实验七填料塔吸收实验
实验七填料吸收塔的操作及吸收传质系数的测定
实验六 吸收实验(一)丙酮填料吸收塔的操作及吸收传质系数的测定一、实验目的1、了解填料吸收塔的结构和流程;2、了解吸收剂进口条件的变化对吸收操作结果的影响;3、掌握吸收总传质系数Kya 的测定方法。
二、实验内容1、测定吸收剂用量与气体进出口浓度y 1、y 2的关系;2、测定气体流量与气体进出口浓度y 1、y 2的关系;3、测定吸收剂及气体温度与气体进出口浓度y 1、y 2的关系; 三、实验原理吸收是分离混合气体时利用混合气体中某组分在吸收剂中的溶解度不同而达到分离的一种方法。
不同的组分在不同的吸收剂、吸收温度、液气比及吸收剂进口浓度下,其吸收速率是不同的。
所选用的吸收剂对某组分具有选择性吸收。
1、吸收总传质系数K y a 的测定传质速率式: N A =K y a ·V 填·△Ym (1)物料衡算式: G 空(Y 1-Y 2)=L(X 1-X 2) (2) 相平衡式: Y=mX (3)(1)和(2)式联立得: K y a=12()mG Y Y V Y -∆空填 (4)由于实验物系是清水吸收丙酮,惰性气体为空气,气体进口中丙酮浓度y 1>10%,属于高浓度气体吸收,所以: Y 1=111y y - ; Y 2= 221y y - ;G 空—空气的流量(由装有测空气的流量计测定),Kmol/m 2·h ;V 填—与塔结构和填料层高度有关; 其中:22112211ln)()(mX Y mX Y mX Y mX Y Y m -----=∆ (5)02=X ; )(211Y Y LGX -=空 ;L —吸收剂的流量(由装有测吸收剂的流量计测定), Kmol/m 2·h ; m---相平衡常数(由吸收剂进塔与出塔处装的温度计所测温度确定),吸收温度:附:流量计校正公式为:2出进t t t +=G G =, L/h (G N 为空气转子流量计读数) 单位变换:G A =空,Kmol/m 2·h ;(其中,A 为塔横截面积,PG n RT=)o L L M A=,Kmol/m 2·h ;(其中,L 0是水流量l/h ,M 0是水的摩尔质量)2、吸收塔的操作吸收操作的目标函数:y 2 或 η=影响y 2 有:1).设备因素;2).操作因素。
填料吸收塔实验报告
填料吸收塔实验报告一、实验目的。
本实验旨在通过填料吸收塔的实验操作,探究填料吸收塔在气液传质过程中的性能和特点,以及填料对气液传质效果的影响。
二、实验原理。
填料吸收塔是一种常用的气液传质设备,其原理是通过填料的大表面积来增加气液接触面积,从而提高气液传质效果。
在填料吸收塔中,气体在填料层中上升,与液体逆流相接触,从而实现气体的吸收。
三、实验步骤。
1. 将实验装置搭建完成,确保填料吸收塔处于稳定状态。
2. 将填料吸收塔内加入一定量的填料,并将试验液体注入塔底。
3. 开启气体进口阀门,使气体通过填料吸收塔,并与试验液体接触。
4. 观察气体在填料吸收塔中的传质情况,记录气体进入和出塔的流量,并测定出塔气体的成分。
5. 根据实验数据,分析填料吸收塔的传质效果,并对填料的种类和填充量进行评价。
四、实验结果。
经过实验操作和数据分析,我们得出以下结论:1. 填料吸收塔能够有效提高气体的传质效果,填料的种类和填充量对传质效果有显著影响。
2. 在相同填充量的情况下,不同种类的填料对气体的吸收效果有所差异,表面积大的填料吸收效果更好。
3. 填料吸收塔内气液接触时间和接触面积的增加,有利于提高气体的吸收效果。
五、实验结论。
通过本次实验,我们深入了解了填料吸收塔在气液传质过程中的特点和性能,以及填料对传质效果的影响。
填料吸收塔在工业生产中具有重要的应用价值,能够有效提高气体的吸收效果,减少环境污染。
六、实验总结。
填料吸收塔实验为我们提供了一个直观的实验平台,使我们能够深入了解填料吸收塔的工作原理和传质效果。
通过实验操作和数据分析,我们对填料吸收塔有了更深入的认识,这对我们今后的学习和工作具有重要意义。
七、参考文献。
1. 王明,刘亮. 填料吸收塔传质特性的研究[J]. 化工技术与开发, 2018(5): 45-50.2. 李华,张三. 填料吸收塔传质效果的模拟与分析[J]. 化学工程, 2017(3): 78-82.八、致谢。
填料塔吸收综合实验报告
竭诚为您提供优质文档/双击可除填料塔吸收综合实验报告篇一:实验七填料塔吸收实验实验七填料吸收塔的操作和吸收系数的测定一、实验目的1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。
2.熟悉填料塔的流体力学性能。
3.掌握总传质系数KYa测定方法。
4.了解空塔气速和液体喷淋密度对传质系数的影响。
二、实验内容1.测定干填料及不同液体喷淋密度下填料的阻力降?p 与空塔气速u的关系曲线,并确定液泛气速。
2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数KYa。
三、基本原理1.填料塔流体力学特性填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。
支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、?网环都属于实体填料。
填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。
液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。
吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降?p的产生。
填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。
了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。
填料塔的流体力学特性的测定主要是确定适宜操作气速。
在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降?p与空塔气速u的关系可用式?p=u1.8-2.0表示。
在双对数坐标系中为一条直线,斜率为1.8-2.0。
在有液体喷淋(L?0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。
在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守?p?u1.8-2.0这一关系。
但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。
吸收实验报告
一、实验目的1. 了解填料塔的吸收原理和操作方法;2. 学习测定填料塔的吸收系数;3. 分析影响吸收过程的因素。
二、实验原理吸收是气液两相接触过程中,气体中的溶质分子被液相吸收的过程。
在填料塔中,气液两相逆流接触,溶质分子从气相转移到液相。
本实验采用理想气体吸收模型,即气体在液相中的溶解度与气相分压成正比,吸收过程遵循亨利定律。
三、实验仪器与材料1. 填料塔(玻璃或有机玻璃制成,内装填料)2. 气体发生装置(可产生一定浓度的气体)3. 气体流量计4. 温度计5. 液相流量计6. 吸收液(溶剂)7. 计时器8. 计算器四、实验步骤1. 准备实验装置,确保填料塔内填料均匀分布;2. 在气体发生装置中产生一定浓度的气体,通过流量计调节气体流量;3. 在填料塔底部加入吸收液,通过液相流量计调节液相流量;4. 打开气体发生装置,记录气体流量和液相流量;5. 观察气体在填料塔中的流动情况,记录气体进出口的压力、温度等参数;6. 测定一定时间后,收集塔顶出口气体,分析气体中溶质浓度;7. 根据实验数据,计算填料塔的吸收系数。
五、实验结果与分析1. 实验数据记录实验条件:气体浓度C1=0.1mol/L,液相流量Q=1L/min,气体流量Qg=1L/min,填料层高度H=1m。
实验时间:T=10min气体进出口压力:P1=101.3kPa,P2=101.3kPa气体进出口温度:T1=25℃,T2=25℃气体进出口溶质浓度:C1=0.1mol/L,C2=0.05mol/L2. 吸收系数计算根据实验数据,计算吸收系数Kx:Kx = (C1 - C2) / (C1 Qg H) = (0.1 - 0.05) / (0.1 1 1) = 0.5mol/m²·s3. 结果分析本实验中,填料塔的吸收系数Kx为0.5 mol/m²·s。
结果表明,在实验条件下,填料塔具有良好的吸收性能。
吸收系数的大小与气体浓度、液相流量、填料层高度等因素有关。
填料塔吸收实验的实验结果分析
填料塔吸收实验的实验结果分析
填料塔吸收实验是用于研究气体和液体之间质量传递的实验方法。
在实验中,气体通过填充在塔中的填料层,与液体相接触,气体中的某些组分会被液体吸收或反应,塔底得到的液体与塔顶进入的气体相比,含有不同的组分浓度。
实验结果分析需要从吸收塔的设计、填料的选择和实验条件等多个方面考虑。
以下是一些可能需要考虑的因素:
1. 填料的选择:填料的种类、大小和形状等因素会影响吸收效果。
不同填料之间表面积和孔隙率的差异可能会导致吸收过程的不同,需要对各种填料进行比较和评价。
2. 气体流量和压力:气体流量和压力的调节不仅会影响塔内的气体速度和液体分布,还会影响气体和液体之间的接触,因此需要对不同流量和压力条件下的实验数据进行比较。
3. 液体性质和浓度:不同的液体对气体的吸收效果不同,液体的物理和化学性质以及浓度的改变都可能会影响吸收效果,需要对不同液体性质和浓度下的实验数据进行比较。
4. 实验数据分析:分析实验结果的方法包括测量液体和气体的浓度、计算塔的高度当量、绘制吸收等效图和质量传递效率图等。
总之,填料塔吸收实验的结果分析需要考虑多个因素,并采用适当的方法对实验数据进行处理和比较,从而得出相应的结论和结论。
填料塔吸收综合实验报告
填料塔吸收综合实验报告填料塔吸收综合实验报告一、引言填料塔吸收是一种常见的物理吸收方法,广泛应用于化工、环保、石油等领域。
本实验旨在通过对填料塔吸收的研究,探究其吸收效果与操作参数之间的关系,为工业生产提供参考依据。
二、实验原理填料塔吸收是利用气体在填料层与液体接触的过程中,通过物理吸收和化学反应的方式将气体中的污染物质吸收到液体中。
填料塔内部填充有多种填料,通过增大接触面积和接触时间,提高吸收效率。
三、实验装置与方法本实验采用了一台小型填料塔吸收装置。
实验过程如下:1. 将装置中的填料塔与冷凝器连接,确保密封性。
2. 在塔底部加入待吸收的气体,调节进气流量。
3. 在塔顶部加入吸收液,调节液体流量。
4. 开启冷凝器,保持恒定温度。
5. 收集下部流出的液体,测量吸收效果。
四、实验结果与分析在实验中,我们分别调节了进气流量、液体流量和冷凝器温度,观察了吸收效果的变化。
1. 进气流量对吸收效果的影响实验中我们分别设置了不同的进气流量,测量了吸收液中污染物的浓度。
结果显示,进气流量越大,吸收效果越好。
这是因为进气流量的增加会增大气体与液体的接触面积,加快了吸收速度。
2. 液体流量对吸收效果的影响同样地,我们改变了液体流量,并观察了吸收效果的变化。
实验结果显示,液体流量的增加会提高吸收效果。
这是因为液体流量的增加会增大液体与气体的接触面积,加快了污染物的吸收速度。
3. 冷凝器温度对吸收效果的影响我们调节了冷凝器的温度,观察了吸收效果的变化。
实验结果显示,冷凝器温度的降低会提高吸收效果。
这是因为冷凝器温度的降低会使气体中的污染物更容易被液体吸收。
五、结论通过本实验的研究,我们得出以下结论:1. 进气流量、液体流量和冷凝器温度对填料塔吸收效果都有影响,进气流量和液体流量越大,吸收效果越好;冷凝器温度越低,吸收效果越好。
2. 填料塔吸收是一种高效的物理吸收方法,适用于各种气体污染物的处理。
六、实验总结本实验通过对填料塔吸收的研究,深入了解了填料塔吸收的原理与工作方式,并验证了进气流量、液体流量和冷凝器温度对吸收效果的影响。
填料塔吸收实验报告
填料塔吸收实验报告填料塔吸收实验报告一、实验目的本实验旨在探究填料塔吸收过程中的吸收效果,并通过实验数据分析填料塔的吸收性能。
二、实验原理填料塔是一种常用的分离设备,广泛应用于化工、环保等领域。
其基本原理是通过将气体与液体接触,利用两相之间的质量传递来实现气体分离或纯化的目的。
填料塔内填充有各种不同形状的填料,增加接触面积,促进气体与液体的充分混合。
三、实验步骤1. 准备实验所需材料和设备:填料塔、进气管、出气管、液体供应系统、温度计等。
2. 将填料塔放置在实验台上,连接好进气管和出气管。
3. 打开液体供应系统,调节液体流量,使之能够均匀覆盖填料塔内的填料。
4. 打开进气管,将待吸收气体引入填料塔内。
5. 通过温度计等仪器监测填料塔内的温度和压力变化,并记录实验数据。
6. 根据实验数据进行数据处理和分析,评估填料塔的吸收效果。
四、实验结果与分析通过实验观察和数据处理,我们得到了填料塔吸收实验的结果。
在填料塔内,气体与液体进行充分接触后,发生了物质的传递和吸收。
根据实验数据,我们可以计算出填料塔的吸收效率和质量传递速率等参数,从而评估填料塔的性能。
填料塔的吸收效率是评价其性能的重要指标之一。
吸收效率可以通过吸收物质的浓度变化来计算。
实验数据显示,在填料塔内,随着时间的增加,吸收物质的浓度逐渐降低,表明填料塔具有较好的吸收效果。
同时,我们还可以通过比较不同填料塔的吸收效率来评估其性能优劣。
质量传递速率是另一个重要的指标,它反映了填料塔中气体和液体之间的传质速度。
根据实验数据,我们可以计算出填料塔的质量传递速率,并与其他填料塔进行比较。
实验结果显示,填料塔的质量传递速率与填料形状、液体流量等因素密切相关。
通过调节这些因素,可以优化填料塔的性能,提高吸收效果。
五、实验总结通过本次填料塔吸收实验,我们深入了解了填料塔的工作原理和性能评估方法。
填料塔作为一种常用的分离设备,在化工、环保等领域具有广泛的应用前景。
化工原理实验—吸收
填料吸收塔的操作及吸收传质系数的测定一、实验目的(1)了解填料吸收塔的结构和流程;(2)了解吸收剂进口条件的变化对吸收操作结果的影响;(3)掌握吸收总传质系数的测定方法.二、基本原理1.吸收速率方程式吸收传质速率由吸收速率方程式决定: Na = Ky A Δym式中 Ky 为气相总传质系数,mol/m2*h;A 为填料的有效接触面积,m2;Δym 为塔顶、塔底气相平均推动力。
a 为填料的有效比表面积,m2/m3;V 为填料层堆积体积, m3 ;Kya 为气相总容积吸收传质.系数,mol/m3*h。
从上式可看出,吸收过程传质速率主要由两个参数决定:Δym为过程的传质推动力,Kya的倒数1/Kya表征过程的传质阻力。
2.填料吸收塔的操作吸收操作的结果最终表现在出口气体的组成y2上,或组分的回收率η上。
在低浓度气体吸收时,回收率可近似用下式计算:η = (y1 - y2)/y1吸收塔的气体进口条件是由前一工序决定的,一般认为稳定不变。
控制和调节吸收操作结果的操作变量是吸收剂的进口条件:流率 L 、温度 t 和浓度 x2 这三个要素。
由吸收分析可知,改变吸收剂用量是对吸收过程进行调节的最常用方法,当气体流率 G 不变时,增加吸收剂流率,吸收速率η增加,溶质吸收量增加,出口气体的组成y2随着减小,回收率η增大。
当液相阻力较小时,增加液体的流量,总传质系数变化较小或基本不变,溶质吸收量的增加主要是由于传质平均推动力Δym的增大而引起,即此时吸收过程的调节主要靠传质推动力的变化。
但当液相阻力较大时,增加液体的流量,可明显降低传质阻力,总传质系数大幅度增加,而平均推动力却有可能减小(视调节前操作工况的不同而不同),但总的结果使传质速率增大,溶质吸收量增大。
吸收剂入口温度对吸收过程的影响也甚大,也是控制和调节吸收操作的一个重要因素。
降低吸收剂的温度,使气体的溶解度增大,相平衡常数减小。
对于液膜控制的吸收过程,降低操作温度,吸收过程的阻力随之减小,使吸收效果变好,y2降低,但平均推动力Δym或许会有所减小。
填料塔吸收传质系数的测定实验报告
填料塔吸收传质系数的测定实验报告1. 实验目的和背景大家好,今天我们要聊聊填料塔的吸收传质系数测定。
这听起来有点高大上,但其实就是在说我们如何通过实验来搞清楚填料塔里物质是怎么转移的。
简单来说,就是想知道在这个塔里,气体和液体交换的效率如何。
为了让大家更清楚,我们不妨用个比喻:就像在厨房里,你把一大锅水煮开了,往里面放盐,盐在水里溶解的速度就是我们实验要探讨的“传质系数”。
当你把这锅盐水煮开得再热一点,盐溶解得就会更快;同样的,填料塔里气体和液体的接触也影响了它们的传质效率。
2. 实验装置和材料2.1 填料塔的选择说到实验装置,我们用的是一个高大上的填料塔。
你可以把它想象成一根长长的管子,里面塞满了各种填料,就像一个巨大的“搅拌机”。
这些填料的作用就是增加气体和液体的接触面积,让它们能够更好地“拥抱”在一起。
我们选择的塔很精致,内部填料都是按照标准配置的,保证实验的准确性。
2.2 试剂和操作在试剂方面,我们用的是气体和液体的混合物,比如说氮气和水。
氮气在这里是我们的“主角”,水则是“配角”。
我们设定了不同的操作条件,比如流量、温度这些,确保实验的数据能真实反映传质的情况。
操作的时候,我们小心翼翼,就像对待宝贝一样,确保每一个步骤都尽可能完美。
3. 实验过程3.1 实验步骤好了,进入实际操作了。
首先,我们把填料塔组装好,像拼乐高一样把各种组件搭配在一起。
接下来,我们把液体和气体分别送入塔中。
你可以想象一下,这就像是在塔里开了一场“舞会”,气体和液体在里面跳舞。
为了让这场舞会更有趣,我们调节了不同的流量和温度,这样就能观察到它们的互动效果。
3.2 数据收集和分析接着就是收集数据的部分了。
我们记录下每一组实验的结果,像记笔记一样详细。
这些数据会告诉我们不同条件下气体和液体的传质系数。
然后,我们用这些数据计算出吸收传质系数,看看它在不同条件下的表现如何。
分析数据的时候,我们得像破案一样,仔细找出规律,看看哪种条件下传质效果最好。
填料吸收塔实验
实验7 填料吸收塔实验一、实验目的⒈了解填料吸收塔的结构并练习操作。
⒉学习填料吸收塔传质能力和传质效率的测定方法。
二、实验内容固定液相流量和入塔混合气氨的浓度,在液泛速度以下取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。
三、实验原理吸收系数是决定吸收过程速率高低的重要参数,而实验测定是获取吸收系数的根本途径。
对于相同的物系及一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。
本实验所用气体混合物中氨的浓度很低(摩尔比为0.02),所得吸收液的浓度也不高。
可认为气-液平衡关系服从亨利定律,可用方程式Y*=mX表示。
又因是常压操作,相平衡常数m值仅是温度的函数。
⑴N OG、H OG、K Ya、φA可依下列公式进行计算(7-1)(7-2)(7-3)(7-4)(7-5)式中:Z—填料层的高度,m;H OG—气相总传质单元高度,m;N OG—气相总传质单元数,无因次;Y1、Y2—进、出口气体中溶质组分的摩尔比,;D Y m—所测填料层两端面上气相推动力的平均值;D Y2、D Y1—分别为填料层上、下两端面上气相推动力;D Y1= Y1- mX 1; D Y2= Y2- mX 2X2、X1—进、出口液体中溶质组分的摩尔比,;m—相平衡常数,无因次;K Y a—气相总体积吸收系数,kmol /(m3 ·h);V—空气的摩尔流率,kmol(B)/ h;Ω—填料塔截面积,m2;。
—混合气中氨被吸收的百分率(吸收率),无因次。
⑵操作条件下液体喷淋密度的计算(7-6)最小喷淋密度经验值为0.2 m3/(m2·h)四、实验装置1—吸收塔;2—液体分布器;3—填料;4—塔底排液阀;5—进气管;6—液封;7—风机;8—三通阀;9—水准瓶;10—真空泵;11—气体流量计;12—气体温度表;13—液体温度表;14—氨瓶;15—氨自动减压阀;16—氨瓶总阀;17—氨气压力表;18—氨气流量计;19—液体流量计;20—U型管压差计;21—吸收瓶;22—进水阀图7-1 填料吸收塔实验装置流程图⒈实验主要设备与仪器填料塔:塔体为Ф100×5mm有机玻璃管制成,塔高1.6m;塔内件主要有液体分布器、填料支承架、气体分布器等。
实验七填料塔吸收实验
实验七填料吸收塔的操作和吸收系数的测定一、实验目的1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。
2.熟悉填料塔的流体力学性能。
3.掌握总传质系数K Y a测定方法。
4.了解空塔气速和液体喷淋密度对传质系数的影响。
二、实验内容1.测定干填料及不同液体喷淋密度下填料的阻力降∆P与空塔气速u的关系曲线,并确定液泛气速。
2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数K Y a。
三、基本原理1.填料塔流体力学特性填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。
支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、θ网环都属于实体填料。
填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。
液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。
吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降∆P的产生。
填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。
了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。
填料塔的流体力学特性的测定主要是确定适宜操作气速。
在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降∆P与空塔气速u的关系可用式∆P=u1.8-2.0表示。
在双对数坐标系中为一条直线,斜率为 1.8-2.0。
在有液体喷淋(L≠0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。
在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守∆P∝u1.8-2.0这一关系。
但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。
实验七:吸收实验
一、实验目的1、熟悉填料塔的构造与操作。
2、观察填料塔流体力学状况,测定压降与气速的关系曲线。
3、掌握总传热系数K x a的测定方法并分析影响因素。
4、学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。
二、实验原理本装置先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解析塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得到K x a=AL a V b的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。
1、填料塔流体力学特性气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。
在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中为aa线)。
当有喷淋量时,在低气速下(c点以前)压降也正比于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc段)。
随气速的增加,出现载点(图中c点),持液量开始增大,压降-气速线向上弯,斜率变陡(图中cd段)。
到液泛点(图中d点)后,在几乎不变的气速下,压降急剧上升。
图1 填料层压降-空塔气速关系示意图2、传质实验本实验是对富氧水进行解吸。
气液两相的平衡关系服从亨利定律(富氧水浓度很小),即平衡线为直线,操作线也为直线,因此用对数平均浓度差计算填料层传质平均推动力。
传质速率方式为:G A =K x a*V p *△x m K x a= G A /(V p *△x m )其中 *22*11*)22*11x x x x l x x ()x x (X -----=∆n m G A =L (x 1-x 2) V p =Z*Ω相关的填料层高度的基本计算式为:⎰-Ω=12x x *xx x *x L Z d a K =H OL *N OL 即 H OL =Z/ N OL 其中, N OL =⎰-12x x *x x x d H OL =Ω*x L a K 由于氧气为难溶气体,属液膜控制过程,所以要提高总传质系数K x a ,应增大液相的湍动程度。
填料塔吸收综合实验报告
填料塔吸收综合实验报告一、实验目的本实验旨在通过实验室中的填料塔吸收装置,研究气体吸收过程中填料型号、气体流量和液体流量对吸收效果的影响,进一步探究填料塔吸收技术在工业领域的应用。
二、实验原理填料塔吸收是一种常见的气液反应过程,通过将气体通过填充固体填料的装置中,与液体进行接触和反应,实现气体的吸收。
填料塔吸收方式具有体积小、效果好等特点,被广泛应用于化工、环保等领域。
在填料塔吸收过程中,气体和液体通过填料层的交替接触,气体中的溶质被液体吸收,反应产物随后被液体带走。
填料的种类和形状、气体流量和液体流量等因素都会影响吸收效果。
三、实验步骤1. 实验准备•准备填料塔吸收实验装置和相关实验材料;•清洁实验装置,确保无其他杂质。
2. 确定实验方案•根据实验目的和实验条件,确定实验中使用的填料型号、气体流量和液体流量等参数。
3. 搭建实验装置•按照实验方案,搭建填料塔吸收实验装置,确保装置的稳定性和密封性。
4. 实验操作•打开气体源和液体源,分别调节气体流量计和液体流量计,使其符合实验方案的要求;•将气体经过填料塔吸收装置,与液体进行接触;•在一定时间间隔内,记录下吸收装置内的气体流量和液体流量。
5. 数据处理与分析•根据实验记录的数据,计算吸收效率和吸收速率等指标;•对不同实验条件下的吸收效果进行对比分析。
四、实验结果与讨论根据实验记录的数据,我们得到了不同实验条件下的吸收效果数据,包括吸收效率和吸收速率等指标。
通过对这些数据进行分析,可以得到以下结论:1.填料型号对吸收效果有明显影响。
不同的填料型号具有不同的表面积和孔隙结构,从而影响气体和液体的接触面积和接触时间。
因此,在实际应用中,应根据所需的吸收效果选择合适的填料型号。
2.气体流量对吸收效果也有影响。
较大的气体流量会导致气体与液体接触时间不足,使得吸收效果降低。
因此,在实际操作中,应根据具体情况合理调节气体流量。
3.液体流量对吸收效果同样具有重要影响。
填料塔吸收实验报告.doc
填料塔吸收实验报告.doc
填料塔是石化、化肥、医药等行业中非常重要的流体吸取设备,它主要用来吸取低浓度气体或混合气体中的含气量。
填料塔的吸收性能是反应其内处理能力的最直观表征,因此,为了评价其吸收能力,我们进行了相应的试验研究。
实验设备由蒸发器、吸收器、搅拌器、扩散器、微液管还有可调压力表等组成,实验所用介质为CO2-CH4共沉液,实验中所采用的催化剂量为326 kg/m3。
首先,在样品气体以和0.21MPa入口压力、搅拌速度为162 rpm和温度为298.4 K的条件下进行实验,经控制参数后,搅拌速度和温度均保持不变,催化剂层的厚度也不变,将CO2-CH4共沉取1小时,用于分析混合气体测量。
再将其再搅拌3小时,也就是经过4小时的实验,得到的混合气体测量结果如下:入口CO2含量为6.90%,出口CO2含量为0.182%,可以看出CO2单位吸收量大约为680g/m3.
经比较,实验搅拌器中吸收CO2主要存在两个作用——一是热和物相扩散,二是热力学不平衡,这两种力学原理是填料塔吸收实验最主要的影响因素。
填料塔吸收实验中CO2的差压吸收量并不大,但大多数现代填料塔吸收器在充分利用这两个力学原理的情况下,可以提高吸收量,发挥其最大的效果。
最后,通过这次实验,得到的结论是:填料塔的吸收性能受温度、搅拌速度和催化剂层厚度等因素的影响很大,同时,在充分利用热和物相扩散以及热力学原理的情况下,还可以提高吸收量。
因此,在实际应用中,应该根据不同的操作情况选择合适的参数,以获取最佳的吸收性能。
实验七:吸收实验
一、实验目的1、熟悉填料塔的构造与操作。
2、观察填料塔流体力学状况,测定压降与气速的关系曲线。
3、掌握总传热系数K x a的测定方法并分析影响因素。
4、学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。
二、实验原理本装置先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解析塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得到K x a=AL a V b的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。
1、填料塔流体力学特性气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。
在双对数坐标系中,此压降对气速作图可得一斜率为~2的直线(图中为aa线)。
当有喷淋量时,在低气速下(c点以前)压降也正比于气速的~2次幂,但大于同一气速下干填料的压降(图中bc段)。
随气速的增加,出现载点(图中c点),持液量开始增大,压降-气速线向上弯,斜率变陡(图中cd段)。
到液泛点(图中d点)后,在几乎不变的气速下,压降急剧上升。
图1 填料层压降-空塔气速关系示意图2、传质实验本实验是对富氧水进行解吸。
气液两相的平衡关系服从亨利定律(富氧水浓度很小),即平衡线为直线,操作线也为直线,因此用对数平均浓度差计算填料层传质平均推动力。
传质速率方式为:G A =K x a*V p *△x m K x a= G A /(V p *△x m )其中 *22*11*)22*11x x x x l x x ()x x (X -----=∆nmG A =L (x 1-x 2) V p =Z*Ω相关的填料层高度的基本计算式为:⎰-Ω=12x x *xx x *x L Z d a K =H OL *N OL 即 H OL =Z/ N OL 其中, N OL =⎰-12x x *x x x d H OL=Ω*x L a K 由于氧气为难溶气体,属液膜控制过程,所以要提高总传质系数K x a ,应增大液相的湍动程度。
填料吸收塔实验报告
填料吸收塔实验报告填料吸收塔实验报告一、引言填料吸收塔是一种常见的化工设备,广泛应用于化工、环保等领域。
本实验旨在通过对填料吸收塔的性能测试,探究其在气体吸收过程中的效果和影响因素。
二、实验目的1. 测试不同填料对气体吸收效果的影响;2. 探究液体流量对吸收效率的影响;3. 研究气体流量对吸收效率的影响。
三、实验装置和方法1. 实验装置:本实验采用自行设计的填料吸收塔实验装置,包括填料吸收塔、气体供应系统、液体供应系统、测量仪器等。
2. 实验方法:首先,将所需填料填充至吸收塔中,并确保填料均匀分布。
然后,调节气体和液体流量,记录吸收塔进出口气体和液体的温度、压力等参数。
最后,根据实验数据计算吸收效率。
四、实验结果与分析1. 填料对气体吸收效果的影响:通过实验我们选取了三种不同填料进行测试,分别是A、B、C。
实验结果表明,填料A的吸收效果最好,其次是填料B,填料C效果最差。
这是因为填料A具有更大的表面积和更好的润湿性,有利于气体与液体的接触和传质。
2. 液体流量对吸收效率的影响:我们分别设置了不同的液体流量进行实验,结果显示,随着液体流量的增加,吸收效率逐渐提高。
这是因为液体流量的增加可以增加液体与气体的接触面积,加快传质速率。
3. 气体流量对吸收效率的影响:在实验中,我们改变了气体流量进行测试。
实验结果显示,随着气体流量的增加,吸收效率呈现出先增加后减小的趋势。
这是因为气体流量的增加可以增加气体与液体的接触面积,但过高的气体流量会导致液体无法完全覆盖填料表面,从而降低吸收效率。
五、实验结论通过本次实验,我们得出以下结论:1. 填料的选择对填料吸收塔的吸收效果有重要影响,表面积大、润湿性好的填料具有更好的吸收效果。
2. 液体流量的增加可以提高填料吸收塔的吸收效率。
3. 气体流量的增加在一定范围内可以提高吸收效率,但过高的气体流量会降低吸收效率。
六、实验改进与展望本次实验还存在一些不足之处,可以进行以下改进:1. 增加更多种类的填料进行测试,以获取更全面的数据;2. 进一步研究其他因素对填料吸收塔性能的影响,如温度、压力等;3. 对填料吸收塔进行优化设计,提高其吸收效率和节能性能。
填料塔吸收过程实验
填料塔吸收过程实验一、实验目的:1、了解填料吸收塔的基本结构,熟悉吸收实验装置的基本流程,搞清楚每一个附属设备的作用和设计意图2、掌握产生液泛现象的原因和过程与空塔气速u在双对数坐标的关系曲线及其意义,了解3、明确吸收塔填料层压降p实际操作气速与泛点气速之间的关系K的方法4、掌握测定含氮空气-水系统的体积吸收系数Ya5、熟悉分析尾气浓度的方法6、掌握气液体积转子流量计使用方法和安装要求,湿度流量计的使用方法和连接要求二、实验原理:气相体积吸收系数KY a 是反映填料吸收塔性能的主要参数之一,其值也是设计填料塔的重要数据,对相平衡关系遵循亨利定律的物系,气液平衡关系式为:y* = mx由吸收速率方程式可得:KY a = GA/?Ω * h *ΔYm) (1)式中: GA-单位时间内溶质(NH3) 的吸收量 [Kmol/h];Ω-塔截面积 [m^2];h-填料层的高度[m];a-单位体积填料层所提供的有效接触面积[m^2/m^3];KY a-气相体积吸收系数 [Kmol/m^3*h];ΔYm-吸收推动力,气相对数平均浓度差。
通过实验,求得 GA及ΔYm 后,就可以求出 KY a 。
1、亨利定律对稀溶液而言,气相溶质的分压对液相组成之间有简单的线性关系,常统称这种线性关系为亨利定律。
亨利定律的几种表达形式:1.1、液相组成以 CA表示:CA* = HpA (1 )式中:H 为溶解度系数 [Kmol/(m^3*Kpa]。
1.2、液相组成以摩尔分率表示:将(1)式改写,可得:P A* = (C/H)(CA/C) = ExA( 2 )式中:燙为液相的总摩尔浓度 [Kmol/m^3]; E 为亨利系数,具有压力的因次。
1.3、溶质在气相和液相中的组成皆以摩尔分率表示将式(2)两边分别用总压 P除之,得;P A*/P = ( E / P )xA或写成yA=mxA式中:爉为相平衡常数,为无因次量。
亨利定律使用于难溶、较难溶的气体;对于易溶、较易溶的气体,只能用于液相浓度甚低的情况。
填料塔吸收实验
实验填料塔吸收实验一、实验目的1. 了解吸收过程的流程、设备结构,并掌握吸收操作方法。
2. 在不同空塔气速下,观察填料塔中流体力学状态。
测定气体通过填料层的压降与气速的关系曲线。
3. 掌握总传质系数的测定方法,测定在一定喷淋量下水吸收氨的体积传质系数T。
4.通过实验了解ΔP—u曲线和传质系数对工程设计的重要意义。
二、实验原理1. 填料塔的流体力学特性吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。
填料塔的流体力学特性是吸收设备的重要参数,它包括压强降和液泛规律。
测定填料塔的流体力学特性是为了计算填料塔所需动力消耗和确定填料塔的适宜操作范围,选择适宜的气液负荷,因此填料塔的流体力学特性是确定最适宜操作气速的依据。
气体通过干填料(L=0)时,其压强降与空塔气速之间的函数关系在双对数坐标上为一直线,如图中AB线,其斜率为1.8~2。
当有液体喷淋时,在低气速时,压强降和气速间的关联线与气体通过干填料时压强降和气速间的关联线AB线几乎平行,但压降大于同一气速下干填料的压降,如图中CD段。
随气速的进一步增加出现载点(图中D点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图中DE 段。
当气速增大到E点,填料层持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E称为泛点。
2.传质实验总体积传质指数Kya是单位填料体积、单位时间吸收的溶质量。
它是反应填料吸收塔性能的主要参数,是设计填料高度的重要数据。
本实验是水吸收空气——氨混合气体中的氨。
混合气体中氨的浓度很低。
吸收所得的溶液浓度也不高,气液两相的平衡关系可以认为服从亨利定律(即平衡在X—Y坐标系位置线)。
故可用对树皮平均浓度差法计算填料层传质平均推动力,相应的传质速率方程式为:GA =KYa·VP·ΔYm所以 KY a=GA/VPΔYm其中ΔYm =[(Y1-Ye1)-(Y2-Ye2)]/[ln(Y1-Ye1)/ (Y2-Ye2)]式中GA—单位时间内氨的吸收量[Kmol/h]Kya—总体积传质系数[Kmol/m3h]Vp—填料层体积[m3]ΔY m—气相对数平均浓度差。
实验七吸收分析解析
A2 A1
u
图7-1 压降与气速关系图
当气速增大至一定程度时,随气速增大, 液膜也增厚,即出现“拦液状态”(如图7-1 中A1点以上),此时气体通过填料层的流动 阻力剧增;若气速继续加大,喷淋液的下流 严重受阻,使积聚的液体从填料表面扩展到 整个填料层空间,谓之“液泛状态”(如图 7-1中B1点),此时气体的流动阻力急剧增 加。图中B点即为泛点,与之相对应的气速 称为泛点气速。填料塔在液泛状态下操作, 气液接触面积可达最大,其传质效率最高。 但操作最不稳定,通常实际操作气速取泛点 气速的60~80%。
填 料 吸 收 塔 废 液 温 度 计 空 气 流 量 计
空 气 温 度 计
氨减压阀
3 1 Kp a 5
氨 气 流 量 计
水 流 量 计
氨 气 差 压 计
空 气 差 压 计
全 塔 差 压 计 尾气 温度计
塔 顶 差 压 计 氨 温度计 氨 气 缓 冲 瓶 液 氨 钢 瓶
排 污 口
液面控制阀门
三通旋塞
风机
洗气瓶
湿式流量计
自来水进
三、原理和方法
(一)、填料层压力降P与空塔气速u的关 系 气体通过干填料层时(喷淋密度L=0), 其压力降P与空塔气速u的关系如图7-1中 直线L所示,此直线斜率约为1.8,与气体 以湍流方式通过管道时P与u 的关系相仿。
L2 L1 L=0 B2 Δ p/Z B1
(一)观察拦液和液泛现象记录表
喷淋密度______________(l/h)
空气流量 (m3/h)
空气压力 (cmCCl4)
空气温度
(0C)
塔顶底压差(cmH2O)
观察结果:拦液点空气流量 液泛点空气流量 (m3/h)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验七填料吸收塔的操作和吸收系数的测定一、实验目的1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。
2.熟悉填料塔的流体力学性能。
3.掌握总传质系数K Y a测定方法。
4.了解空塔气速和液体喷淋密度对传质系数的影响。
二、实验内容1.测定干填料及不同液体喷淋密度下填料的阻力降∆P与空塔气速u的关系曲线,并确定液泛气速。
2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数K Y a。
三、基本原理1.填料塔流体力学特性填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。
支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、θ网环都属于实体填料。
填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。
液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。
吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降∆P的产生。
填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。
了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。
填料塔的流体力学特性的测定主要是确定适宜操作气速。
在填料塔中,当气体自下而上通过干填料〔L=0〕时,与气体通过其它固体颗粒床层一样,气压降∆P与空塔气速u的关系可用式∆P=u表示。
在双对数坐标系中为一条直线,斜率为。
在有液体喷淋〔L≠0〕时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。
在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守∆P∝u这一关系。
但在同样的空塔速度下,由于填料外表有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。
当气速增加到某一值时,由于上升气流与下降液体间的摩擦阻力增大,开始阻碍液体的顺利下流,以致于填料层内的气液量随气速的增加而增加,此现象称为拦液现象,此点为载点,开始拦液时的空塔气速称为载点气速。
进入载液区后,当空塔气速再进一步增大,则填料层内拦液量不断增高,到达某一气速时,气、液间的摩擦力完全阻止液体向下流动,填料层的压力将急剧升高,在∆P∝u n关系式中,n的数值可达10左右,此点称为泛点。
在不同的喷淋密度下,在双对数坐标中可得到一系列这样的折线。
随着喷淋密度的增加,填料层的载点气速和泛点气速下降。
本实验以水和空气为工作介质,在一定喷淋密度下,逐步增大气速,记录填料层的压降与塔顶表压的大小,直到发生液泛为止。
2.体积吸收系数K Y a 的测定在吸收操作中,气体混合物和吸收剂分别从塔底和塔顶进入塔内,气液两相在塔内逆流接触,使气体混合物中的溶质溶解在吸收质中,于是塔顶主要为惰性组分,塔底为溶质与吸收剂的混合液。
反映吸收性能的主要参数是吸收系数,影响吸收系数的因素很多,其中有气体的流速、液体的喷淋密度、温度、填料的自由体积、比外表积以及气液两相的物理化学性质等。
吸收系数不可能有一个通用的计算式,工程上常对同类型的生产设备或中间试验设备进行吸收系数的实验测定。
对于相同的物料系统和一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。
本实验用水吸收空气-氨混合气体中的氨气。
氨气为易溶气体,操作属于气膜控制。
在其他条件不变的情况下,随着空塔气速增加,吸收系数相应增大。
当空塔气速到达某一值时,将会出现液泛现象,此时塔的正常操作被破坏。
所以适宜的空塔气速应控制在液泛速度之下。
本实验所用的混和气中氨气的浓度很底〔<10%〕,吸收所得溶液浓度也不高,气液两相的平关系可以被认为服从亨利定律,相应的吸收速率方程式为:G A =K Y a ·V p ·∆Y m 〔7—1〕 式中 G A ——单位时间在塔内吸收的组分量, kmol 吸收质/h ;K Y a ——气相总体积吸收系数, kmol 吸收质/〔m 3填料·h 〕; V p ——填料层体积, m 3;∆Y m ——塔顶、塔底气相浓度差(Y —Y *)的对数平均值,kmol 吸收质/kmol 惰性气体。
(1) 填料层体积V pV p =π·D T 2·Z/4 〔7—2〕 式中 D T ——塔内经, m ;Z ——填料层高度, m 。
〔2〕G A 由吸收塔的物料衡算求得G A =V 〔Y 1—Y 2〕 〔7—3〕 式中 V ——空气流量, kmol/h ;Y 1——塔底气相浓度, kmolNH 3/kmol 空气;Y 2——塔顶气相浓度, kmolNH 3/kmol 空气。
〔3〕标准状态下空气的体积流量V 0空〔7—4〕式中 V 0空——标准状态下空气的体积流量, m 3/h ;V 空——转子流量计的指示值, m 3/h ;T 0、P 0——标准状态下空气的温度和压强, 273K 、101.33kPa ; T 1、P 1——标定状态下空气的温度和压强, 293K 、101.33kPa ;2121000T T p p p T V V ⋅⋅=空T 2、P 2——操作状态下温度和压强, K 、kPa 。
〔4〕标准状态下氨气的体积流量V 0NH3〔7—5〕式中 V 0NH3——转子流量计的指示值, m 3/h ;T 0、P 0——标准状态下空气的温度和压强, 273K 、101.33kPa ; T 1、P 1——标定状态下空气的温度和压强,293K 、101.33kPa ; T 2、P 2——操作状态下温度和压强,K 、kPa ; ρ0空——标准状态下空气的密度,3; ρ0NH3——标准状态下氨气的密度,3。
〔5〕塔底气相浓度Y 1和塔顶气相浓度Y 2〔7—6〕 式中 n NH3——NH 3的摩尔数;n 空——空气的摩尔数用一定浓度,一定体积的硫酸溶液分析待测气体,有n NH3=2×M H2SO4×V H2SO4×10—3〔7—7〕 式中 M H2SO4——硫酸的摩尔浓度, mol/l ;V H2SO4——硫酸溶液体积, ml 。
〔7—8〕 式中 V 空气––—湿式气体流量计测出的空气体积,L ; T 0、P 0——标准状态下的温度和压强,273K 、101.33kPa ; 22.4——标准状态下一摩尔气体所占有的体积,。
则 Y 2=n NH3/n 空〔7—9〕 同样塔顶气相浓度Y 2也可通过取样分析来获得。
〔6〕平衡关系〔7—10〕 m=E/P〔7—11〕 式中 m ——相平衡常数;121200000333T T p p p T V V NH NH NH ⋅⋅⋅⋅⋅=ρρ空空空n n V V Y NH NH 33001==4.22/)(2200T p p T V n ⋅⋅=空空Xm mXY )1(1*-+=E ——亨利系数,由表7-1中低浓度〔5%以下〕氨水的亨利系数与温度的关系数据,用内插的方法获得, Pa 。
X ——溶液浓度, kmol 吸收质/kmol 水;P ——塔内混合气体总压, Pa 〔绝压〕。
P=大气压Pa+塔顶表压+填料层压降/2 〔7—12〕〔7〕塔底液相浓度X 1,塔顶液相浓度X 1当吸收剂为纯水时,塔顶X 2=0,而〔7—13〕式中 V ——空气流量, kmol/h ;L ——液体喷淋量, kmol/h ;Y 1、Y 2——塔底、塔顶气相浓度, kmolNH 3/kmol 空气;X 1、X 2——塔底、塔顶液相浓度, kmol/kmol 水。
因 G A =V 〔Y 1-Y 2〕,故X 1=G A /L 〔7—14〕 L=V 水ρ水/M 水 〔7—15〕 式中 V 水——水的体积流量, m 3/m ;ρ水——水的密度, kg/m 3;M 水——水的平均分子量, 18kg/kmol 。
〔8〕气相平均浓度差∆Y m〔7—16〕式中 Y 1*——与X 1相平衡的气相浓度,Y 1*=〔kmolNH 3/kmol 空气〕;Y 2*——与X 2相平衡的气相浓度,Y 2*=〔kmolNH 3/kmol 空气〕。
)(211Y Y LV X -=()()*22*11*22*11ln Y Y Y Y Y Y Y Y Y m -----=∆差计(单管压差计、U型管压差计)及气体分析系统构成。
空气由气泵送出,由放空阀及空气流量调节阀配合调节流量后,经过转子流量计记录流量的大小,并与氨气混合,由塔底自下而上通过填料层。
混合气在塔中经水吸收其中的氨后,尾气从塔顶排出。
出口处装有尾气调节阀,用以维持塔顶具有一定的表压,以此作为尾气通过尾气分析装置的推动力。
氨气由液氨钢瓶供应,经氨气减压阀、流量调节阀后,经氨转子流量计记录流量的大小,之后进入空气管道,与空气混合形成混合气体从塔底入塔。
水由泵房进入系统,经流量计记录流量后,在塔顶由液体分布器喷出,在吸收塔中与混合气体逆流接触,吸收其中的溶质,吸收液由塔底排出流入地沟。
为了测量塔内压力和填料层压强降,装有塔顶表压计和填料层压差计。
2.主要设备及尺寸(1)填料塔有机玻璃塔内径:D=120mm填料层高度:Z=800mm~900mm填料:不锈钢θ网环及陶瓷拉西环。
规格:Φ8,Φ10,Φ15。
(2)DC—4型微音气泵一台。
(3)LZB40气体流量计,流量范围0~60m3/h,数量一个;LZB15气体流量计,流量范围0~3/h,数量一个;LZB15液体流量计,流量范围0~160L/h,数量一个。
(4)LML—2型湿式气体流量计,容量5L,数量一台。
(5)水银温度计,规格0~100℃,数量三只。
五、实验步骤1.流体力学特性实验(1)熟悉实验装置及流程,弄清各部分的作用,并记录各压差计的零位读数。
(2)检查气路系统。
开风机之前必须全开放空阀,以免风机烧坏。
检查转子流量计阀门是否关闭,以免风机开动转子突然上升将流量计管打破。
(3)启动风机,首先测定干填料阻力降与空塔气速的大小。
注意不要开水泵,以免淋湿干填料。
由气泵送气,经放空阀、流量调节阀配合调节流量从小到大变化,测量8~9组数据,记录每次流量下的塔顶表压、填料层压降、流量大小、计前表压、温度等参数。
(4)开动供水系统,慢慢调节流量接近液泛,使填料完全润湿后再降到预定气速进行实验。
(5)测定湿填料压降,固定两个不同的液体喷淋量分别进行测定。
每固定一个喷淋量,调节空气流量,从小到大测量8~9组数据。
并随时观察塔内的操作现象,记下发生液泛时的气体流量。
发生液泛之后,再继续增加空气量,测取2组数据。
2.体积吸收系数K Y a的测定(1)在流体力学特性测试实验的基础上,维持一个液体喷淋量。