为,样本点的中心为(4,5),则回归直线方程为( C ) A. B. C. D. 二、填空题16. 在比较两个模型的拟合效果时,甲、乙两个模型的相关指数的值分别约为和,则拟合效果好的模型是 甲 .17. 在回归分析中残差的计算公式为 列联表、三维柱形图、二维条形图 . 18. 线性回归模型(和为模型的未知参数)中,称为 随机误差 . 19. 若一组观测值(x 1,y 1)(x 2,y 2)…(x n ,y n )之间满足y i =bx i +a+e i (i=1、2.…n)若e i 恒为0,则R 2为___ e i 恒为0,说明随机误差对y i 贡献为0. 三、解答题20. 调查某市出租车使用年限x 和该年支出维修费用y (万元),得到数据如下:(2)由(1)中结论预测第10年所支出的维修费用.(121()()()ni i i n i i x x y y b x x a y bx==⎧-⋅-⎪=⎪⎨-⎪⎪=-⎪⎩∑∑)20. 解析: (1于是23.145905453.112552251251=⨯-⨯⨯-=--=∑∑==xx yx yx b i i i ii , 08.0423.15=⨯-=-=bx y a∴线性回归方程为:08.023.1^+=+=x a bx y (2)当x=10时,38.1208.01023.1^=+⨯=y (万元)即估计使用10年时维修费用是1238万元 回归方程为: 1.230.08y x =+ (2) 预计第10年需要支出维修费用12.38 万元.21. 以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为2150m 时的销售价格. (4)求第2个点的残差。

21. 解析:(1)数据对应的散点图如图所示:(2)1095151==∑=i i x x ,1570)(251=-=∑=x x l i i xx ,308))((,2.2351=--==∑=y y x x l y i i i xy设所求回归直线方程为a bx y +=),则1962.01570308≈==xxxy l l b 8166.115703081092.23≈⨯-=-=x b y a 故所求回归直线方程为8166.11962.0+=x y )(3)据(2),当2150x m =时,销售价格的估计值为:2466.318166.11501962.0=+⨯=y )(万元)必看经典例题1. 从20的样本中得到的有关回归结果是:SSR=60,SSE=40。

相关文档
最新文档