哈尔滨市中考数学20题 练习 1
2020年黑龙江省哈尔滨市中考数学试题及参考答案(word解析版)

哈尔滨市2020年初中升学考试数学试卷(满分120分,考试时间120分钟)第Ⅰ卷选择题(共30分)一、选择题(每小题3分,共计30分)1.﹣8的倒数是()A.﹣B.﹣8 C.8 D.2.下列运算一定正确的是()A.a2+a2=a4B.a2•a4=a8C.(a2)4=a8D.(a+b)2=a2+b23.下列图形中既是轴对称图形又是中心对称图形的是()A.扇形B.正方形C.等腰直角三角形D.正五边形4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3 7.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°8.方程=的解为()A.x=﹣1 B.x=5 C.x=7 D.x=99.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.10.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD 于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.=B.=C.=D.=第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共计30分)11.将数4790000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.已知反比例函数y=的图象经过点(﹣3,4),则k的值为.14.计算+6的结果是.15.把多项式m2n+6mn+9n分解因式的结果是.16.抛物线y=3(x﹣1)2+8的顶点坐标为.17.不等式组的解集是.18.一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是度.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD =2BE,∠DAE=∠DEA,EO=1,则线段AE的长为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣)÷的值,其中x=4cos30°﹣1.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+.连接EG,请直接写出线段EG的长.23.(8分)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.24.(8分)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?26.(10分)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=AF,求点P的坐标.答案与解析第Ⅰ卷选择题(共30分)一、选择题(每小题3分,共计30分)1.﹣8的倒数是()A.﹣B.﹣8 C.8 D.【知识考点】倒数.【思路分析】根据乘积为1的两个数互为倒数,可求一个数的倒数.【解题过程】解:﹣8的倒数是﹣,故选:A.【总结归纳】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列运算一定正确的是()A.a2+a2=a4B.a2•a4=a8C.(a2)4=a8D.(a+b)2=a2+b2【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【思路分析】根据合并同类项的法则,同底数幂的乘法法则,幂的乘方法则以及完全平方公式逐一计算判断即可.【解题过程】解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2•a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.故选:C.【总结归纳】本题主要考查了完全平方公式,同底数幂的乘法,幂的乘方以及合并同类项的法则,熟记公式和运算法则是解答本题的关键.3.下列图形中既是轴对称图形又是中心对称图形的是()A.扇形B.正方形C.等腰直角三角形D.正五边形【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解题过程】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.【总结归纳】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从左边看得到的图形是左视图,可得答案.【解题过程】解:从左边看第一层是两个小正方形,第二层右边一个小正方形,故选:C.【总结归纳】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°【知识考点】圆周角定理;切线的性质.【思路分析】根据切线的性质和圆周角定理即可得到结论.【解题过程】解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°﹣70°=20°.故选:B.【总结归纳】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3 【知识考点】二次函数图象与几何变换.【思路分析】根据“上加下减,左加右减”的原则进行解答即可.【解题过程】解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;故选:D.【总结归纳】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.7.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【知识考点】轴对称的性质.【思路分析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.【解题过程】解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.【总结归纳】本题考查了轴对称的性质,掌握轴对称的性质是本题的关键.8.方程=的解为()A.x=﹣1 B.x=5 C.x=7 D.x=9【知识考点】解分式方程.【思路分析】根据解分式方程的步骤解答即可.【解题过程】解:方程的两边同乘(x+5)(x﹣2)得:2(x﹣2)=x+5,解得x=9,经检验,x=9是原方程的解.故选:D.【总结归纳】本题主要考查了解分式方程,熟练掌握把分式方程转化为整式方程是解答本题的关键.9.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.【知识考点】概率公式.【思路分析】利用概率公式可求解.【解题过程】解:∵从袋子中随机摸出一个小球有9种等可能的结果,其中摸出的小球是红球有6种,∴摸出的小球是红球的概率是=,故选:A.【总结归纳】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.10.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD 于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.=B.=C.=D.=【知识考点】相似三角形的判定与性质.【思路分析】根据平行线分线段成比例性质进行解答便可.【解题过程】解:∵EF∥BC,∴,∵EG∥AB,∴,∴,故选:C.【总结归纳】本题主要考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共计30分)11.将数4790000用科学记数法表示为.【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解题过程】解:4790000=4.79×106,故答案为:4.79×106.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在函数y=中,自变量x的取值范围是.【知识考点】函数自变量的取值范围.【思路分析】根据分母不等于0列式计算即可得解.【解题过程】解:由题意得x﹣7≠0,解得x≠7.故答案为:x≠7.【总结归纳】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.已知反比例函数y=的图象经过点(﹣3,4),则k的值为.【知识考点】反比例函数图象上点的坐标特征.【思路分析】把(﹣3,4)代入函数解析式y=即可求k的值.【解题过程】解:∵反比例函数y=的图象经过点(﹣3,4),∴k=﹣3×4=﹣12,故答案为:﹣12.【总结归纳】本题考查了反比例函数图象上点的坐标特征,比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点.14.计算+6的结果是.【知识考点】二次根式的性质与化简;二次根式的加减法.【思路分析】根据二次根式的性质化简二次根式后,再合并同类二次根式即可.【解题过程】解:原式=.故答案为:.【总结归纳】本题主要考查了二次根式的加减,熟记二次根式的性质是解答本题的关键.15.把多项式m2n+6mn+9n分解因式的结果是.【知识考点】提公因式法与公式法的综合运用.【思路分析】直接提取公因式n,再利用完全平方公式分解因式得出答案.【解题过程】解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.【总结归纳】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.16.抛物线y=3(x﹣1)2+8的顶点坐标为.【知识考点】二次函数的性质.【思路分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解题过程】解:∵抛物线y=3(x﹣1)2+8是顶点式,∴顶点坐标是(1,8).故答案为:(1,8).【总结归纳】本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.17.不等式组的解集是.【知识考点】解一元一次不等式组.【思路分析】分别求出各不等式的解集,再求出其公共解集即可.【解题过程】解:,由①得,x≤﹣3;由②得,x<﹣1,故此不等式组的解集为:x≤﹣3.故答案为:x≤﹣3.【总结归纳】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是度.【知识考点】扇形面积的计算.【思路分析】根据扇形面积公式S=,即可求得这个扇形的圆心角的度数.【解题过程】解:设这个扇形的圆心角为n°,=13π,解得,n=130,故答案为:130.【总结归纳】本题考查扇形面积的计算,解答本题的关键是明确扇形面积计算公式S=.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为.【知识考点】含30度角的直角三角形.【思路分析】在Rt△ABD中,利用锐角三角函数的意义,求出BD的长,再分类进行解答.【解题过程】解:在Rt△ABD中,∠ABC=60°,AD=6,∴BD===6,如图1所示,当点D在BC上时,BC=BD+CD=6+1=7,如图2所示,当点D在BC的延长线上时,BC=BD﹣CD=6﹣1=5,故答案为:7或5.【总结归纳】本题考查解直角三角形,掌握直角三角形的边角关系是正确计算的前提.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD =2BE,∠DAE=∠DEA,EO=1,则线段AE的长为.【知识考点】菱形的性质.【思路分析】设BE=x,则CD=2x,根据菱形的性质得AB=AD=CD=2x,OB=OD,AC⊥BD,再证明DE=DA=2x,所以1+x=x,解得x=2,然后利用勾股定理计算OA,再计算AE 的长.【解题过程】解:设BE=x,则CD=2x,∵四边形ABCD为菱形,∴AB=AD=CD=2x,OB=OD,AC⊥BD,∵∠DAE=∠DEA,∴DE=DA=2x,∴BD=3x,∴OB=OD=x,∵OE+BE=BO,∴1+x=x,解得x=2,即AB=4,OB=3,在Rt△AOB中,OA===,在Rt△AOE中,AE===2.故答案为2.【总结归纳】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣)÷的值,其中x=4cos30°﹣1.【知识考点】分式的化简求值;特殊角的三角函数值.【思路分析】直接将括号里面通分运算,再利用分式的混合运算法则计算,把x的值代入得出答案.【解题过程】解:原式=•=,∵x=4cos30°﹣1=4×﹣1=2﹣1,∴原式==.【总结归纳】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+.连接EG,请直接写出线段EG的长.【知识考点】等腰三角形的判定;勾股定理;作图—应用与设计作图.【思路分析】(1)画出边长为的正方形即可.(2)画出两腰为5,底为的等腰三角形即可.【解题过程】解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.EG==.【总结归纳】本题考查作图﹣应用与设计,等腰三角形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.23.(8分)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.【知识考点】用样本估计总体;条形统计图.【思路分析】(1)最喜欢绘画小组的学生人数15人,占所调查人数的30%.可求出调查人数;(2)求出“舞蹈”的人数,即可补全条形统计图;(3)样本估计总体,样本中“喜欢剪纸”占调查人数的,因此估计总体800名的是最喜欢“剪纸”的人数.【解题过程】解:(1)15÷30%=50(名),答:在这次调查中,一共抽取了50名学生;(2)50﹣15﹣20﹣5=10(名),补全条形统计图如图所示:(3)800×=320(名),答:冬威中学800名学生中最喜欢剪纸小组的学生有320名.【总结归纳】本题考查条形统计图的意义和制作方法,理解数量之间的关系是正确计算的前提,样本估计总体是统计中常用的方法.24.(8分)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.【知识考点】全等三角形的判定与性质;等腰三角形的判定与性质.【思路分析】(1)根据SAS可证△ABD≌△ACE,根据全等三角形的性质即可求解;(2)根据等腰三角形的判定即可求解.【解题过程】(1)证明:∵AB=AC,∵∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵AD=AE,∴∠ADE=∠AED,∵BF∥AC,∴∠FBD=∠C=45°,∵∠ABC=∠C=∠DAE=45°,∠BDF=∠ADE,∴∠F=∠BDF,∠BEA=∠BAE,∠CDA=∠CAD,∴满足条件的等腰三角形有:△ABE,△ACD,△DAE,△DBF.【总结归纳】考查了全等三角形的判定与性质,等腰三角形的判定与性质,关键是熟练掌握它们的性质与定理.25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?【知识考点】二元一次方程组的应用;一元一次不等式的应用.【思路分析】(1)设每个大地球仪x元,每个小地球仪y元,根据条件建立方程组求出其解即可;(2)设大地球仪为a台,则小地球仪为(30﹣a)台,根据要求购买的总费用不超过960元,列出不等式解答即可.【解题过程】解:(1)设每个大地球仪x元,每个小地球仪y元,根据题意可得:,解得:,答:每个大地球仪52元,每个小地球仪28元;(2)设大地球仪为a台,则小地球仪为(30﹣a)台,根据题意可得:52a+28(30﹣a)≤960,解得:a≤5,答:最多可以购买5个大地球仪.【总结归纳】本题考查了列二元一次方程组解实际问题的运用,总价=单价×数量的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.26.(10分)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.【知识考点】圆的综合题.【思路分析】(1)由垂径定理可得BE=EC,由线段垂直平分线的性质可得AB=AC,由等腰三角形的性质可得∠BAD=∠ABO=∠CAD,由外角的性质可得结论;(2)由“AAS”可证△BOE≌△ODH,可得BE=OH;(3)过点F作FN⊥AD,交AD于N,设DG=DE=2x,由全等三角形的性质可得OE=DH=x,OD=3x=OA=OB,勾股定理可求BE=2x,由锐角三角函数可求AN=NF,ON=NF,可得AO=AN+ON=NF,由三角形面积公式可求NF的长,可求x=1,可得BE=2=OH,AE=4,DG=DE=2,勾股定理可求AC=2,连接AG,过点A作AM⊥CG,交GC的延长线于M,通过证明△ACM∽△ADG,由相似三角形的性质可求AM,CM的长,由勾股定理可求GM的长,即可求解.【解题过程】证明:(1)∵AD为⊙O的直径,AD⊥BC,∴BE=EC,∴AB=AC,又∵AD⊥BC,∴∠BAD=∠CAD,∵OA=OB,∴∠BAD=∠ABO,∴∠BAD=∠ABO=∠CAD,∵∠BFC=∠BAC+∠ABO,∴∠BFC=∠BAD+∠EAD+∠ABO=3∠CAD;(2)如图2,连接AG,∵AD是直径,∴∠AGD=90°,∵点H是DG中点,∴DH=HG,又∵AO=DO,∴OH∥AG,AG=2OH,∴∠AGD=∠OHD=90°,∵DG∥BF,∴∠BOE=∠ODH,又∵∠OEB=∠OHD=90°,BO=DO,∴△BOE≌△ODH(AAS),∴BE=OH;(3)如图3,过点F作FN⊥AD,交AD于N,设DG=DE=2x,∴DH=HG=x,∵△BOE≌△ODH,∴OE=DH=x,∴OD=3x=OA=OB,∴BE===2x,∵∠BAE=∠CAE,∴tan∠BAE=tan∠CAE=,∴=,∴AN=NF,∵∠BOE=∠NOF,∴tan∠BOE=tan∠NOF=,∴=,∴ON=NF,∴AO=AN+ON=NF,∵△AOF的面积为,∴×AO×NF=×NF2=,∴NF=,∴AO=NF=3=3x,∴x=1,∴BE=2=OH,AE=4,DG=DE=2,∴AC===2,如图3,连接AG,过点A作AM⊥CG,交GC的延长线于M,由(2)可知:AG=2OH=4,∵四边形ADGC是圆内接四边形,∴∠ACM=∠ADG,又∵∠AMC=∠AGD=90°,∴△ACM∽△ADG,∴,∴,∴CM=,AM=,∴GM===,∴CG=GM﹣CM=.【总结归纳】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,三角形中位线定理,相似三角形的判定和性质,锐角三角函数等知识,求出NF的长是本题的关键.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=AF,求点P的坐标.【知识考点】一次函数综合题.【思路分析】(1)求出A,B两点坐标,利用待定系数法解决问题即可.(2)由题意直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),求出PE,OD (用a表示)即可解决问题.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.证明△OFS≌△FQR(AAS),推出SF=QR,再证明△BSG≌△QRG(AAS),推出SG=GR=6,设FR =m,则AR=m,AF=m,QR=SF=12﹣m,GQ﹣FG=AF,根据GQ2=GR2+QR2,可得(m+6)2=62+(12﹣m)2,解得m=4,由题意tan∠DHE=tan∠DPH,可得=,由(2)可知DE=3a,PD=12a,推出=,可得DH=6a,推出tan∠PHD===2,由∠PHD=∠FHT,可得tan∠FHT==2,推出HT=2,再根据OT=OD+DH+HT,构建方程求出a即可解决问题.【解题过程】解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∴C(12,9),∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,∴SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°﹣45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,∵GQ﹣FG=AF,∴GQ=×m+6﹣m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12﹣m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴=,由(2)可知DE=3a,PD=12a,∴=,∴DH=6a,∴tan∠PHD===2,∵∠PHD=∠FHT,∴tan∠FHT==2,∴HT=2,∵OT=OD+DH+HT,∴4a+6a+2=8,∴a=,∴OD=,PD=12×=,∴P(,).【总结归纳】本题属于一次函数综合题,考查了矩形的判定和性质,一次函数的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.21。
2020年黑龙江省哈尔滨中考数学试卷含答案

5.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。
第I卷选择题(共30分)(涂卡)
一、选择题(每小题3分,共计30分)
1. 的倒数是( )
A. B. C.8D.
2.下列运算一定正确的是( )
A. B. C. D.
10.如图,在 中,点 在 边上,连接 ,点 在 边上,过点 作 ,交 于点 ,过点 作 ,交 于点 ,则下列式子一定正确的是( )
Aቤተ መጻሕፍቲ ባይዱ B. C. D.
二、填空题(每小题3分,共计30分)
11.将数4790000用科学记数法表示为_________.
12.在函数 中,自变量 的取值范围是_________.
2020年黑龙江省哈尔滨市初中学业水平考试
数学答案解析
一、
1.【答案】A
【解析】 的倒数是 ,
故选:A.
2.【答案】C
【解析】A、 ,原计算错误,故此选项不合题意;
B、 ,原计算错误,故此选项不合题意;
C、 ,原计算正确,故此选项合题意;
D、 ,原计算错误,故此选项不合题意.
故选:C.
3.【答案】B
25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.
(1)求每个大地球仪和每个小地球仪各多少元;
(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?
19.在 中, , 为 边上的高, , ,则 的长为_________.
2020年哈尔滨市中考数学试卷-含答案

A. B. C. D.
6.将抛物线 向上平移3个单位长度,再向右平移5个单位长度,所得的抛物线为( )
A. B. C. D.
7.如图,在 中, ,垂足为D, 与 关于直线AD对称,点 B对称点是 ,则 的度数是( )
补全条形统计图如图所示:
(3)800× =320(名),
答:估计该中学最喜欢剪纸小组的学生有320名.
24.(1)证明:如图1,
,
,
在 和 中,
,
∴ (SAS),
∴ ;
(2)顶角为45°的等腰三角形有以下四个: 、 、 、 .
证明:∵ , ,
∴ , ,
∵ , ,即: 是等腰三角形, ;
∴ ,
∴ ,
∴ ,
(1)在这次调查中,一共抽取了多少名学生;
(2)请通过计算补全条形统计图;
(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.
24.已知,在 中, ,点D,点E在BC上, ,连接 .
(1)如图1,求证: ;
(2)如图2,当 时,过点B作 ,交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.
25.昌云中学计划 地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需要136元;若购买2个大地球仪和1个小地球仪需要132元.
(1)求每个大地球仪和每个小地球仪各多少元;
(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪.
26.已知 是 外接圆,AD为 的直径, ,垂足为E,连接BO,延长BO交AC于点F.
2022年哈尔滨市中考数学试卷含答案

2022年哈尔滨市中考数学试卷含答案一、选择题(每小题3分,共计30分)1.16的相反数是()A.16 B.6 C.6 D.16【答案】D【解析】【分析】根据相反数的定义选出正确选项.【详解】解:16的相反数是16 .故选:D .【点睛】本题考查相反数的定义,解题关键是掌握相反数的定义.2.下列运算一定正确的是()A. 22346a b a b B.22434b b b C. 246a a D.339a a a 【答案】A【解析】【分析】根据积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算逐项验证即可得到结论.【详解】解:A 、根据积的乘方运算、幂的乘方运算法则可知 22346a b a b ,该选项符合题意;B 、根据合并同类项运算可知2224344b b b b ,该选项不符合题意;C 、根据幂的乘方运算可知 244286 a a a a ,该选项不符合题意;D 、根据同底数幂的乘法运算可知333369a a a a a ,该选项不符合题意;故选:A .【点睛】本题考查整式的运算,涉及到积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算等知识点,熟练掌握相关运算法则是解决问题的关键.3.下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项符合题意;故选B.【点睛】本题主要考查了中心对称图形和轴对称图形的识别,解题的关键在于能够熟练掌握二者的定义:4.六个大小相同的正方体搭成的几何体如图所示,其左视图是()A. B. C. D.【答案】D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看下面一层是两个小正方形,上面一层左边一个小正方形,故选:D .【点睛】本题主要考查左视图,掌握三视图是解题的关键.5.抛物线22(9)3y x 的顶点坐标是()A.(9,3)B.(9,3)C.(9,3)D.(9,3) 【答案】B【解析】【分析】根据二次函数的顶点式2()y a x h k 可得顶点坐标为(,)h k 即可得到结果.【详解】∵二次函数解析式为22(9)3y x ,∴顶点坐标为(9,3) ;故选:B .【点睛】本题主要考查了二次函数顶点式的顶点坐标的求解,准确理解是解题的关键.6.方程233x x 的解为()A.3x B.9x C.9x D.3x 【答案】C【解析】【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:233x x去分母得:23(3)x x ,去括号得:239x x ,移项、合并同类项得:9x ,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.7.如图,,AD BC 是O 的直径,点P 在BC 的延长线上,PA 与O 相切于点A ,连接BD ,若40P ,则ADB 的度数为()A.65B.60C.50D.25【答案】A【解析】【分析】由切线性质得出90PAO ,根据三角形的内角和是180 、对顶角相等求出50BOD AOP ,即可得出答案;【详解】解:∵PA 与⊙O 相切于点A ,AD 是⊙O 的直径,OA PA ,90PAO ,40P ∵,50AOP ,50BOD AOP ,OB OD ∵,OBD ODB , 118050652ADB,故选:A .【点睛】本题考查圆内求角的度数,涉及知识点:切线的性质、对顶角相等、等腰三角形的性质、三角形的内角和是180 ,解题关键根据切线性质推出90PAO .8.某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x ,根据随意,所列方程正确的是()A. 2150196x B.150(1)96x C.2150(1)96x D.150(12)96x 【答案】C【解析】【分析】结合题意分析:第一次降价后的价格=原价×(1-降低的百分率),第二次降价后的价格=第一次降价后的价格×(1-降低的百分率),把相关数值代入即可.【详解】解:设平均每次降价的百分率为x ,根据题意可列方程150(1-x )2=96,故选:C .【点睛】本题考查了由实际问题抽象出一元二次方程的知识,解题的关键是能够分别表示出两次降价后的售价.9.如图,,,AB CD AC BD ∥相交于点E ,1,2,3AE EC DE ,则BD 的长为()A.32 B.4 C.92 D.6【答案】C【解析】【分析】根据相似三角形对应边长成比例可求得BE 的长,即可求得BD 的长.【详解】∵//AB CD∴ABE CDE∽∴AE BE EC DE∵1,2,3AE EC DE ,∴32BE∵BD BE ED∴92BD 故选:C .【点睛】本题考查了相似三角形的对应边长成比例,解题的关键在于找到对应边长.10.一辆汽车油箱中剩余的油量(L)y 与已行驶的路程(km)x 的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L 时,那么该汽车已行驶的路程为()A.150kmB.165kmC.125kmD.350km【答案】A【解析】【分析】根据题意所述,设函数解析式为y =kx +b ,将(0,50)、(500,0)代入即可得出函数关系式.【详解】解:设函数解析式为y =kx +b ,将(0,50)、(500,0)代入得505000b k b 解得:50110b k∴函数解析式为15010y x 当y =35时,代入解析式得:x =150故选A【点睛】本题考查了一次函数的简单应用,解答本题时要注意细心审题,利用自变量与因变量的关系进行解答.第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共计30分)11.风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量效有253000兆瓦,用科学记数法表示为___________兆瓦.【答案】52.5310 【解析】【分析】科学记数法的表示形式为10n a 的形式,其中110a ,n 为整数.分别确定a 和n 的值即可.【详解】5253000 2.5310 故答案为52.5310【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为10n a 的形式,其中110a ,n 为整数,确定a 和n 的值是解题的关键.12.在函数53x y x中,自变量x 的取值范围是___________.【答案】35x【解析】【分析】根据分式中分母不能等于零,列出不等式530x ,计算出自变量x 的范围即可.【详解】根据题意得:530x ∴53x ∴35x 故答案为:35x【点睛】本题考查了函数自变量的取值范围,分式有意义的条件,分母不为零,解答本题的关键是列出不等式并正确求解.13.计算 的结果是___________.【答案】【解析】【分析】先化简二次根式,再合并同类二次根式即可.=故答案为:【点睛】本题考查了二次根式的加减,把二次根式化为最简二次根式是解题的关键.14.把多项式29mn m 分解因式的结果是______.【答案】33m n n 【解析】【分析】先提公因式m 再按照平方差公式分解因式即可得到答案.【详解】解:29mn m29m n =+33.m n n 故答案为: +33.m n n 【点睛】本题考查的是提公因式与公式法分解因式的综合应用,掌握提公因式与平方差公式分解因式是解题的关键.15.不等式组340,421x x的解集是___________.【答案】52x【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】340421x x ①②由①得34x ,解得43x;由②得25x ,解得52x ;∴不等式组的解集为52x.故答案为:52x .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知反比例函数6y x的图象经过点 4,a ,则a 的值为___________.【答案】32【解析】【分析】把点的坐标代入反比例函数解析式,求出a 的值即可.【详解】解:把点 4,a 代入6y x得:6342a .故答案为:32.【点睛】本题考查了反比例函数图像上点的坐标特征,明确函数图像经过一个点,这个点的坐标就符合函数解析式是解题关键.17.在ABC 中,AD 为边BC 上的高,30ABC ,20CAD ,则BAC 是___________度.【答案】40或80##80或40【解析】【分析】根据题意,由于ABC 类型不确定,需分三种情况:高在三角形内部、高在三角形边上和高在三角形外部讨论求解.【详解】解:根据题意,分三种情况讨论:①高在三角形内部,如图所示:∵在ABD 中,AD 为边BC 上的高,30ABC ,90903060BAD ABC ,∵20CAD ,602080BAC BAD CAD ;②高在三角形边上,如图所示:可知0CAD ,∵20CAD ,故此种情况不存在,舍弃;③高在三角形外部,如图所示:∵在ABD 中,AD 为边BC 上的高,30ABC ,90903060BAD ABC ,∵20CAD ,602040BAC BAD CAD ;综上所述:80BAC 或40 ,故答案为:40或80.【点睛】本题考查求角度问题,在没有图形的情况下,必须考虑清楚各种不同的情况,根据题意分情况讨论是解决问题的关键.18.同时抛掷两枚质地均匀的硬币,一枚硬币正面向上,一枚硬币反面向上的概率是_____.【答案】12【解析】【分析】用列表法与树状图法求解即可.【详解】解:用列表法列举出总共4种情况,分别为:正正、正反、反正、反反,其中一枚硬币正面向上,一枚硬币反面向上的情况为:正反、反正所以概率是2142 ,故答案是12.【点睛】本题考查了求随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.19.一个扇形的面积为27πcm ,半径为6cm ,则此扇形的圆心角是___________度.【答案】70【解析】【分析】设扇形的圆心角是n ,根据扇形的面积公式即可得到一个关于n 的方程,解方程即可求解.【详解】解:设扇形的圆心角是n ,根据扇形的面积公式得:26π7π360n 解得n =70.故答案是:70.【点睛】此题主要考查扇形的面积公式,解题的关键是熟知扇形的面积公式的运用.20.如图,菱形ABCD 的对角线,AC BD 相交于点O ,点E 在OB 上,连接AE ,点F 为CD 的中点,连接OF ,若AE BE ,3OE ,4OA ,则线段OF 的长为___________.【答案】【解析】【分析】先根据菱形的性质找到Rt △AOE 和Rt △AOB ,然后利用勾股定理计算出菱形的边长BC 的长,再根据中位线性质,求出OF 的长.【详解】已知菱形ABCD ,对角线互相垂直平分,∴AC ⊥BD ,在Rt △AOE 中,∵OE =3,OA =4,∴根据勾股定理得5AE,∵AE =BE ,∴8OB AE OE ,在Rt △AOB 中AB ,即菱形的边长为∵点F 为CD 的中点,点O 为DB 中点,∴12OF BC .故答案为【点睛】本题考查了菱形的性质、勾股定理、中位线的判定与性质;熟练掌握菱形性质,并能结合勾股定理、中位线的相关知识点灵活运用是解题的关键.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式21321211x x x x x 的值,其中2cos 451x .【答案】11x ,2【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据特殊角三角函数值求出x ,继而代入计算可得.【详解】解:原式22131(1)(1)2x x x x x 2(1)(3)1(1)2x x x x221(1)2x x11x∵2112x∴原式2.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则以及特殊角三角函数值.22.如图,方格纸中每个小正方形的边长均为1,ABC 的顶点和线段EF 的端点均在小正方形的顶点上.(1)在方格纸中面出ADC ,使ADC 与ABC 关于直线AC 对称(点D 在小正方形的顶点上);(2)在方格纸中画出以线段EF 为一边的平行四边形EFGH (点G ,点H 均在小正方形的顶点上),且平行四边形EFGH 的面积为4.连接DH ,请直接写出线段DH 的长.【答案】(1)见解析(2)图见解析,5 DH 【解析】【分析】(1)根据轴对称的性质可得△ADC ;(2)利用平行四边形的性质即可画出图形,利用勾股定理可得DH 的长.【小问1详解】如图【小问2详解】如图,22345DH 【点睛】本题考查了作图,轴对称变换,平行四边形的性质,勾股定理等知识,准确画出图形是解题的关键.23.民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数的25%.请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若民海中学共有1600名学生,请你估计该中学最喜欢球类的学生共有多少名.【答案】(1)80(2)作图见解析(3)480【解析】【分析】(1)利用操舞类的人数以及操舞类学生所占调查人数的比例,可求出抽取的总人数.(2)根据总人数以及其他类学生的人数可计算出武术类学生人数,进而将统计图补充完整即可.(3)利用样本估计总体,先算出样本中喜欢球类学生所占的比例,再乘以总人数即可.【小问1详解】(名)解:2025%80∴在这次调查中,一共抽取了80名学生.【小问2详解】(名)解:8016242020补全统计图如图【小问3详解】解:24160048080(名)∴估计该中学最喜欢球类的学生共有480名.【点睛】本题主要考查了条形统计图以及用样本估计总体,能够利用统计图获取重要信息是解决问题的关键.24.已知矩形ABCD 的对角线,AC BD 相交于点O ,点E 是边AD 上一点,连接,,BE CE OE ,且BE CE .(1)如图1,求证:BEO CEO △≌△;(2)如图2,设BE 与AC 相交于点F ,CE 与BD 相交于点H ,过点D 作AC 的平行线交BE 的延长线于点G ,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(AEF 除外),使写出的每个三角形的面积都与AEF 的面积相等.【答案】(1)见解析(2)DEG △、DEH △、BFO V 、CHO【解析】【分析】(1)利用SSS 证明两个三角形全等即可;(2)先证明Rt △ABE ≌Rt △DCE 得到AE =DE ,则=AOE DOE S S △△,根据三线合一定理证明∴OE ⊥AD ,推出AB OE ∥,得到=AOE BOE S S △,即可证明=BFO AEF S S △△由BEO CEO △≌△,得到∠OBF =∠OCH ,=BOE COE S S △△,证明△BOF ≌△COH ,即可证明=BFO CHO AEF S S S △△△,则=OEF OEH S S △△,即可推出DEH AEF S S △△,最后证明AEF DEG ≌,即可得到=AEF DEG S S △△;【小问1详解】证明:∵四边形ABCD 是矩形,∴AC 与BD 相等且互相平分,∴OB OC ,∵BE CE ,OE OE ,∴BEO CEO △≌△(SSS );【小问2详解】解:∵四边形ABCD 是矩形,∴AB =CD ,∠BAE =∠CDE =90°,OA =OD =OB =OC ,又∵BE =CE ,∴Rt △ABE ≌Rt △DCE (HL )∴AE =DE ,∴=AOE DOE S S △△,∵OA =OD ,AE =DE ,∴OE ⊥AD ,∴AB OE ∥,∴=AOE BOE S S △,∴=AOE EOF BOE EOF S S S S △△△△,∴=BFO AEF S S △△;∵BEO CEO △≌△,∴∠OBF =∠OCH ,=BOE COE S S △△,又∵∠BOF =∠COH ,OB =OC ,∴△BOF ≌△COH (ASA ),∴=BFO CHO AEF S S S △△△,∴BOE BOF COE COH S S S S △△△△,∴=OEF OEH S S △△,∴=AOE OEF DOE OEH S S S S △△△△,∴DEH AEF S S △△;∵AC DG ∥,∴∠AFE =∠DGE ,∠EAF =∠EDG ,又∵AE =DE ,∴ AEF DEG AAS △≌△,∴=AEF DEG S S △△;综上所述,DEG △、DEH △、BFO V 、CHO 这4个三角形的面积与△AEF 的面积相等.【点睛】本题主要考查了全等三角形的性质与判定,三线合一定理,矩形的性质,平行线的性质与判定等等,熟知全等三角形的性质与判定条件是解题的关键.25.绍云中学计划为绘画小组购买某种品牌的A 、B 两种型号的颜料,若购买1盒A 种型号的颜料和2盒B 种型号的颜料需用56元;若购买2盒A 种型号的颜料和1盒B 种型号的颜料需用64元.(1)求每盒A 种型号的颜料和每盒B 种型号的颜料各多少元;(2)绍云中学决定购买以上两种型号的颜料共200盒,总费用不超过3920元,那么该中学最多可以购买多少盒A 种型号的颜料?【答案】(1)每盒A 种型号的颜料24元,每盒B 种型号的颜料16元(2)该中学最多可以购买90盒A 种型号的颜料【解析】【分析】(1)设每盒A 种型号的颜料x 元,每盒B 种型号的颜料y 元,根据题意,可列出关于x ,y 的二元一次方程组,解之即可;(2)设该中学可以购买a 盒A 种型号的颜料,则可以购买(200)a 盒B 种型号的颜料,根据总费用不超过3920元,列出不等式求解即可.【小问1详解】解:设每盒A 种型号的颜料x 元,每盒B 种型号的颜料y 元.根据题意得256264x y x y 解得2416x y ∴每盒A 种型号的颜料24元,每盒B 种型号的颜料16元.【小问2详解】解:设该中学可以购买a 盒A 种型号的颜料,根据题意得2416(200)3920a a 解得90a ∴该中学最多可以购买90盒A 种型号的颜料.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,关键是(1)根据题意找出对应关系,正确列出二元一次方程组;(2)根据数量关系正确列出一元一次不等式.26.已知CH 是O 的直径,点A ,点B 是O 上的两个点,连接,OA OB ,点D ,点E 分别是半径,OA OB 的中点,连接,,CD CE BH ,且2AOC CHB .(1)如图1,求证:ODC OEC ;(2)如图2,延长CE 交BH 于点F ,若CD OA ,求证:FC FH ;(3)如图3,在(2)的条件下,点G 是 BH上一点,连接,,,AG BG HG OF ,若:5:3AG BG ,2HG ,求OF 的长.【答案】(1)见解析(2)见解析(3)3OF【解析】【分析】(1)根据SAS 证明COD COE 即可得到结论;(2)证明H ECO 即可得出结论;(3)先证明OF CH ,连接AH ,证明AH BH ,设5AG x ,3BG x ,在AG 上取点M ,使得AM BG ,连接MH ,证明MHG △为等边三角形,得2MG HG ,根据AG AM MG 可求出1x ,得5AG ,3BG ,过点H 作HN MG 于点N ,求出HB ,再证2HF OF ,根据3HB OF 【小问1详解】如图1.∵点D ,点E 分别是半径,OA OB 的中点∴12OD OA =,12OE OB ∵OA OB ,∴OD OE∵2BOC CHB ,2AOC CHB∴AOC BOC∵OC OC∴COD COE ,∴CDO CEO ;【小问2详解】如图2.∵CD OA ,∴90CDO由(1)得90CEO CDO ,∴1sin 2OE OCE OC ∴30OCE ,∴9060COE OCE∵11603022H BOC∴H ECO ,∴FC FH【小问3详解】如图3.∵CO OH ,∴OF CH∴90FOH∠连接AH .∵60AOC BOC∴120AOH BOH ,∴AH BH ,60AGH∵:5:3AG BG 设5AG x ,∴3BG x在AG 上取点M ,使得AM BG ,连接MH∵HAM HBG ,∴HAM HBG△≌△∴MH GH ,∴MHG △为等边三角形∴2MG HG ∵AG AM MG ,∴532x x ∴1x ,∴5AG ∴3BG AM ,过点H 作HN MG 于点N112122MN GM ,sin 60HN HG ∴4AN MN AM ,∴HB HA ∵90FOH ∠,30OHF ,∴60OFH∵OB OH ,∴30BHO OBH ,∴30FOB OBF∴OF BF ,在Rt OFH 中,30OHF ,∴2HF OF∴3HB BF HF OF∴193OF .【点睛】本题主要考查了圆周角定理,等边三角形的判定和性质,全等三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形等知识,正确作出辅助线构造全等三角形是解答本题的关键.27.在平面直角坐标系中,点O 为坐标原点,抛物线2y ax b 经过点521,28A,点13,28B,与y 轴交于点C.(1)求a ,b 的值;(2)如图1,点D 在该抛物线上,点D 的横坐标为2 ,过点D 向y 轴作垂线,垂足为点E .点P 为y 轴负半轴上的一个动点,连接DP 、设点P 的纵坐标为t ,DEP 的面积为S ,求S 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)如图2,在(2)的条件下,连接OA ,点F 在OA 上,过点F 向y 轴作垂线,垂足为点H ,连接DF 交y 轴于点G ,点G 为DF 的中点,过点A 作y 轴的平行线与过点P 所作的x 轴的平行线相交于点N ,连接CN ,PB ,延长PB 交AN 于点M ,点R 在PM 上,连接RN ,若35CP GE ,2PMN PDE CNR ,求直线RN 的解析式.【答案】(1)1212a b(2)32S t(3)31124y x【解析】【分析】(1)将521,28A ,13,28B代入抛物线2y a b 中,进行计算即可得;(2)由(1)得32,2D ,根据DE y 轴得2DE ,30,2E ,根据点P 的纵坐标为t ,得32PE t ,即可得;(3)过点C 作CK CN ,交NR 的延长线于点K ,过点K 作KT y 轴于点T ,根据二次函数的性质得10,2C,则12OC ,根据FH y 轴,DE y 轴得90FHG DEG ,根据点G 为DF 的中点得DG FG ,根据AAS 得FHG DEG △≌△,得2HF ED ,12HG EG HE,再运用待定系数法求得直线OA 的解析式为2120y x ,得出21(2,)10F ,可得13210GE HE ,再由35CP GE 得出(0,1)P ,5(,1)2N ,再运用待定系数法求得直线BP 的解析式为514y x ,进而推出PN DE MN EP,证得PMN DPE △∽△,进而得出90PMN PDE ,由2PMN PDE CNR 得45CNR ,用AAS 可证明CKT NCP ≌△△,求得1(,2)2K ,设直线RN 的解析式为:y ex f ,再运用待定系数法即可得.【小问1详解】解:∵抛物线2y a b 经过521,28A ,13,28B,∴2125843184a b a b ,解得1212a b,【小问2详解】解:由(1)得21122y x,点D 的横坐标为2 ∴点D 纵坐标为32∴32,2D,∵DE y 轴∴2DE ,30,2E∵点P 的纵坐标为t ,∴32PE t,∴113322222S DE PE t t;【小问3详解】解:如图所示,过点C 作CK CN ,交NR 的延长线于点K ,过点K 作KT y 轴于点T,∵21122y x ,当0x 时,12y ,∴10,2C,∴12OC ,∵FH y 轴,DE y 轴,∴90FHG DEG ,∵点G 为DF 的中点,∴DG FG ,在FHG △和DEG △中,FHG DEG HGF DEG FG DG∴FHG DEG △≌△(AAS ),∴2HF ED ,12HG EG HE ,设直线OA 的解析式为:y kx ,将点521(,)28A 代入得,52128k ,解得,2120k ,∴直线OA 的解析式:2120y x ,当x =2时,212122010y ,∴21(2,10F ,21(0,)20H ,∴21331025HE ,∴113322510GE HE ,∵35CP GE ,∴553133102CP GE ,∴(0,1)P ,∵AN y ∥轴,PN x ∥轴,∴5(,1)2N ,∴52PN ,∵3(0,2E ,∴35(1)22EP ,设直线BP 的解析式为y mx n ,则13281m n n ,解得,541m n,∴直线BP 的解析式为:514y x ,当52x 时,55171428y ,∴点M 的坐标为517(,28,∴1725(1)88MN ,∵5422558PNMN ,24552DEEP ,∴PN DEMN EP ,∵90PNM DEP ,∴PMN DPE △∽△,∴PMN DPE ,∵90DPE PDE ,∴90PMN PDE ,∵2PMN PDE CNR∴45CNR ,∵CK CN ,∴90NCK ,∴CNK △是等腰直角三角形,∴CK =CN ,∵90CTK NPC ,∴90KCT CKT ,∵90NCP KCT ,∴CKT NCP ,在CKT △和NCP 中,CTK NPCCKT NCPCK NC∴CKT NCP ≌△△(AAS ),∴52CT PN ,12KT CP ,∴2OT CT OC ,∴1(,2)2K ,设直线RN 的解析式为:y ex f ,将点1(,2)2K ,5(,1)2N 得,122512e f e f ,解得,32114e f ,∴直线RN 的解析式为:31124y x .【点睛】本题考查了二次函数,全等三角形的判定与性质,相似三角形的判定于性质,等腰直角三角形的判定与性质,解题的关键是掌握这些知识点,能够添加辅助线构造相似三角形或全等三角形.。
2020年黑龙江省哈尔滨市中考数学测试试卷(包含答案)

2020年黑龙江省哈尔滨市中考数学测试卷一.选择题(每题3分,满分30分)1.倒数为﹣2的数是()A.2B.﹣2C.﹣D.2.下列运算中,正确的是()A.6a﹣5a=1B.a2•a3=a5C.a6÷a3=a2D.(a2)3=a5 3.下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个4.如图所示,正三棱柱的左视图()A.B.C.D.5.如图,⊙O的直径AB=10,E在⊙O内,且OE=4,则过E点所有弦中,长度为整数的条数为()A.4B.6C.8D.106.在平面直角坐标系中,把抛物线y=2x2绕原点旋转180°,再向右平移1个单位,向下平移2个单位,所得的抛物线的函数表达式为()A.y=2(x﹣1)2﹣2B.y=2(x+1)2﹣2C.y=﹣2(x﹣1)2﹣2D.y=﹣2(x+1)2﹣27.如图,河坝横断面的迎水坡AB的坡比为3:4,BC=6m,则坡面AB的长为()A.6m B.8m C.10m D.12m8.下列函数中,y是x的反比例函数的是()A.y=2x B.y=﹣x﹣1C.y=D.y=﹣x9.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()A.△ABE≌△AGF B.AE=AF C.AE=EF D.10.如图,点D是△ABC的边BC上一点,∠BAD=∠C,AC=2AD,如果△ACD的面积为15,那么△ABD的面积为()A.15B.10C.7.5D.5二.填空题(满分30分,每小题3分)11.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为.12.若代数式在实数范围内有意义,则x的取值范围是.13.如图,长方形的长宽分别为a,b,且a比b大5,面积为10,则a2b﹣ab2的值为.14.计算:=.15.对于有理数m,我们规定[m]表示不大于m的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=﹣5,则整数x的取值是.16.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是.17.在半径为3cm的⊙O中,45°的圆周角所对的弧长为cm.18.如图,在矩形ABCD中,对角线AC与BD相交于点O,AE⊥BD,垂足为E,∠AOB =60°,AC=12,则BE的长为.19.如图,PA,PB是⊙O的两条切线,A,B为切点,点D,E,F分别在线段AB,BP,AP上,且AD=BE,BD=AF,∠P=54°,则∠EDF=度.20.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E 三点在同一条直线上,连接BD,则下列结论正确的是.①△ABD≌△ACE②∠ACE+∠DBC=45°③BD⊥CE④∠EAB+∠DBC=180°三.解答题21.(7分)先化简,再求值:÷,其中x=sin45°,y=cos60°.22.(7分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点为网格线的交点)及过格点的直线l.(1)画出△ABC关于直线l对称的△A1B1C1;(2)将△ABC向上平移3个单位长度,再向左平移1个单位长度,画出平移后的△A2B2C2;(3)以A、A1、A2为顶点的三角形中,tan∠A2AA1=.23.(8分)书籍是人类进步的阶梯.联合国教科文组织把每年的4月23日确定为“世界读书日”.某校为了了解该校学生一个学期阅读课外书籍的情况,在全校范围内随机对100名学生进行了问卷调查,根据调查的结果,绘制了统计图表的一部分:一个学期平均一天阅读课外书籍所有时间统计表时间(分钟)20406080100120人数(名)433115542请你根据以上信息解答下列问题:(1)补全图1、图2;(2)这100名学生一个学期平均每人阅读课外书籍多少本?若该校共有4000名学生,请你估计这个学校学生一个学期阅读课外书籍共多少本?(3)根据统计表,求一个学期平均一天阅读课外书籍所用时间的众数和中位数.24.(8分)在正方形ABCD中,点E是BC边上一点,连接AE.(1)如图1,点F为AE的中点,连接CF.已知tan∠FBE=,BF=5,求CF的长;(2)如图2,过点E作AE的垂线交CD于点G,交AB的延长线于点H,点O为对角线AC的中点,连接GO并延长交AB于点M,求证:AM+BH=BE.25.(10分)已知:△ABC内接于⊙O,连接CO并延长交AB于点E,交⊙O于点D,满足∠BEC=3∠ACD.(1)如图1,求证:AB=AC;(2)如图2,连接BD,点F为弧BD上一点,连接CF,弧CF=弧BD,过点A作AG ⊥CD,垂足为点G,求证:CF+DG=CG;(3)如图3,在(2)的条件下,点H为AC上一点,分别连接DH,OH,OH⊥DH,过点C作CP⊥AC,交⊙O于点P,OH:CP=1:,CF=12,连接PF,求PF的长.参考答案一.选择题1.解:倒数为﹣2的数是﹣.故选:C.2.解:A、6a﹣5a=a,故此选项错误;B、a2•a3=a5,正确;C、a6÷a3=a3,故此选项错误;D、(a2)3=a6,故此选项错误;故选:B.3.解:第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共2个中心对称图形.故选:B.4.解:主视图是一个矩形,俯视图是两个矩形,左视图是正三角形,故选:A.5.解:∵AB=10,∵OB=OA=OC=5,过E作CD⊥AB于E,连接OC,则CD是过E的⊙O的最短的弦,∵OB⊥CD,∴∠CEO=90°,由勾股定理得:CE===3,∵OE⊥CD,OE过O,∴CD=2CE=6,∵AB是过E的⊙O的最长弦,AB=10,∴过E点所有弦中,长度为整数的条数为1+2+2+2+1=8,故选:C.6.解:∵把抛物线y=2x2绕原点旋转180°,∴新抛物线解析式为:y=﹣2x2,∵再向右平移1个单位,向下平移2个单位,∴平移后抛物线的解析式为y=﹣2(x﹣1)2﹣2.故选:C.7.解:∵河坝横断面的迎水坡AB的坡比为3:4,BC=6m,∴=,即=,解得:AC=8.故AB===10(m).故选:C.8.解:A、y=2x是正比例函数,故本选项不符合题意.B、y是x的反比例函数,故本选项符合题意;C、y不是x的反比例函数,故本选项不符合题意;D、y=﹣x是正比例函数,故本选项不符合题意;故选:B.9.解:设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,AB2+BE2=AE2,即42+x2=(8﹣x)2解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,∴B结论正确;在Rt△ABE和Rt△AGF中,,∴Rt△ABE≌Rt△AGF(HL),∴A结论正确;过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=2,∴D结论正确;∵△AEF不是等边三角形,∴EF≠AF,∴C结论错误.故选:C.10.解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∵AC=2AD,∴=()2=,∴=,∵△ACD的面积为15,∴△ABD的面积=×15=5,故选:D.二.填空题(共10小题,满分30分,每小题3分)11.解:数字55000用科学记数法表示为5.5×104.故答案为:5.5×104.12.解:根据题意得:3﹣2x≥0,解得:x≤.13.解:∵长方形的长宽分别为a,b,且a比b大5,面积为10,∴a﹣b=5,ab=10,则a2b﹣ab2=ab(a﹣b)=5×10=50.故答案为:50.14.解:原式=2×3=6.故答案为:6.15.解:∵[m]表示不大于m的最大整数,∴﹣5≤<﹣4,解得:﹣17≤x<﹣14,∴整数x为﹣17,﹣16,﹣15,故答案为﹣17,﹣16,﹣15.16.解:画树状图如下:随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于5的占4种,所有两次摸出的小球标号的和等于5的概率为=,故答案为:.17.解:根据圆周角定理,得弧所对的圆心角是90°,根据弧长的公式l==cm,故答案为:π.18.解:在矩形ABCD中,对角线AC与BD相交于点O,∴AC=BD=12,OA=AC=6,OB=BD,∴OA=OB=6,∵∠AOB=60°,∴△ABO是等边三角形,∵AE⊥BD,∴BE=OB=3;故答案为:3.19.解:∵PA,PB是⊙O的两条切线,∴PA=PB,∴∠PAB=∠PBA==63°,在△AFD和△BDE中,,∴△AFD≌△BDE(SAS)∴∠AFD=∠BDE,∴∠EDF=180°﹣∠BDE﹣∠ADF=180°﹣∠AFD﹣∠ADF=∠FAD=63°,故答案为:63.20.解:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),故①符合题意,∴BD=CE,∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵△BAD≌△CAE,∴∠ABD=∠ACE,∴∠ACE+∠DBC=45°,故②符合题意,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,故③符合题意,∵∠BAC+∠DAE+∠BAE+∠DAC=360°,∴∠BAE+∠DAC=180°,∵BD⊥CE,∠ADE=45°,∴∠ADB=45°=∠ACB,∴∠DAC=∠CBD,∴∠BAE+∠DBC=180°,故④符合题意,故答案为:①②③④.三.解答题(共5小题,满分40分)21.解:原式=÷=•=,当x=sin45°=,y=cos60°=时,原式==.22.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图,∵A2A=,A2A1=,∴A2A1=A2A,设AA1交直线l于点O,∴A1O=,∴A1O=AO,∴A2O⊥AA1,∴tan∠A2AA1==2,故答案为:2.23.解:(1)根据题意得:100﹣(9+38+25+11+9+3)=5(人);1﹣(35%+25%+6%)=34%,补全图形,如图所示;(2)根据题意得:=3(本),则这100名学生一个学期平均每人阅读课外书籍3本;根据题意得:3×4000=12000(本),则估计这个学校学生一个学期阅读课外书籍共12000本;(3)根据表格得:众数为20分钟,中位数为40分钟.24.解:(1)Rt△ABE中,BF为中线,BF=5,∴AE=10,FE=5,作FP⊥BC于点P,Rt△BFP中,,∴BP=3,FP=4,在等腰三角形△BFE中,BE=2BP=6,由勾股定理求得,∴CP=8﹣3=5,∴;(2)∵∠ACD=∠BAC=45°,AO=CO,∠AOM=∠COG,∴证明△AMO≌△CGO(ASA),∴AM=GC,过G作GP垂直AB于点P,得矩形BCGP,∴CG=PB,∵AB=PG,∠AEB=∠H,∠ABE=∠GPH,∴△ABE≌△GPH(ASA),∴BE=PH=PB+BH=CG+BH=AM+BH.25.(1)证明:如图1中,连接AD.设∠BEC=3α,∠ACD=α.∵∠BEC=∠BAC+∠ACD,∴∠BAC=2α,∵CD是直径,∴∠DAC=90°,∴∠D=90°﹣α,∴∠B=∠D=90°﹣α,∵∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣2α﹣(90°﹣α)=90°﹣α.∴∠ABC=∠ACB,∴AB=AC.(2)证明:如图2中,连接AD,在CD上取一点Z,使得CZ=BD.∵=,∴DB=CF,∵∠DBA=∠DCA,CZ=BD,AB=AC,∴△ADB≌△AZC(SAS),∴AD=AZ,∵AG⊥DZ,∴DG=GZ,∴CG=CZ+GZ=BD+DG=CF+DG.(3)解:连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.∵CP⊥AC,∴∠ACP=90°,∴PA是直径,∵OR⊥PC,OK⊥AC,∴PR=RC,∠ORC=∠OKC=∠ACP=90°,∴四边形OKCR是矩形,∴RC=OK,∵OH:PC=1:,∴可以假设OH=a,PC=2a,∴PR=RC=a,∴RC=OK=a,sin∠OHK==,∴∠OHK=45°,∵OH⊥DH,∴∠DHO=90°,∴∠DHA=180°﹣90°﹣45°=45°,∵CD是直径,∴∠DAC=90°,∴∠ADH=90°﹣45°=45°,∴∠DHA=∠ADH,∴AD=AH,∵∠COP=∠AOD,∴AD=PC,∴AH=AD=PC=2a,∴AK=AH+HK=2a+a=3a,在Rt△AOK中,tan∠OAK==,OA===a,∴sin∠OAK==,∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,∴∠DAG=∠ACD,∵AO=CO,∴∠OAK=∠ACO,∴∠DAG=∠ACO=∠OAK,∴tan∠ACD=tan∠DAG=tan∠OAK=,∴AG=3DG,CG=3AG,∴CG=9DG,由(2)可知,CG=DG+CF,∴DG+12=9DG,∴DG=,AG=3DG=3×=,∴AD===,∴PC=AD=,∵sin∠F=sin∠OAK,∴sin∠F==,∴CT=×FC=×12=,FT===,PT===,∴PF=FT﹣PT=﹣=.。
2022年黑龙江省哈尔滨市中考数学试卷(含答案解析)

哈尔滨市2022年初中升学考试数 学 试 卷考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上 填写清楚,将“条形码”准确粘贴在条形码区城内。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效; 草稿纸、试题纸上答题无效。
4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写字 体工整、笔迹清楚。
5.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸 刀。
第Ⅰ卷 选择题(共30分)(涂卡)一、选择题(每小题3分,共计30分) 1.的相反数是A .B .C .6D .﹣62.下列运算一定正确的是A .(a 2b 3)2=a 4b 6B .3b 2+b 2=4b 4C .(a 4)2=a 6D .a 3•a 3=a 93.下列图形中既是轴对称图形又是中心对称图形的是A B C D4.六个大小相同的正方体搭成的几何体如图所示,其左视图是A B C D5.抛物线y=2(x+9)2﹣3的顶点坐标是A.(9,﹣3)B.(﹣9,﹣3)C.(9,3)D.(﹣9,3)6.方程=的解为()A.x=3B.x=﹣9C.x=9D.x=﹣37.如图,AD,BC是⊙O的直径,点P在BC的延长线上,P A与⊙O相切于点A,连接BD,若∠P=40°,则∠ADB的度数为A.65°B.60°C.50°D.25°8.某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x,根据题意,所列方程正确的是A.150(1﹣x2)=96B.150(1﹣x)=96C.150(1﹣x)2=96D.150(1﹣2x)=969.如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BD的长为A.B.4C.D.610.一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示.如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为A.150kmB.165kmC.125kmD.350km二、填空题(每小题3分,共计30分)11.风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量就有253000兆瓦,用科学记数法表示为兆瓦.12.在函数y=中,自变量x的取值范围是.13.计算+3的结果是.14.把多项式xy2﹣9x分解因式的结果是.15.不等式组的解集是.16.已知反比例函数y=﹣的图象经过点(4,a),则a的值为.17.在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是度.18.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是.19.一个扇形的面积为7πcm2,半径为6cm,则此扇形的圆心角是度.20.如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD 的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(本题7分)先化简,再求代数式(﹣)÷的值,其中x=2cos45°+1.如图,方格纸中每个小正方形的边长均为1,△ABC的顶点和线段EF的端点均在小正方形的顶点上.(1)在方格纸中画出△ADC,使△ADC与△ABC关于直线AC对称(点D在小正方形的顶点上);(2)在方格纸中画出以线段EF为一边的平行四边形EFGH(点G,点H均在小正方形的顶点上),且平行四边形EFGH的面积为4,连接DH,请直接写出线段DH的长.23.(本题8分)民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数的25%.请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若民海中学共有1600名学生,请你估计该中学最喜欢球类的学生共有多少名.已知矩形ABCD的对角线AC,BD相交于点O,点E是边AD上一点,连接BE,CE,OE,且BE=CE.(1)如图1,求证:△BEO≌△CEO;(2)如图2,设BE与AC相交于点F,CE与BD相交于点H,过点D作AC的平行线交BE的延长线于点G,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(△AEF除外),使写出的每个三角形的面积都与△AEF的面积相等.25.(本题10分)绍云中学计划为绘画小组购买某种品牌的A、B两种型号的颜料,若购买1盒A种型号的颜料和2盒B种型号的颜料需用56元;若购买2盒A种型号的颜料和1盒B种型号的颜料需用64元.(1)求每盒A种型号的颜料和每盒B种型号的颜料各多少元;(2)绍云中学决定购买以上两种型号的颜料共200盒,总费用不超过3920元,那么该中学最多可以购买多少盒A种型号的颜料?26.(本题10分)已知CH是⊙O的直轻,点A、点B是⊙O上的两个点,连接OA,OB,点D,点E分别是半径OA,OB的中点,连接CD,CE,BH,且∠AOC=2∠CHB.(1)如图1,求证:∠ODC=∠OEC;(2)如图2,延长CE交BH于点F,若CD⊥OA,求证:FC=FH;(3)如图3,在(2)的条件下,点G是一点,连接AG,BG,HG,OF,若AG:BG=5:3,HG=2,求OF的长.27.(本题10分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+b经过点A(,),点B(,﹣),与y轴交于点C.(1)求a,b的值;(2)如图1,点D在该抛物线上,点D的横坐标为﹣2.过点D向y轴作垂线,垂足为点E.点P为y轴负半轴上的一个动点,连接DP,设点P的纵坐标为t,△DEP的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);(3)如图2,在(2)的条件下,连接OA,点F在OA上,过点F向y轴作垂线,垂足为点H,连接DF交y轴于点G,点G为DF的中点,过点A作y轴的平行线与过点P所作的x轴的平行线相交于点N,连接CN,PB,延长PB交AN于点M,点R在PM上,连接RN,若3CP=5GE,∠PMN+∠PDE=2∠CNR,求直线RN的解析式.哈尔滨市2022年初中升学考试数学试题参考答案一、选择题(每小题3分,共计30分)1.B2.A3.B4.D5.B6.C7.A8.C9.C10.A二、填空题(每小题3分,共计30分)11.2.53×10512.x≠﹣13.214.x(y+3)(y﹣3)15.x>16.﹣17.80或4018.19.7020.2三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)解:(﹣)÷===,当x=2cos45°+1=2×+1=+1时,原式==.22.(7分)解:(1)如图,△ADC即为所求;(2)如图,▱EFGH即为所求;由勾股定理得,DH==5.23.(8分)解:(1)20÷25%=80(名),答:一共抽取了80名学生;(2)80﹣16﹣24﹣20=20(名),补全条形统计图如下:(3)1600×=480(名),答:估计该中学最喜欢球类的学生共有480名.24.(8分)(1)证明:∵四边形ABCD是矩形,∴OA=OC=AC,OB=OD=BD,AC=BD,∴OB=OC=OA=OD,∵BE=CE,OE=OE,∴△BEO≌△CEO(SSS);(2)解:△DHE,△CHO,△DEG,△BFO都与△AEF的面积相等,理由:∵四边形ABCD是矩形,∴∠BAD=∠CDA=90°AB∥CD,AB=DC,∵BE=CE,∴Rt△BAE≌Rt△CDE(HL),∴∠AEB=∠DEC,AE=DE,∵OA=OD,∴∠OEA=∠OED=90°,∴∠BAD=∠OED=90°,∠ADC=∠AEO=90°,∴AB∥OE,DC∥OE,∴△AEO的面积=△BEO的面积,△DEO的面积=△COE的面积,∴△AEO的面积﹣△EFO的面积=△BEO的面积﹣△EFO的面积,△DEO的面积﹣△EHO的面积=△COE的面积﹣△EHO的面积,∴△AEF的面积=△BFO的面积,△DHE的面积=△CHO的面积,∵OA=OD,∴∠DAO=∠ADO,∴△AEF≌△DEH(ASA),∴△AEF的面积=△DHE的面积=△CHO的面积,∵DG∥AC,∴∠G=∠AFE,∠GDE=∠F AE,∴△AEF≌△DEG(AAS),∴△AEF的面积=△DEG的面积,∴△DHE,△CHO,△DEG,△BFO都与△AEF的面积相等.25.(10分)解:(1)设每盒A种型号的颜料x元,每盒B种型号的颜料y元,依题意得:,解得:.答:每盒A种型号的颜料24元,每盒B种型号的颜料16元.(2)设该中学可以购买m盒A种型号的颜料,则可以购买(200﹣m)盒B种型号的颜料,依题意得:24m+16(200﹣m)≤3920,解得:m≤90.答:该中学最多可以购买90盒A种型号的颜料.26.(10分)(1)证明:如图1,∵点D,点E分别是半径OA,OB的中点,∴OD=OA,OE=OB,∵OA=OB,∴OE=OD,∵∠AOC=2∠CHB,∠BOC=2∠CHB,∴∠AOC=∠BOC,∵OC=OC,∴△OCD≌△OCE(SAS),∴∠ODC=∠OEC;(2)证明:∵CD⊥OA,∴∠CDO=90°,由(1)知:∠ODC=∠OEC=90°,∴sin∠OCE==,∴∠OCE=30°,∴∠COE=60°,∵∠H=∠COE=30°,∴∠H=∠OCE,∴FC=FH;(3)解:∵CO=OH,FC=FH,∴FO⊥CH,∴∠FOH=90°,如图,连接AH,∵∠AOC=∠BOC=60°,∴∠AOH=∠BOH=120°,∴AH=BH,∠AGH=60°,∵AG:BG=5:3,∴设AG=5x,BG=3x,在AG上取点M,使得AM=BG,连接MH,过点H作HN⊥CM于N,∵∠HAM=∠HBG,∴△HAM≌△HBG(SAS),∴MH=GH,∴△MHG是等边三角形,∴MG=HG=2,∵AG=AM+MG,∴5x=3x+2,∴x=1,∴AG=5,BG=AM=3,∴MN=GM=×2=1,HN=,∴AN=MN+AM=4,∴HB=HA===,∵∠FOH=90°,∠OHF=30°,∴∠OFH=60°,∵OB=OH,∴∠BHO=∠OBH=30°,∴∠FOB=∠OBF=30°,∴OF=BF,在Rt△OFH中,∠OHF=30°,∴HF=2OF,∴HB=BF+HF=3OF=,∴OF=.27.(10分)解:(1)∵抛物线y=ax2+b经过点A(,),点B(,﹣),∴,解得:,故a=,b=;(2)如图1,由(1)得:a=,b=,∴抛物线的解析式为y=x2﹣,∵点D在该抛物线上,点D的横坐标为﹣2,∴y=×(﹣2)2﹣=,∴D(﹣2,),∵DE⊥y轴,∴DE=2,∴E(0,),∵点P为y轴负半轴上的一个动点,且点P的纵坐标为t,∴P(0,t),∴PE=﹣t,∴S=PE•DE=×(﹣t)×2=﹣t+,故S关于t的函数解析式为S=﹣t+;(3)如图2,过点C作CK⊥CN,交NR的延长线于点K,过点K作KT⊥y轴于点T,由(2)知:抛物线的解析式为y=x2﹣,当x=0时,y=﹣,∴C(0,﹣),∴OC=,∵FH⊥y轴,DE⊥y轴,∴∠FHG=∠DEG=90°,∵点G为DF的中点,∴DG=FG,∵∠HGF=∠EGD,∴△FGH≌△DGE(AAS),∴FH=DE=2,HG=EG=HE,设直线OA的解析式为y=kx,∵A(,),∴k=,解得:k=,∴直线OA的解析式为y=x,当x=2时,y=×2=,∴F(2,),∴H(0,),∴HE=﹣=,∴GE=HE=×=,∵3CP=5GE,∴CP=GE=×=,∴P(0,﹣1),∵AN∥y轴,PN∥x轴,∴N(,﹣1),∴PN=,∵E(0,),∴EP=﹣(﹣1)=,设直线BP的解析式为y=mx+n,则,解得:,∴直线BP的解析式为y=x﹣1,当x=时,y=×﹣1=,∴M(,),∴MN=﹣(﹣1)=,∵==,==,∴=,又∵∠PNM=∠DEP=90°,∴△PMN∽△DPE,∴∠PMN=∠DPE,∵∠DPE+∠PDE=90°,∴∠PMN+∠PDE=90°,∵∠PMN+∠PDE=2∠CNR,∴∠CNR=45°,∵CK⊥CN,∴∠NCK=90°,∴△CNK是等腰直角三角形,∴CK=CN,∵∠CTK=∠NPC=90°,∴∠KCT+∠CKT=90°,∵∠NCP+∠KCT=90°,∴∠CKT=∠NCP,∴△CKT≌△NCP(AAS),∴CT=PN=,KT=CP=,∴OT=CT﹣OC=﹣=2,∴K(,2),设直线RN的解析式为y=ex+f,把K(,2),N(,﹣1)代入,得:,解得:,∴直线RN的解析式为y=﹣x+.。
2020年黑龙江省哈尔滨市中考数学试卷(含解析)

2020年黑龙江省哈尔滨市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(每小题3分,共计30分)1.﹣8的倒数是()A.﹣B.﹣8 C.8 D.2.下列运算一定正确的是()A.a2+a2=a4B.a2•a4=a8C.(a2)4=a8D.(a+b)2=a2+b23.下列图形中既是轴对称图形又是中心对称图形的是()A.扇形B.正方形C.等腰直角三角形D.正五边形4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO的度数为()A.25°B.20°C.30°D.35°6.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+37.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°8.方程=的解为()A.x=﹣1 B.x=5 C.x=7 D.x=99.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.10.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共计30分)11.将数4790000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.已知反比例函数y=的图象经过点(﹣3,4),则k的值为.14.计算+6的结果是.15.把多项式m2n+6mn+9n分解因式的结果是.16.抛物线y=3(x﹣1)2+8的顶点坐标为.17.不等式组的解集是.18.一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是度.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE =∠DEA,EO=1,则线段AE的长为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣)÷的值,其中x=4cos30°﹣1.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+.连接EG,请直接写出线段EG的长.23.(8分)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.24.(8分)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?26.(10分)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC 于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG =AF,求点P的坐标.参考答案与试题解析一、选择1.【解答】解:﹣8的倒数是﹣,故选:A.2.【解答】解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2•a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.故选:C.3.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.4.【解答】解:从左边看第一层是两个小正方形,第二层右边一个小正方形,故选:C.5.【解答】解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°﹣70°=20°.故选:B.6.【解答】解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y =x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;故选:D.7.【解答】解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.8.【解答】解:方程的两边同乘(x+5)(x﹣2)得:2(x﹣2)=x﹣5,解得x=9,经检验,x=9是原方程的解.故选:D.9.【解答】解:∵袋子中一共有9个除颜色不同外其它均相同的小球,其中红球有6个,∴摸出的小球是红球的概率是=,故选:A.10.【解答】解:∵EF∥BC,∴,∵EG∥AB,∴,∴,故选:C.二、填空题11.【解答】解:4790000=4.79×106,故答案为:4.79×106.12.【解答】解:由题意得x﹣7≠0,解得x≠7.故答案为:x≠7.13.【解答】解:∵反比例函数y=的图象经过点(﹣3,4),∴k=﹣3×4=﹣12,故答案为:﹣12.14.【解答】解:原式=.故答案为:.15.【解答】解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.16.【解答】解:∵抛物线y=3(x﹣1)2+8是顶点式,∴顶点坐标是(1,8).故答案为:(1,8).17.【解答】解:,由①得,x≤﹣3;由②得,x<﹣1,故此不等式组的解集为:x≤﹣3.故答案为:x≤﹣3.18.【解答】解:设这个扇形的圆心角为n°,=13π,解得,n=130,故答案为:130.19.【解答】解:在Rt△ABD中,∠ABC=60°,AD=6,∴BD===6,如图1、图2所示:BC=BD+CD=6+1=7,BC=BD﹣CD=6﹣1=5,故答案为:7或5.20.【解答】解:设BE=x,则CD=2x,∵四边形ABCD为菱形,∴AB=AD=CD=2x,OB=OD,AC⊥BD,∵∠DAE=∠DEA,∴DE=DA=2x,∴BD=3x,∴OB=OD=x,∵OE+BE=BO,∴1+x=x,解得x=2,即AB=4,OB=3,在Rt△AOB中,OA==,在Rt△AOE中,AE==2.故答案为2.三、解答题21.【解答】解:原式=•=,∵x=4cos30°﹣1=4×﹣1=2﹣1,∴原式==.22.【解答】解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.23.【解答】解:(1)15÷30%=50(名),答:在这次调查中,一共抽取了50名学生;(2)50﹣15﹣20﹣5=10(名),补全条形统计图如图所示:(3)800×=320(名),答:冬威中学800名学生中最喜欢剪纸小组的学生有320名.24.【解答】(1)证明:∵AB=AC,∵∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵AD=AE,∴∠ADE=∠AED,∵BF∥AC,∴∠FDB=∠C=45°,∵∠ABC=∠C=∠DAE=45°,∠BDF=∠ADE,∴∠F=∠BDF,∠BEA=∠BAE,∠CDA=∠CAD,∴满足条件的等腰三角形有:△ABE,△ACD,△DAE,△DBF.25.【解答】解:(1)设每个大地球仪x元,每个小地球仪y元,根据题意可得:,解得:,答:每个大地球仪52元,每个小地球仪28元;(2)设大地球仪为a台,则每个小地球仪为(30﹣a)台,根据题意可得:52a+28(30﹣a)≤960,解得:a≤5,答:最多可以购买5个大地球仪.26.【解答】证明:(1)∵AD为⊙O的直径,AD⊥BC,∴BE=EC,∴AB=AC,又∵AD⊥BC,∴∠BAD=∠CAD,∵OA=OB,∴∠BAD=∠ABO,∴∠BAD=∠ABO=∠CAD,∵∠BFC=∠BAC+∠ABO,∴∠BFC=∠BAD+∠EAD+∠ABO=3∠CAD;(2)如图2,连接AG,∵AD是直径,∴∠AGD=90°,∵点H是DG中点,∴DH=HG,又∵AO=DO,∴OH∥AG,AG=2OH,∴∠AGD=∠OHD=90°,∵DG∥BF,∴∠BOE=∠ODH,又∵∠OEB=∠OHD=90°,BO=DO,∴△BOE≌△ODH(AAS),∴BE=OH;(3)如图3,过点F作FN⊥AD,交AD于N,设DG=DE=2x,∴DH=HG=x,∵△BOE≌△ODH,∴OE=DH=x,∴OD=3x=OA=OB,∴BE===2x,∵∠BAE=∠CAE,∴tan∠BAE=tan∠CAE=,∴=,∴AN=NF,∵∠BOE=∠NOF,∴tan∠BOE=tan∠NOF=,∴=,∴ON=NF,∴AO=AN+ON=NF,∵△AOF的面积为,∴×AO×NF=×NF2=,∴NF=,∴AO=NF=3=3x,∴x=1,∴BE=2=OH,AE=4,DG=DE=2,∴AC===2,如图3,连接AG,过点A作AM⊥CG,交GC的延长线于M,由(2)可知:AG=2OH=4,∵四边形ADGC是圆内接四边形,∴∠ACM=∠ADG,又∵∠AMC=∠AGD=90°,∴△ACM∽△ADG,∴,∴,∴CM=,AM=,∴GM===,∴CG=GM﹣CM=.27.【解答】解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,AR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°﹣45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,∵GQ﹣FG=AF,∴GQ=×m+6﹣m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12﹣m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴=,由(2)可知DE=3a,PD=12a,∴=,∴tan∠PHD===2,∵∠PHD=∠FHT,∴tan∠FHT==2,∴HT=2,∵OT=OD+DH+HT,∴4a+6a+2=8,∴a=,∴OD=,PD=12×=,∴P(,)。
2020-2021学年人教版九年级中考数学练习试题1

2020-2021学年人教新版中考数学练习试题1一.选择题1.如图,数轴上点A,B,C对应的有理数分别为a,b,c.下列结论:①a+b+c>0;②abc>0;③a+b﹣c<0;④.其中正确的是()A.①②③B.②③C.①④D.②③④2.下列计算正确的是()A.=(y≠0)B.÷=C.|﹣2|=2﹣D.2﹣=13.下列计算正确的是()A.4a﹣2a=2B.2(a+2b)=2a+2bC.7ab﹣(﹣3ab)=4ab D.﹣a2﹣a2=﹣2a24.如图,直线AB∥CD∥EF,点O在直线EF上,下列结论正确的是()A.∠α+∠β﹣∠γ=90°B.∠α+∠γ﹣∠β=180°C.∠γ+∠β﹣∠α=180°D.∠α+∠β+∠γ=180°5.下列说法错误的是()A.若a+3>b+3,则a>b B.若,则a>bC.若a>b,则ac>bc D.若a>b,则a+3>b+26.如图,CE是△ABC的外角∠ACD的平分线,CE交BA的延长线于点E,∠B=35°,∠E=25°,则∠ACD的度数为()A.100°B.110°C.120°D.130°7.如图,在平行四边形ABCD中,点E为边DC上一点,且DE:EC=3:1,连接AE并延长,与BC的延长线交于点G,AE与BD交于点F,则△GEC的面积与△DEF的面积之比为()A.1:3B.3:7C.4:21D.7:278.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C 以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P恰好为AC的中点时,PQ的长为()A.2B.4C.2D.4二.填空题9.的平方根是.10.如图,在△ABC中,∠BAC=90°,∠B=60°,分别以点A和点C为圆心,大于AC 长为半径画弧,两弧相交于点M、N,作直线MN分别交BC、AC与点D、E.若AE=4cm,△ABD的周长为cm.11.如图,在平面直角坐标系中,点A从点M(0,5)出发向原点O匀速运动,与此同时点B从点N(3,0)出发,在x轴正半轴上以相同的速度向右运动,当点A到达终点O 时,两点同时停止运动.连接AB,以线段AB为一边在第一象限内作正方形ABCD,则正方形ABCD面积的最小值为.12.若x+y=4,x2+y2=6,则xy=.13.科学防疫从勤洗手开始,一双没洗干净的手上带有各种细菌病毒大约850000000个,这个数据用科学记数法表示为.14.若关于x的分式方程,有负数解,则实数a的取值范围是.15.如图,直线y=kx﹣b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx﹣b 的解集为.16.在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为.17.如图,在正方形网格中,小正方形的边长均为1,点A、B、C都是格点,则cos∠BAC =.18.平面直角坐标系xOy中,已知点A(8,0)及第一象限的动点P(x,y),且x+y=10.设△OPA的面积为S,周长为l.给出下列结论:①0≤y≤10;②≤PA<2;③S=﹣4x+40;④l的最小值为8+2其中所有正确结论的代号是.三.解答题19.先化简,再求值:÷(1﹣),其中a是方程x2+x﹣2=0的解.20.(1)解方程:x2﹣2x﹣3=0;(2)解不等式组:.21.在一个不透明的箱子内装入标记数字分别为﹣1,2,3,﹣6的四个小球,小球除标记数字不同外其他都相同.随机取出一个小球,记下标记的数字为m,不放回;再从箱内剩下的球中再随机取出一个小球,记下标记的数字为n.请用画树状图或列表的方法,求“点(m,n)在第二象限”的概率.22.随着生活水平的日益提高,人们越来越喜欢过节,节日的仪式感日渐浓烈,某校举行了“母亲节暖心特别行动”,从中随机调查了部分同学的暖心行动,并将其分为A,B,C,D四种类型(分别对应送服务、送鲜花、送红包、送话语).现根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该校共抽查了多少名同学的暖心行动?(2)求出扇形统计图中扇形B的圆心角度数?(3)若该校共有2400名同学,请估计该校进行送鲜花行动的同学约有多少名?23.在▱ABCD中,对角线AC、BD相交于点O,BD=2AB,点E、F分别是OA、BC的中点.连接BE、EF.(1)求证:EF=BF;(2)在上述条件下,若AC=BD,G是BD上一点,且BG:GD=3:1,连接EG、FG,试判断四边形EBFG的形状,并证明你的结论.24.某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元/台),m 与x的关系如图所示.(1)若第x天可以生产这种设备y台,则y与x的函数关系式为,x的取值范围为;(2)第几天时,该企业当天的销售利润最大?最大利润为多少?(3)求当天销售利润低于10800元的天数.25.如图,在平面直角坐标系中,一次函数y=mx+5(m≠0)的图象与反比例函数y=(k ≠0)在第一象限的图象交于A(1,n)和B(4,1)两点,过点A作y轴的垂线,垂足为M.(1)求一次函数和反比例函数的表达式.(2)求△OAM的面积S.(3)在y轴上求一点P,使PA+PB的值最小并求出此时点P的坐标.26.如图,在矩形ABCD中,=,F、G分别为AB、DC边上的动点,连接GF,沿GF将四边形AFGD翻折至四边形EFGP,点E落在BC上,EP交CD于点H,连接AE交GF于点O.(1)GF与AE之间的位置关系是:,的值是:,请证明你的结论;(2)连接CP,若tan∠CGP=,GF=2,求CP的长.27.定义:有一个内角等于与其相邻的两个内角之差的四边形称为幸福四边形.(1)已知∠A=120°,∠B=50°,∠C=α,请直接写出一个α的值,使四边形ABCD为幸福四边形;(2)如图1,△ABC中,D、E分别是边AB,AC上的点,AE=DE.求证:四边形DBCE 为幸福四边形;(3)在(2)的条件下,如图2,过D,E,C三点作⊙O,与边AB交于另一点F,与边BC交于点G,且BF=FC.①求证:E G是⊙O的直径;②连接FG,若AE=1,BG=7,∠BGF﹣∠B=45°,求EG的长和幸福四边形DBCE的周长.28.如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于点C,已知A(﹣1,0),且直线BC的解析式为y=x﹣2,作垂直于x轴的直线x=m,与抛物线交于点F,与线段BC交于点E(不与点B和点C重合).(1)求抛物线的解析式;(2)若△CEF是以CE为腰的等腰三角形,求m的值;(3)点P为y轴左侧抛物线上的一点,过点P作PM⊥BC交直线BC于点M,连接PB,若以P、M、B为顶点的三角形与△ABC相似,求P点的坐标.参考答案与试题解析一.选择题1.解:由数轴可得:a<﹣2<b<﹣1<0<c<1,∴a+b+c<0,故①错误;∵a,b,c中两负一正,∴abc>0,故②正确;∵a<0,b<0,c>0,∴a+b﹣c<0,故③正确;∵a<﹣2<b<﹣1,∴0<<1,故④正确.综上,可知,正确的有3个.故选:D.2.解:A、原式不能化简,不符合题意;B、原式=•=x,不符合题意;C、原式=2﹣,符合题意;D、原式=,不符合题意.故选:C.3.解:A、应为4a﹣2a=2a,故选项错误;B、应为2(a+2b)=2a+4b,故选项错误;C、应为7ab﹣(﹣3ab)=10ab,故选项错误;D、﹣a2﹣a2=﹣2a2,故选项正确.故选:D.4.解:∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠γ+∠α﹣∠β=180°, 故选:B .5.解:A 、若a +3>b +3,则a >b ,原变形正确,故此选项不符合题意; B 、若>,则a >b ,原变形正确,故此选项不符合题意;C 、若a >b ,则ac >bc ,这里必须满足c ≠0,原变形错误,故此选项符合题意;D 、若a >b ,则a +3>b +2,原变形正确,故此选项不符合题意; 故选:C .6.解:∵∠ECD 是△BCE 的一个外角, ∴∠ECD =∠B +∠E =35°+25°=60°, ∵CE 平分∠ACD ,∴∠ACD =2∠ECD =120°, 故选:C .7.解:∵平行四边形ABCD , ∴CD =AB ,CD ∥AB ,AD ∥BC ,∴△GEC ∽△GAB ,△GEC ∽AED ,△DEF ∽△ABF , ∵DE :EC =3:1,∴EC :CD =1:4,DE :AB =3:4, ∴==,==,==;设S △ECG =a ,则S △ABG =16a ,S △ADE =9a ,∴四边形ABCE 的面积为16a ﹣a =15a ,平行四边形ABCD 的面积为9a +15a =24a , ∴S △ABD =12a ,因此S △ABF ﹣S △DEF =3a , 设S △DEF =x ,则S △ABF =3a +x , 于是=, 解得,x =a ,∴△GEC 的面积与△DEF 的面积之比为a : a =,故选:D .8.解:设AB=a,∠C=30°,则AC=2a,BC=a,设P、Q同时到达的时间为T,则点P的速度为,点Q的速度为,故点P、Q的速度比为3:,故设点P、Q的速度分别为:3v、v,由图2知,当x=2时,y=6,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×v=2v,y=AB×BQ=6v×2v=6,解得:v=1,故点P、Q的速度分别为:3,,AB=6v=6=a,则AC=12,BC=6,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=x=4,CQ=BC﹣BQ=6﹣4=2,故点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×=3,同理CH=3,则HQ=CH﹣CQ=3﹣2=,PQ===2,故选:C.二.填空题9.解:=10,10的平方根是.故答案为:±.10.解:∵∠BAC=90°,∠B=60°,∴∠C=90°﹣60°=30°,由作图可知,DE垂直平分线段AC,∴DA=DC,∴∠C=∠DAC=30°,∴∠BAD=90°﹣30°=60°,∴∠B=∠BAD=∠ADB=60°,∴△ABD是等边三角形,∵AD==(cm),∴△ABD的周长=8(cm).故答案为8.11.解:由题意可得,NB=MA,则AO+OB=8,设AO=x,则OB=8﹣x,=AB2=AO2+OB2=x2+(8﹣x)2=2(x﹣4)2+32,∵S正方形ABCD∴当x=4时,正方形ABCD的面积取得最小值32,故答案为:32.12.解:将x+y=4两边平方得:(x+y)2=x2+y2+2xy=16,把x2+y2=6代入得:6+2xy=16,解得:xy=5,故答案为:513.解:850 000 000=8.5×108.故答案是:8.5×108.14.解:,分式方程去分母得:1﹣x﹣3=a,移项合并得:﹣x=a+2,解得:x=﹣a﹣2,∵分式方程的解为负数,∴﹣a﹣2<0且﹣a﹣2+3≠0,解得:a>﹣2且a≠1.故答案为:a>﹣2且a≠1.15.解:不等式4x+2<kx﹣b表示的是直线y=4x+2的图象位于直线y=kx﹣b的图象的下方,则由点A(﹣1,﹣2)的坐标得:x<﹣1.故答案为:x<﹣1.16.解:作△AB C的外接圆⊙O,过C作CM⊥AB于M,∵弦AB已确定,∴要使△ABC的面积最大,只要CM取最大值即可,如图所示,当CM过圆心O时,CM最大,∵CM⊥AB,CM过O,∴AM=BM(垂径定理),∴AC=BC,∵∠AOB=2∠ACB=2×45°=90°,∴OM=AM=AB==3,∴OA==3,∴CM=OC+OM=3+3,∴S=AB•CM=×6×(3+3)=9+9.△ABC故答案为:9+9.17.解:AB=BC==,AC==,则AB2+BC2=5+5=10=AC2,则△ABC为等腰直角三角形,∠BAC=45°,则cos∠BAC=.故答案为:.18.解:如图所示,∵A(8,0),P(x,y),△OPA的面积为S,∴S=OA•y=×8y=4y.∵x+y=10,∴y=10﹣x,∴S=4(10﹣x)=40﹣4x;∵0≠y和y≠10,若y=0,则O、P、A三点在一条直线上;若y=10,则x=0,P点落在y轴上,与题干不合∴①0≤y≤10,错误;②≤PA<2,正确;③S=﹣4x+40,正确;④l的最小值为8+2,正确;故答案为:②③④.三.解答题19.解:原式=•=,∵a是方程x2+x﹣2=0的解,∴a=1(没有意义舍去)或a=﹣2,则原式=﹣.20.解:(1)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x1=3,x2=﹣1;(2)解不等式2x>1﹣x,得:x>,解不等式2(2x+1)<x+4,得:x<,则不等式组的解集为<x<.21.解:用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中点(m,n)在第二象限的有4种,所以点(m,n)在第二象限的概率为=.22.解:(1)20÷25%=80(人),答:该校共抽查了80名同学的暖心行动.(2)360°×=144°,答:扇形统计图中扇形B的圆心角度数为144°.(3)2400×=960(人),答:该校2400名同学中进行送鲜花行动的约有960名.23.(1)证明:∵四边形ABCD是平行四边形,∴BD=2BO,∵BD=2AB,∴AB=BO,∵E为OA中点,∴BE⊥AC,∴∠BEC=90°,∵F为BC中点,∴EF=BF=CF,即EF=BF;(2)四边形EBFG是菱形,证明:连接CG,∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,BD=2BO=2OD,∴BD=2AB=2CD,∴OC=CD,∵BG:GD=3:1,OB=OD,∴G为OD中点,∴CG⊥OD(三线合一定理),即∠CGB=90°,∵F为BC中点,∴GF=BC=AD,∵E为OA中点,G为OD中点,∴EG∥AD,EG=AD,∴EG∥BC,EG=BC,∵F为BC中点,∴BF=BC,EG=GF,即EG∥BF,EG=BF,∴四边形EBFG是平行四边形,∵EG=GF,∴平行四边形EBFG是菱形(有一组邻边相等的平行四边形是菱形).24.解:(1)根据题意,得y与x的解析式为:y=22+2(x﹣1)=2x+20(1≤x≤12),故答案为:y=2x+20,1≤x≤12;(2)设当天的销售利润为w元,则当1≤x≤6时,w=(1200﹣800)(2x+20)=800x+8000,∴w随x的增大而增大,=800×6+8000=12800.∴当x=6时,w最大值当6<x≤12时,设m=kx+b,将(6,800)和(10,1000)代入得:,解得:,∴m与x的关系式为:m=50x+500,∴w=[1200﹣(50x+500)]×(2x+20)=﹣100x2+400x+14000=﹣100(x﹣2)2+14400.∵此时图象开口向下,在对称轴右侧,w随x的增大而减小,天数x为整数,∴当x=7时,w有最大值,为11900元,∵12800>11900,=12800元,∴当x=6时,w最大,且w最大值答:该厂第6天获得的利润最大,最大利润是12800元.(3)由(2)可得,1≤x≤6时,800x+8000<10800,解得:x<3.5则第1﹣3天当天利润低于10800元,当6<x≤12时,﹣100(x﹣2)2+14400<10800,解得x<﹣4(舍去),或x>8,∴第9﹣12天当天利润低于10800元,故当天销售利润低于10800元的天数有7天.25.解:(1)将B(4,1)代入y=得:.∴k=4.∴y=.将B(4,1)代入y=mx+5得:1=4m+5,∴y=﹣x+5.(2)在y=中,令x=1,解得y=4.∴A(1,4).∴S=×1×4=2.(3)作点A关于y轴的对称点N,则N(﹣1,4).连接BN交y轴于点P,点P即为所求.设直线BN的关系式为y=kx+b,由,得,∴y=﹣x+.∴点P的坐标为(0,).26.解:(1)GF⊥AE,.理由如下:由折叠性质可知,∠AOF=∠EOF,∵∠AOF+∠EOF=180°,∴∠AOF=∠EOF=90°,∴AE⊥GF;过G作GM⊥AB于M,如图,得矩形ADGM,则AD=GM,∠MFG+∠MGF=90°,∵∠MFG+∠FAO=90°,∴∠BAE=∠MGF,∵∠B=∠FMG=90°,∴△ABE∽△GMF,∴=2,∴,故答案为:AE⊥GF;;(2)延长BC与GP,两延长线交于点L,过P作PK⊥CL于点K,如图,由折叠知,∠FEP=∠FAD=∠D=∠EPG=90°,∴∠PEL+∠L=90°,∵∠BCD=∠DCL=90°,∴∠CGP+∠L=90°,∴∠PEL=∠CGL,∵∠BEF+∠BFE=∠BEF+∠PEL=90°,∴∠BFE=∠PEL=∠CGL,∵tan∠CGP=,∴tan∠bBFE=,不妨设BE=3x,则BF=4x,∴AF=EF=,∴AB=9x,∵AE=2FG,GF=2,∴AG=4,在Rt△ABE中,由勾股定理得81x2+9x2=160,解得x=,∴AB=9×=12,BE=4,∴EP=AD==6,CE=BC﹣BE=6﹣4=2,∵tan∠PEK=,不妨设PK=3y,EK=4y,在Rt△PEK中,由勾股定理得16y2+9y2=62,解得,y=,∴PK=,EK=,∴CK=EK﹣EC=,∴CP=.27.(1)解:∵∠A=120°,∠B=50°,∠C=α,∴∠D=360°﹣120°﹣50°﹣α=190°﹣α,若∠A=∠B﹣∠D,则120°=50°﹣(190°﹣α),解得:α=260°(舍),若∠A=∠D﹣∠B,则120°=(190°﹣α)﹣50°,解得:a=20°,若∠B=∠A﹣∠C,则50°=120°﹣α,解得:α=70°,若∠B=∠C﹣∠A,则50°=α﹣120°,解得:α=170°,若∠C=∠B﹣∠D,则α=50°﹣(190°﹣α),无解,若∠C=∠D﹣∠B,则α=(190°﹣α)﹣50°,解得:α=70°,若∠D=∠A﹣∠C,则190°﹣α=120°﹣α,无解,若∠D=∠C﹣∠A,则190°﹣α=α﹣120°,解得:α=155°,综上,α的值是20°或70°或170°或155°(写一个即可),故答案为:20°或70°或170°或155°(写一个即可);(2)证明:如图1,设∠A=x,∠C=y,则∠B=180°﹣x﹣y,∵AE=DE,∴∠ADE=∠A=x,∴∠BDE=180°﹣x,在四边形DBCE中,∠B=180°﹣x﹣y=∠BDE﹣∠C,∴四边形DBCE为幸福四边形;(3)①证明:如图2,∵D、F、G、E四点都在⊙O上,∴∠ADE=∠FGE,∵∠ADE=∠A,∴∠FGE=∠A,∵∠FGE=∠ACF,∴∠A=∠ACF,∵BF=CF,∴∠B=∠BCF,∵∠A+∠B+∠BCA=180°,∴∠ACF+∠BCF=90°,即∠ACB=90°,∴EG是⊙O的直径;②如图3,过E作EH⊥AB于H,连接DG,∵BF=CF,∴∠B=∠BCF=∠BDG,∴BG=DG=7,∵EG是⊙O的直径,∴∠GDE=90°,∵DE=AE=1,∴EG==5,∵∠BGF﹣∠B=45°,∠BGF﹣∠BCF=∠CFG,∴∠CFG=∠CEG=45°,∴△ECG是等腰直角三角形,∴CE=CG=5,∴BC=7+5=12,AC=5+1=6,∴AB===6,∵∠AHE=∠ACB=90°,∠A=∠A,∴△AHE∽△ACB,∴,即,∴AH=,∵AE=DE,EH⊥AD,∴AD=2AH=,∴幸福四边形DBCE的周长=BD+ED+CE+BC=6﹣+1+5+12=18+.28.解:(1)∵直线BC的解析式为y=x﹣2,∴C(0,﹣2),B(4,0),将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,得,解得,,∴y=x﹣2;(2)∵∴,=,,若以C为顶点,则CE2=CF2,∴,解得:m1=2,m2=4(舍去),若以E为顶点,则EC2=EF2,∴=,解得:m3=4﹣,m4=4+(舍去),综合以上得m=2或m=4﹣.(3)①∵AC=,BC=2,∴AC2+BC2=25=AB2,∴当点P与点A重合时,点M与点C重合,此时P1(﹣1,0),②如图,当△BPM∽△ABC时,过点M作HR∥x轴,作PH⊥HR于点H,BR⊥HR于点R,∵∠PMB=∠PHM=∠BRM=90°,∴∠BMR=∠MPH,∴△PHM∽△MRB,∴又∵AB∥HR,∴∠ABC=∠BMR,∴tan∠BMR=tan∠ABC=,令BR=a,MR=2a,又∵∠ABC=∠BMR,∴tan∠BMR=tan∠ABC=,∴,∴PH=4a,HM=2a,∴PQ=PH﹣QH=3a,∴HR=4a,∴P(4﹣4a,3a),又∵点P在抛物线上,将P(4﹣4a,3a)代入y=x﹣2得:(4﹣4a)﹣2=3a,∴a(8a﹣13)=0,a1=0(舍),a2=.∴.∴符合条件的点P为P1(﹣1,0)或.。
黑龙江省哈尔滨市中考数学试卷含参考解析

2018 年·黑龙江省哈尔滨市中考数学试卷·参照答案与试题解析一、选择题(每题 3 分,共计 30 分)1.(3.00 分)﹣的绝对值是()A.B.C.D.【解析】计算绝对值要依据绝对值的定义求解,第一步列出绝对值的表达式,第二步依据绝对值定义去掉这个绝对值的符号.【解答】解:|| =,应选: A.【谈论】此题主要观察了绝对值的定义,绝对值规律总结:一个正数的绝对值是它自己;一个负数的绝对值是它的相反数; 0 的绝对值是 0,比较简单.2.(3.00 分)以下运算必定正确的选项是()22+n2.()333.(3)25.22A.(m+n) =m B mn=m n C m=m D m?m =m【解析】直接利用圆满平方公式以及积的乘方运算法规、同底数幂的乘除运算法则分别计算得出答案.【解答】解: A、(m+n)2=m2+2mn+n2,故此选项错误;B、(mn)3=m3n3,正确;C、(m3)2=m6,故此选项错误;D、m?m2 =m3,故此选项错误;应选: B.【谈论】此题主要观察了圆满平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法规是解题要点.3.(3.00 分)以以下图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【解答】解: A、此图形既不是轴对称图形也不是中心对称图形,此选项不切合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不切合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项切合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不切合题意;应选: C.【谈论】此题观察了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特色是解题的要点.4.( 3.00 分)六个大小同样的正方体搭成的几何体以以以下图,其俯视图是()A.B.C.D.【解析】俯视图有 3 列,从左到右正方形个数分别是2, 1, 2.【解答】解:俯视图从左到右分别是2, 1, 2 个正方形.应选: B.【谈论】此题观察了简单组合体的三视图,培育学生的思虑能力和对几何体三种视图的空间想象能力.5.( 3.00 分)如图,点 P 为⊙ O 外一点, PA为⊙ O 的切线, A 为切点, PO 交⊙ O于点 B,∠ P=30°,OB=3,则线段 BP的长为()A.3B.3C.6D.9【解析】直接利用切线的性质得出∠ OAP=90°,从而利用直角三角形的性质得出OP的长.【解答】解:连接 OA,∵PA为⊙ O 的切线,∴∠ OAP=90°,∵∠P=30°,OB=3,∴AO=3,则 OP=6,故 BP=6﹣3=3.应选: A.【谈论】此题主要观察了切线的性质以及圆周角定理,正确作出辅助线是解题要点.6.(3.00 分)将抛物线y=﹣5x2+1 向左平移 1 个单位长度,再向下平移 2 个单位长度,所获得的抛物线为()A.y=﹣5(x+1)2﹣1B.y=﹣ 5( x﹣1)2﹣1C.y=﹣5(x+1)2+3 D .y=﹣ 5( x﹣1)2+3【解析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线 y=﹣ 5x2+1 向左平移 1 个单位长度,获得 y=﹣ 5(x+1)2+1,再向下平移 2 个单位长度,所获得的抛物线为: y=﹣ 5( x+1)2﹣ 1.应选: A.【谈论】此题主要观察了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.(3.00 分)方程=的解为()A.x=﹣1 B.x=0 C. x=D.x=1【解析】分式方程去分母转变为整式方程,求出整式方程的解获得 x 的值,经检验即可获得分式方程的解.【解答】解:去分母得: x+3=4x,解得: x=1,经检验 x=1 是分式方程的解,应选: D.【谈论】此题观察认识分式方程,利用了转变的思想,解分式方程注意要检验.8.(3.00 分)如图,在菱形ABCD中,对角线 AC、BD 订交于点 O, BD=8,tan ∠ ABD= ,则线段 AB 的长为()A.B.2C.5D.10【解析】依据菱形的性质得出 AC⊥BD,AO=CO,OB=OD,求出 OB,解直角三角形求出 AO,依据勾股定理求出 AB 即可.【解答】解:∵四边形 ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠ AOB=90°,∵ BD=8,∴OB=4,∵tan∠ ABD= = ,∴AO=3,在 Rt△AOB中,由勾股定理得: AB===5,应选: C.【谈论】此题观察了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的要点.9.( 3.00 分)已知反比率函数 y=的图象经过点(1,1),则k的值为()A.﹣ 1 B.0C.1D.2【解析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【解答】解:∵反比率函数y=的图象经过点(1,1),∴代入得: 2k﹣3=1× 1,解得: k=2,应选: D.【谈论】此题观察了反比率函数图象上点的坐标特色,能依据已知得出关于 k 的方程是解此题的要点.10.( 3.00 分)如图,在△ ABC中,点 D 在 BC 边上,连接 AD,点 G 在线段 AD 上, GE∥ BD,且交 AB 于点 E,GF∥AC,且交 CD 于点 F,则以下结论必定正确的是()A.=B.=C.=D.=【解析】由 GE∥BD、GF∥AC可得出△ AEG∽△ ABD、△DFG∽△ DCA,依据相似三角形的性质即可找出= =,此题得解.【解答】解:∵ GE∥BD,GF∥ AC,∴△ AEG∽△ ABD,△ DFG∽△ DCA,∴=,=,∴= = .应选: D.【谈论】此题观察了相似三角形的判断与性质,利用相似三角形的性质找出== 是解题的要点.二、填空题(每题 3 分,共计 30 分)11.( 3.00 分)将数 920000000 科学记数法表示为×108.【解析】科学记数法的表示形式为a× 10n的形式,此中 1≤| a| < 10,n 为整数.确定 n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n是负数.88【谈论】此题观察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中 1≤| a| <10,n 为整数,表示时要点要正确确立 a 的值以及 n 的值.12.( 3.00 分)函数 y=中,自变量x的取值范围是x≠4.【解析】依据分式分母不为0 列出不等式,解不等式即可.【解答】解:由题意得, x﹣ 4≠ 0,解得, x≠4,故答案为: x≠ 4.【谈论】此题观察的是函数自变量的取值范围,掌握分式分母不为 0 是解题的要点.13.( 3.00 分)把多项式 x3﹣ 25x 分解因式的结果是x( x+5)( x﹣5)【解析】第一提取公因式 x,再利用平方差公式分解因式即可.【解答】解: x3﹣25x=x( x2﹣25)=x( x+5)( x﹣ 5).故答案为: x( x+5)( x﹣5).【谈论】此题主要观察了提取公因式法以及公式法分解因式,正确应用公式是解题要点.14.( 3.00 分)不等式组的解集为3≤x< 4.【解析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得: x≥ 3,解不等式②得: x<4,∴不等式组的解集为3≤x<4,故答案为; 3≤x< 4.【谈论】此题观察认识一元一次不等式组,能依据不等式的解集得出不等式组的解集是解此题的要点.15.( 3.00 分)计算6﹣10的结果是4.【解析】第一化简,此后再合并同类二次根式即可.【解答】解:原式 =6﹣10×=6﹣2=4,故答案为: 4.【谈论】此题主要观察了二次根式的加减,要点是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数同样的二次根式进行合并,合并方法为系数相加减,根式不变..(分)抛物线y=2(x+2)2+4 的极点坐标为(﹣2,4).16【解析】依据题目中二次函数的极点式可以直接写出它的极点坐标.【解答】解:∵ y=2( x+2)2+4,∴该抛物线的极点坐标是(﹣2,4),故答案为:(﹣ 2,4).【谈论】此题观察二次函数的性质,解答此题的要点是由极点式可以直接写出二次函数的极点坐标.17.( 3.00 分)一枚质地平均的正方体骰子,骰子的六个面上分别刻有 1 到 6 的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是 3 的倍数的概率是.【解析】共有 6 种等可能的结果数,此中点数是 3 的倍数有 3 和 6,从而利用概率公式可求出向上的一面出现的点数是 3 的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是 3 的倍数的有3,6,故骰子向上的一面出现的点数是 3 的倍数的概率是:=.故答案为:.【谈论】此题观察了概率公式:随机事件 A 的概率 P(A)=事件 A 可能出现的结果数除以全部可能出现的结果数.18.(3.00 分)一个扇形的圆心角为 135°,弧长为 3π cm,则此扇形的面积是6π cm2.【解析】先求出扇形对应的圆的半径,再依据扇形的面积公式求出头积即可.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为 3πcm,∴=3π,解得: R=4,=6π(cm2),因此此扇形的面积为故答案为: 6π.【谈论】此题观察了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的要点.19.( 3.00 分)在△ ABC中, AB=AC,∠ BAC=100°,点 D 在 BC 边上,连接AD,若△ ABD为直角三角形,则∠ ADC的度数为 130°或 90° .【解析】依据题意可以求得∠ B 和∠ C 的度数,此后依据分类谈论的数学思想即可求得∠ ADC的度数.【解答】解:∵在△ ABC中, AB=AC,∠ BAC=100°,∴∠ B=∠ C=40°,∵点 D 在 BC边上,△ ABD 为直角三角形,∴当∠ BAD=90°时,则∠ ADB=50°,∴∠ ADC=130°,当∠ ADB=90°时,则∠ADC=90°,故答案为: 130°或 90°.【谈论】此题观察等腰三角形的性质,解答此题的要点是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类谈论的数学思想解答.20.(3.00 分)如图,在平行四边形 ABCD中,对角线 AC、BD 订交于点 O,AB=OB,点 E、点 F 分别是 OA、 OD 的中点,连接 EF,∠ CEF=45°, EM⊥ BC于点 M ,EM 交 BD于点 N,FN=,则线段BC的长为4.【解析】设 EF=x,依据三角形的中位线定理表示 AD=2x,AD∥EF,可得∠ CAD= ∠CEF=45°,证明△EMC 是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则 EN=MN= x, BN=FN= ,最后利用勾股定理计算 x 的值,可得 BC的长.【解答】解:设 EF=x,∵点 E、点 F 分别是 OA、OD 的中点,∴EF是△ OAD 的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ ACB=∠CAD=45°,∵EM⊥ BC,∴∠ EMC=90°,∴△EMC是等腰直角三角形,∴∠ CEM=45°,连接 BE,∵AB=OB, AE=OE∴BE⊥AO∴∠ BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ ENF≌△ MNB,∴EN=MN= x,BN=FN= ,Rt△ BNM 中,由勾股定理得: BN2=BM2+MN 2,∴,x=2 或﹣ 2(舍),∴BC=2x=4 .故答案为: 4 .【谈论】此题观察了平行四边形的性质、等腰直角三角形的判断和性质、全等三角形的判断与性质、勾股定理;解决问题的要点是设未知数,利用方程思想解决问题.三、解答题(此中21-22 题各7 分, 23-24 题各8 分, 25-27 题各10 分,共计60分 )21.(7.00 分)先化简,再求代数式(1﹣)÷的值,此中a=4cos30 +3tan45° °.【解析】依据分式的运算法规即可求出答案,【解答】解:当 a=4cos30°+3tan45 °时,因此 a=2+3原式=?==【谈论】此题观察分式的运算,解题的要点是娴熟运用分式的运算法规,此题属于基础题型.22.(7.00 分)如图,方格纸中每个小正方形的边长均为1,线段 AB 的两个端点均在小正方形的极点上.( 1)在图中画出以线段 AB 为一边的矩形 ABCD(不是正方形),且点 C 和点 D 均在小正方形的极点上;(2)在图中画出以线段 AB 为一腰,底边长为 2 的等腰三角形 ABE,点 E 在小正方形的极点上,连接 CE,请直接写出线段 CE的长.【解析】(1)利用数形联合的思想解决问题即可;( 2)利用数形联合的思想解决问题即可;【解答】解:(1)以以以下图,矩形ABCD即为所求;( 2)如图△ ABE即为所求;【谈论】此题观察作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的要点是学会利用思想联合的思想解决问题,属于中考常考题型.23.(8.00 分)为使中华传统文化教育更拥有实效性,军宁中学张开以“我最喜欢的传统文化种类”为主题的检查活动,环绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜欢哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷检查,将检查结果整理后绘制成以以以下图的不圆满的统计图,请你依据图中供给的信息回答以下问题:(1)本次检查共抽取了多少名学生?(2)经过计算补全条形统计图;(3)若军宁中学共有 960 名学生,请你预计该中学最喜欢国画的学生有多少名?【解析】(1)由“诗词”的人数及其所占百分比可得总人数;(2)总人数减去其余种类的人数求得“书法”的人数即可补全条形图;(3)用总人数乘以样本中“国画”人数所占比率.【解答】解:(1)本次检查的学生总人数为24÷20%=120人;(2)“书法”类人数为 120﹣( 24+40+16+8)=32人,补全图形以下:( 3)预计该中学最喜欢国画的学生有960×=320 人.【谈论】此题观察的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同样的统计图中获得必需的信息是解决问题的要点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反响部分占整体的百分比大小.24.( 8.00 分)已知:在四边形 ABCD中,对角线 AC、 BD 订交于点 E,且AC⊥ BD,作 BF⊥CD,垂足为点 F, BF与 AC 交于点 C,∠ BGE=∠ADE.(1)如图 1,求证: AD=CD;(2)如图 2,BH 是△ ABE的中线,若 AE=2DE, DE=EG,在不增添任何辅助线的状况下,请直接写出图 2 中四个三角形,使写出的每个三角形的面积都等于△ADE面积的 2 倍.【解析】(1)由 AC⊥BD、 BF⊥CD 知∠ ADE+∠DAE=∠CGF+∠GCF,依据∠ BGE=∠ADE=∠ CGF得出∠ DAE=∠GCF即可得;(2)设 DE=a,先得出 AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知 S△ADC=2a 2=2S△ADE,证△ ADE≌△ BGE得 BE=AE=2a,再分别求出 S△ABE、S△ACE、S△BHG,从而得出答案.【解答】解:(1)∵∠ BGE=∠ ADE,∠ BGE=∠ CGF,∴∠ ADE=∠CGF,∵AC⊥BD、BF⊥ CD,∴∠ ADE+∠DAE=∠CGF+∠GCF,∴∠ DAE=∠GCF,∴AD=CD;(2)设 DE=a,则 AE=2DE=2a,EG=DE=a,∴ S△ADE= AE?DE= ?2a?a=a2,∵BH是△ABE的中线,∴ AH=HE=a,∵AD=CD、 AC⊥BD,∴ CE=AE=2a,则 S△ADC= AC?DE= ?( 2a+2a)?a=2a2=2S△ADE;在△ ADE和△ BGE中,∵,∴△ ADE≌△ BGE(ASA),∴BE=AE=2a,∴S△ABE= AE?BE= ?(2a) ?2a=2a2,S△ACE=CE?BE= ?( 2a)?2a=2a2,S△BHG=HG?BE= ?(a+a)?2a=2a2,综上,面积等于△ ADE面积的 2 倍的三角形有△ ACD、△ ABE、△ BCE、△ BHG.【谈论】此题主要观察全等三角形的判断与性质,解题的要点是掌握等腰三角形的判断与性质及全等三角形的判断与性质.25.( 10.00 分)春平中学要为学校科技活动小组供给实验器械,计划购买 A 型、B 型两种型号的放大镜.若购买8 个 A 型放大镜和 5 个 B 型放大镜需用 220 元;若购买 4 个 A 型放大镜和 6 个 B 型放大镜需用 152 元.(1)求每个 A 型放大镜和每个 B 型放大镜各多少元;(2)春平中学决定购买 A 型放大镜和 B 型放大镜共 75 个,总开销不超出 1180元,那么最多可以购买多少个 A 型放大镜?【解析】(1)设每个 A 型放大镜和每个 B 型放大镜分别为 x 元, y 元,列出方程组即可解决问题;( 2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个 A 型放大镜和每个 B 型放大镜分别为x元,y 元,可得:,解得:,答:每个 A 型放大镜和每个 B 型放大镜分别为 20 元, 12 元;(2)设购买 A 型放大镜 m 个,依据题意可得: 20a+12×( 75﹣a)≤ 1180,解得: x≤35,答:最多可以购买 35 个 A 型放大镜.【谈论】此题观察二元一次方程组的应用、一元一次不等式的应用等知识,解题的要点是理解题意,列出方程组和不等式解答.26.( 10.00 分)已知:⊙ O 是正方形 ABCD的外接圆,点 E 在上,连接BE、DE,点 F 在上连接 BF、DF,BF与 DE、DA 分别交于点 G、点 H,且 DA 均分∠EDF.(1)如图 1,求证:∠ CBE=∠ DHG;(2)如图 2,在线段 AH 上取一点 N(点 N 不与点 A、点 H 重合),连接 BN 交DE于点 L,过点 H 作 HK∥BN 交 DE 于点 K,过点 E 作 EP⊥BN,垂足为点 P,当BP=HF时,求证: BE=HK;( 3)如图 3,在( 2)的条件下,当 3HF=2DF时,延长 EP 交⊙ O 于点 R,连接BR,若△ BER的面积与△ DHK的面积的差为,求线段 BR的长.【解析】(1)由正方形的四个角都为直角,获得两个角为直角,再利用同弧所对的圆周角相等及角均分线定义,等量代换即可得证;(2)如图 2,过 H 作 HM⊥KD,垂足为点 M,依据题意确立出△ BEP≌△ HKM,利用全等三角形对应边相等即可得证;(3)依据 3HF=2DF,设出 HF=2a,DF=3a,由角均分线定义获得一对角相等,从而获得正切值相等,表示出 DM=3a,利用正方形的性质获得△ BED≌△ DFB,获得 BE=DF=3a,过 H 作 HS⊥BD,垂足为 S,依据△ BER的面积与△ DHK的面积的差为,求出 a 的值,即可确立出 BR的长.【解答】(1)证明:如图 1,∵四边形 ABCD是正方形,∴∠ A=∠ ABC=90°,∵∠ F=∠A=90°,∴∠ F=∠ABC,∵DA均分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ ABE=∠ADF,∵∠ CBE=∠ABC+∠ABE,∠ DHG=∠F+∠ADF,∴∠ CBE=∠DHG;( 2)如图 2,过 H 作 HM⊥KD,垂足为点 M,∵∠ F=90°,∵DA均分∠EDF,∴ HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠ DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠ BPE=∠EPL=90°,∴∠ LEP+∠ ELP=90°,∴∠ BEP=∠ELP=∠ DKH,∵HM⊥KD,∴∠ KMH=∠ BPE=90°,∴△ BEP≌△ HKM,∴BE=HK;(3)解:如图 3,连接 BD,∵ 3HF=2DF, BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由( 2)得: HM=BP,∠HMD=90°,∵∠ F=∠A=90°,∴ tan∠ HDM=tan∠FDH,∴==,∴DM=3a,∵四边形 ABCD为正方形,∴∠ ABD=∠ADB=45°,∵∠ ABF=∠ADF=∠ADE,∠ DBF=45°﹣∠ ABF,∠ BDE=45°﹣∠ ADE,∴∠ DBF=∠BDE,∵∠ BED=∠F,BD=BD,∴△ BED≌△ DFB,∴BE=FD=3a,过 H 作 HS⊥BD,垂足为 S,∵ tan∠ ABH=tan∠ ADE= = ,∴设 AB=3 m,AH=2 m,∴BD= AB=6m, DH=AD﹣ AH= m,∵ sin∠ADB= = ,∴HS=m,∴ DS==m,∴BS=BD﹣DS=5m,∴tan∠ BDE=tan∠ DBF= = ,∵∠ BDE=∠BRE,∴ tanBRE= =,∵BP=FH=2a,∴ RP=10a,在 ER上截取 ET=DK,连接 BT,由( 2)得:∠ BEP=∠HKD,∴△ BET≌△ HKD,∴∠ BTE=∠KDH,∴ tan∠ BTE=tan∠KDH,∴ = ,即 PT=3a,∴TR=RP﹣PT=7a,∵S△ BER﹣S△ DHK= ,∴ BP?ER﹣ HM?DK= ,∴BP?(ER﹣ DK)= BP?( ER﹣ET) = ,∴×2a× 7a= ,解得: a=(负值舍去),∴BP=1, PR=5,则BR==.【谈论】此题属于圆综合题,涉及的知识有:正方形的性质,角均分线性质,全等三角形的判断与性质,三角形的面积,锐角三角函数定义,娴熟掌握各自的性质是解此题的要点.27.( 10.00 分)已知:在平面直角坐标系中,点 O 为坐标原点,点 A 在负半轴上,直线 y=﹣ x+ 与 x 轴、 y 轴分别交于 B、C 两点,四边形x 轴的ABCD为菱形.(1)如图 1,求点 A 的坐标;(2)如图 2,连接 AC,点 P 为△ ACD内一点,连接 AP、BP,BP 与 AC 交于点 G,且∠ APB=60°,点 E 在线段 AP上,点 F 在线段 BP上,且 BF=AE,连接 AF、EF,22若∠ AFE=30°,求 AF +EF 的值;( 3)如图 3,在( 2)的条件下,当 PE=AE时,求点 P 的坐标.【解析】(1)利用勾股定理求出BC的长即可解决问题;(2)如图 2 中,连接 CE、CF.想方法证明△ CEF是等边三角形, AF⊥CF即可解决问题;(3)如图 3 中,延长 CE交 FA的延长线于 H,作 PQ⊥ AB 于 Q,PK⊥OC于 K,在 BP 设截取 BT=PA,连接 AT、CT、CF、PC.想方法证明△ APF 是等边三角形,AT⊥PB 即可解决问题;【解答】解:(1)如图 1 中,∵ y=﹣x+,∴B(,0),C(0,),∴BO= ,OC=,在 Rt△OBC中, BC==7,∵四边形 ABCD是菱形,∴AB=BC=7,∴OA=AB﹣ OB=7﹣ = ,∴A(﹣,0).( 2)如图 2 中,连接 CE、 CF.∵OA=OB, CO⊥AB,∴ AC=BC=7,∴ AB=BC=AC,∴△ABC是等边三角形,∴∠ ACB=60°,∵∠ AOB=60°,∴∠ APB=∠ACB,∵∠ PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠ PAG=∠CBG,∵ AE=BF,∴△ ACR≌△ BCF,∴ CE=CF,∠ ACE=∠ BCF,∴∠ ECF=∠ ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△ CEF是等边三角形,∴∠ CFE=60°, EF=FC,∵∠ AFE=30°,∴∠ AFC=∠AFE+∠CFE=90°,222,在 Rt△ACF中, AF +CF=AC=4922∴ AF +EF.=49(3)如图 3 中,延长 CE交 FA的延长线于 H,作 PQ⊥ AB 于 Q,PK⊥OC于 K,在 BP 设截取 BT=PA,连接 AT、CT、 CF、PC.∵△ CEF是等边三角形,∴∠ CEF=60°, EC=CF,∵∠ AFE=30°,∠ CEF=∠H+∠ EFH,∴∠ H=∠ CEF﹣∠ EFH=30°,∴∠ H=∠ EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠ PEC=∠ AEH,∴△ CPE≌△ HAE,∴∠ PCE=∠H,∴PC∥FH,∵∠ CAP=∠CBT,AC=BC,∴△ ACP≌△ BCT,∴CP=CT,∠ ACP=∠ BCT,∴∠ PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠ CPT=∠CTP=60°,∵ CP∥FH,∴∠ HFP=∠CPT=60°,∵∠ APB=60°,∴△ APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠ TCF=∠ CTP﹣∠ TFC=30°,∴∠ TCF=∠ TFC,∴TF=TC=TP,∴AT⊥PF,设 BF=m,则 AE=PE=m,∴PF=AP=2m, TF=TP=m,TB=2m,BP=3m,在 Rt△APT中, AT== m,在 Rt△ABT中,∵ AT2+TB2=AB2,∴( m)2+(2m)2=72,解得 m= 或﹣(舍弃),∴ BF= , AT= ,BP=3 , sin∠ ABT= =,∵ OK=PQ=BP?sin∠PBQ=3 ×=3 ,BQ==6,∴OQ=BQ﹣BO=6﹣ = ,∴P(﹣,3 )【谈论】此题观察一次函数综合题、等边三角形的判断和性质、全等三角形的判断和性质、勾股定理、菱形的性质等知识,解题的要点是学会增添常用辅助线,构造全等三角形解决问题,学会成立方程解决问题,属于中考压轴题.。
哈尔滨市中考数学试题及答案

哈尔滨市2012年初中升学考试数学试卷一、选择题(每小题3分.共计30分) 1.一2的绝对值是( ).5.如图,在 Rt^ABC 中,NC=90。
,AC=4, AB=5,则 sinB 的值是( ).(A)2(B)3(C)3(D)435456 .在1。
个外观相同的产品中,有2个不合格产品。
现从中任意抽取l 个进行检测,抽 到不合格产品的概率是( ). (A) ((B) 5(C) 2(D) 4k -17 .如果反比例函数y=--的图象经过点(-1, -2),则k 的值是().(A)2 (B)-2 (C)-3 (D)38 .将抛物线y=3x 2向左平移2个单位,再向下平移1个单位,所得抛物线为().(A)y=3(x+2) 2—1 (B)y=3(x-2) 2+1 (C)y=3(x-r 2) 2—1 (D)y=3(x+2) 2+I 9 .如图,。
是4ABC 的外接圆,ZB=6Q o , 0PLAC 于点P, OP=2 <3 ,则。
的半径为( ). (A)4%:3 (B)6%:3 (C)8 (D)12 1 。
.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总 长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC 边的长为x 米,AB 边的长 为y 米,则y 与x 之间的函数关系式是().1 (A) 一 22.下列运算中(A)a 3 ・⑻ 1(C)2 正确的是().(B)(a 3)4=a i2(D)-2(C)a+a 4=a 5).(D)(a+b)(a —b)=a 2+b 23.下列图形是中心对称图形的是).4.如图所示的几何体是由六个小正方体组合而成它的左视图是,(A) y 2x+24(0<x<12) (c)y=2x 24(0<x 市12)1 ⑻ y 二一2 1 (D)y=5x 十12(0<x<24)12(0<x<24)、填空题(每小题3分.共计30分) 11. 把16 000 000用科学记数法表示为 在函数y= 工 中,自变量x 的取值范围是 x 一 5(第9国图)12.13.化简:<9 = 14.15.把多项式a 3—2a 2+a 分解因式的结果是 不等式组 的解集是 2x-1>0 x-1<116.17.一个等腰三角形静的两边长分别为5或6,则这个等腰三角形的周长是 一个圆锥的母线长为4,侧面积为8兀,则这个圆锥的底面圆的半径是一 18. 19.方程-7 二-一-的解是 ____________x - 1 2 x + 3如图,平行四边形ABCD 绕点A 逆时针旋转30。
2021年黑龙江哈尔滨市中考数学真题及答案

2021年黑龙江哈尔滨市中考数学真题及答案考生须知:1.本试卷满分为120分,考试时间为120分钟.2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”书写(填涂)在答题卡正面和背面的规定位置,将“条形码”准确粘贴在条形码区城处.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效.4.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5.保持卡面整洁,不要折叠、不要再脏、不要再皱,不准使用涂改液、修正带、刮纸刀.第I卷选择题(共30分)(涂卡)一、选择题(每小题3分,共计30分)1. 的绝对值是()A. B. C. 7 D. -7【答案】B【解析】【分析】直接根据绝对值的意义进行求解即可.【详解】解:的绝对值是;故选B.【点睛】本题主要考查绝对值,熟练掌握求一个数的绝对值是解题的关键.2. 下列运算一定正确是()A. B.C. D.【答案】A【解析】【分析】根据同底数幂的乘法、幂的乘方及完全平方公式可进行排除选项.【详解】解:A、,正确,故符合题意;B、,错误,故不符合题意;C、,错误,故不符合题意;D、与不是同类项,不能合并,故不符合题意;故选A.【点睛】本题主要考查同底数幂的乘法、幂的乘方及完全平方公式,熟练掌握同底数幂的乘法、幂的乘方及完全平方公式是解题的关键.3. 下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【详解】解:A.既是轴对称图形,又是中心对称图形,故此选项符合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.是轴对称图形,不是中心对称图形,故此选项不合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.【点睛】此题主要考查了中心对称图形和轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4. 八个大小相同的正方体搭成的几何体如图所示,其主视图是()A. B.C. D.【答案】C【解析】【分析】根据几何体的三视图可直接进行排除选项.【详解】解:由题意得该几何体的主视图为;故选C.【点睛】本题主要考查三视图,熟练掌握三视图是解题的关键.5. 如图,是的直径,是的切线,点为切点,若,,则的长为()A. B. C. D.【答案】D【解析】【分析】由题意易得,然后根据三角函数可进行求解.【详解】解:∵是的切线,∴,∵,,∴;故选D.【点睛】本题主要考查切线性质及解直角三角形,熟练掌握切线的性质及三角函数是解题的关键.6. 方程的解为()A. B. C. D.【答案】A【解析】【分析】根据分式方程的解法可直接进行排除选项.【详解】解:,解得:,经检验是原方程的解,故选A.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键.7. 如图,,点和点是对应顶点,点和点是对应顶点,过点作,垂足为点,若,则的度数为()A. B. C. D.【答案】B【解析】【分析】由题意易得,,然后问题可求解.【详解】解:∵,∴,∴,即,∵,∴,∵,∴,∴;故选B.【点睛】本题主要考查全等三角形的性质及直角三角形的性质,熟练掌握全等三角形的性质及直角三角形的性质是解题的关键.8. 一个不透明的袋子中装有个小球,其中个红球、个黄球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A. B. C. D.【答案】D【解析】【分析】根据概率公式,直接求解,即可.【详解】解:摸出的小球是红球的概率=8÷12=,故选D.【点睛】本题主要考查等可能事件的概率,掌握概率公式,是解题的关键.9. 如图,在中,,,,,则的长为()A. B. C. D.【答案】B【解析】【分析】由,得,进而即可求解.【详解】解:∵在中,,,,,∴,即:,∴AE=4,故选B.【点睛】本题主要考查平行线分线段成比例定理,列出比例式,是解题的关键.10. 周日,小辉从家步行到图书馆读书,读了一段时间后,小辉立刻按原路回家.在整个过程中,小辉离家的距离(单位:)与他所用的时间(单位:)之间的关系如图所示,则小辉从家去图书馆的速度和从图书馆回家的速度分别为()A. ,B. ,C. ,D. ,【答案】C【解析】【分析】根据图象易得小辉家离图书馆的距离为1500m,从小辉家到图书馆所用的时间为20min,从图书馆到小辉家的所用的时间为15min,进而问题可求解.【详解】解:由题意及图象可得:小辉家离图书馆的距离为1500m,从小辉家到图书馆所用的时间为20min,从图书馆到小辉家的所用的时间为70-55=15min,∴小辉从家去图书馆的速度为1500÷20=75m/min;从图书馆回家的速度为1500÷15=100m/min;故选C.【点睛】本题主要考查函数图象,解题的关键是由函数图象得到解题的相关信息.第I卷非选择题(共 90分)二、填空题(每题3分,满分18分,将答案填在答题纸上)11. 火星赤道半径约为米,用科学记数法表示为________米.【答案】【解析】【分析】根据科学记数法可直接进行求解.【详解】解:把米用科学记数法表示为米;故答案为.【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.12. 在函数中,自变量的取值范围是_________.【答案】【解析】【分析】根据分式有意义的条件及函数的概念可直接进行求解.【详解】解:由题意得:,解得:,∴在函数中,自变量的取值范围是;故答案为.【点睛】本题主要考查分式有意义的条件及函数,熟练掌握分式有意义的条件及函数是解题的关键.13. 已知反比例函数的图象经过点,则的值为_______.【答案】【解析】【分析】根据题意可直接进行求解.【详解】解:∵反比例函数的图象经过点,∴;故答案为.【点睛】本题主要考查反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题的关键.14. 计算的结果是_______.【答案】【解析】【分析】根据二次根式的性质,先化简各个二次根式,再合并同类二次根式,即可求解.【详解】解:原式==.【点睛】本题主要考查二次根式的性质和运算法则,解题的关键是掌握二次根式的性质以及合并同类二次根式.15. 把多项式分解因式的结果是_________.【答案】【解析】【分析】根据因式分解的方法可直接进行求解.【详解】解:;故答案为.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.16. 二次函数的最小值为________.【答案】-2【解析】【分析】由二次函数可直接求解.【详解】解:由二次函数可得:开口向上,有最小值,∴二次函数的最小值为-2;故答案为-2.【点睛】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.17. 不等式组的解集是________.【答案】x<3【解析】【分析】分别求出每个不等式的解,再取各个解的公共部分,即可求解.【详解】解:,由①得:x<3,由②得:x≤15,∴不等式的解为:x<3,故答案是:x<3.【点睛】本题主要考查解不等式组,掌握“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.18. 四边形是平行四边形,,的平分线交直线于点,若,则的周长为______.【答案】28或20【解析】【分析】分两种情况:①当的平分线交线段于点,②当的平分线交的延长线于点,画出图像,分别求解即可.【详解】解:①当的平分线交线段于点,如图,∵四边形是平行四边形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分,∴∠DAE=∠BAE,∴∠BEA=∠BAE,∴BE=AB=6,∴BC=BE+CE=6+2=8,∴的周长=(6+8)×2=28,②当的平分线交的延长线于点,如图,同理可得:AB=BE=6,∴BC=6-2=4,∴的周长=(6+4)×2=20,综上所述:的周长为28或20.故答案是:28或20.【点睛】本题主要考查平行四边形的性质,等腰三角形的判定和性质,画出图形,进行分类讨论,是解题的关键.19. 一个扇形的弧长是,圆心角是,则此扇形的半径是_______.【答案】10【解析】【分析】设该扇形的半径为r cm,然后根据弧长计算公式可直接进行求解.【详解】解:设该扇形的半径为r cm,由题意得:,解得:;故答案为10.【点睛】本题主要考查弧长计算公式,熟练掌握弧长计算公式是解题的关键.20. 如图,矩形的对角线,相交于点,过点作,垂足为点,过点作,垂足为点.若,,则的长为_____.【答案】【解析】【分析】根据矩形的性质得AO=CO=BO=DO=6,再证明,从而得是等边三角形,进而即可求解.【详解】解:∵在矩形中,∴AO=CO=BO=DO=6,∵,∴BC=2BE,∵,∴BE=AF,∵∠OBE+∠ABF=∠ABF+∠BAF =90°,∴∠OBE=∠BAF,∵又∵∠AFB=∠BEO=90°,∴,∴AB=BO,∴AB=BO=AO,∴是等边三角形,∴∠ABO=60°,∴∠OBE=30°,∴OE=3 ,,故答案是:.【点睛】本题主要考查矩形的性质,勾股定理,等边三角形的判定和性质,全等三角形的判定和性质,掌握矩形的对角线相等且平分是解题的关键.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21. 先化简,再求代数式的值,其中.【答案】,【解析】【分析】先算分式的减法,再把除法化为乘法进行约分化简,最后代入求值,即可求解.【详解】解:原式====,当==时,原时=.【点睛】本题主要考查分式化简求值,特殊角三角函数值以及分母有理化,掌握通分和约分化简,是解题的关键.22. 如图,方格纸中每个小正方形的边长均为个单位长度,的顶点和线段的端点均在小正方形的顶点上.(1)在方格纸中将向上平移个单位长度,再向右平移个单位长度后得到;(点的对应点是点,点的对应点是点,点的对应点是点),请画出;(2)在方格纸中画出以为斜边的等腰直角三角形(点在小正方形的顶点上).连接,请直接写出线段的长.【答案】(1)图见详解;(2)图见详解,【解析】【分析】(1)根据题中所给的平移方式可直接进行作图即可;(2)由等腰直角三角形的性质可直接进行作图,然后结合图形及勾股定理得出的长.【详解】解:(1)由题意可得如图所示:(2)由题意可得如图所示:由图可得:.【点睛】本题主要考查平移、等腰直角三角形的性质及勾股定理,熟练掌握平移、等腰直角三角形的性质及勾股定理是解题的关键.23. 春宁中学开展以“我最喜欢的冰雪运动项目”为主题的调查活动,围绕“在冰球、冰壹、短道速滑、高山滑雪四种冰雪运动项目中,你最喜欢哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢短道速滑的学生人数占所调查人数的.请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若春宁中学共有名学生,请你估计该中学最喜欢高山滑雪的学生共有多少名.【答案】(1)60;(2)统计图见详解;(3)300【解析】【分析】(1)用喜欢短道速滑的学生人数÷对应的百分比,即可求解;(2)先求出喜欢冰壶的学生人数,再补全统计图,即可;(3)用1500×高山滑雪的比例,即可求解.【详解】解:(1)24÷40%=60(名),答:在这次调查中,一共抽取了60名学生;(2)喜欢冰壶项目的学生有:60-16-12-24=8(名),补全统计图如下:(3)(名),答:该中学最喜欢高山滑雪的学生共有300名.【点睛】本题主要考查条形统计图以及用样本估计总体数量,准确找出相关数据,是解题的关键.24. 已知四边形是正方形,点在边的延长线上,连接交于点,过点作,垂足为点,的延长线交于点,交的延长线于点.(1)如图1,求证:;(2)如图2,若,连接,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(除外),使写出的每个三角形都与全等,【答案】(1)见详解;(2)都与全等,理由见详解【解析】【分析】(1)先推出BC=CD,∠BCH=∠CDE=90°,在推出∠CHM=∠E,进而即可得到结论;(2)先推出AE=AB=BC,∠GAE=∠GBC=90°,结合∠AGE=∠BGC,即可得到,类似的推出与全等,即可.【详解】(1)证明:∵四边形是正方形,∴BC=CD,∠BCH=∠CDE=90°,∵,∴∠CHM+∠DCE=∠DCE+∠E=90°,∴∠CHM=∠E,∴,∴;(2)都与全等,理由如下:∵,四边形是正方形,∴AE=AB=BC,∠GAE=∠GBC=90°,又∵∠AGE=∠BGC,∴,∵,∴DE=CH,∠E=∠H,∵AD=CD,∴AE=DH,又∵∠EAG=∠HDF=90°,∴;∵AB∥CH,∴∠ABF=∠H=∠E,又∵,∠BAF=∠EAG=90°,∴;∵DH=AE=AB=CD,∴DF垂直平分CH,∴FH=FC,∴∠E=∠H=∠FCH,又∵∠EAG=∠CDF=90°,AE=AB=CD,∴.【点睛】本题主要考查正方形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定定理,是解题的关键.25. 君辉中学计划为书法小组购买某种品牌的、两种型号的毛笔.若购买支种型号的毛笔和支种型号的毛笔需用元;若购买支种型号的毛笔和支种型号的毛笔需用元.(1)求每支种型号的毛笔和每支种型号的毛笔各多少元;(2)君辉中学决定购买以上两种型号的毛笔共支,总费用不超过元,那么该中学最多可以购买多少支种型号的毛笔?【答案】(1)每支种型号的毛笔6元,每支种型号的毛笔4元;(2)该中学最多可以购买50支型号的毛笔.【解析】【分析】(1)设每支种型号的毛笔x元,每支种型号的毛笔y元,由题意得,然后求解即可;(2)设该中学可以购买m支型号的毛笔,则种型号的毛笔为(80-m)支,根据题意可得,然后求解即可.【详解】解:(1)设每支种型号的毛笔x元,每支种型号的毛笔y元,由题意得:,解得:,答:每支种型号的毛笔6元,每支种型号的毛笔4元.(2)设该中学可以购买m支型号的毛笔,则种型号的毛笔为(80-m)支,根据题意可得:,解得:,答:该中学最多可以购买50支型号的毛笔.【点睛】本题主要考查二元一次方程组及一元一次不等式的应用,熟练掌握二元一次方程组及一元一次不等式的应用是解题的关键.26. 已知是的外接圆,为的直径,点为的中点,连接并延长交于点,连接,交于点.(1)如图1,求证:;(2)如图2,过点作,交于点,交于点,连接,,若,求证:;(3)如图3,在(2)的条件下,连接,若,求的长.【答案】(1)见详解;(2)见详解;(3)【解析】【分析】(1)由题意易得,则有,然后根据直角三角形的性质可进行求解;(2)由题意易得,则有,然后可得,进而问题可求证;(3)延长GD,交于点H,连接BG、OH、HE,由(2)可得是等腰直角三角形,则有,然后可得,进而可证四边形AGOD是平行四边形,AG=EH,则有,然后可得,最后问题可求解.【详解】证明:(1)∵为的直径,点为的中点,∴,∴,∵,∴,∴,∵,∴,∴;(2)∵,OG=OB,OD=OD,∴,∴,∵,∴,∴,∴,∵,∴,∴;(3)延长GD,交于点H,连接BG、OH、HE,如图所示:由(2)可得,,,,∴是等腰直角三角形,,∴,∴,∴,∴,∴,∴,∴四边形AGOD是平行四边形,∴,∴,∴,∴,∵,∴,∵,∴,∵点为的中点,∴,∴,∴,∴,,∴,即,∴是等腰直角三角形,∴.【点睛】本题主要考查圆的综合、勾股定理、三角函数及等腰直角三角形的性质,熟练掌握圆的综合、勾股定理、三角函数及等腰直角三角形的性质是解题的关键.27. 在平面直角坐标系中,点为坐标系的原点,抛物线经过,两点,直线与轴交于点,与轴交于点,点为直线上的一个动点,连接.(1)求抛物线的解析式;(2)如图1,当点在第一象限时,设点横坐标为,的面积为,求关于的函数解析式(不要求写出自变量的取值范围);(3)如图2,在(2)的条件下,点在轴的正半轴上,且,连接,当直线交轴正半轴于点,交轴于点时,过点作交轴于点,过点作轴的平行线交线段于点,连接,过点作交线段于点,的平分线交轴于点,过点作交于点,过点作于点,若,求点的坐标.【答案】(1);(2);(3)【解析】【分析】(1)把点A、B坐标代入求解即可;(2)由题意易得,则有AC=8,然后根据三角形面积公式可进行求解;(3)作MU⊥FC于点U,由题意易证,设直线的解析式为,则有,然后可得,,则有,,进而可得,然后根据勾股定理可进行求解.【详解】解:(1)∵抛物线经过,两点,∴,解得:,∴抛物线的解析式为;(2)∵直线与轴交于点,与轴交于点,∴,∵点P在直线,且横坐标t,∴,∴点P到x轴的距离即为△APC的边AC上的高,即为,底,∴;(3)过点P作PT⊥x轴于点T,如图所示:∵FM平分∠CFG,,∴,∴,∵,轴,∴,∴,∴,∴,∴,∵,,∴,∵点在轴的正半轴上,且,∴,∴,∵,∴,∴,∴,∵,,∴,∴,∴,即为点F的横坐标,设直线BP的解析式为,则有:,解得:,∴直线BP的解析式为,∴当时,则,解得:,∴,,∴,由点F的横坐标代入直线BP的解析式可得:,∴,∵,∴,∴,即,化简得:,由勾股定理可得,即,解得:(不符合题意,舍去),∴点.【点睛】本题主要考查二次函数的综合、平行线的性质及相似三角形的性质与判定,熟练掌握二次函数的综合、平行线的性质及相似三角形的性质与判定是解题的关键.》》》》》2023年整理——中考真题资料《《《《《25 / 25。
2020年黑龙江省哈尔滨市中考数学试卷和答案解析

2020年黑龙江省哈尔滨市中考数学试卷和答案解析一、选择题(每小题3分,共计30分)1.(3分)﹣8的倒数是()A.﹣B.﹣8C.8D.解析:根据乘积为1的两个数互为倒数,可得一个数的倒数.参考答案:解:﹣8的倒数是﹣,故选:A.点拨:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)下列运算一定正确的是()A.a2+a2=a4B.a2•a4=a8C.(a2)4=a8D.(a+b)2=a2+b2解析:根据合并同类项的法则,同底数幂的乘法法则,幂的乘方法则以及完全平方公式逐一计算判断即可.参考答案:解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2•a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.故选:C.点拨:本题主要考查了完全平方公式,同底数幂的乘法,幂的乘方以及合并同类项的法则,熟记公式和运算法则是解答本题的关键.3.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.扇形B.正方形C.等腰直角三角形D.正五边形解析:根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.参考答案:解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.点拨:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.解析:根据从左边看得到的图形是左视图,可得答案.参考答案:解:从左边看第一层是两个小正方形,第二层右边一个小正方形,故选:C.点拨:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.(3分)如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD、CD,OA,若∠ADC=35°,则∠ABO 的度数为()A.25°B.20°C.30°D.35°解析:根据切线的性质和圆周角定理即可得到结论.参考答案:解:∵AB为圆O的切线,∴AB⊥OA,即∠OAB=90°,∵∠ADC=35°,∴∠AOB=2∠ADC=70°,∴∠ABO=90°﹣70°=20°.故选:B.点拨:此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.6.(3分)将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5B.y=(x﹣3)2+5C.y=(x+5)2+3D.y=(x﹣5)2+3解析:根据“上加下减,左加右减”的原则进行解答即可.参考答案:解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;故选:D.点拨:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.7.(3分)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°解析:由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.参考答案:解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.点拨:本题考查了轴对称的性质,掌握轴对称的性质是本题的关键.8.(3分)方程=的解为()A.x=﹣1B.x=5C.x=7D.x=9解析:根据解分式方程的步骤解答即可.参考答案:解:方程的两边同乘(x+5)(x﹣2)得:2(x﹣2)=x+5,解得x=9,经检验,x=9是原方程的解.故选:D.点拨:本题主要考查了解分式方程,熟练掌握把分式方程转化为整式方程是解答本题的关键.9.(3分)一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.B.C.D.解析:用红球的个数除以球的总个数即可得.参考答案:解:∵袋子中一共有9个除颜色不同外其它均相同的小球,其中红球有6个,∴摸出的小球是红球的概率是=,故选:A.点拨:本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.10.(3分)如图,在△ABC中,点D在BC边上,连接AD,点E 在AC边上,过点E作EF∥BC,交AD于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.=B.=C.=D.=解析:根据平行线分线段成比例性质进行解答便可.参考答案:解:∵EF∥BC,∴,∵EG∥AB,∴,∴,故选:C.点拨:本题主要考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.二、填空题(每小题3分,共计30分)11.(3分)将数4790000用科学记数法表示为 4.79×106.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:4790000=4.79×106,故答案为:4.79×106.点拨:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)在函数y=中,自变量x的取值范围是x≠7.解析:根据分母不等于0列式计算即可得解.参考答案:解:由题意得x﹣7≠0,解得x≠7.故答案为:x≠7.点拨:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(3分)已知反比例函数y=的图象经过点(﹣3,4),则k的值为﹣12.解析:把(﹣3,4)代入函数解析式y=即可求k的值.参考答案:解:∵反比例函数y=的图象经过点(﹣3,4),∴k=﹣3×4=﹣12,故答案为:﹣12.点拨:本题考查了反比例函数图象上点的坐标特征,比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点.14.(3分)计算+6的结果是.解析:根据二次根式的性质化简二次根式后,再合并同类二次根式即可.参考答案:解:原式=.故答案为:.点拨:本题主要考查了二次根式的加减,熟记二次根式的性质是解答本题的关键.15.(3分)把多项式m2n+6mn+9n分解因式的结果是n(m+3)2.解析:直接提取公因式n,再利用完全平方公式分解因式得出答案.参考答案:解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.点拨:此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.16.(3分)抛物线y=3(x﹣1)2+8的顶点坐标为(1,8).解析:已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).参考答案:解:∵抛物线y=3(x﹣1)2+8是顶点式,∴顶点坐标是(1,8).故答案为:(1,8).点拨:本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.17.(3分)不等式组的解集是x≤﹣3.解析:分别求出各不等式的解集,再求出其公共解集即可.参考答案:解:,由①得,x≤﹣3;由②得,x<﹣1,故此不等式组的解集为:x≤﹣3.故答案为:x≤﹣3.点拨:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(3分)一个扇形的面积是13πcm2,半径是6cm,则此扇形的圆心角是130度.解析:根据扇形面积公式S=,即可求得这个扇形的圆心角的度数.参考答案:解:设这个扇形的圆心角为n°,=13π,解得,n=130,故答案为:130.点拨:本题考查扇形面积的计算,解答本题的关键是明确扇形面积计算公式S=.19.(3分)在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为5或7.解析:在Rt△ABD中,利用锐角三角函数的意义,求出BD的长,再分类进行解答.参考答案:解:在Rt△ABD中,∠ABC=60°,AD=6,∴BD===6,如图1、图2所示:BC=BD+CD=6+1=7,BC=BD﹣CD=6﹣1=5,故答案为:7或5.点拨:本题考查解直角三角形,掌握直角三角形的边角关系是正确计算的前提.20.(3分)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为2.解析:设BE=x,则CD=2x,根据菱形的性质得AB=AD=CD =2x,OB=OD,AC⊥BD,再证明DE=DA=2x,所以1+x=x,解得x=2,然后利用勾股定理计算OA,再计算AE的长.参考答案:解:设BE=x,则CD=2x,∵四边形ABCD为菱形,∴AB=AD=CD=2x,OB=OD,AC⊥BD,∵∠DAE=∠DEA,∴DE=DA=2x,∴BD=3x,∴OB=OD=x,∵OE+BE=BO,∴1+x=x,解得x=2,即AB=4,OB=3,在Rt△AOB中,OA==,在Rt△AOE中,AE==2.故答案为2.点拨:本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣)÷的值,其中x=4cos30°﹣1.解析:直接将括号里面通分运算,再利用分式的混合运算法则计算,把x的值代入得出答案.参考答案:解:原式=•=,∵x=4cos30°﹣1=4×﹣1=2﹣1,∴原式==.点拨:此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG的周长为10+.连接EG,请直接写出线段EG的长.解析:(1)画出边长为的正方形即可.(2)画出两腰为10,底为的等腰三角形即可.参考答案:解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.EG==.点拨:本题考查作图﹣应用与设计,等腰三角形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.23.(8分)为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.解析:(1)最喜欢绘画小组的学生人数15人,占所调查人数的30%.可求出调查人数;(2)求出“舞蹈”的人数,即可补全条形统计图;(3)样本估计总体,样本中“喜欢剪纸”占调查人数的,因此估计总体800名的是最喜欢“剪纸”的人数.参考答案:解:(1)15÷30%=50(名),答:在这次调查中,一共抽取了50名学生;(2)50﹣15﹣20﹣5=10(名),补全条形统计图如图所示:(3)800×=320(名),答:冬威中学800名学生中最喜欢剪纸小组的学生有320名.点拨:本题考查条形统计图的意义和制作方法,理解数量之间的关系是正确计算的前提,样本估计总体是统计中常用的方法.24.(8分)已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.解析:(1)根据SAS可证△ABD≌△ACE,根据全等三角形的性质即可求解;(2)根据等腰三角形的判定即可求解.参考答案:(1)证明:∵AB=AC,∵∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵AD=AE,∴∠ADE=∠AED,∵BF∥AC,∴∠FDB=∠C=45°,∵∠ABC=∠C=∠DAE=45°,∠BDF=∠ADE,∴∠F=∠BDF,∠BEA=∠BAE,∠CDA=∠CAD,∴满足条件的等腰三角形有:△ABE,△ACD,△DAE,△DBF.点拨:考查了全等三角形的判定与性质,等腰三角形的判定与性质,关键是熟练掌握它们的性质与定理.25.(10分)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?解析:(1)设每个大地球仪x元,每个小地球仪y元,根据条件建立方程组求出其解即可;(2)设大地球仪为a台,则小地球仪为(30﹣a)台,根据要求购买的总费用不超过960元,列出不等式解答即可.参考答案:解:(1)设每个大地球仪x元,每个小地球仪y元,根据题意可得:,解得:,答:每个大地球仪52元,每个小地球仪28元;(2)设大地球仪为a台,则小地球仪为(30﹣a)台,根据题意可得:52a+28(30﹣a)≤960,解得:a≤5,答:最多可以购买5个大地球仪.点拨:本题考查了列二元一次方程组解实际问题的运用,总价=单价×数量的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.26.(10分)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD ⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.解析:(1)由垂径定理可得BE=EC,由线段垂直平分线的性质可得AB=AC,由等腰三角形的性质可得∠BAD=∠ABO=∠CAD,由外角的性质可得结论;(2)由“AAS”可证△BOE≌△ODH,可得BE=OH;(3)过点F作FN⊥AD,交AD于N,设DG=DE=2x,由全等三角形的性质可得OE=DH=x,OD=3x=OA=OB,勾股定理可求BE=2x,由锐角三角函数可求AN=NF,ON=NF,可得AO=AN+ON=NF,由三角形面积公式可求NF的长,可求x=1,可得BE=2=OH,AE=4,DG=DE=2,勾股定理可求AC=2,连接AG,过点A作AM⊥CG,交GC的延长线于M,通过证明△ACM∽△ADG,由相似三角形的性质可求AM,CM的长,由勾股定理可求GM的长,即可求解.参考答案:证明:(1)∵AD为⊙O的直径,AD⊥BC,∴BE=EC,∴AB=AC,又∵AD⊥BC,∴∠BAD=∠CAD,∵OA=OB,∴∠BAD=∠ABO,∴∠BAD=∠ABO=∠CAD,∵∠BFC=∠BAC+∠ABO,∴∠BFC=∠BAD+∠EAD+∠ABO=3∠CAD;(2)如图2,连接AG,∵AD是直径,∴∠AGD=90°,∵点H是DG中点,∴DH=HG,又∵AO=DO,∴OH∥AG,AG=2OH,∴∠AGD=∠OHD=90°,∵DG∥BF,∴∠BOE=∠ODH,又∵∠OEB=∠OHD=90°,BO=DO,∴△BOE≌△ODH(AAS),∴BE=OH;(3)如图3,过点F作FN⊥AD,交AD于N,设DG=DE=2x,∴DH=HG=x,∵△BOE≌△ODH,∴OE=DH=x,∴OD=3x=OA=OB,∴BE===2x,∵∠BAE=∠CAE,∴tan∠BAE=tan∠CAE=,∴=,∴AN=NF,∵∠BOE=∠NOF,∴tan∠BOE=tan∠NOF=,∴=,∴ON=NF,∴AO=AN+ON=NF,∵△AOF的面积为,∴×AO×NF=×NF2=,∴NF=,∴AO=NF=3=3x,∴x=1,∴BE=2=OH,AE=4,DG=DE=2,∴AC===2,如图3,连接AG,过点A作AM⊥CG,交GC的延长线于M,由(2)可知:AG=2OH=4,∵四边形ADGC是圆内接四边形,∴∠ACM=∠ADG,又∵∠AMC=∠AGD=90°,∴△ACM∽△ADG,∴,∴,∴CM=,AM=,∴GM===,∴CG=GM﹣CM=.点拨:本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,三角形中位线定理,相似三角形的判定和性质,锐角三角函数等知识,求出NF的长是本题的关键.27.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC 的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F 作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=AF,求点P的坐标.解析:(1)求出A,B两点坐标,利用待定系数法解决问题即可.(2)由题意直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),求出PE,OD(用a表示)即可解决问题.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.证明△OFS≌△FQR(AAS),推出SF=QR,再证明△BSG≌△QRG(AAS),推出SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,GQ﹣FG=AF,根据GQ2=GR2+QR2,可得(m+6)2=62+(12﹣m)2,解得m=4,由题意tan∠DHE=tan∠DPH,可得=,由(2)可知DE=3a,PD=12a,推出=,可得DH=6a,推出tan∠PHD===2,由∠PHD=∠FHT,可得tan∠FHT==2,推出HT=2,再根据OT=OD+DH+HT,构建方程求出a即可解决问题.参考答案:解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∴C(12,9),∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,∴SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°﹣45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,∵GQ﹣FG=AF,∴GQ=×m+6﹣m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12﹣m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴=,由(2)可知DE=3a,PD=12a,∴=,∴DH=6a,∴tan∠PHD===2,∵∠PHD=∠FHT,∴tan∠FHT==2,∴HT=2,∵OT=OD+DH+HT,∴4a+6a+2=8,∴a=,∴OD=,PD=12×=,∴P(,).点拨:本题属于一次函数综合题,考查了矩形的判定和性质,一次函数的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2021年黑龙江省哈尔滨市数学中考真题含答案解析(含答案)

黑龙江省哈尔滨市2021年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2021年黑龙江哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为( )A.5℃B.6℃C.7℃D.8℃分析:根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.解答:解:28﹣21=28+(﹣21)=7,故选:C.点评:本题考查了有理数的减法,减去一个数等于加上这个数的相反数.2.(3分)(2021年黑龙江哈尔滨)用科学记数法表示927 000正确的是( )A.9.27×106B.9.27×105C.9.27×104D.927×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于927 000有6位,所以可以确定n=6﹣1=5.解答:解:927 000=9.27×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2021年黑龙江哈尔滨)下列计算正确的是( )A.3a﹣2a=1B.a2+a5=a7C.a2•a4=a6D.(ab)3=ab3考点:幂的乘方与积的乘方。
合并同类项。
同底数幂的乘法.分析:根据合并同类项,可判断A、B,根据同底数幂的乘法,可判断C,根据积的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误。
B、不是同底数幂的乘法,指数不能相加,故B错误。
C、底数不变指数相加,故C正确。
D、积的乘方等于每个因式分别乘方,再把所得的幂相乘。
故D错误。
故选:C.点评:本题考查了积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.4.(3分)(2021年黑龙江哈尔滨)下列图形中,不是中心对称图形的是( )A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:A、是中心对称图形,故本选项错误。
黑龙江省哈尔滨市2020年中考数学测试试卷(含解析)

2020年黑龙江省哈尔滨市中考数学测试试卷一.选择题(共10小题)1.﹣3的相反数是()A.﹣3 B.3 C.D.2.下列运算中,不正确的是()A.a3+a3=2a3B.a2•a3=a5C.(﹣a3)2=a9D.2a3÷a2=2a3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.在每一象限内的双曲线y=上,y都随x的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m≥﹣2 D.m≤﹣25.如图所示几何体的左视图是()A.B.C.D.6.如图,点P在点A的北偏东60°方向上,点B在点A正东方向,点P在点B的北偏东30°方向上,若AB=50米,则点P到直线AB的距离为()A.50米B.25米C.50米D.25米7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣38.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5% B.10% C.15% D.20%9.已知在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB的平行线交BC于点F.则下列说法不正确的是()A.=B.=C.=D.=10.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD 于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6二.填空题(共10小题)11.将9420000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.计算:=.14.把多项式9m2﹣36n2分解因式的结果是.15.以O为圆心,4cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则弦AC所对的劣弧长等于cm.16.不等式组的整数解是.17.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.19.等腰△ABC中,AB=AC,AD⊥BC于D,点E在直线AC上,CE=AC,AD=18,BE=15,则△ABC的面积是.20.如图,已知平行四边形ABCD,DE⊥CD,CE⊥BC,CE=AD,F为BC上一点,连接DF,且点A在BF的垂直平分线上,若DE=1,DF=5,则AD的长为.三.解答题(共7小题)21.先化简,再求值:,其中x=4cos30°﹣2tan45°.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上.(1)请用两种不同的方法分别在图1中和图2中画出△ABD和△ACD,使得两个三角形都是轴对称图形;(2)请直接写出两个图形中线段BD的长度之和.23.为了解某学校学生的个性特长发展情况,学校决定围绕“音乐、体育、美术、书法、其它活动项目中,你参加哪一项活动(每人只限一项)的问题”,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的条形统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)求参加“音乐”活动项目的人数占抽查总人数的百分比.(3)若全校有2400名学生,请估计该校参加“美术”活动项目的人数.24.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1 (I)求该二次函教的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.25.某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.26.已知△ABD内接于⊙O中,DP为⊙O的切线.(1)如图1,求证:∠BAD=∠BDP;(2)如图2,连接PB并延长交⊙O于点C,连接AC、CD,CD交AB于点E,若CD⊥AB,∠CAB=2∠BAD,求证:BD+DE=CE;(3)如图3,在(2)的条件下,延长AB至点F,使得BF=BD,连接CF,若AC=10,S△BCF=20,求DE的长.27.在平面直角坐标系中,O为坐标原点,直线AB:y=2x+4与x轴交于B点,与y轴交于A点,D为BA延长线上一点,C为x轴上一点,连接CD,且DB=DC,BC=8.(1)如图1,求直线CD的解析式;(2)如图2,P为BD上一点,过点P作CD的垂线,垂足为H,设PH的长为d,点P 的横坐标为t,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)如图3,点E为CD上一点,连接PE,PE=PB,在PE上取一点K,在AB上取一点F,使得PK=BF,在EK上取点N,连接FN交BK于点M,若∠PFN=2∠KMN,MN=NE,求点P的坐标.参考答案与试题解析一.选择题(共10小题)1.﹣3的相反数是()A.﹣3 B.3 C.D.【分析】依据相反数的定义解答即可.【解答】解:﹣3的相反数是3.故选:B.2.下列运算中,不正确的是()A.a3+a3=2a3B.a2•a3=a5C.(﹣a3)2=a9D.2a3÷a2=2a 【分析】根据合并同类项法则和幂的运算性质,计算后利用排除法求解.【解答】解:A、a3+a3=2a3,正确;B、a2•a3=a5,正确;C、应为(﹣a3)2=a6,故本选项错误;D、2a3÷a2=2a,正确.故选:C.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:C.4.在每一象限内的双曲线y=上,y都随x的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m≥﹣2 D.m≤﹣2【分析】根据反比例函数的性质得到关于m的不等式,解不等式可以得到m的取值范围.【解答】解:∵在每一象限内的双曲线y=上,y都随x的增大而增大,∴m+2<0,解得,m<﹣2,故选:B.5.如图所示几何体的左视图是()A.B.C.D.【分析】根据左视图是从物体的左面看得到的图形解答.【解答】解:从左边看到的现状是A中图形,故选:A.6.如图,点P在点A的北偏东60°方向上,点B在点A正东方向,点P在点B的北偏东30°方向上,若AB=50米,则点P到直线AB的距离为()A.50米B.25米C.50米D.25米【分析】作PC⊥AB,根据正切的定义用PC分别表示出AC、BC,根据题意列式计算,得到答案.【解答】解:作PC⊥AB交AB的延长线于点C,由题意得,∠P AC=30°,∠PBC=60°,在Rt△ACP中,tan∠P AC=,∴AC==PC,在Rt△BCP中,tan∠PBC=,∴BC==PC,由题意得,PC﹣PC=50,解得,PC=25,即点P到直线AB的距离为25米,故选:D.7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣3【分析】根据“上加下减、左加右减”的原则进行解答即可.【解答】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y=2(x﹣2)2+3,故选:B.8.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5% B.10% C.15% D.20%【分析】要求每次降价的百分率,应先设每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,又知经两次降价后每件243元,由两次降价后每件价钱相等为等量关系列出方程求解.【解答】解:设平均每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,由题意得:300(1﹣x)2=243解得:x1=0.1,x2=1.9(不符合题意舍去)所以平均每次降价的百分率为:10%.故选:B.9.已知在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB的平行线交BC于点F.则下列说法不正确的是()A.=B.=C.=D.=【分析】由平行线分线段成比例定理即可得出结论.【解答】解:∵DE∥BC,EF∥AB,∴=,A、B、D选项正确;∵四边形BDEF是平行四边形,∴DE=BF,∴,故C选项错误;故选:C.10.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD 于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6【分析】根据平行线的性质和翻转变换的性质得到FD=FE,F A=FC,根据勾股定理计算即可.【解答】解:∵DC∥AB,∴∠FCA=∠CAB,又∠F AC=∠CAB,∴∠F AC=∠FCA,∴F A=FC=,∴FD=FE,∵DC=AB=8,AF=,∴FD=FE=8﹣=,∴AD=BC=EC==6,故选:D.二.填空题(共10小题)11.将9420000用科学记数法表示为9.42×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9420000=9.42×106.故答案为:9.42×106.12.在函数y=中,自变量x的取值范围是x≠2.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣2≠0,求解可得自变量x的取值范围.【解答】解:根据题意,有x﹣2≠0,解得x≠2;故自变量x的取值范围是x≠2.故答案为x≠2.13.计算:=2.【分析】首先化简各二次根式,进而合并同类项得出即可.【解答】解:=﹣=.故答案为:2.14.把多项式9m2﹣36n2分解因式的结果是9(m﹣2n)(m+2n),.【分析】首先提公因式9,再利用平方差进行二次分解即可.【解答】解:原式=9(m2﹣4n2)=9(m﹣2n)(m+2n),故答案为:9(m﹣2n)(m+2n).15.以O为圆心,4cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则弦AC所对的劣弧长等于πcm.【分析】连接OB,如图,先利用菱形的性质可判断△OAB和△OBC都是等边三角形,则∠AOB=∠BOC=60°,于是可根据弧长公式计算出弦AC所对的劣弧的长.【解答】解:连接OB,如图,∵四边形OABC为菱形,∴OA=AB=BC=OC,∴△OAB和△OBC都是等边三角形,∴∠AOB=∠BOC=60°,∴弦AC所对的劣弧的长==π,故答案为π.16.不等式组的整数解是2.【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【解答】解:,由不等式①得x>1,由不等式②得x<3,其解集是1<x<3,所以整数解是2.故答案为:2.17.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是9.【分析】先根据旋转的性质得BE=BD,AE=CD,∠DBE=60°,于是可判断△BDE为等边三角形,则有DE=BD=4,所以△AED的周长=DE+AC,再利用等边三角形的性质得AC=BC=5,则易得△AED的周长为9.【解答】解:∵△BCD绕点B逆时针旋转60°得到△BAE,∴BE=BD,AE=CD,∠DBE=60°,∴△BDE为等边三角形,∴DE=BD=4,∴△AED的周长=DE+AE+AD=DE+CD+AD=DE+AC,∵△ABC为等边三角形,∴AC=BC=5,∴△AED的周长=DE+AC=4+5=9.故答案为9°.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.【分析】根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.故答案为:.19.等腰△ABC中,AB=AC,AD⊥BC于D,点E在直线AC上,CE=AC,AD=18,BE=15,则△ABC的面积是144.【分析】根据等腰三角形三线合一的性质可得到AD是底边BC的中线,从而得到点G 为△ABC的重心,从而不难求得DG,BG的长,再根据勾股定理求得BD的长,最后根据三角形面积公式求解即可.【解答】解:如图,∵在等腰△ABC中,AB=AC,AD⊥BC于D,∴AD是底边BC的中线,∵CE=AC,∴G为△ABC的重心,∵AD=18,BE=15,∴DG=AD=6,BG=BE=10,∴在直角△BDG中,由勾股定理得到:BD==8,∴S△ABC=BC×AD=144.故答案是:144.20.如图,已知平行四边形ABCD,DE⊥CD,CE⊥BC,CE=AD,F为BC上一点,连接DF,且点A在BF的垂直平分线上,若DE=1,DF=5,则AD的长为.【分析】连接AF,AC,过点A作AH⊥CD于H,AH交EC于O,设AD与CE交于G,根据全等三角形的性质得到DE=DH=1,AH=CD,根据线段垂直平分线的性质得到AB =AF,求得∠ABF=∠AFB,根据平行四边形的性质得到AB=CD,AB∥CD,求得∠BCD=∠AFC,根据全等三角形的性质得到DF=AC=5,根据勾股定理即可得到结论.【解答】解:连接AF,AC,过点A作AH⊥CD于H,AH交EC于O,设AD与CE交于G,∵∠AGC=∠AHC=90°,∠AOG=∠COH,∴∠DAH=∠ECD,∵∠AHD=∠EDC=90°,AD=CE,∴△ADH≌△CED(AAS),∴DE=DH=1,AH=CD,∵点A在BF的垂直平分线上,∴AB=AF,∴∠ABF=∠AFB,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABF+∠BCD=180°,∴∠BCD=∠AFC,∵CF=CF,∴△AFC≌△DCF(SAS),∴DF=AC=5,设CH=x,则AH=CD=x+1,∵AH2+CH2=AC2,∴(x+1)2+x2=52,解得:x=3(负值舍去),∴AH=4,∴AD==,故答案为:.三.解答题(共7小题)21.先化简,再求值:,其中x=4cos30°﹣2tan45°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,再利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=[﹣]•,=•,=,当x=4×﹣2×1=2﹣2时,原式==.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上.(1)请用两种不同的方法分别在图1中和图2中画出△ABD和△ACD,使得两个三角形都是轴对称图形;(2)请直接写出两个图形中线段BD的长度之和.【分析】(1)根据△ABD和△ACD都是轴对称图形,即可得到格点D的位置;(2)依据勾股定理进行计算,即可得到线段BD的长度之和.【解答】解:(1)如图所示,△ABD和△ACD即为所求;(2)两个图形中线段BD的长度之和为+2=.23.为了解某学校学生的个性特长发展情况,学校决定围绕“音乐、体育、美术、书法、其它活动项目中,你参加哪一项活动(每人只限一项)的问题”,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的条形统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)求参加“音乐”活动项目的人数占抽查总人数的百分比.(3)若全校有2400名学生,请估计该校参加“美术”活动项目的人数.【分析】(1)根据条形统计图求得各类的人数的和即可;(2)利用(1)中所求总人数,再利用参加“音乐”活动项目的人数,求出所占百分比即可;(3)根据样本中美术所占的百分比估计总体.【解答】解:(1)12+16+6+10+4=48(人);(2)参加“音乐”活动项目的人数占抽查总人数的百分比为:12÷48×100%=25%;(3)6÷48×2400=300(名),估计该校参加“美术”活动项目的人数约为300人.24.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1 (I)求该二次函教的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.【分析】(Ⅰ)根据对称轴方程,列式求出b的值,从而求得二次函数的解析式;(Ⅱ)先由y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2知函数有最大值﹣2,然后求出x=﹣2和x =0时y的值即可得答案.【解答】解:(Ⅰ)∵函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1,∴m﹣1=2,﹣=1,∴m=3,b=2.∴该二次函教的解析式为y=﹣x2+2x﹣3.(Ⅱ)∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴当x=1时,函数y有最大值﹣2,当x=﹣2时,y=﹣11;当x=0时,y=﹣3;∵﹣2<0<1,∴当﹣2≤x≤0时,求该二次函数的函数值y的取值范围为﹣11≤y≤﹣3.25.某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.【分析】(1)设该商场第一批购进了这种水果x,则第二批购进这种水果2x,根据关键语句“每个进价多了5元”可得方程,解方程即可;(2)设水果的售价为y元,根据题意可得不等关系:水果的总售价﹣成本﹣损耗≥利润,由不等关系列出不等式即可.【解答】解:(1)设该商场第一批购进了这种水果x,则第二批购进这种水果2x,可得:﹣=5,解得:x=10,经检验:x=10是原分式方程的解,=30,答:该商贩第一批购进水果每箱30元;(2)设水果的售价为y元,根据题意得:30y﹣(300+700)﹣20×10%y≥400,解得:y≥50,则水果的售价为50元.答:水果的售价至少为50元.26.已知△ABD内接于⊙O中,DP为⊙O的切线.(1)如图1,求证:∠BAD=∠BDP;(2)如图2,连接PB并延长交⊙O于点C,连接AC、CD,CD交AB于点E,若CD⊥AB,∠CAB=2∠BAD,求证:BD+DE=CE;(3)如图3,在(2)的条件下,延长AB至点F,使得BF=BD,连接CF,若AC=10,S△BCF=20,求DE的长.【分析】(1)如图1,连接OD,并延长DO交⊙O于H,由切线的性质和圆周角定理可得∠DBH=∠ODP=90°,可得∠ODB+∠BDP=90°,∠BDH+∠H=90°,可得∠H=∠BDP=∠BAD;(2)在CE上截取KE=DE,连接BK,由圆周角可得∠BAD=∠BDP=∠BCD,∠CAB =∠CDB=2∠BDP=2∠BCD,由线段垂直平分线的性质可得BK=BD,由等腰三角形的性质和外角的性质可得BK=CK=BD,即可得结论;(3)如图3,在CE上取点K,使DE=KE,连接BK,过点K作KR⊥BC于R,过点F 作FH⊥BP于点H,由“AAS”可知△CRK≌△FHB,可得FH=CR,由三角形面积公式可求BC的长,由角的数量关系可证AB=AC=10,由勾股定理可求AE,BE,CE的长,由锐角三角函数可求解.【解答】解:(1)如图1,连接OD,并延长DO交⊙O于H,∵DP为⊙O的切线.∴∠ODP=90°,∴∠ODB+∠BDP=90°,∵DH是直径,∴∠DBH=90°,∵∠BDH+∠H=90°,∴∠H=∠BDP,∵∠H=∠BAD,∴∠BAD=∠BDP;(2)如图2,在CE上截取KE=DE,连接BK,∵∠CAB=2∠BAD,∠BAD=∠BCD,∠BAD=∠BDP,∠CAB=∠CDB,∴∠BAD=∠BDP=∠BCD,∠CAB=∠CDB=2∠BDP=2∠BCD,∵KE=DE,AB⊥CD,∴BK=BD,∴∠BKD=∠BDK=2∠BCD,∵∠BKD=∠BCD+∠CBK,∴∠BCD=∠CBK,∴BK=CK,∴CE=KE+CK=DE+BK,∴CE=DE+BD(3)如图3,在CE上取点K,使DE=KE,连接BK,过点K作KR⊥BC于R,过点F 作FH⊥BP于点H,由(2)可知,CK=BK,∴CR=BR,∵BF=BD,CK=BK=BD,∴CK=BF=BD=BK,∵∠KRC=∠FPH=90°,∠CBE=∠FBH,∴∠BCE=∠BFH,且CK=BF,∠CRK=∠FHB,∴△CRK≌△FHB(AAS),∴FH=CR,设FH=CR=BR=x,∴BC=2x,∵S△BCF=20=×BC×FH,∴20=×2x×x∴x=2(负值舍去),∴FH=CR=BR=2,BC=4,∵∠BAD=∠BCD,∠BAC=2∠BAD,∴∠BAC=2∠BCD,∵∠CBA=90°﹣∠BCD,∠BAC+∠ACB+∠ABC=180°,∴∠ACB=90°﹣∠BCD,∴∠ACB=∠ABC,∴AC=AB=10,∵CE2=AC2﹣AE2,CE2=CB2﹣BE2,∴AC2﹣AE2=CB2﹣BE2,∴100﹣AE2=80﹣(10﹣AE)2,∴AE=6,∴BE=4,∴EC===8∵∠ECB=∠EAD,∴tan∠ECB=tan∠EAD,∴,∴,∴DE=3.27.在平面直角坐标系中,O为坐标原点,直线AB:y=2x+4与x轴交于B点,与y轴交于A点,D为BA延长线上一点,C为x轴上一点,连接CD,且DB=DC,BC=8.(1)如图1,求直线CD的解析式;(2)如图2,P为BD上一点,过点P作CD的垂线,垂足为H,设PH的长为d,点P 的横坐标为t,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)如图3,点E为CD上一点,连接PE,PE=PB,在PE上取一点K,在AB上取一点F,使得PK=BF,在EK上取点N,连接FN交BK于点M,若∠PFN=2∠KMN,MN=NE,求点P的坐标.【分析】(1)解方程得到OB=2,OA=﹣4,过D作DX⊥BC于X,根据平行线分线段成比例定理得到DX=8,求得D(2,8),解方程组即可得到结论;(2)过点P作PY∥BC交CD于Y,求得P(t,2t+4),Y(﹣t+4,2t+4)根据平行线的性质和解直角三角形即可得到结论;(3)如图3,延长FN到点T,使PN=NT,连接PT,于是得到MT=MN+NT=NE+PN =PE,过点T作TV⊥BK交BK的延长线于V,根据全等三角形的性质得到BQ=MV,PQ=YT,∴BM=VQ,设PT交MV于点R,∵∠由全等三角形的性质得到QR=VR=BM,过点F作FL⊥BM于L,过点R作RZ∥FN交PQ于点Z,推出△FML≌△ZRQ (ASA),求得RZ=FM根据全等三角形的性质得到∠PRQ=∠QPR,求得∠ZRQ=∠QPK,过点P作SW∥BC,过B作BS⊥SB于S,过E作EW⊥SW于W根据余角的性质得到∠WPE=∠SBP,推出△SPB≌△WEP(AAS),得到BS=PW,SP=WE,设P(t,2t+4),求得E(3t+4,t+2),解方程即可得到结论.【解答】解:(1)在y=2x+4中,令y=0,则x=﹣2,令x=0,则y=4,∴B(﹣2,0),A(0,4),∴OB=2,OA=﹣4,过D作DX⊥BC于X,∵DB=DC,∴BX=XC=BC=4,∴OX=2,∵∠AOB=∠DXB=90°,∴OA∥DX,∴=,∴DX=8,∴D(2,8),∵OC=BC﹣OB=6,C(6,0),设直线CD的解析式为:y=kx+b,∴,解得:,∴直线CD的解析式为y=﹣2x+12;(2)过点P作PY∥BC交CD于Y,∵点P的横坐标为t,∴P(t,2t+4),∴Y(﹣t+4,2t+4),∴PY=﹣2t+4,∵PY∥BC,∴∠DCB=∠DYP,∵BD=CD,∴∠DBC=∠DCB,∴∠DCB=∠DYP,∴tan∠DBC=tan∠DYP,∵tan∠DBC==2,∴tan∠DYP=2,∴=2,∴PH=2HY,在Rt△PHY中,PY===HY,∴==,∴PH=(﹣2t+4)=﹣t+(﹣2≤t<2);(3)如图3,延长FN到点T,使PN=NT,连接PT,∴MT=MN+NT=NE+PN=PE,∵PE=PB,∴MT=PB,过点T作TV⊥BK交BK的延长线于V,∵∠PFN=2∠KMN=2∠FMB,∴∠FBM=∠FMB,∴∠PBM=∠VMT,∵∠PQB=∠V=90°,∴△PQB≌△TVM(AAS),∴BQ=MV,PQ=YT,∴BM=VQ,设PT交MV于点R,∵∠PRQ=∠TRV,∠PQR=∠V,PQ=VT,∴△PQR≌△TVR(AAS),∴QR=VR=BM,过点F作FL⊥BM于L,过点R作RZ∥FN交PQ于点Z,∵∠FBM=∠FMB,∴BF=FM,∴ML=BM,∴QR=ML,∵RZ∥FN,∴∠ZRQ=∠KMN,∴∠FML=∠ZRQ,∵∠FLM=∠ZQR=90°,∴△FML≌△ZRQ(ASA),∴RZ=FM,∴BF=RZ,∵BF=PK,∴RZ=PK,∵PN=NT,∴∠NPT=∠NTP,∵RZ∥FN,∴∠PRZ=∠NTP,∴∠NPT=∠PRZ,∵PR=PR,∴△PRK≌△RPZ(ASA),∴∠PRQ=∠QPR,∴∠ZRQ=∠QPK,∴∠PBM=∠ZRQ,∴∠PBM=∠QPK,∵∠PBM+∠BPM=90°,∴QPK+∠BPM=90°,∴∠BPE=90°,过点P作SW∥BC,过B作BS⊥SB于S,过E作EW⊥SW于W,∴∠SPB+∠WPE=90°,∵∠SPB+∠SBP=90°,∴∠WPE=∠SBP,∵∠S=∠W=90°,PB=PE,∴△SPB≌△WEP(AAS),∴BS=PW,SP=WE,设P(t,2t+4),∴E(3t+4,t+2),∵点E在直线CD上,∴t+2=﹣2(3t+4)+12,解得:t=,∴P(,).。
2020年哈尔滨市中考数学试题(解析版)

【详解】解:(1)15÷30%=50(名),
答:本次调查共抽取了50名学生;
(2)50﹣15﹣20﹣5=10(名),
补全条形统计图如图所示:
(3)800× =320(名),
(2)如图所示,△CDG即为所求,由勾股定理,得EG= .
【点睛】本题考查作图-应用与设计、等腰三角形的性质、勾股定理、正方形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.
23.为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢的哪一类?的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的 ,请你根据图中提供的信息回答下列问题:
6.将抛物线 向上平移3个单位长度,再向右平移5个单位长度,所得的抛物线为()
A B. C. D.
【答案】D
【解析】
【分析】
用顶点式表达式,按照抛物线平移的公式即可求解.
【详解】解:将抛物线 先向上平移3个单位长度,再向右平移5个单位长度后,函数的表达式为: .
故选:D.
【点睛】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.
【详解】解:∵ ,
∴△AEF∽△ACD,
∴ ,故选项A错误;
∴ ,
∵ ,
∴△CEG∽△CAB,
∴ ,
∴ ,故选项B错误; ,故选项D错误;
∵ ,
∴ ,
∵ ,
∴ ,
∴ ,故选项正确C.
哈尔滨市2021年中考数学试题含答案

哈尔滨市2021年中考数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分)1.﹣7的倒数是()A.7 B.﹣7 C.D.﹣2.下列运算正确的是()A.a6÷a3=a2B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b2 3.下列图形中,既是轴对称图形又是中心对称图形的是()4.抛物线y=﹣(x+)2﹣3的极点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)5.五个大小相同的正方体搭成的几何体如图所示,其左视图是()6.方程32+x =11-x 的解为( )A .x=3B . x=4C .x=5D . x=﹣57.如图,⊙O 中,弦AB ,CD 相交于点P ,∠A=42°,∠APD=77°,则∠B 的大小是( )A .43°B .35°C .34°D .44°8.在Rt △ABC 中,∠C=90°,AB=4,AC=1,则cosB 的值为( )A .B .C .D .9.如图,在△ABC 中,D 、E 别离为AB 、AC 边上的点,DE ∥BC ,点F 为BC 边上一点,连接AF 交DE 于点G ,则下列结论中必然正确的是( )A . =B . =C . =D . =10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min二、填空题(本大题共10小题,每小题3分,共30分)11.将57600000用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.把多项式4ax2﹣9ay2分解因式的结果是.14.计算﹣6的结果是.15.已知反比例函数y=的图象通过点(1,2),则k的值为.16.不等式组的解集是.17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它不同.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.18.已知扇形的弧长为4π,半径为8,则此扇形的圆心角为.19.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E 在AC上,若OE=,则CE的长为.20.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.三、解答题(本大题共60分)21.先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.22.如图,方格纸中每一个小正方形的边长均为1,线段AB的两个端点均在小正方形的极点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的极点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的极点上,tan ∠EAB=,连接CD,请直接写出线段CD的长.23.随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风光区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风光区中,你最喜欢哪个?(必选且只选一个)”的问题,在全校范围内随机抽取了部份学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你按照图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估量最喜欢太阳岛风光区的学生有多少名.24.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.25.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润别离为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.若是将这34件商品全数售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?26.已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.27.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3通过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右边,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.22.解:(1)△ABC如图所示;(2)平行四边形ABDE如图所示,CD==.23.解:(1)10÷20%=50(名),答:本次调查共抽取了50名学生;(2)50﹣10﹣20﹣12=8(名),补全条形统计图如图所示,(3)1350×=540(名),答:估量最喜欢太阳岛风光区的学生有540名.24.解:(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)25.解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y 元.由题意,得,解得:(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥626.(1)证明:如图1,连接OA,∵C是的中点,∴,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;(2)证明:如图2,延长BO交⊙O于点T,连接PT∵BT是⊙O的直径∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;(3)解:如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180°∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∠PMH=∠ABO,∵sin∠PMH=,sin∠ABO=,∴,∴,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴.27.解:(1)∵直线y=x﹣3通过B、C两点,∴B(3,0),C(0,﹣3),∵y=x2+bx+c通过B、C两点,∴,解得,故抛物线的解析式为y=x2﹣2x﹣3;(2)如图1,y=x2﹣2x﹣3,y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),∴OA=1,OB=OC=3,∴∠ABC=45°,AC=,AB=4,∵PE⊥x轴,∴∠EMB=∠EBM=45°,∵点P的横坐标为1,∴EM=EB=3﹣t,连结AM,∵S△ABC =S△AMC+S△AMB,∴AB•OC=AC•MN+AB•EM,∴×4×3=×d+×4(3﹣t),∴d=t;(3)如图2,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为x=1,∴由抛物线对称性可得D(2,﹣3),∴CD=2,过点B作BK⊥CD交直线CD于点K,∴四边形OCKB为正方形,∴∠OBK=90°,CK=OB=BK=3,∴DK=1,∵BQ⊥CP,∴∠CQB=90°,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,∴∠OHC=∠OIQ=∠OIB=90°,∴四边形OHQI为矩形,∵∠OCQ+∠OBQ=180°,∴∠OBQ=∠OCH,∴△OBQ≌△OCH,∴QG=OS,∠GOB=∠SOC,∴∠SOG=90°,∴∠ROG=45°,∵OR=OR,∴△OSR≌△OGR,∴SR=GR,∴SR=CS+BR,∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,∴∠BOR=∠TBK,∴tan∠BOR=tan∠TBK,∴=,∴BR=TK,∵∠CTQ=∠BTK,∴∠QCT=∠TBK,∴tan∠QCT=tan∠TBK,设ST=TD=m,∴SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,∵SK2+RK2=SR2,∴(2m+1)2+(2﹣m)2=(3﹣m)2,解得m1=﹣2(舍去),m2=;∴ST=TD=,TK=,∴tan∠TBK==÷3=,∴tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,∵CF′=OE′=t,∴PF′=t,∴PE′=t+3,∴P(t,﹣ t﹣3),∴﹣t﹣3=t2﹣2t﹣3,解得t1=0(舍去),t2=.∴MN=d=t=×=.。
2019年黑龙江省哈尔滨市中考数学试卷及答案

2019年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.﹣9的相反数是()A.﹣9B.﹣C.9D.2.下列运算一定正确的是()A.2a+2a=2a2 B.a2•a3=a6 C.(2a2)3=6a6D.(a+b)(a﹣b)=a2﹣b23.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.七个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.如图,P A、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=50°,则∠ACB的度数为()A.60°B.75°C.70°D.65°6.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣37.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为()A.20%B.40%C.18%D.36%8.方程=的解为()A.x=B.x=C.x=D.x=9.点(﹣1,4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(4,﹣1)B.(﹣,1)C.(﹣4,﹣1)D.(,2)10.如图,在▱ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD 于点N,则下列式子一定正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共计30分)11.将数6260000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.把多项式a3﹣6a2b+9ab2分解因式的结果是.14.不等式组的解集是.15.二次函数y=﹣(x﹣6)2+8的最大值是.16.如图,将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与A是对应点,点B′与B是对应点,点B′落在边AC上,连接A′B,若∠ACB=45°,AC=3,BC=2,则A′B的长为.17.一个扇形的弧长是11πcm,半径是18cm,则此扇形的圆心角是度.18.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为度.19.同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现的点数相同的概率为.20.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为.三、解答题(其中21~22题各7分,23-24题各8分,25~27题各10分,共计60分)21.(7分)先化简再求值:(﹣)÷,其中x=4tan45°+2cos30°.22.(7分)图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方形顶点上;(2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD 的面积为8.23.(8分)建国七十周年到来之际,海庆中学决定举办以“祖国在我心中”为主题的读书活动.为了使活动更具有针对性,学校在全校范围内随机抽取部分学生进行问卷调查,要求学生在“教育、科技、国防、农业、工业”五类书籍中,选取自己最想读的一种(必选且只选一种),学校将收集到的调查结果适当整理后,绘制成如图所示的不完整的统计图.请根据图中所给的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)如果海庆中学共有1500名学生,请你估计该校最想读科技类书籍的学生有多少名.24.(8分)已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.25.(10分)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?26.(10分)已知:MN为⊙O的直径,OE为⊙O的半径,AB、CH是⊙O的两条弦,AB ⊥OE于点D,CH⊥MN于点K,连接HN、HE,HE与MN交于点P.(1)如图1,若AB与CH交于点F,求证:∠HFB=2∠EHN;(2)如图2,连接ME、OA,OA与ME交于点Q,若OA⊥ME,∠EON=4∠CHN,求证:MP=AB;(3)如图3,在(2)的条件下,连接OC、BC、AH,OC与EH交于点G,AH与MN 交于点R,连接RG,若HK:ME=2:3,BC=,求RG的长.27.(10分)如图,在平面直角坐标系中,点O为坐标原点,直线y=x+4与x轴交于点A,与y轴交于点B,直线BC与x轴交于点C,且点C与点A关于y轴对称;(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC上一点,BQ=AP,连接PQ,设点P的横坐标为t,△PBQ的面积为S(S≠0),求S与t之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,点E在线段OA上,点R在线段BC的延长线上,且点R的纵坐标为﹣,连接PE、BE、AQ,AQ与BE交于点F,∠APE=∠CBE,连接PF,PF的延长线与y轴的负半轴交于点M,连接QM、MR,若tan∠QMR=,求直线PM的解析式.2019年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.﹣9的相反数是()A.﹣9B.﹣C.9D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣9的相反数是9,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列运算一定正确的是()A.2a+2a=2a2B.a2•a3=a6C.(2a2)3=6a6D.(a+b)(a﹣b)=a2﹣b2【分析】利用同底数幂的乘法,幂的乘方与积的乘法法则,平方差公式解题即可;【解答】解:2a+2a=4a,A错误;a2•a3=a5,B错误;(2a2)3=8a6,C错误;故选:D.【点评】本题考查整式的运算;熟练掌握同底数幂的乘法,幂的乘方与积的乘法法则,平方差公式是解题的关键.3.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称及中心对称图形的定义对各选项进行逐一分析即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;B、是中心对称图形,也是轴对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:B.【点评】本题考查的是中心对称图形,熟知把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形是解答此题的关键.4.七个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【分析】左视图有2列,从左到右分别是2,1个正方形.【解答】解:这个立体图形的左视图有2列,从左到右分别是2,1个正方形,故选:B.【点评】此题主要考查了三视图的画法,正确掌握三视图观察的角度是解题关键.5.如图,P A、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=50°,则∠ACB的度数为()A.60°B.75°C.70°D.65°【分析】先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠ACB的度数.【解答】解:连接OA、OB,∵P A、PB分别与⊙O相切于A、B两点,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=180°﹣50°=130°,∴∠ACB=∠AOB=×130°=65°.故选:D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.6.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣3【分析】根据“上加下减、左加右减”的原则进行解答即可.【解答】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y=2(x﹣2)2+3,故选:B.【点评】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.7.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为()A.20%B.40%C.18%D.36%【分析】设降价得百分率为x,根据降低率的公式a(1﹣x)2=b建立方程,求解即可.【解答】解:设降价的百分率为x根据题意可列方程为25(1﹣x)2=16解方程得,(舍)∴每次降价得百分率为20%故选:A.【点评】本题考查了一元二次方程实际应用问题关于增长率的类型问题,按照公式a(1﹣x)2=b对照参数位置代入值即可,公式的记忆与运用是本题的解题关键.8.方程=的解为()A.x=B.x=C.x=D.x=【分析】将分式方程化为,即可求解x=;同时要进行验根即可求解;【解答】解:=,,∴2x=9x﹣3,∴x=;将检验x=是方程的根,∴方程的解为x=;故选:C.【点评】本题考查解分式方程;熟练掌握分式方程的解法及验根是解题的关键.9.点(﹣1,4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(4,﹣1)B.(﹣,1)C.(﹣4,﹣1)D.(,2)【分析】将点(﹣1,4)代入y=,求出函数解析式即可解题;【解答】解:将点(﹣1,4)代入y=,∴k=﹣4,∴y=,∴点(4,﹣1)在函数图象上,故选:A.【点评】本题考查反比例函数的图象及性质;熟练掌握待定系数法求函数解析式的方法是解题的关键.10.如图,在▱ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD 于点N,则下列式子一定正确的是()A.=B.=C.=D.=【分析】根据平行四边形的性质以及相似三角形的性质.【解答】解:∵在▱ABCD中,EM∥AD∴易证四边形AMEN为平行四边形∴易证△BEM∽△BAD∽△END∴==,A项错误=,B项错误==,C项错误==,D项正确故选:D.【点评】此题主要考查相似三角形的性质及平行四边形的性质,本题关键是要懂得找相似三角形,利用相似三角形的性质求解.二、填空题(每小题3分,共计30分)11.将数6260000用科学记数法表示为 6.26×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6260000用科学记数法可表示为6.26×106,故答案为:6.26×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在函数y=中,自变量x的取值范围是x≠.【分析】函数中分母不为零是函数y=有意义的条件,因此2x﹣3≠0即可;【解答】解:函数y=中分母2x﹣3≠0,∴x≠;故答案为x≠;【点评】本题考查函数自变量的取值范围;熟练掌握函数中自变量的取值范围的求法是解题的关键.13.把多项式a3﹣6a2b+9ab2分解因式的结果是a(a﹣3b)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:a3﹣6a2b+9ab2=a(a2﹣6ab+9b2)=a(a﹣3b)2.故答案为:a(a﹣3b)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.不等式组的解集是x≥3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.二次函数y=﹣(x﹣6)2+8的最大值是8.【分析】利用二次函数的性质解决问题.【解答】解:∵a=﹣1<0,∴y有最大值,当x=6时,y有最大值8.故答案为8.【点评】本题主要考查二次函数的最值,熟练掌握二次函数的图象和性质是解题的关键.16.如图,将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与A是对应点,点B′与B是对应点,点B′落在边AC上,连接A′B,若∠ACB=45°,AC=3,BC=2,则A′B的长为.【分析】由旋转的性质可得AC=A'C=3,∠ACB=∠ACA'=45°,可得∠A'CB=90°,由勾股定理可求解.【解答】解:∵将△ABC绕点C逆时针旋转得到△A′B′C,∴AC=A'C=3,∠ACB=∠ACA'=45°∴∠A'CB=90°∴A'B==故答案为【点评】本题考查了旋转的性质,勾股定理,熟练掌握旋转的性质是本题的关键.17.一个扇形的弧长是11πcm,半径是18cm,则此扇形的圆心角是110度.【分析】直接利用弧长公式l=即可求出n的值,计算即可.【解答】解:根据l===11π,解得:n=110,故答案为:110.【点评】本题考查了扇形弧长公式计算,注意公式的灵活运用是解题关键.18.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为60°或10度.【分析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据三角形的内角和定理可得结论.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60°或10;【点评】本题考查了三角形的内角和定理和三角形外角的性质,分情况讨论是本题的关键.19.同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现的点数相同的概率为.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两枚骰子点数相同的情况,再利用概率公式即可求得答案.【解答】解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)由表可知一共有36种情况,两枚骰子点数相同的有6种,所以两枚骰子点数相同的概率为=,故答案为:.【点评】本题考查了列表法与树状图法求随机事件的概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.20.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为2.【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC,BC的长.【解答】解:如图,连接AC交BD于点O∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形∴∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4∵CE∥AB∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°∴∠DAO=∠ACE=30°∴AE=CE=6∴DE=AD﹣AE=2∵∠CED=∠ADB=60°∴△EDF是等边三角形∴DE=EF=DF=2∴CF=CE﹣EF=4,OF=OD﹣DF=2∴OC==2∴BC==2【点评】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.三、解答题(其中21~22题各7分,23-24题各8分,25~27题各10分,共计60分)21.(7分)先化简再求值:(﹣)÷,其中x=4tan45°+2cos30°.【分析】先根据分式的混合运算顺序和运算法则化简原式,再依据特殊锐角三角函数值求得x的值,代入计算可得.【解答】解:原式=[﹣]÷=(﹣)•=•=,当x=4tan45°+2cos30°=4×1+2×=4+时,原式===.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22.(7分)图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方形顶点上;(2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD 的面积为8.【分析】(1)作AC的垂直平分线,作以AC为直径的圆,垂直平分线与圆的交点即为点B;(2)以C为圆心,AC为半径作圆,格点即为点D;【解答】解;(1)作AC的垂直平分线,作以AC为直径的圆,垂直平分线与圆的交点即为点B;(2)以C为圆心,AC为半径作圆,格点即为点D;【点评】本题考查尺规作图,等腰三角形的性质;熟练掌握等腰三角形和直角三角形的尺规作图方法是解题的关键.23.(8分)建国七十周年到来之际,海庆中学决定举办以“祖国在我心中”为主题的读书活动.为了使活动更具有针对性,学校在全校范围内随机抽取部分学生进行问卷调查,要求学生在“教育、科技、国防、农业、工业”五类书籍中,选取自己最想读的一种(必选且只选一种),学校将收集到的调查结果适当整理后,绘制成如图所示的不完整的统计图.请根据图中所给的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)如果海庆中学共有1500名学生,请你估计该校最想读科技类书籍的学生有多少名.【分析】(1)由最想读教育类书籍的学生数除以占的百分比求出总人数即可;(2)确定出最想读国防类书籍的学生数,补全条形统计图即可;(2)求出最想读科技类书籍的学生占的百分比,乘以1500即可得到结果.【解答】解:(1)根据题意得:18÷30%=60(名),答:在这次调查中,一共抽取了60名学生;(2)60﹣(18+9+12+6)=15(名),则本次调查中,选取国防类书籍的学生有15名,补全条形统计图,如图所示:(3)根据题意得:1500×=225(名),答:该校最想读科技类书籍的学生有225名.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.24.(8分)已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.【分析】(1)由AAS证明△ABE≌△CDF,即可得出结论;(2)由平行线的性质得出∠CBD=∠ADB=30°,由直角三角形的性质得出BE=AB,AE=AD,得出△ABE的面积=AB×AD=矩形ABCD的面积,由全等三角形的性质得出△CDF的面积═矩形ABCD的面积;作EG⊥BC于G,由直角三角形的性质得出EG=BE=×AB=AB,得出△BCE的面积=矩形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∴∠ABE=∠DF,∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF;(2)解:△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=矩形ABCD 面积的.理由如下:∵AD∥BC,∴∠CBD=∠ADB=30°,∵∠ABC=90°,∴∠ABE=60°,∵AE⊥BD,∴∠BAE=30°,∴BE=AB,AE=AD,∴△ABE的面积=BE×AE=×AB×AD=AB×AD=矩形ABCD的面积,∵△ABE≌△CDF,∴△CDF的面积═矩形ABCD的面积;作EG⊥BC于G,如图所示:∵∠CBD=30°,∴EG=BE=×AB=AB,∴△BCE的面积=BC×EG=BC×AB=BC×AB=矩形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.【点评】本题考查了矩形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质、平行线的性质、三角形面积公式等知识;熟练掌握矩形的性质和含30°角的直角三角形的性质,证明三角形全等是解题的关键.25.(10分)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?【分析】(1)设每副围棋x元,每副中国象棋y元,根据题意得:,求解即可;(2)设购买围棋z副,则购买象棋(40﹣z)副,根据题意得:16z+10(40﹣z)≤550,即可求解;【解答】解:(1)设每副围棋x元,每副中国象棋y元,根据题意得:,∴,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z副,则购买象棋(40﹣z)副,根据题意得:16z+10(40﹣z)≤550,∴z≤25,∴最多可以购买25副围棋;【点评】本题考查二元一次方程组,一元一次不等式的应用;能够通过已知条件列出准确的方程组和不等式是解题的关键.26.(10分)已知:MN为⊙O的直径,OE为⊙O的半径,AB、CH是⊙O的两条弦,AB ⊥OE于点D,CH⊥MN于点K,连接HN、HE,HE与MN交于点P.(1)如图1,若AB与CH交于点F,求证:∠HFB=2∠EHN;(2)如图2,连接ME、OA,OA与ME交于点Q,若OA⊥ME,∠EON=4∠CHN,求证:MP=AB;(3)如图3,在(2)的条件下,连接OC、BC、AH,OC与EH交于点G,AH与MN 交于点R,连接RG,若HK:ME=2:3,BC=,求RG的长.【分析】(1)利用“四边形内角和为360°”、“同弧所对的圆周角是圆心角的一半”即可;(2)根据同圆中,相等的圆心角所对的弦相等,先证AB=MB,再根据“等角对等边”,证明MP=ME;(3)由全等三角形性质和垂径定理可将HK:ME=2:3转化为OQ:MQ=4:3;可设Rt△OMQ两直角边为:OQ=4k,MQ=3k,再构造直角三角形利用BC=,求出k的值;求得OP=OR=OG,得△PGR为直角三角形,应用勾股定理求RG.【解答】解:(1)如图1,∵AB⊥OE于点D,CH⊥MN于点K∴∠ODB=∠OKC=90°∵∠ODB+∠DFK+∠OKC+∠EON=360°∴∠DFK+∠EON=180°∵∠DFK+∠HFB=180°∴∠HFB=∠EON∵∠EON=2∠EHN∴∠HFB=2∠EHN(2)如图2,连接OB,∵OA⊥ME,∴∠AOM=∠AOE∵AB⊥OE∴∠AOE=∠BOE∴∠AOM+∠AOE=∠AOE+∠BOE,即:∠MOE=∠AOB∴ME=AB∵∠EON=4∠CHN,∠EON=2∠EHN∴∠EHN=2∠CHN∴∠EHC=∠CHN∵CH⊥MN∴∠HPN=∠HNM∵∠HPN=∠EPM,∠HNM=HEM∴∠EPM=∠HEM∴MP=ME∴MP=AB(3)如图3,连接BC,过点A作AF⊥BC于F,过点A作AL⊥MN于L,连接AM,AC,由(2)知:∠EHC=∠CHN,∠AOM=∠AOE∴∠EOC=∠CON∵∠EOC+∠CON+∠AOM+∠AOE=180°∴∠AOE+∠EOC=90°,∠AOM+∠CON=90°∵OA⊥ME,CH⊥MN∴∠OQM=∠OKC=90°,CK=HK,ME=2MQ,∴∠AOM+∠OMQ=90°∴∠CON=∠OMQ∵OC=OA∴△OCK≌△MOQ(AAS)∴CK=OQ=HK∵HK:ME=2:3,即:OQ:2MQ=2:3∴OQ:MQ=4:3∴设OQ=4k,MQ=3k,则OM===5k,AB=ME=6k在Rt△OAC中,AC===5k∵四边形ABCH内接于⊙O,∠AHC=∠AOC=×90°=45°,∴∠ABC=180°﹣∠AHC=180°﹣45°=135°,∴∠ABF=180°﹣∠ABC=180°﹣135°=45°∴AF=BF=AB•cos∠ABF=6k•cos45°=3k在Rt△ACF中,AF2+CF2=AC2即:,解得:k1=1,(不符合题意,舍去)∴OQ=HK=4,MQ=OK=3,OM=ON=5∴KN=KP=2,OP=ON﹣KN﹣KP=5﹣2﹣2=1,在△HKR中,∠HKR=90°,∠RHK=45°,∴=tan∠RHK=tan45°=1∴RK=HK=4∴OR=RN﹣ON=4+2﹣5=1∵∠CON=∠OMQ∴OC∥ME∴∠PGO=∠HEM∵∠EPM=∠HEM∴∠PGO=∠EPM∴OG=OP=OR=1∴∠PGR=90°在Rt△HPK中,PH===2∵∠POG=∠PHN,∠OPG=∠HPN∴△POG∽△PHN∴,即,PG=∴RG===.【点评】本题是有关圆的几何综合题,难度较大,综合性很强;主要考查了垂径定理,圆周角与圆心角,同圆中圆心角、弧、弦的关系,圆内接四边形性质,全等三角形性质,勾股定理及解直角三角形等.27.(10分)如图,在平面直角坐标系中,点O为坐标原点,直线y=x+4与x轴交于点A,与y轴交于点B,直线BC与x轴交于点C,且点C与点A关于y轴对称;(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC上一点,BQ=AP,连接PQ,设点P的横坐标为t,△PBQ的面积为S(S≠0),求S与t之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,点E在线段OA上,点R在线段BC的延长线上,且点R的纵坐标为﹣,连接PE、BE、AQ,AQ与BE交于点F,∠APE=∠CBE,连接PF,PF的延长线与y轴的负半轴交于点M,连接QM、MR,若tan∠QMR=,求直线PM的解析式.【分析】(1)由y=x+4,求出A(﹣3,0)B(0,4),所以C(3,0),设直线BC的解析式为y=kx+b,将B(0,4),C(3,0)代入,解得k=,b=4,所以直线BC的解析式;(2)过点A作AD⊥BC于点点D,过点P作PN⊥BC于N,PG⊥OB于点G.由sin∠ACD=,即,求出AD=,设P(t,t+4),由cos∠BPG=cos∠BAO,即,求出,由sin∠ABC=,求得PN==,BQ=5+,所以S=,即S=;(3)如图,延长BE至T使ET=EP,连接AT、PT、AM、PT交OA于点S,易证AT ∥BC,所以∠TAE=∠FQB,△ATF≌△QBF,于是AF=QF,TF=BF,再证明△MBF ≌△PTF,所以MF=PF,BM=PT,于是四边形AMPQ为平行四边形,由sin∠ABC=sin∠MQR=,设QR=25a,HR=24a,则QH=7a,tan∠QMR=,所以MH =23a,BQ=MQ=23a+7a=30a,BR=BQ+QR=55a,过点R作RK⊥x轴于点K.求得M(0,),设直线PM的解析式为y=mx+n,解得,因此直线PM的解析式为y=.【解答】解:(1)∵y=x+4,∴A(﹣3,0)B(0,4),∵点C与点A关于y轴对称,∴C(3,0),设直线BC的解析式为y=kx+b,将B(0,4),C(3,0)代入,,解得k=,b=4,∴直线BC的解析式;(2)如图1,过点A作AD⊥BC于点点D,过点P作PN⊥BC于N,PG⊥OB于点G.∵OA=OC=3,OB=4,∴AC=6,AB=BC=5,∴sin∠ACD=,即,∴AD=,∵点P为直线y=x+4上,∴设P(t,t+4),∴PG=﹣t,cos∠BPG=cos∠BAO,即,∴,∵sin∠ABC=,∴PN==,∵AP=BQ,∴BQ=5+,∴S=,即S=;(3)如图,延长BE至T使ET=EP,连接AT、PT、AM、PT交OA于点S.∵∠APE=∠EBC,∠BAC=∠BCA,∴180°﹣∠APE﹣∠BAC=180°﹣∠EBC﹣∠ACB,∴∠PEA=∠BEC=∠AET,∴PT⊥AE,PS=ST,∴AP=AT,∠TAE=∠P AE=∠ACB,AT∥BC,∴∠TAE=∠FQB,∵∠AFT=∠BFQ,AT=AP=BQ,∴△ATF≌△QBF,∴AF=QF,TF=BF,∵∠PSA=∠BOA=90°,∴PT∥BM,∴∠TBM=∠PTB,∵∠BFM=∠PFT,∴△MBF≌△PTF,∴MF=PF,BM=PT,∴四边形AMPQ为平行四边形,∴AP∥MQ,MQ=AP=BQ,∴∠MQR=∠ABC,过点R作RH⊥MQ于点H,∵sin∠ABC=sin∠MQR=,设QR=25a,HR=24a,则QH=7a,∵tan∠QMR=,∴MH=23a,BQ=MQ=23a+7a=30a,BR=BQ+QR=55a,过点R作RK⊥x轴于点K.∵点R的纵坐标为﹣,∴RK=,∵sin∠BCO=,∴CR=,BR=,∴,a=,∴BQ=30a=3,∴5+=3,t=,∴P(),∴,∵BM=PT=2PS=,BO=4,∴OM=,∴M(0,),设直线PM的解析式为y=mx+n,∴,解得,∴直线PM的解析式为y=.【点评】本题考查了一次函数,熟练运用待定系数法、三角形全等以及三角函数是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
填空20 练习 1
1、如图,在直角梯形ABCD 中,BC AB , 90=∠ABC , 60=∠C ,
322==AD BC ,点E 是BC 边的中点,DEF ∆是等边三角形,DF 交AB 于点G ,则BFG ∆的周长为_______。
2、如图所示,在ABC Rt ∆中, 90=∠A ,BD 平分ABC ∠,交AC 于点D ,且AB=4,BD=5,则AC 的长为_______。
3、 如图,在ABC ∆中,AB=AC,D 、E 是ABC ∆内的两点,AD 平分
B A C
∠, 60=∠=∠E EBC ,若BE=6,DE=2,则BC=_______。
(第1题图) (第2题图) (第3题图)
4、正方形ABCD 的边长为4,M 、N 、分别是BC 、CD 上的两个动点,且始终保持MN AM ⊥,当BM=_______时,四边形ABCN 的面积最大。
5、如图,ABC ∆的外角平分线AD 交BC 的延长线于点D ,AB=9,AC=AD=6,则BC=_______。
6、如图,在边长为2的正方形ABCD 中,M 为边AD 的中点,延长MD 至点E ,使ME=MC,以DE 为边做正方形DEFG ,点G 在边CD 上,则DE 的长为_______。
(第4题图) (第5题图) (第6题图)。