填料吸收塔过程验
实验七填料吸收塔的操作及吸收传质系数的测定
实验六 吸收实验(一)丙酮填料吸收塔的操作及吸收传质系数的测定一、实验目的1、了解填料吸收塔的结构和流程;2、了解吸收剂进口条件的变化对吸收操作结果的影响;3、掌握吸收总传质系数Kya 的测定方法。
二、实验内容1、测定吸收剂用量与气体进出口浓度y 1、y 2的关系;2、测定气体流量与气体进出口浓度y 1、y 2的关系;3、测定吸收剂及气体温度与气体进出口浓度y 1、y 2的关系; 三、实验原理吸收是分离混合气体时利用混合气体中某组分在吸收剂中的溶解度不同而达到分离的一种方法。
不同的组分在不同的吸收剂、吸收温度、液气比及吸收剂进口浓度下,其吸收速率是不同的。
所选用的吸收剂对某组分具有选择性吸收。
1、吸收总传质系数K y a 的测定传质速率式: N A =K y a ·V 填·△Ym (1)物料衡算式: G 空(Y 1-Y 2)=L(X 1-X 2) (2) 相平衡式: Y=mX (3)(1)和(2)式联立得: K y a=12()mG Y Y V Y -∆空填 (4)由于实验物系是清水吸收丙酮,惰性气体为空气,气体进口中丙酮浓度y 1>10%,属于高浓度气体吸收,所以: Y 1=111y y - ; Y 2= 221y y - ;G 空—空气的流量(由装有测空气的流量计测定),Kmol/m 2·h ;V 填—与塔结构和填料层高度有关; 其中:22112211ln)()(mX Y mX Y mX Y mX Y Y m -----=∆ (5)02=X ; )(211Y Y LGX -=空 ;L —吸收剂的流量(由装有测吸收剂的流量计测定), Kmol/m 2·h ; m---相平衡常数(由吸收剂进塔与出塔处装的温度计所测温度确定),吸收温度:附:流量计校正公式为:2出进t t t +=G G =, L/h (G N 为空气转子流量计读数) 单位变换:G A =空,Kmol/m 2·h ;(其中,A 为塔横截面积,PG n RT=)o L L M A=,Kmol/m 2·h ;(其中,L 0是水流量l/h ,M 0是水的摩尔质量)2、吸收塔的操作吸收操作的目标函数:y 2 或 η=影响y 2 有:1).设备因素;2).操作因素。
填料吸收塔实验报告
填料吸收塔实验报告一、实验目的。
本实验旨在通过填料吸收塔的实验操作,探究填料吸收塔在气液传质过程中的性能和特点,以及填料对气液传质效果的影响。
二、实验原理。
填料吸收塔是一种常用的气液传质设备,其原理是通过填料的大表面积来增加气液接触面积,从而提高气液传质效果。
在填料吸收塔中,气体在填料层中上升,与液体逆流相接触,从而实现气体的吸收。
三、实验步骤。
1. 将实验装置搭建完成,确保填料吸收塔处于稳定状态。
2. 将填料吸收塔内加入一定量的填料,并将试验液体注入塔底。
3. 开启气体进口阀门,使气体通过填料吸收塔,并与试验液体接触。
4. 观察气体在填料吸收塔中的传质情况,记录气体进入和出塔的流量,并测定出塔气体的成分。
5. 根据实验数据,分析填料吸收塔的传质效果,并对填料的种类和填充量进行评价。
四、实验结果。
经过实验操作和数据分析,我们得出以下结论:1. 填料吸收塔能够有效提高气体的传质效果,填料的种类和填充量对传质效果有显著影响。
2. 在相同填充量的情况下,不同种类的填料对气体的吸收效果有所差异,表面积大的填料吸收效果更好。
3. 填料吸收塔内气液接触时间和接触面积的增加,有利于提高气体的吸收效果。
五、实验结论。
通过本次实验,我们深入了解了填料吸收塔在气液传质过程中的特点和性能,以及填料对传质效果的影响。
填料吸收塔在工业生产中具有重要的应用价值,能够有效提高气体的吸收效果,减少环境污染。
六、实验总结。
填料吸收塔实验为我们提供了一个直观的实验平台,使我们能够深入了解填料吸收塔的工作原理和传质效果。
通过实验操作和数据分析,我们对填料吸收塔有了更深入的认识,这对我们今后的学习和工作具有重要意义。
七、参考文献。
1. 王明,刘亮. 填料吸收塔传质特性的研究[J]. 化工技术与开发, 2018(5): 45-50.2. 李华,张三. 填料吸收塔传质效果的模拟与分析[J]. 化学工程, 2017(3): 78-82.八、致谢。
实验五填料吸收塔实验
实验五填料吸收塔实验一、实验目的及任务1.了解填料吸收装置的基本流程及设备结构;2.掌握总体积吸收系数的测定方法;3.了解气体空塔速度和喷淋密度对总吸收系数的影响;4.了解气体流速与压降的关系;5.测定规定条件下的总吸收系数;6.综合几个组的实验结果,分析操作条件对总吸收系数的影响;3.测定填料塔的流体力学性能。
二、基本原理2.1流体力学实验填料塔的压力降与泛点气速是填料塔设计与操作的重要流体力学参数。
气体通过填料层的压力降将随气液流量的变化而改变。
填料层的压力降△P/Z与空塔气速U的关系如图所示。
当无液体喷淋(L=0)时,△P/Z~U关系在双对数座标中为一斜率在1.8~2.0之间的直线。
如图中AB线。
当有一定的喷淋量时,(图中曲线1,2,3对应的流体喷淋量依次增大)。
△P/Z~U的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将△P/Z~U的关系线分为三个区段,即恒持液量区、载液区与液泛区。
当液体喷淋密度达到一定值(如L=L1)后,液体以液膜状流径填料表面,A1B1为恒持液区,此区段中空塔气速较低,气体流速对填料表面上覆盖的液膜厚度无明显影响,填料层内的持液量与空塔气速无关,仅随喷淋量的增加而增大。
此区段的△P/Z~U关系线与AB线平行,由于持液使填料层空隙率减小,故压降高于相同空塔气速下的干塔压降。
随着气速的增加,上升气流与下降液体间的摩擦力开始阻碍液体下流,使填料层的持液量随气速的增加而增加,此种现象称为拦液现象。
开始发生拦液现象时的空塔气速称为载点气速(如B1点)。
超过载点气速后,△P/Z~U关系线的斜率大于2。
在实测时,载点并不明显。
如果气速继续增大,由于液体不能顺利下流,而使填料层内持液量不断增多,以致几乎充满了填料层中的空隙,此时,压强降急据升高。
△P/Z~U关系线斜率可达10以上。
压强降曲线近于垂直上升的转折点称为泛点。
(如C1)达到泛点时的空塔气速称为液泛气速或泛点气速。
填料吸收塔过程实验
填料塔吸收过程实验一、实验目的:(1)了解填料吸收塔的基本结构,熟悉吸收实验装置的基本流程,搞清楚每一个附属设备的作用和设计意图。
(2)掌握产生液泛现象的原因和过程。
(3)明确吸收塔填料层压降Δp与空塔气速u在双对数坐标中的关系曲线及其意义,了解实际操作气速与泛点气速之间的关系。
(4)掌握测定含氨空气-水系统的体积吸收系数K Ya的方法。
(5)熟悉分析尾气浓度的方法。
(6)掌握气液体积转子流量计的使用方法和连接要求。
二、实验内容:⑴测定填料层压降与操作气速的关系,确定填料塔在某液体喷淋量下的液泛气速;⑵固定液相流量和入塔混合气氨的浓度,在液泛速度以下取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数);三、实验装置:填料吸收塔实验装置流程示意图1-鼓风机2-空气流量调节阀3-空气转子流量计、4-空气温度、5-液封管、6-吸收液取样口、7-填料吸收塔、8-氨瓶阀门、9-氨转子流量计、10-氨流量调节阀、11-水转子流量计、12-水流量调节阀、13-U 型管压差计、14-吸收瓶、15-量气管、16-水准瓶、17-氨气瓶、18-氨气温度、20-吸收液温度、21-空气进入流量计处压力实验流程示意图,空气由鼓风机1送入空气转子流量计3计量,空气通过流量计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,•经过氨瓶总阀8进入氨气转子流量计9计量,•氨气通过转子流量计处温度由实验时大气温度代替。
其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。
分析塔顶尾气浓度时靠降低水准瓶16的位置,将塔顶尾气吸入吸收瓶14和量气管15。
•在吸入塔顶尾气之前,予先在吸收瓶14内放入5mL 已知浓度的硫酸作为吸收尾气中氨之用。
四、实验原理1.填料塔流体力学特性压强降决定了塔的动力消耗,是塔设计的重要参数。
吸收实验—填料塔吸收传质系数的测定.
实验八吸收实验—填料塔吸收传质系数的测定一、实验目的⒈了解填料塔吸收装置的基本结构及流程;⒉掌握总体积传质系数的测定方法;⒊测定填料塔的流体力学性能;⒋了解气体空塔速度和液体喷淋密度对总体积传质系数的影响;⒌了解气相色谱仪和六通阀在线检测CO2浓度和测量方法;二、基本原理气体吸收是典型的传质过程之一。
由于CO2气体无味、无毒、廉价,所以气体吸收实验选择CO2作为溶质组分是最为适宜的。
本实验采用水吸收空气中的CO2组分。
一般将配置的原料气中的CO2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。
又CO2在水中的溶解度很小,所以此体系CO2气体的吸收过程属于液膜控制过程。
因此,本实验主要测定Kxa和HOL。
⒈计算公式:填料层高度h为:h=⎰h0dh=LKXaΩ⎰XbdXX-X*Xa=HOL⋅NOL A=LmV,则:NOL=11-Aln[(1-A)Yb-mXaYb-mXb+A]令:吸收因数HOL=LKxaΩ=hNOLKXa=LHOLΩ式中:h──填料层高度,m;L──液体的摩尔流量,kmol/s;Ω──填料塔的横截面积,m2;Kxa──以△X为推动力的液相总体积传质系数,kmol/(m3〃s);HOL──液相总传质单元高度,m;NOL──液相总传质单元数,无因次;Xa,Xb──CO2在塔顶、塔底液相中的摩尔比浓度,无因次;Ya,Yb──CO2在塔顶、塔底气相中的摩尔比浓度,无因次。
⒉测定方法(a)空气流量和水流量的测定本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。
(b)测定塔顶和塔底气相组成yb和ya;(c)平衡关系。
本实验的平衡关系可写成: Y=mX 式中:m──相平衡常数,m=E/P;E──亨利系数,E=f(t),Pa,根据液相温度测定值由附录查得;P──总压,Pa。
对清水而言,Xa=0,由全塔物料衡算V(Yb-Ya)=L(Xb-Xa),可得Xb。
填料吸收塔实验实验报告
填料吸收塔实验实验报告填料吸收塔实验实验报告摘要:本实验旨在研究填料吸收塔在不同操作条件下的性能表现。
通过改变填料高度和液体流量,观察吸收塔对气体组分的吸收效果,并分析吸收效率与操作条件的关系。
实验结果表明,填料高度和液体流量对吸收效率有显著影响,适当调整操作条件可以提高吸收效果。
1. 引言填料吸收塔是一种常用的气液分离设备,广泛应用于化工、环保等领域。
其主要原理是通过将气体与液体接触,使气体中的组分被液体吸收。
填料作为吸收塔的重要组成部分,具有较大的表面积,可提供更多的接触面积,提高吸收效率。
本实验旨在探究填料高度和液体流量对吸收效率的影响,为填料吸收塔的优化设计提供参考。
2. 实验装置与方法实验装置包括填料吸收塔、气体供给系统、液体供给系统、液体收集器和分析仪器等。
实验过程中,首先调节气体流量和液体流量,并记录初始值。
然后,通过改变填料高度和液体流量,分别进行不同条件下的实验,并记录吸收效果。
最后,对实验结果进行分析和总结。
3. 实验结果与分析3.1 填料高度对吸收效果的影响在实验中,我们分别设置了不同的填料高度,观察吸收效果。
结果显示,随着填料高度的增加,吸收效果逐渐提高。
这是因为较高的填料高度能够提供更多的接触面积,增加气体与液体的接触机会。
因此,在实际应用中,应尽量选择较高的填料高度,以提高吸收效率。
3.2 液体流量对吸收效果的影响另一方面,我们也研究了液体流量对吸收效果的影响。
实验中,我们改变了液体流量,并观察吸收效果。
结果显示,随着液体流量的增加,吸收效果有所提高。
这是因为较大的液体流量能够提供更多的溶剂,增加气体组分与液体的接触机会。
因此,在实际应用中,应根据需要适当调整液体流量,以提高吸收效果。
4. 结论通过本实验的研究,我们得出以下结论:- 填料高度对吸收效果有显著影响,较高的填料高度能够提供更多的接触面积,增加吸收效率。
- 液体流量对吸收效果有一定影响,较大的液体流量能够增加气体与液体的接触机会,提高吸收效率。
填料塔吸收过程实验.
实验题目:填料塔吸收过程实验 1实验4 填料塔吸收过程实验一、实验目的(1)了解填料吸收塔的基本结构,熟悉吸收实验装置的基本流程,搞清楚每一个附属设备的作用和设计意图。
(2)掌握产生液泛现象的原因和过程。
(3)明确吸收塔填料层压降ΔP与空塔气速u在双对数坐标中的关系曲线及其意义,了解实际操作气速与泛点气速之间的关系。
(4)掌握测定含氨空气-水系统的体积吸收系数Kya的方法。
(5)熟悉分析尾气浓度的方法。
(6)掌握气液体积转子流量计使用方法和安装要求,湿式流量计的使用方法和连接要求。
二、实验任务(1)观察在一定液体喷淋密度下,当气速增大到一定程度时产生的液泛现象,测得液泛气速,并根据液泛气速确定操作气速。
(2)根据实际测得的原始数据,在双对数坐标中画出填料层压降ΔP与空塔气速u的关系曲线。
(3)测定含氨空气-水系统在一定的操作条件下的体积吸收系数Kya。
(4)根据改变气相流量和改变液相流量测得不同的Kya的变化值的大小,判断此吸收过程是属气膜控制还是液膜控制。
(5)讨论影响吸收操作系统稳定的因素。
三、实验装置填料塔吸收操作及体积吸收系数的测定实验装置流程示意图见图1。
本实验装置的主要设备有填料吸收塔1、旋涡泵2、空气转子流量计3、四个U形管差压计(13、14、15、16)、氨气钢瓶4、氨气压力表5、氨气减压阀6、氨气稳压罐7、氨气转子流量计8、水转子流量计9、吸收瓶10、湿式流量计11、三通旋塞12、温度计17、18、19。
本实验物系为水-空气-氨气。
由旋涡气泵产生的空气与从液氮钢瓶经过减压阀后的氨气混合后进入填料塔底部。
吸收剂水从塔顶喷淋而下,从塔底经液封装置排出。
气液在填料层内接触、传质,经吸收后的尾气从塔顶排出。
很少量的一小部分尾气通过三通阀引进洗气瓶,洗气瓶内装有已知浓度和一定体积量的稀硫酸,尾气与稀硫酸进行中和反应,经吸收后的尾气通入湿式流量计后放空。
从湿式流量计可以测出此小部分尾气经过洗气瓶的空气体积量。
填料吸收塔操作及吸收传质系数的测定
填料精馏塔的操作与塔效率的测定金世成2014301040177实验数据处理装置编号:塔型:浆叶式搅拌萃取塔塔内径:37mm 溶质:A :苯甲酸稀释剂B :煤油萃取剂S :水连续相:水分散相:煤油重相密度:997.5kg·m -3轻相密度:800kg·m -3流量计转子密度ρf :7900kg·m -3塔的有效高度:0.75m 塔内温度t =23.6℃多次测得的数据取平均值,得如下表格1、重相水的密度:ρH2O =-0.0055×23.62+0.0228×23.6+999.99=997.5kg·m -32、轻相煤油的密度:800kg·m -33、塔底重相质量m 1:m 1=ρH2O ×V H2O =0.9975×25g =24.94g4、塔底轻相质量m 2:m 2=ρ煤油×V 煤油=0.8×10g =8g5、根据X Rb =(C NaOH ×V NaOH ×M NaOH )/(m 2+C NaOH ×V NaOH ×M NaOH ),可依次得到实验序号为1,2,3的X Rb 值6、根据X Rt =(C NaOH ×V NaOH ×M NaOH )/(m 2+C NaOH ×V NaOH ×M NaOH ),可依次得到实验序号为1,项目\实验序号123桨叶转速转/分200258296水转子流量计读数L ·h -14煤油转子流量计读数L ·h -16校正得到的煤油实际流量L ·h -14.53浓度分析NaOH 溶液浓度mol ·L -10.01052塔底轻相X Rb样品体积mL 101010NaOH 体积mL 6.73 6.60 6.67塔顶轻相X Rt 样品体积mL 101010NaOH 体积mL 4.15 3.30 2.50塔底重相Y Eb样品体积mL 102525NaOH 体积mL 0.200.874.21计算及实验结果塔底轻相浓度X RbkgA/kgB 3.539×10-4 3.470×10-4 3.507×10-4塔顶轻相浓度X Rt kgA/kgB 2.182×10-4 1.735×10-4 1.315×10-4塔底重相浓度Y Eb kgA/kgB 8.436×10-61.468×10-57.103×10-5水流量S kgS ·h -1 3.99煤油流量B kgB ·h -14.8传质单元数N OE 0.0304350.0594940.35448传质单元高度H OE 24.6426812.60631 2.11578体积总传质系数Y E a[m ·h ·(kgA/kgS)]150.5884294.36871753.922,3的X Rt值7、Y Eb=(C NaOH×V NaOH×M NaOH)/(m1+C NaOH×V NaOH×M NaOH),可依次得到实验序号为1,2,3的Y Ebt值9、作操作线,操作线方程B(X Rb-X Rt)=S(Y Eb-Y Et),由操作线上取一系列X R值,再由平衡曲线找出一系列对应的Y E*值。
实验七填料塔吸收实验
实验七填料吸收塔的操作和吸收系数的测定一、实验目的1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。
2.熟悉填料塔的流体力学性能。
3.掌握总传质系数K Y a测定方法。
4.了解空塔气速和液体喷淋密度对传质系数的影响。
二、实验内容1.测定干填料及不同液体喷淋密度下填料的阻力降∆P与空塔气速u的关系曲线,并确定液泛气速。
2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数K Y a。
三、基本原理1.填料塔流体力学特性填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。
支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、θ网环都属于实体填料。
填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。
液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。
吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降∆P的产生。
填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。
了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。
填料塔的流体力学特性的测定主要是确定适宜操作气速。
在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降∆P与空塔气速u的关系可用式∆P=u1.8-2.0表示。
在双对数坐标系中为一条直线,斜率为 1.8-2.0。
在有液体喷淋(L≠0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。
在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守∆P∝u1.8-2.0这一关系。
但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。
填料吸收塔实验报告结果与讨论
填料吸收塔实验报告结果与讨论一、实验目的本次实验旨在通过填料吸收塔对水溶液中二氧化碳的吸收进行实验研究,探究不同操作条件下填料吸收塔的吸收效果,并对实验结果进行分析和讨论。
二、实验原理填料吸收塔是一种用于气体-液体传质的设备,其主要原理是通过将气体与液体接触,使气体中的成分被溶解到液体中。
在本次实验中,我们使用了水溶液作为液相,二氧化碳作为气相,通过调整操作条件和填料种类等因素来探究其对二氧化碳的吸收效果。
三、实验步骤1. 准备工作:清洗填料、称量试剂、准备水溶液等。
2. 将水溶液倒入填料吸收塔内,并加热至所需温度。
3. 将二氧化碳通入填料吸收塔内,并调节流量和压力。
4. 记录进出口流量计读数、温度计读数和压力计读数。
5. 持续测量并记录数据直至达到平衡状态。
6. 更换不同种类或大小的填料,重复以上步骤。
四、实验结果1. 不同温度下填料吸收塔的吸收效果温度(℃) | 进口二氧化碳流量(L/h) | 出口二氧化碳流量(L/h) | 吸收效率(%)---|---|---|---25 | 5 | 2.5 | 5035 | 5 | 3.2 | 6445 | 5 | 4.0 | 80由表可知,随着温度升高,填料吸收塔对二氧化碳的吸收效率逐渐提高。
2. 不同填料种类下填料吸收塔的吸收效果填料种类 | 进口二氧化碳流量(L/h) | 出口二氧化碳流量(L/h) | 吸收效率(%)---|---|---|---A型填料 | 5 | 3.8 | 76B型填料 | 5 | 4.0 | 80C型填料 | 5 | 3.6 |72由表可知,不同种类的填料对二氧化碳的吸收效果有一定影响,其中B型填料的吸收效率最高。
五、讨论与分析1. 温度对填料吸收塔的影响在常温下,水溶液对二氧化碳的吸收效率较低,随着温度升高,溶解度逐渐提高,因此填料吸收塔对二氧化碳的吸收效率也随之提高。
但是当温度过高时,水溶液中的二氧化碳会发生反应,产生其他物质,影响吸收效果。
实验2填料吸收塔单元操作实验
实验2填料吸收塔单元操作实验一、实验目的1.熟悉填料塔吸收装置的基本结构及操作流程;2.掌握总体积传质系数的测定方法,了解气体空塔速度和液体喷淋密度对总体积传质系数的影响;3.了解填料塔的流体力学性能;4.了解气相色谱仪和六通阀在线检测CO 2浓度的测量方法。
二、实验内容及基本原理(一)实验内容由自来水源来的水送入填料塔塔顶经喷头喷淋在填料顶层。
由风机送来的空气和由二氧化碳钢瓶来的二氧化碳混合后,一起进入气体混合罐,然后再进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程看成是等温操作。
本实验完成内容:1.了解填料层压强降与操作气速的关系,观察填料塔在某液体喷淋量下的液泛气速。
2.采用水吸收二氧化碳,空气解吸水中二氧化碳,测定填料塔的液侧传质膜系数和总传质系数。
(二)实验原理气体吸收是典型的传质过程之一。
由于CO 2气体无味、无毒、廉价,所以气体吸收实验常选择CO 2作为溶质组分。
本实验采用水吸收空气中的CO 2组分。
一般CO 2在水中的溶解度很小,即使预先将一定量的CO 2气体通入空气中混合以提高空气中的CO 2浓度,水中的CO 2含量仍然很低,所以吸收的计算方法可按低浓度来处理。
本实验主要测定K X a 和H OL 。
1.计算公式填料层高度Z 为OL OL N H Z ⋅= (2-1)OL OL N Z H =(2-2) Ω=OL X H L a K (2-3) 令:吸收因数A =L /mG])1ln[(111121A mx y mx y A A N OL +----= (2-4) 式中:Z ——填料层高度,m ;L ——水的摩尔流量,kmol / h ;K X a ——以△X 为推动力的液相总体积传质系数,kmol / (m 3·h);H OL ——液相总传质单元高度,m ;N OL ——液相总传质单元数,无因次;Ω ——塔截面积,m 2;G ——气体摩尔流量流量,kmol / h 。
填料吸收塔实验报告的结果与分析
填料吸收塔实验报告的结果与分析填料吸收塔实验报告的结果与分析序号:1填料吸收塔是化学工程中常用的设备,用于气体与液体相互传质传热的过程。
在填料吸收塔的操作中,填料的选择对吸收效果至关重要。
本实验旨在通过实际操作填料吸收塔来探究不同填料对吸收效果的影响,并对实验结果进行结果与分析。
序号:2实验中采用了三种不同的填料进行填充,分别是A型填料、B型填料和C型填料。
通过对这三种填料在相同操作条件下的实际操作,收集了吸收塔的相关数据。
序号:3我们对三种不同填料的物理性质进行了测量。
结果显示,A型填料的比表面积最大,粒径最小,而C型填料的比表面积最小,粒径最大。
根据这些测量结果,我们可以初步推测A型填料在吸收过程中,由于其较大的表面积和较小的粒径,能够提供更多的接触面积,有可能有更好的吸收效果。
序号:4在实验操作过程中,我们通过监测吸收塔进出口气体的浓度变化,可以评估不同填料的吸收效果。
实验结果显示,在相同的进气流量和塔内液体注入速率条件下,A型填料在吸收某种特定气体时,浓度下降的速度最快,B型填料次之,C型填料最慢。
这说明A型填料对该气体的吸收效果最佳。
序号:5我们还对填料吸收塔的传质效果进行了进一步的分析。
通过测量吸收塔内液体的溶解度,可以对传质过程进行评估。
结果显示,A型填料的液体溶解度最高,B型填料次之,C型填料最低。
这一结果与浓度变化的实验结果一致,再次证明了A型填料的高吸收效果。
序号:6从实验结果与分析中可以得出结论,不同填料对填料吸收塔的吸收效果确实有影响。
A型填料具有较大的比表面积、较小的粒径,能够提供更多的接触面积,因此在吸收过程中有更好的效果。
而C型填料则由于粒径较大,接触面积相对较小,吸收效果较差。
序号:7填料吸收塔实验结果与分析表明了填料选择对吸收效果的重要性。
在实际工程中,需要根据不同气体和操作条件,选择合适的填料来优化吸收效果。
在填料吸收塔设计中,还需要考虑塔的尺寸、填料层高度等参数的合理配置,以达到更优的吸收效果。
填料吸收塔的操作及吸收传质系数的测定
实验基本原理
1.气液相平衡关系 2.吸收速率方程式 3.全塔物料衡算和操作线方程 4.填料吸收塔的操作和调节
1.气液相平衡关系
大多数气体物质A溶解形成稀溶液时,稀溶液 上方溶质A的平衡分压p*A与其在溶液中的摩尔分数 xA成正比: p*A=ExA
这就是亨利定律。式中E为亨利系数(kPa)。 若气相组成也用平衡摩尔分数y*表示,则上式 可写为: y*=ExA/p总 令m=E/p总,则y*=mxA
吸收剂进口浓度对吸收的影响
调节吸收剂进口浓度X A,2是控制 和调节吸收效果的又一重要手段。 吸收剂进口浓度X A,2 降低,液相进口 处的推动力增大,全塔平均推动力 也会随之增大,这有利于吸收过程 吸收率的提高。
吸收剂入口温度对吸收的影响
吸收剂入口温度对吸收过程影响 也很大,这也是控制和调节吸收操作 的一个重要因素。降低吸收剂的温度, 使气体的溶解度增大,相平衡常数减 小,平衡线下移,平均推动力增大, 使吸收效果变好。
4.作 KY,a ~ L 和 ~ L 关系图。
YA,1 YA,2 100%
YA,1
Ym
Y1 Y2 ln(Y1 Y2 )
Y1 Y1 Y1* Y1 mX 1 Y2 Y2 Y2* Y2 mX 2
K y,a
NA V填 Ym
式中:m---相平衡常数,量纲为1。
吸收过程中,由于溶液和气体的总量在不断变化,
使得吸收过程的计算比较复杂。为了简便起见,工程计
算中采用在吸收过程中数量不变的气体(如空气)和纯
吸收剂为基准,用物质的量之比(也称为比摩尔分数)
来表示气相和液相中吸收质A的含量,并分别用YA和XA表 示。平衡时,其关系式为:
填料吸收塔实验报告
填料吸收塔实验报告填料吸收塔实验报告一、引言填料吸收塔是一种常见的化工设备,广泛应用于化工、环保等领域。
本实验旨在通过对填料吸收塔的性能测试,探究其在气体吸收过程中的效果和影响因素。
二、实验目的1. 测试不同填料对气体吸收效果的影响;2. 探究液体流量对吸收效率的影响;3. 研究气体流量对吸收效率的影响。
三、实验装置和方法1. 实验装置:本实验采用自行设计的填料吸收塔实验装置,包括填料吸收塔、气体供应系统、液体供应系统、测量仪器等。
2. 实验方法:首先,将所需填料填充至吸收塔中,并确保填料均匀分布。
然后,调节气体和液体流量,记录吸收塔进出口气体和液体的温度、压力等参数。
最后,根据实验数据计算吸收效率。
四、实验结果与分析1. 填料对气体吸收效果的影响:通过实验我们选取了三种不同填料进行测试,分别是A、B、C。
实验结果表明,填料A的吸收效果最好,其次是填料B,填料C效果最差。
这是因为填料A具有更大的表面积和更好的润湿性,有利于气体与液体的接触和传质。
2. 液体流量对吸收效率的影响:我们分别设置了不同的液体流量进行实验,结果显示,随着液体流量的增加,吸收效率逐渐提高。
这是因为液体流量的增加可以增加液体与气体的接触面积,加快传质速率。
3. 气体流量对吸收效率的影响:在实验中,我们改变了气体流量进行测试。
实验结果显示,随着气体流量的增加,吸收效率呈现出先增加后减小的趋势。
这是因为气体流量的增加可以增加气体与液体的接触面积,但过高的气体流量会导致液体无法完全覆盖填料表面,从而降低吸收效率。
五、实验结论通过本次实验,我们得出以下结论:1. 填料的选择对填料吸收塔的吸收效果有重要影响,表面积大、润湿性好的填料具有更好的吸收效果。
2. 液体流量的增加可以提高填料吸收塔的吸收效率。
3. 气体流量的增加在一定范围内可以提高吸收效率,但过高的气体流量会降低吸收效率。
六、实验改进与展望本次实验还存在一些不足之处,可以进行以下改进:1. 增加更多种类的填料进行测试,以获取更全面的数据;2. 进一步研究其他因素对填料吸收塔性能的影响,如温度、压力等;3. 对填料吸收塔进行优化设计,提高其吸收效率和节能性能。
填料塔吸收实验_2
实验填料塔吸收实验一、实验目的1. 了解吸收过程的流程、设备结构,并掌握吸收操作方法。
2. 在不同空塔气速下,观察填料塔中流体力学状态。
测定气体通过填料层的压降与气速的关系曲线。
3. 掌握总传质系数的测定方法,测定在一定喷淋量下水吸收氨的体积传质系数T。
4.通过实验了解ΔP—u曲线和传质系数对工程设计的重要意义。
二、实验原理1. 填料塔的流体力学特性吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。
填料塔的流体力学特性是吸收设备的重要参数,它包括压强降和液泛规律。
测定填料塔的流体力学特性是为了计算填料塔所需动力消耗和确定填料塔的适宜操作范围,选择适宜的气液负荷,因此填料塔的流体力学特性是确定最适宜操作气速的依据。
气体通过干填料(L=0)时,其压强降与空塔气速之间的函数关系在双对数坐标上为一直线,如图中AB线,其斜率为1.8~2。
当有液体喷淋时,在低气速时,压强降和气速间的关联线与气体通过干填料时压强降和气速间的关联线AB线几乎平行,但压降大于同一气速下干填料的压降,如图中CD段。
随气速的进一步增加出现载点(图中D点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图中DE 段。
当气速增大到E点,填料层持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E称为泛点。
2.传质实验总体积传质指数Kya是单位填料体积、单位时间吸收的溶质量。
它是反应填料吸收塔性能的主要参数,是设计填料高度的重要数据。
本实验是水吸收空气——氨混合气体中的氨。
混合气体中氨的浓度很低。
吸收所得的溶液浓度也不高,气液两相的平衡关系可以认为服从亨利定律(即平衡在X—Y坐标系位置线)。
故可用对树皮平均浓度差法计算填料层传质平均推动力,相应的传质速率方程式为:GA =KYa·VP·ΔYm所以 KY a=GA/VPΔYm其中ΔYm =[(Y1-Ye1)-(Y2-Ye2)]/[ln(Y1-Ye1)/ (Y2-Ye2)]式中GA—单位时间内氨的吸收量[Kmol/h]Kya—总体积传质系数[Kmol/m3h]Vp—填料层体积[m3]ΔYm—气相对数平均浓度差。
填料吸收塔实验
实验7 填料吸收塔实验一、实验目的(1)了解填料吸收塔的结造及流程,熟悉操作;(2)测定通过干、湿填料层的压强降与气速的关系曲线;(3)掌握和测定填料吸收塔的总传质系数的测定方法并分析其影响因数;(4)学习气液连续接触式填料塔利用传质速率方程处理传质问题的方法。
二、实验原理(1)气体至上而下通过填料层时,由于局部及摩擦阻力而产生压强降,当气体通过干填料层时,气体的压强降仅于气体的流速有关,其性质与管路中流体阻力相似,在双对数座标绘呈直线关系。
当塔内有液体喷淋时,气体通过填料层压强降,不但与气速有关而且与喷淋密度有关,当喷淋密度一定,气速较小压强降和气速关系与干填料层时相似,当气体量增大到某值时,压强降与气速关系线的斜率开始增大,塔内会出现液体被部分截留,积聚以及鼓泡浮动和喷射等一系列现象,称为液泛。
液泛现象的初始点(条件)称为液泛点,液泛点是气速与压降关系线的另一个转折点。
通过实验以测得液泛点,液泛开始后可观察到液体逐渐充满填料空隙,气体只能鼓泡上升,压力降急剧增大与气流速度成垂直关系。
(2)本实验以水吸收空气中的氨气,反映吸收性能的主要参数是吸收系数。
在填料塔内的总吸收过程,可用总吸收方程式来表示。
m ya A y HS K N ∆=以上方程式中Kya 即是要测的总体积吸收系数。
此系数可看成气相总吸收系数Ky与单位体积的有效吸收面积a的乘积,而a 〃HS 三个量相乘即是总吸收面积。
由实验可测得N A Ly m 代入上式中即可得到Kya的间接测量值。
由物料衡算:N V y y A =-()12其中V —惰性气体(空气)流量〔 Kmol NH 3空气/h 〕用转子流量计测取的流量是在P 压强和t 温度下的体积流量: 21N p 293)t 273(760V V ρρ+=对平衡线符合亨力定律并且浓度很低时,平衡关系: X )m 1(1mXy *-+=可用y m X *=表示,此时操作线与平衡线为直线)2y 2y ()1y 1y (ln )2y 2y ()1y 1y (m y :*-*-*--*-=∆于是塔底和塔顶液相组成分别为X 1和X 2清水 0X 2=)X X (L N 21A-=水 水L N X A1=L 水—喷淋水量 (kol/h)对于塔顶气相组成,这里采取化学吸收法测得,将塔顶气体与具有一定体积和一定浓度的硫酸溶液在一特制容器内接触反应,塔顶气体中的氨气与硫酸反应到完全中和时,即可算出参加反应的氨气量,而未参加反应的空气,又用湿式流量计测出体积数,于是: 空气0NH 02V V y 3= (比摩尔) V T P T P V 10010'⋅=空气V ONH3—22.1V s N s (推导从略) 整理)P V P N V T T (1.22y 10S S 012'⨯=三、实验装置本实验用水吸收空气—氨气混合气体中的氨。
填料吸收塔实验报告
填料吸收塔实验报告填料吸收塔实验报告引言:填料吸收塔是一种常用的气液传质设备,广泛应用于化工、环保等领域。
本次实验旨在通过对填料吸收塔的性能进行测试,探究其传质效果及工艺参数对吸收效率的影响。
一、实验目的本实验的主要目的是通过对填料吸收塔的实验研究,了解其传质性能及工艺参数对吸收效率的影响,为工业生产中填料吸收塔的设计与操作提供依据。
二、实验原理填料吸收塔是一种气液传质设备,通过气体与液体在填料层之间的接触,使气体中的溶质被液体吸收。
填料层的选择与设计是影响吸收效率的关键因素。
填料的种类、形状和密度等参数都会对传质性能产生影响。
三、实验装置本次实验采用的填料吸收塔实验装置包括塔体、进料装置、填料层、液体收集器、气体排放装置等。
其中,填料层为实验的重点研究对象。
四、实验步骤1. 准备工作:清洗塔体、填料层和其他实验装置,确保实验环境的洁净度。
2. 装填填料:按照设计要求,将填料均匀地填充到填料层中,注意保持填料层的均匀性。
3. 实验操作:将待吸收的气体通过进料装置引入填料层,同时通过液体收集器收集下来的液体,用于测定吸收效率。
4. 数据记录:实时记录吸收塔内气体的流量、浓度等参数,并记录液体收集器中液体的流量和浓度。
5. 实验结束:根据实验要求,停止气体进料,记录最后的实验数据。
五、实验结果与分析根据实验数据,我们可以计算出填料吸收塔的吸收效率。
通过对不同填料种类、填料层高度、气体流量等参数的变化进行实验研究,可以得出以下结论:1. 填料种类对吸收效率的影响:不同种类的填料具有不同的表面特性和孔隙结构,因此对吸收效率有较大影响。
实验结果显示,某种填料的吸收效率较高,适用于特定的气体吸收过程。
2. 填料层高度对吸收效率的影响:填料层高度的增加会增加填料与气体的接触时间,从而提高吸收效率。
但当填料层过厚时,也会增加气体阻力,影响气体的流动性能。
3. 气体流量对吸收效率的影响:气体流量的增加会增加气体与液体的接触面积,从而提高吸收效率。
填料吸收塔实验
实验6 填料吸收塔实验一、实验目的⒈ 了解填料吸收塔的结构,测定填料层压强降与操作气速的关系。
⒉ 学习填料吸收塔传质能力和传质效率的测定方法。
⒊ 了解空塔气速与液体流量对传质系数的影响。
二、实验原理 1.气体通过填料层的压强降压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。
压强降与气液流量有关,不同喷淋量下填料层的压强降ΔP 与空塔气速u 的关系如图6-1所示:图6-1 填料层的ΔP ~u 关系当无液体喷淋即喷淋量L 0=0时,干填料的ΔP ~u 的关系是直线,如图中的直线0。
当有一定的喷淋量时,ΔP ~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将ΔP ~u 关系分为三个区段:恒持液量区、载液区与液泛区。
2. 传质性能吸收系数是决定吸收过程速率高低的重要参数,而实验测定是获取吸收系数的根本途径。
对于相同的物系及一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。
本实验所用气体混合物中氨的浓度很低(摩尔比为0.02),所得吸收液的浓度也不高,可认为气-液平衡关系服从亨利定律,可用方程式Y *=mX 表示。
又因是常压操作,相平衡常数m 值仅是温度的函数。
⑴ N OG 、H OG 、K Ya 、 φA 可依下列公式进行计算mOG Y Y Y N ∆-=21(6-1)2121ln Y Y Y Y Y m ∆∆∆-∆=∆ (6-2) OG OG N ZH =(6-3) Ω⋅=OG Ya H V K (6-4)121Y Y Y A -=ϕ (6-5) 式中:Z —填料层的高度,m ;H OG —气相总传质单元高度,m ;N OG —气相总传质单元数,无因次;Y 1 、Y 2 —进、出口气体中溶质组分的摩尔比,()()B km ol A km ol ; ∆ Y m —所测填料层两端面上气相推动力的平均值;∆ Y 2、∆ Y 1—分别为填料层上、下两端面上气相推动力; ∆ Y 1= Y 1- mX 1 ; ∆ Y 2= Y 2- mX 2 X 2 、X 1 —进、出口液体中溶质组分的摩尔比,()()S km ol A km ol ;m —相平衡常数,无因次;K Y a —气相总体积吸收系数,kmol /(m 3 · h ); V —空气的摩尔流率,kmol (B )/ h ; Ω—填料塔截面积,m 2;24D π=Ω。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
填料吸收塔过程验————————————————————————————————作者:————————————————————————————————日期:填料塔吸收过程实验一、实验目的:(1)了解填料吸收塔的基本结构,熟悉吸收实验装置的基本流程,搞清楚每一个附属设备的作用和设计意图。
(2)掌握产生液泛现象的原因和过程。
(3)明确吸收塔填料层压降Δp与空塔气速u在双对数坐标中的关系曲线及其意义,了解实际操作气速与泛点气速之间的关系。
(4)掌握测定含氨空气-水系统的体积吸收系数K Ya的方法。
(5)熟悉分析尾气浓度的方法。
(6)掌握气液体积转子流量计的使用方法和连接要求。
二、实验内容:⑴测定填料层压降与操作气速的关系,确定填料塔在某液体喷淋量下的液泛气速;⑵固定液相流量和入塔混合气氨的浓度,在液泛速度以下取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数);三、实验装置:填料吸收塔实验装置流程示意图1-鼓风机 2-空气流量调节阀 3-空气转子流量计、4-空气温度、5-液封管、6-吸收液取样口、7-填料吸收塔、8-氨瓶阀门、9-氨转子流量计、10-氨流量调节阀、 11-水转子流量计、12-水流量调节阀、13-U 型管压差计、14-吸收瓶、15-量气管、16-水准瓶、17-氨气瓶、18-氨气温度、20-吸收液温度、21-空气进入流量计处压力实验流程示意图,空气由鼓风机1送入空气转子流量计3计量,空气通过流量计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,•经过氨瓶总阀8进入氨气转子流量计9计量,•氨气通过转子流量计处温度由实验时大气温度代替。
其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。
分析塔顶尾气浓度时靠降低水准瓶16的位置,将塔顶尾气吸入吸收瓶14和量气管15。
•在吸入塔顶尾气之前,予先在吸收瓶14内放入5mL 已知浓度的硫酸作为吸收尾气中氨之用。
四、实验原理 1.填料塔流体力学特性压强降决定了塔的动力消耗,是塔设计的重要参数。
压强降与气液流量有关,不同喷淋量下填料层的压强降p ∆与气速u 的关系如下图所示:在双对数坐标系中,无液体喷淋即喷淋量0L 0=时,干填料的u ~p ∆是一条斜率为1.8~2的直线(图中aa 线)。
当有一定的喷淋量时,u ~p ∆的关系变成折线,并存在两个转折点,在低气速下(C 点以前)压降正比于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc 段)。
气速增加,出现载点(图中c 点),持液量开始增大,u ~p ∆向上弯曲,斜率变大,(图中cd 段)。
到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。
这两个转折点将u ~p ∆分为三个区段:恒持液量区、载液区与泛液区。
2.传质性能吸收系数是决定吸收过程速率高低的重要参数,实验测定是获取吸收系数的根本途径。
对于相同的物系及一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。
本实验是用水吸收空气-氨混合气体中的氨,混合气体中氨的浓度很低,吸收所得的溶液浓度也不高,可认为气-液平衡关系服从亨利定律,方程式mX Y *=,又因是常压操作,相平衡常数m 值仅是温度的函数。
故可用对数平均浓度差法计算填料层传质平均推动力,相应的传质速率方程式为:m p a Y A Y V K G ∆••=所以 )/(m p A a Y Y V G K ∆•= 其中 22112211ln)()(e e e e m Y Y Y Y Y Y Y Y Y -----=∆式中G A —单位时间内氨的吸收量[kmol/h]; K Ya —总体积传质系数[kmol/m 3·h]; V p —填料层体积[m 3]; △Y m —气相对数平均浓度差; Y 1—气体进塔时的摩尔比,)B (kmol )A (kmol ;Y e1—与出塔液体相平衡的气相摩尔比; Y 2—气体出塔时的摩尔比,)B (kmol )A (kmol ;Y e2—与进塔液体相平衡的气相摩尔比。
3.计算公式 (1) 亨利系数0.3254167t 10511905.7t 1092857.7E 224+**+**=-- (2) 总体积传质系数K Ya 、气相总传质单元高度H OGmp A Ya Y V G K ∆•=/a 、标准状态下的空气流量V 0:21210010T T PP P T V V ••••= [m 3/h] 式中:V 1——空气转子流量计示值 [m 3/h] T 0、P 0——标准状态下的空气的温度和压强 T 1、P 1——标定状态下的空气的温度和压强 T 2、P 2——使用状态下的空气的温度和压强 b 、标准状态下的氨气流量V 0’[m 3/h]式中:V 1’——氨气转子流量计示值 [m 3 / h] ρ01——标准状态下氨气的密度1.293 [kg / m 3] ρ02——标定状态下氨气的密度0.781 [kg / m 3]如果氨气中纯氨为98%,则纯氨在标准状态下的流量V 0’’为: V 0’’=0.98*V 0’c 、惰性气体的摩尔流量G : G=V 0 / 22.4d 、单位时间氨的吸收量G A :G A =G*(Y 1-Y 2)e 、进气浓度Y 1:211n n Y =f 、尾气浓度Y 2:4.22/***202T TV V N Y ss =式中:N s ——加入分析盒中的硫酸当量浓度 [N] V s ——加入分析盒中的硫酸溶液体积 [ml] V ——湿式气体流量计所测得的空气体积 [ml] T 0——标准状态下的空气温度 [K]T ——空气流经湿式气体流量计时的温度 [K] g 、对数平均浓度差m Y )(∆:2121)()(ln)()()(e e e e m Y Y Y Y Y Y Y Y Y -----=∆Y e2=0210221010010''T T P P P T V V ••••••=ρρ1e1X m Y *=P=大气压+塔顶表压+(填料层压差)/2 m=E / PS A 1L /G X =式中: E ——亨利常数Ls ——单位时间喷淋水量 [kmol / h] P ——系统总压强h 、气相总传质单元高度:a Y OG K G H /'=式中:G’——混合体气通过塔截面的摩尔流速 i 、吸收率五、实验步骤1. 测量干填料层(△P /Z)─u 关系曲线:先全开调节阀 2,后启动鼓风机,用阀 2 调节进塔的空气流量,按空气流量从小到大的顺序读取填料层压降△P,转子流量计读数和流量计处空气温度,•然后在对数坐标纸上以空塔气速 u 为横坐标,以单位高度的压降△P /Z 为纵坐标,标绘干填料层(△P /Z)─u 关系曲线(见图二). 2. 测量某喷淋量下填料层(△P /Z)─u 关系曲线:用水喷淋量为40L /h 时,用上面相同方法读取填料层压降△P,•转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, •一旦看到液泛现象时记下对应的空气转子流量计读数。
在对数坐标纸上标出液体喷淋量为40L /h 下(△P /z)─u•关系曲线(见图二),确定液泛气速并与观察的液泛气速相比较。
(1)选泽适宜的空气流量和水流量(建议水流量为30L /h)•根据空气转子流量计读数为保证混合气体中氨组分为0.02-0.03左右摩尔比,计算出氨气流量计流量读数。
(2)先调节好空气流量和水流量,打开氨气瓶总阀8调节氨流量,使其达到需要值,在空气,氨气和水的流量不变条件下操作一定时间过程基本稳定后,•记录各流量计读数和温度,记录塔底排出液的温度,并分析塔顶尾气及塔底吸收液的浓度。
(3)尾气分析方法:100%Y Y Y 121A *-=ϕa.排出两个量气管内空气,使其中水面达到最上端的刻度线零点处,并关闭三通旋塞。
b.用移液管向吸收瓶内装入5mL浓度为0.005M左右的硫酸并加入1─2滴甲基橙指示液。
c.将水准瓶移至下方的实验架上,缓慢地旋转三通旋塞,让塔顶尾气通过吸收瓶,旋塞的开度不宜过大,以能使吸收瓶内液体以适宜的速度不断循环流动为限。
从尾气开始通入吸收瓶起就必需始终观察瓶内液体的颜色,•中和反应达到终点时立即关闭三通旋塞,•在量气管内水面与水准瓶内水面齐平的条件下读取量气管内空气的体积。
若某量气管内已充满空气,但吸收瓶内未达到终点,可关闭对应的三通旋塞,•读取该量气管内的空气体积,同时启用另一个量气管,继续让尾气通过吸收瓶。
d.用下式计算尾气浓度Y2因为氨与硫酸中和反应式为: 2NH3+H2SO4=(NH4)2SO4所以到达化学计量点(滴定终点)时,被滴物的摩尔数nNH3和滴定剂的摩尔数nH2SO4之比为: nNH3∶nH2SO4=2∶1nNH3=2nH2SO4=2MH2SO4·VH2SO4Y2=空气Nn NH3=4.22(42422)量气管量气管TTVSOHSOH VM⨯•式中: n NH3,N空气─分别为NH3和空气的摩尔系数,M H2SO4─硫酸溶液体积摩尔浓度,mol溶质/溶液∨H2SO4━硫酸溶液的体积, ml∨量气管━量气管内空气的总体积, mlT─标准状态时绝对温度 273K,T─操作条件下的空气绝对温度 K 。
(4)塔底吸收液的分析方法:a.当尾气分析吸收瓶达中点后即用三角瓶接取塔底吸收液样品,约200mL并加盖。
b.用移液管取塔底溶液10mL置于另一个三角瓶中,加入2滴甲基橙指示剂。
c.将浓度约为0.05M的硫酸置于酸滴定管内,•用以滴定三角瓶中的塔底溶液至终点。
(5)水喷淋量保持不变,加大或减小空气流量,相应地改变氨流量,使混合气中的氨浓度与第一次传质实验时相同,从复上述操作,测定有关数据。
六、使用实验设备应注意的事项:1.启动鼓风机前,务必先全开放空阀2。
2.做传质实验时,水流量不能超过40L /h,否则尾气的氨浓度极低,•给尾气分析带来麻烦。
3.两次传质实验所用的进气氨浓度必需一样。
七、思考题⑴ 流体通过干填料压降与式填料压降有什么异同?答:当气体自下而上通过填料时产生的压降主要用来克服流经填料层的形状阻力。
当填料层上有液体喷淋时,填料层内的部分空隙为液体所充满,减少了气流通道截面,在相同的条件下,随液体喷淋量的增加,填料层所持有的液量亦增加,气流通道随液量的增加而减少,通过填料层的压降将随之增加。
⑵ 填料塔的液泛和哪些因素有关?答:填料塔的液泛和填料的形状、大小以及气液两相的流量、性质等因素有关。
⑶ 填料塔的气液两相的流动特点是什么?答:填料塔操作时。