2013年苏科版九年级上第二章数据的离散程度检测题含答案
2013年苏科版九年级上第二章数据的离散程度检测题含答案
![2013年苏科版九年级上第二章数据的离散程度检测题含答案](https://img.taocdn.com/s3/m/ec0ff1f6c8d376eeaeaa3140.png)
第二章数据的离散程度检测题【本试卷满分100分,测试时间90分钟】一、选择题(每小题3分,共30分)1.在学校对学生进行的晨检体温测量中,学生甲连续10天的体温与36 ℃的上下波动数据为:0.2,0.3,0.1,0.1,0,0.2,0.1,0.1,0.1,0,则对这10天中该学生的体温波动数据分析不正确的是( )A.平均数为0.12B.众数为0.1C.极差为0.3D.方差为0.022.对甲、乙两名同学100米短跑进行5次测试,他们的成绩通过计算得;错误!未找到引用源。
,错误!未找到引用源。
=0.025,错误!未找到引用源。
=0.026,下列说法正确的是()A.甲短跑成绩比乙好 B.乙短跑成绩比甲好C.甲比乙短跑成绩稳定D.乙比甲短跑成绩稳定3.(2011湖南益阳中考)“恒盛”超市购进一批大米,大米的标准包装为每袋30 kg,售货员任选6袋进行了称重检验,超过标准重量的记作“+”,不足标准重量的记作“-”,他记录的结果是错误!未找到引用源。
那么这6袋大米重量..的平均数和极差分别是( )A.0,1.5B.29.5,1C.30,1.5D.30.5,04.数据70、71、72、73的标准差是()B.2 D.5 45.样本方差的计算公式错误!未找到引用源。
中,数字20和30分别表示样本的()A.众数、中位数B.方差、标准差C.数据的个数、平均数D.数据的个数、中位数6.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么所求出的平均数与实际平均数的差是()A.3.5B.3C.0.5D.-37.一组数据的方差为错误!未找到引用源。
,将该组数据的每一个数据都乘2,所得到的一组新数据的方差是()A.错误!未找到引用源。
B.错误!未找到引用源。
C.2错误!未找到引用源。
D.4错误!未找到引用源。
8.体育课上,八年级(1)班两个组各10人参加立定跳远,要判断哪一组成绩比较整齐,通常需要知道两个组立定跳远成绩的()A.平均数B.方差C.众数D.频率分布9.(2011山东德州中考)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是( ) A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员得分的平均数大于乙运动员得分的平均数D.甲运动员的成绩比乙运动员的成绩稳定10.已知一组数据:-1,x ,0,1,-2的平均数是0,那么这组数据的方差是( ) B.2 C.4 D.10二、填空题(每小题3分,共24分)11.对某校同龄的70名女学生的身高进行测量,其中最高的是169 ㎝,最矮的是146 ㎝,对这组数据进行整理时,可得极差为 .12.某校九年级甲、乙两班举行电脑汉字输入比赛,两个班能参加比赛的学生每分钟输入汉135有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是___________(填序号).13.一组数据1,3,2,5,错误!未找到引用源。
苏科版数学九年级上册 第二章 数据的离散程度 数学活动(含答案)-
![苏科版数学九年级上册 第二章 数据的离散程度 数学活动(含答案)-](https://img.taocdn.com/s3/m/7bdbd533a216147916112803.png)
第二章数据的离散程度数学活动活动目标1.经历数据的收集、加工与整理的过程,发展统计意识和数据处理能力.2.培养运用操作能力和互相配合的协作精神.活动主题脉搏是由心脏的收缩使血液通过动脉所产生的节律性搏动.一般情况下,脉搏的次数与强弱和心搏次数、心股收缩力一致,故计数脉搏即代表心率.脉搏搏动的快慢和强弱,与体质、活动、疾病等有关.你知道你和其他同学的脉搏情况吗?请你做一个调查,了解你们班同学的脉搏情况.活动过程3个人组成一组进行工作:一人记作(以1min为计时单位),•一人按住脉搏计数,一人收集数据.然后把全班同学的数据汇总起来,计算出这些数据的平均数、极差和方差,并将这些数据制成频数分布直方图.注意事项:测量脉搏前让同学安静,取坐或卧坐.测量脉搏一般是测量手腕拇指侧桡动脉为多(中医常在此诊脉),检查者用食指、中指和无名指并拢按住脉搏动处,以指尖触诊.后花园妙趣角 6 174猜想1955年,卡普耶卡(D.R.Kaprekar)研究了对四位数的一种变换:任意给出四位数k0,用它的4个数字由大到小重新排列成一个四位数m,再减去它的反序数rev(m),得出数k1=m-rev(m),然后继续对k1重复上述变换,得出数k2.如此进行下去,卡普耶卡发现,•无论k0是多大的四位数,只要4个数字不全相同,最多进行7次这样的变换,就会出现四位数6 174.例如:k0=5 298,k1=9 852-2 589=7 263,k2=7 632-2 367=5 265,k3=6 •552-2 556=3 996,k4=9 963-3 699=6 264,k5=6 642-2 466=4 176,k6=7•641-•1 •467=•6174.后来,这个问题就流传下来,人们称这个问题为“6 174问题”,上述变换称为卡普耶卡变换,简称K变换.一般地,只要在0,1,2,…,9中任取4个不全相等的数字组成一个整数k0(不一定是四位数),然后从k0开始不断地做K变换,得出数k1,k2,k3……则必有某个m(m≤7),使得k m=6 174.如果从0,1,2,…,9中任取n个不全相同的数字组成一个十进制数k0(不一定是n位数),然后,从k0开始不断地做K变换,得出k1,k2,……那么结果会是怎样的呢?•现在已经知道的是:n=2,只能形成一个循环:(27,45,09,81,63).例如取两个数字7与3,•连续不断地做K变换,得出:36,27,45,09,81,27……出现循环.n=3,只能形成一个循环:(495).n=4,只能形成一个循环:(6 174).n=5,已经发现三个循环:(53 855,59 994);(62 964,71 973,83 952,74 943),(63 954,61 974,82 962,75 933).n=6,已经发现三个循环:(642 654,…),(631 764,…),(549 945,…),n=7,已经发现一个循环:(8 719 722,…).n=8,已经发现四个循环:(63 317 664),(97 508 421),(83 208 762,…),•(•86 308 632,…).n=9,已经发现三个循环:(864 197 532),(975 296 421,…),(965 296 431,…).答案:略、。
苏科版九年级数学上册全册同步练习题(共56套带答案)
![苏科版九年级数学上册全册同步练习题(共56套带答案)](https://img.taocdn.com/s3/m/e239b91da32d7375a4178046.png)
苏科版九年级数学上册全册同步练习题(共56套带答案)第3章数据的集中趋势和离散程度 [测试范围:3.1~3.3 时间:40分钟分值:100分] 一、选择题(每小题4分,共32分) 1.一组数据1,3,4,2,2的众数是( ) A.1 B.2 C.3 D.4 2.一组数据7,8,10,12,13的平均数是( ) A.7 B.9 C.10 D.12 3.一组数据3,3,5,6,7,8的中位数是( ) A.3 B.5 C.5.5 D.6 4.一次数学检测中,有5名学生的成绩(单位:分)分别是86,89,78,93,90.则这5名学生成绩的平均数和中位数分别是( ) A.87.2分,89分 B.89分,89分 C.87.2分,78分 D.90分,93分 5.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100 人数 7 12 10 8 3 则得分的众数和中位数分别是( ) A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分 6.如图4-G-1是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( ) 图4-G-1 A.16小时,10.5小时 B.8小时,9小时 C.16小时,8.5小时 D.8小时,8.5小时 7.某公司欲招聘一名公关人员,对甲、乙、丙、丁四名候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩 (百分制) 面试 86 92 90 83 笔试90 83 83 92 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取( ) A.甲 B.乙 C.丙 D.丁 8.数据x1,x2,x3,x4,x5的平均数是x,则数据x1+3,x2+3.5,x3+2.5,x4+2,x5+4的平均数为( ) A.x+2 B.x+2.5 C.x+3 D.x+3.5 二、填空题(每小题4分,共24分) 9.在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是________分. 10.如图4-G-2是根据某地某段时间的每天最低气温绘成的折线图,那么这段时间最低气温的平均数是________.图4-G-2 11.某班学生综合实践作物栽培操作能力评估成绩的统计结果如下表:成绩/分 3 4 5 6 7 8 9 10 人数 1 12 2 8 9 15 12 则这组成绩的众数为________. 12. 某校在进行“阳光体育活动”中,统计了7名原来偏胖的学生的情况,他们的体重分别降低的千克数为5,9,3,10,6,8,5,则这组数据的中位数是________.13.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为________. 14.某校抽样调查了七年级学生每天的体育锻炼时间,整理数据后制成了如下所示的频数分布表,这个样本的中位数在第________组.组别时间(时) 频数第1组0≤t<0.5 12 第2组0.5≤t<1 24 第3组1≤t<1.5 18 第4组1.5≤t<2 10 第5组2≤t<2.5 6 三、解答题(共44分) 15.(8分)已知一组数据:3,a,4,5,b,c,6.(1)若这组数据是按由小到大的顺序排列的,则中位数是________;(2)若该组数据的平均数是12,求a+b+c的值.16.(10分)一销售某品牌冰箱的公司有营销人员14人,销售部为制定营销人员月销售冰箱定额(单位:台),统计了14人某月的销售量如下表:每人销售量(台) 20 17 13 8 5 4 人数 1 1 2 5 3 2 (1)这14名营销人员该月销售冰箱的平均数、众数和中位数分别是多少? (2)你认为销售部经理给这14名营销人员定出每月销售冰箱的定额为多少台才比较合适?并说明理由.17.(12分)九(3)班A,B,C三名同学的知识测试、实践能力、成长记录三项成绩(单位:分)如下表所示.测试项目测试成绩 A B C 知识测试 90 88 90 实践能力 82 84 87 成长记录 95 95 90 (1)如果根据三项测试的平均成绩评价他们的综合成绩,那么谁的成绩最好? (2)如果把他们的知识测试、实践能力、成长记录三项成绩按5∶3∶2的比例计入综合成绩,那么谁的成绩最好?18.(14分)为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图4-G-3中两幅不完整的统计图,请你根据图中提供的信息解答下列问题: (1)在这次调查中共调查了多少名学生? (2)求户外活动时间为0.5小时的人数,并补全条形统计图; (3)求表示户外活动时间为2小时的扇形圆心角的度数; (4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数各是多少?图4-G-3详解详析 1.B 2.C 3.C [解析] 这组数据已经从小到大排列了,中间的两个数是5和6,故中位数是(5+6)÷2=5.5. 4.A 5.C [解析] 全班有40人,取得70分的人数最多,故众数是70分;把这40人的得分按大小顺序排列后知,第20个与第21个得分都是80分,故中位数是80分. 6.B [解析] 众数是一组数据中出现次数最多的数,所以该班40名同学一周参加体育锻炼时间的众数是8小时;将这组数据按从小到大的顺序排列后,第20个和第21个数都是9,故该班40名同学一周参加体育锻炼时间的中位数是9小时. 7.B [解析] 因为甲的平均成绩为86×0.6+90×0.4=51.6+36=87.6(分);乙的平均成绩为92×0.6+83×0.4=55.2+33.2=88.4(分);丙的平均成绩为90×0.6+83×0.4=54+33.2=87.2(分);丁的平均成绩为83×0.6+92×0.4=49.8+36.8=86.6(分).所以乙的平均成绩最高.故选B. 8. C 9.8.0 [解析] 根据题意,得(8.2+8.3+7.8+7.7+8.0)÷5=8.0(分). 10.4 ℃ 11.9分 12.6 13.2 14. 2 [解析] 中位数应是第35个和第36个数的平均数,第35个数和第36个数都在第2组.15.解:(1)5 (2)由题意可知17(3+a+4+5+b+c+6)=12,所以a+b+c=66. 16.解:(1)平均数为20×1+17×1+13×2+8×5+5×3+4×214=9(台), 8台出现了5次,出现的次数最多,所以众数为8台, 14个数据按从小到大的顺序排列后,第7个,第8个数都是8,所以中位数是(8+8)÷2=8(台). (2)每月销售冰箱的定额为8台才比较合适.因为8台既是众数,又是中位数,是大部分人能够完成的台数.若定为9台,则只有少量人才能完成,打击了大部分职工的积极性. 17.解:(1)xA=13(90+82+95)=89(分); xB =13(88+84+95)=89(分); xC=13(90+87+90)=89(分).可见,三名同学的成绩一样. (2)xA=90×50%+82×30%+95×20%=88.6(分); xB=88×50%+84×30%+95×20%=88.2(分); xC=90×50%+87×30%+90×20%=89.1(分).可见,C同学的成绩最好. 18.解:(1)共调查了32÷40%=80(名)学生. (2)户外活动时间为0.5小时的人数为80×20%=16(名).补全条形统计图如下. (3)表示户外活动时间为2小时的扇形圆心角的度数为1280×360°=54°. (4)本次调查中学生参加户外活动的平均时间为16×0.5+32×1+20×1.5+12×280=1.175(时).∵1.175>1,∴平均活动时间符合要求.户外活动时间的众数和中位数均为1小时.第2章对称图形――圆 [测试范围:2.1~2.3 时间:40分钟分值:100分] 一、选择题(每小题3分,共24分) 1.已知⊙O的半径为8,点P与点O的距离为6 2,则( ) A.点P在⊙O的内部 B.点P在⊙O的外部 C.点P在⊙O上 D.以上选项都不对 2.下列说法中正确的个数为( ) ①直径不是弦;②三点确定一个圆;③圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;④相等的圆心角所对的弧相等,所对的弦也相等. A.1 B.2 C.3 D.4 3.如图2-G-1,在半径为13 cm的圆形铁片上切下一块高为8 cm的弓形铁片,则弦AB的长为( ) A.10 cm B.16 cm C.24 cm D.26 cm 图2-G-1 图2-G-24.如图2-G-2,在Rt△ABC中,∠ACB=90°,∠A=26°,以点C 为圆心,BC长为半径的圆分别交AB,AC于点D,E,则BD�嗟亩仁�为( ) A.26° B.64° C.52° D.128° 图2-G-3 5.如图2-G-3,已知⊙O的半径为10,弦AB=12,M是AB上任意一点,则线段OM的长可能是( ) A.5 B.7 C.9 D.11 6.一个点到一个圆上的点的最短距离是3 cm,最长距离是6 cm,则这个圆的半径是( ) A.4.5 cm B.1.5 cm C.4.5 cm或1.5 cm D.9 cm或3 cm 7.如图2-G-4所示,一圆弧过方格的格点A,B,C,试在方格中建立平面直角坐标系,使点A的坐标为(-2,4),点C的坐标为(0,4),则该圆弧所在圆的圆心坐标是( ) A.(-1,2) B.(1,-1) C.(-1,1) D.(2,1) 图2-G-4 图2-G-5 8.如图2-G-5,在⊙O中,弦AB∥CD,直径MN⊥AB且分别交AB,CD于点E,F,下列4个结论:①AE=BE;②CF=DF;③AC�啵�BD�啵虎�MF =EF.其中正确的有( ) A.1个 B.2个 C.3个 D.4个二、填空题(每小题4分,共24分) 9.圆是轴对称图形,它的对称轴是______________. 10.在平面内,⊙O的半径为3 cm,点P到圆心O的距离为7 cm,则点P与⊙O的位置关系是________. 11.如图2-G-6,⊙O的半径为5,点A,B在⊙O上,∠AOB=60°,则弦AB 的长为________.图2-G-6 图2-G-712.如图2-G-7,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为________. 13.如图2-G-8,矩形ABCD与⊙O交于点A,B,F,E,DE=1 cm,EF=3 cm,则AB=________ cm. 图2-G-8 图2-G-914.已知:如图2-G-9,A是半圆上的一个三等分点,B是AN�嗟闹械悖�P是MN上一动点,⊙O的半径为1,则AP+BP的最小值是________.三、解答题(共52分) 15.(12分)如图2-G-10,AB,CD为⊙O的直径,点E,F在直径CD上,且CE=DF. 求证:AF=BE. 图2-G-1016.(12分)如图2-G-11,AB是⊙O的直径,AC�啵�CD�啵�∠COD=60°. (1)△AOC是等边三角形吗?请说明理由; (2)求证:OC∥BD. 图2-G-1117.(14分)如图2-G-12,已知AB是⊙O的直径,AB=10,弦CD与AB相交于点N,∠ANC=30°,ON∶AN=2∶3,OM⊥CD,垂足为M.(1)求OM的长; (2)求弦CD的长.图2-G-1218.(14分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图2-G-13所示.圆O与纸盒交于E,F,G三点,已知EF=CD=16 cm. (1)利用直尺和圆规作出圆心O; (2)求出球的半径.图2-G-13详解详析 1.B [解析] ∵82=64,6 22=72,且64<72,∴8<6 2,∴点P与点O的距离大于⊙O的半径,∴点P在⊙O的外部.故选B. 2.A [解析] ③正确,这是根据圆的轴对称的性质来判断的.①错误,直径是过圆心的弦;②错误,不在同一条直线上的三点才能确定一个圆;④错误,相等的圆心角所对的弧不一定相等,所对的弦也不一定相等,缺少“在同圆或等圆中”这一条件.正确的只有③.故选A. 3.C 4.C [解析] ∵∠ACB=90°,∠A=26°,∴∠B=64°.∵CB=CD,∴∠CDB=∠B=64°,∴∠BCD=180°-64°-64°=52°,∴BD�嗟亩仁�为52°.故选C. 5.C [解析] 连接OA.过点O作ON⊥AB,垂足为N.∵ON⊥AB,AB=12,∴AN=BN=6.在Rt△OAN 中,ON=OA2-AN2=102-62=8,∴8≤OM≤10.故选C. 6. C [解析] 根据题意,画出图形如图所示.设圆的半径为r cm,分两种情况来考虑: (1)如图①,若点P在圆内,则PA+PB=2r,∴3+6=2r,解得r=4.5,即圆的半径为4.5 cm; (2)如图②,若点P在圆外,则PA-PB=2r,∴6-3=2r,解得r=1.5,即圆的半径为1.5 cm. 故此圆的半径为4.5 cm或1.5 cm.故选C. 7.C [解析] 连接AB,AC,利用网格图的特征,作出AB,AC的垂直平分线,其交点即为圆心,则可得它的坐标为(-1,1).故选C. 8. C 9.过圆心的任意一条直线[解析] 圆是轴对称图形,它的对称轴是过圆心的任意一条直线. 10.点P在⊙O外[解析] ∵⊙O的半径为3 cm,点P到圆心O的距离为7 cm,∴d>r,∴点P与⊙O的位置关系是点P在⊙O外. 11.5 [解析] ∵⊙O的半径为5,∴OA=OB=5. 又∵∠O=60°,∴∠A=∠B=60°,∴△ABO是边长为5的等边三角形,∴AB=5. 12.3 2 [解析] 如图,过点O分别作OM⊥AB于点M,ON⊥CD于点N,连接OB,OD. ∵AB=CD=8,∴BM=DN=4. 又∵OB=OD=5,∴OM=ON=52-42=3. ∵AB⊥CD,∴∠DPB=90°. ∵OM⊥AB,ON⊥CD,∴∠OMP=∠ONP=90°,∴四边形MONP是矩形.又∵OM=ON,∴矩形MONP是正方形,∴PM=OM=3,∴OP=3 2. 13.5 [解析] 由图形的轴对称性易知CF=DE. ∵DE=1 cm,∴CF=1 cm. ∵EF=3 cm,∴DC=5 cm,∴AB=5 cm. 14.2 [解析] 利用对称法,作点A或点B关于MN的对称点是解决问题的关键.如图,作点A关于MN的对称点A′,连接A′B,交MN于点P,则此时PA+PB的值最小,连接OA,OA′. ∵点A与点A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∴PA+PB=PA′+PB=A′B. 连接OB. ∵B是AN�嗟闹械悖�∴∠BON=30°,∴∠A′OB=90°,∴在Rt△A′OB中,A′B=OA′+OB2=2,∴PA+PB的最小值为2. 15.证明:∵AB,CD为⊙O的直径,∴OA=OB,OC=OD. ∵CE=DF,∴OE=OF. 在△AOF和△BOE 中,OA=OB,∠AOF=∠BOE,OF=OE,∴△AOF≌△BOE(SAS),∴AF =BE. 16.解:(1)△AOC是等边三角形.理由:∵AC�啵�CD�啵�∴∠AOC=∠COD=60°. ∵OA=OC,∴△AOC是等边三角形. (2)证明:∵∠AOC=∠COD=60°,∴∠BOD=60°. ∵OB=OD,∴△OBD 是等边三角形,∴∠OBD=60°,∴∠OBD=∠AOC,∴OC∥BD. 17.解:(1)∵AB=10,∴OA=5. ∵ON∶AN=2∶3,∴ON=2. ∵∠ANC=30°,∴∠ONM=30°,∴在Rt△OMN中,OM=12ON=1. (2)如图,连接OC. 在Rt△COM中,由勾股定理,得CM2=CO2-OM2=25-1=24,∴CM=2 6. 又∵OM⊥CD,∴CD=2CM=4 6. 18.解:(1)如图①所示,点O即为所求. (2)如图②,过点O作OM⊥EF于点M,连接OF,延长MO,则MO与BC的交点为G. 设球的半径为r cm,则OF=r cm,OM=(16-r)cm,MF=12EF=8 cm. 在Rt△OFM中,由勾股定理,得OF2=OM2+MF2,即r2=(16-r)2+82,解得r=10. 即球的半径为10 cm.。
苏科版九年级数学上册第3章《数据的集中趋势和离散程度》单元测试卷【含答案】
![苏科版九年级数学上册第3章《数据的集中趋势和离散程度》单元测试卷【含答案】](https://img.taocdn.com/s3/m/632fc2fbcf2f0066f5335a8102d276a200296001.png)
苏科版九年级数学上册第3章《数据的集中趋势和离散程度》单元测试卷一.选择题1.某区“引进人才”招聘分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为()分A.85B.86C.87D.882.5个相异自然数的平均数为12,中位数为17,这5个自然数中最大一个的可能值的最大值是()A.21B.22C.23D.243.用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为()A.14.15B.14.16C.14.17D.14.204.在“中国汉字听写大赛”选拔赛中,甲,乙两位同学的平均分都是85分,甲的成绩方差是16,乙的成绩方差是5.下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.在防治新型冠状病毒的例行体温检查中,员将高出37℃的部分记作正数,小亮在一周内的体温测量结果分别为+0.1,﹣0.3,﹣0.5,+0.1,+0.2,﹣0.6,﹣0.4,那么他一周内所测量体温的平均值为()A.37.1℃B.37.2℃C.36.9℃D.36.8℃6.已知一组数据x1,x2,…,x n的平均数=2,则数据3x1+2,3x2+2,…,3x n+2的平均数是()A.8B.6C.4D.27.如果a和7的平均数是4,则a是()A.1B.3C.5D.78.如果a、b、c的中位数与众数都是5,平均数是4,那么a可能是()A.2B.3C.4D.69.若数据2,x,4,8的平均数是4,则这组数据的中位数和众数是()A.2和3B.3和2C.2和2D.2和410.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的这组数据的平均数与实际平均数的差是()A.3.5B.3C.0.5D.﹣3二.填空题11.某学习小组有5人,在一次数学测验中的成绩分别是102,106,100,105,102,则他们成绩的平均数是.12.一组数据2,6,5,2,4,则这组数据的平均数是13.若一组数据7,3,5,x,2,9的众数为7,则这组数据的中位数是.14.东营市某学校女子游泳队队员的年龄分布如下表:年龄(岁)131415人数474则该校女子游泳队队员的平均年龄是岁.15.如果一组数据:5,x,9,4的平均数为6,那么x的值是.16.如果一组数a,2,4,0,5的中位数是4,那么a可以是(只需写出一个满足要求的数).17.为了参加区中学生篮球联赛,某校篮球队准备购买10双运动鞋.其尺码如下表:尺码/cm24.5252626.527购买量/双23311则这组数据中位数是.18.有一组数据如下:3、7、4、6、5,那么这组数据的方差是.19.选作题(要求在①、②中任选一题作答,若多选,则按第①题计分)①如图,AB∥CD,EF⊥DB,垂足为点E,∠1=50°,则∠2的度数是;②用计算器求一组数据71,75,63,89,100,77,86的平均数为(精确到0.1).20.某同学用计算器求30个数据的平均数时,错将其中的一个数据105输入成15,则由此求出的平均数与实际平均数的差是.三.解答题21.春节期间为了表达美好的祝福,抢微信红包成为了人们最喜欢的活动之一.某中学九年级六班班长对全班学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的学生人数为,图①中m的值为;(Ⅱ)求统计的这组红包金额数据的平均数、众数和中位数.22.如图,是我国自行设计和建造的港珠澳大桥,粗大的钢索将桥面拉住,钢索的抗拉强度尤其重要.建桥公司从甲、乙两家生产钢索的厂方各随机选取5根钢索进行抗拉强度的检测,数据如表(单位:百吨):钢索12345平均数中位数方差甲厂10119101210.410 1.04乙厂10812713(1)求出乙厂5根钢索抗拉强度的平均数、中位数和方差,直接填在表格内.(2)建桥公司应该用哪些统计量来选择生产钢索的厂家,为什么?23.某校对全校3000名学生本学期参加艺术学习活动的情况进行评价,其中甲班学生本学期参观美术馆的次数以及艺术评价等级和艺术赋分的统计情况,如下表所示:(1)甲班学生总数为人,表格中a的值为;(2)甲班学生艺术赋分的平均分是分;(3)根据统计结果,估计全校3000名学生艺术评价等级为A级的人数是多少?艺术评价等级参观次数(x)艺术赋分人数A级x≥610分10人B级4≤x≤58分20人C级2≤x≤36分15人D级x≤14分a人24.对于三个数a,b,c,用M{a,b,c}表示a,b,c这三个数的平均数,用min{a,b,c}表示a,b,c这三个数中最小的数,如:M{﹣1,2,3}==,min{﹣1,2,3}=﹣1.(1)若M{x﹣1,﹣5,2x+3}=(1+3x),求x的值;(2)已知M{2x,﹣x+2,3},min{﹣1,0,4x+1},是否存在一个x值,使得2×M{2x,﹣x+2,3}=min{﹣1,0,4x+1}.若存在,请求出x的值;若不存在,请说明理由.25.为宣传6月8日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表和统计图(如图).请根据图表信息解答以下问题:知识竞赛成绩分组统计表组别分数/分频数A60≤x<70aB70≤x<8010C80≤x<9014D90≤x≤10018(1)本次调查一共随机抽取了名参赛学生的成绩;(2)表1中a=;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有人.26.某校为了解七、八年级学生英语听力训练情况(七、八年级学生人数相同),某周从这两个年级学生中分别随机抽查了30名同学,调查了他们周一至周五的听力训练情况,根据调查情况得到如下统计图表:周一至周五英语听力训练人数统计表年级参加英语听力训练人数周一周二周三周四周五1520a3030七年级2024263030八年级合计3544516060(1)填空:a=;(2)根据上述统计图表完成下表中的相关统计量:年级平均训练时间的中位数参加英语听力训练人数的方差七年级2434八年级14.4(3)请你利用上述统计图表对七、八年级英语听力训练情况写出两条合理的评价;(4)请你结合周一至周五英语听力训练人数统计表,估计该校七、八年级共480名学生中周一至周五平均每天有多少人进行英语听力训练.27.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用max{a,b,c}表示这个三个数中最大的数.例如:,max{﹣1,2,3}=3,,解决下列问题:(1)①=.②如果max{2,2x+2,﹣2x}=2,则x的取值范围为.(2)①如果,则x=.②根据①,你发现了结论“如果M{a,b,c}=max{a,b,c},那么(填a,b,c的大小关系)”.③运用②的结论,填空:若,并且x+6y+5z=150,则x+y+z=.答案与试题解析一.选择题1.解:根据题意得,吴老师的综合成绩为90×60%+85×40%=88(分),故选:D.2.解:∵5个相异自然数的平均数为12∴5个相异自然数的和为60;∵中位数为17,∴这5个数中有2个数比17小,有两个数比17大;又∵求这5个数中的最大一个的可能值的最大值,∴设这5个数中两个最小的数为0和1,而比17大的最小的自然数是18,∴剩下的第5个数是:60﹣0﹣1﹣17﹣18=24,即第5个数是24,∴这5个数为0,1,17,18,24.∴这5个自然数中最大一个的可能值的最大值是24;故选:D.3.解:借助计算器,先按MOOE按2再按1,会出现一竖,然后把你要求平均数的数字输进去,好了之后按AC键,再按shift再按1,然后按5,就会出现平均数的数值.故选:B.4.解:∵甲,乙两位同学的平均分都是85分,而甲的成绩方差是16,乙的成绩方差是5,即甲的成绩方差大于乙的成绩方差,∴乙的成绩比甲的成绩稳定.故选:B.5.解:(+0.1﹣0.3﹣0.5+0.1+0.2﹣0.6﹣0.4)÷7=﹣0.2(℃),﹣0.2+37=36.8(℃).故选:D.6.解:∵一组数据x1,x2…,x n的平均数x=2,∴x1+x2+…+x n=2n,∴数据3x1+2,3x2+2,…,3x n+2的平均数=(3x1+2+3x2+2+…+3x n+2)=[3(x1+x2+…+x n)+2n]=×(3×2n+2n)=×8n=8,故选:A.7.解:根据题意得:a=4×2﹣7=8﹣7=1;故选:A.8.解:设另一个数为x,则5+5+x=4×3,解得x=2,即a可能是2.故选:A.9.解:∵数据2,x,4,8的平均数是4,∴这组数的平均数为=4,解得:x=2;所以这组数据是:2,2,4,8,则中位数是=3,∵2在这组数据中出现2次,出现的次数最多,∴众数是2;故选:B.10.解:求30个数据的平均数时,错将其中一个数据105输入为15,即使总和减少了90;那么由此求出的这组数据的平均数与实际平均数的差是﹣=﹣3.故选:D.二.填空题11.解:他们成绩的平均数为=103,故103.12.解:=3.8,故答案为3.8.13.解:∵这组数据众数为7,∴x=7,这组数据按照从小到大的顺序排列为:2,3,5,7,7,9,则中位数为:=6.故6.14.解:该校女子游泳队队员的平均年龄是=14(岁),故14.15.解:∵5,x,9,4的平均数为6,∴x=6×4﹣(5+9+4)=24﹣18=6∴x的值是6.故6.16.解:∵这组数据有5个数,且中位数是4,∴4必须在5个数从小到大排列的正中间,即这组数据的重新排列是0,2,4,a,5或0,2,4,5,a,∴a≥4或a≥5,故答案是4(答案不唯一).17.解:把这组数据从小到大排列,最中间两个数的平均数是(25+26)÷2=25.5,则这组数据的中位数是25.5cm.故25.5cm.18.解:平均数为:(3+7+4+6+5)÷5=5,S2=×[(3﹣5)2+(7﹣5)2+(4﹣5)2+(6﹣5)2+(5﹣5)2]=×(4+4+1+1+0)=2.故答案为2.19.解:①∵EF⊥DB,∴∠FED=90°,∴∠1+∠D=90°,∵∠1=50°,∴∠D=40°,∵AB∥CD,∴∠2=∠D=40°,故40°.②≈80.1,故80.1.20.解:求30个数据的平均数时,错将其中的一个数据105输入成15,即少加了90;则由此求出的平均数与实际平均数的差是﹣=﹣3.故答案为﹣3.三.解答题21.解:(Ⅰ)4+6+12+10+8=40(人),m=100×=25.故答案是:40,25;(Ⅱ)∵=33,∴这组红包金额数据的平均数为33,∵这组数据中,30出现了12次,出现次数最多,∴这组数据的众数为30,∵将这组数据按从小到大的顺序排列,其中处于中间位置的两个数是30,∴,∴这组红包金额数据的中位数为30.22.解:(1)乙厂的平均数(10+8+12+7+13)÷5=10(百吨);把这些数从小到大排列为:7,8,10,12,13,最中间的数是10,则乙厂的中位数是10百吨;乙厂的方差[(10﹣10)2+(8﹣10)2+(12﹣10)2+(7﹣10)2+(13﹣10)2]=5.2(平方百吨);填表如下:钢索12345平均数中位数方差甲厂10119101210.410 1.04乙厂1081271310 10 5.2(2)甲厂的钢索质量更优,从平均数来看,甲厂的平均数是10.4百吨,而乙厂的平均数是10百吨,所以甲厂高于乙厂;从中位数来看甲厂和乙厂一样;从方差来看,甲厂的方差是1.04平方百吨,而乙厂的方差是5.2平方百吨,所以甲厂的方差小于乙厂的方差,所以甲厂更稳定;所以从总体来看甲厂的钢索质量更优.23.解:(1)甲班学生总数为:20÷40%=50(人),a=50﹣10﹣20﹣15=5(人),故50,5;(2)根据题意得:(10×10+8×20+6×15+4×5)÷50=7.4(分),答:甲班学生艺术赋分的平均分是7.4分;(3)根据题意得:3000×=600(人),答:全校3000名学生艺术评价等级为A级的人数是600人.24.解:(1)由题意:M{x﹣1,﹣5,2x+3}==x﹣1,∴x﹣1=(1+3x),解得:x=﹣3.(2)由题意:M{2x,﹣x+2,3}==,若4x+1≥﹣1,则2×=﹣1.解得x=﹣.此时4x+1=﹣25<﹣1.与条件矛盾;若4x+1<﹣1,则2×=4x+1.解得x=.此时4x+1=>﹣1.与条件矛盾;∴不存在.25.解析(1)本次调查一共随机抽取的学生有18÷36%=50(人),故答案为50.(2)a=50﹣18﹣14﹣10=8,故答案为8.(3)本次调查一共随机抽取50名学生,中位数落在C组,故答案为C.(4)该校九年级竞赛成绩达到80(分)以上(含80分)的学生有500×=320(人),故320.26.解:(1)由题意得:a=51﹣26=25;故25;(2)按照从小到大的顺序排列为:18、25、27、30、30,∴八年级平均训练时间的中位数为:27;故27;(3)参加训练的学生人数超过一半;训练时间比较合理;(4)抽查的七、八年级共60名学生中,周一至周五训练人数的平均数为(35+44+51+60+60)=50,∴该校七、八年级共480名学生中周一至周五平均每天进行英语听力训练的人数为480×=400(人).27.解:(1)①﹣(﹣2)=2,﹣|﹣2|=﹣2,=,∵2>>﹣2,∴=2,故2;②由max{2,2x+2,﹣2x}=2可得,,解得,﹣1≤x≤0,故﹣1≤x≤0;(2)①由题意得,3=x+1=x,解得,x=2,故2;②由三个数的平均数等于这三个数中的最大数,所以这三个数相等,即a=b=c;故a=b=c;③由题意得,==,且x+6y+5z=150,解得,x=6,y=9,z=18,所以x+y+z=6+9+18=33,故33.。
苏科版九年级数学上册 第3章数据的集中趋势和离散程度 章节达标检测卷【含答案】
![苏科版九年级数学上册 第3章数据的集中趋势和离散程度 章节达标检测卷【含答案】](https://img.taocdn.com/s3/m/1524474cb94ae45c3b3567ec102de2bd9605de06.png)
苏科版九年级数学上册第3章数据的集中趋势和离散程度章节达标检测卷一、选择题(每题3分,共24分)1.一组数据7、8、10、12、13的平均数和中位数分别是()A.7、10B.9、9C.10、10D.12、112.某学习小组7名同学的《数据的集中趋势和离散程度》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是() A.85,85B.85,88 C.88,85D.88,883.甲、乙两台机床生产一种零件,在10天中两台机床每天生产的次品个数的平均数是x甲=x乙=2,方差是s2甲=1.65,s2乙=0.76,出次品的波动较小的机床是()A.甲机床B.乙机床C.甲、乙机床一样D.不能确定4.一组数据2、4、6、x、3、9的众数是3,则这组数据的中位数是() A.3B.3.5C.4D.4.55.在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:则这10人投中次数的平均数和中位数分别是()A.3.9次,7次B.6.4次,7.5次C.7.4次,8次D.7.4次,7.5次6.王明同学随机抽查某市10个小区的绿化率情况,结果如下表:则关于这10个小区的绿化率情况,下列说法错误的是()A.极差是13% B.众数是25% C.中位数是25% D.平均数是26.2% 7.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11、10、11、13、11、13、15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是187D.中位数是138.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x二、填空题(每小题2分,共20分)9.一组数据1、4、7、-4、2的平均数为________.10.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为4、3、3、5、5、6.这组数据的中位数是________.11.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0 1 2 3 4 5 6 7 8 9频数8 8 12 11 10 8 9 8 12 14 那么,圆周率的小数点后100位数字的众数为________.12.已知一组数据1、3、a、10的平均数为5,则a=________.13.某公司欲招聘员工,对候选人进行三项测试:语言、创新、综合知识,并将测试得分按143确定测试总分.已知某位候选人的三项得分分别为88分,72分,50分,则这位候选人的测试总分为________分.14.为迎接九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一的众数是13,平均数是12,那么这组数据的方差是________.15.从甲、乙两种玉米种子中选择一种合适的推荐给某地.考虑到农民对玉米的产量和产量的稳定性十分关心,选择之前,为了解甲、乙两种玉米种子的情况,某单位各用了10块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t)的数据,这两组数据的平均数分别是x甲=7.5,x乙=7.5,方差分别是s2甲=0.010,s2乙=0.002,你认为应该选择的玉米种子是________.16.某班五个兴趣小组的人数分别为4、4、5、x、6.已知这组数据的平均数是5,则这组数据的中位数是________.17.若一组数据21、14、x、y、9的众数和中位数分别是21和15,则这组数据的平均数为________.18.在从小到大排列的五个数x、3、6、8、12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为________.三、解答题(19~21题每题8分,22~23题每题10分,24题每题12分,共56分) 19.某商场张贴巨幅广告,称这次“真情回报顾客”活动共设奖金20万元,最高奖每份1万元,平均每份奖金200元.一位顾客幸运地抽到一张奖券,奖金数为10元,她调查了周围正在兑奖的其他顾客,一个也没有超过50元,她气愤地要与商场经理评理,经理安慰她说不存在欺骗,并向她出示了下面这张奖金分配表.你认为“平均每份奖金200元”是否欺骗了顾客?这一说法能够很好地代表中奖的一般金额吗?20.在“爱满扬州”慈善一日捐活动中,学校为了了解本校学生的捐款情况,随机抽取了50名学生的捐款金额进行了统计,并绘制成如图所示的统计图.(1)这50名学生捐款金额的众数为________元,中位数为________元;(2)求这50名学生捐款金额的平均数;(3)该校共有600名学生参与捐款,请估计该校学生的捐款总金额.21.要从甲、乙两名同学中选出一名,代表班级参加射击比赛.如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察统计图,直接写出甲、乙两名同学这10次射击成绩的方差s2甲、s2乙哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选________参赛更适合;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选________参赛更适合.22.为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500 g,与之相差大于10 g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501497498502513489506490505486502503498497491500505502504505乙:505499502491487506493505499498502503501490501502511499499501[整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.[分析数据]根据以上数据,得到以下统计量.根据以上信息,回答下列问题:(1)表格中的a=________,b=________;(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.23.现有A、B两家农副产品加工厂到某快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如下表:(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数和平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?24.为了发展学生的健康情感,学校开展多项体育活动比赛,促进学生加强体育锻炼,注重增强体质,从全校2 100名学生60秒跳绳比赛成绩中,随机抽取60名学生的成绩,通过分组整理数据得到下面的样本频数分布表.(1)已知样本中最小的数是60,最大的数是198,组距是20,请你将该表左侧的每组数据补充完整;(2)估计全校学生60秒跳绳成绩能达到最好一组成绩的人数;(3)若以各组两个端点数的平均数代表各组的实际数据,求出样本平均数(结果保留整数)及众数;分别写出用样本平均数和众数估计全校学生60秒跳绳成绩得到的推断性结论.答案1.C1.C2.B3.B4.B5.D6.A 7.D 8.A二、9.2 10.4.5 11.9 12.6 13.65.75 14.87 15.乙 16.5 17.16 18.1三、19.解:∵÷(3+10+87+350+550)=200(元),∴没欺骗顾客,平均每份奖金是200元,但这一说法不能够很好地代表中奖的一般金额,由于奖金数额差距过大,此时平均数不能代表数据的一般特征. 20.解:(1)15;15.(2)150×(8×5+14×10+20×15+6×20+2×25)=13(元). ∴这50名学生捐款金额的平均数为13元. (3)600×13=7 800(元).∴估计该校学生的捐款总金额为7 800元.21.解:(1)x 乙=8+9+8+8+7+8+9+8+8+710=8(环).(2)s 2甲大. (3)乙;甲.22.解:(1)501;15% (2)工厂应选购乙分装机.理由如下:比较甲、乙两台机器的统计量可知,甲与乙的平均数相同,中位数相差不大,乙的方差较小,且不合格率更低.以上分析说明,乙分装机的分装合格率更高,且稳定性更好,所以乙分装机的分装效果更好,工厂应选购乙分装机.23.解:(1)把这些数从小到大排列,最中间的数是第5个和第6个数的平均数,则中位数是75+752=75(克).因为75出现了4次,出现的次数最多, 所以众数是75克.平均数是110×(74+75+75+75+73+77+78+72+76+75)=75(克).(2)100×310=30(个).答:估计B加工厂这100个鸡腿中,质量为75克的鸡腿有30个.(3)x A=75克,x B=110×(78+74+…+75+75)=75(克),s2A=110×[(74-75)2+(75-75)2+…+(76-75)2+(75-75)2]=2.8(克2),s2B=110×[(78-75)2+(74-75)2+…+(75-75)2+(75-75)2]=2.6(克2).∵x A=x B,s2A>s2B,∴该快餐公司应选购B加工厂的鸡腿.24.解:(1)(2)∵样本中能达到最好一组成绩的学生有60-4-6-11-22-10-4=3(名).∴2 100×360=105(名).故估计全校学生60秒跳绳成绩能达到最好一组成绩的有105名.(3)由题意可得:样本平均数=(4×70+6×90+11×110+22×130+10×150+4×170+3×190)÷60≈127(次),众数为130次,从样本平均数来看,全校学生60秒跳绳平均水平约为127次;从众数来看,全校学生60秒跳绳成绩在120次到140次之间的人数较多.。
苏教版九年级数学上册第二章 2.3 确定圆的条件 练习题(含答案解析)
![苏教版九年级数学上册第二章 2.3 确定圆的条件 练习题(含答案解析)](https://img.taocdn.com/s3/m/6af417def242336c1fb95e8c.png)
第二章 2.3 确定圆的条件一.选择题(共10小题)1.如图,⊙O是△ABC的外接圆,半径为R,∠A=45°,连接OB、OC,则边BC的长为()A.R B.R C.R D.2.如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述不正确的是()A.O是△AEB的外心,O不是△AED的外心B.O是△BEC的外心,O不是△BCD的外心C.O是△AEC的外心,O不是△BCD的外心D.O是△ADB的外心,O不是△ADC的外心3.如图,△ABC是⊙O的内接三角形,把沿BC折叠后,与弦AB交于点P,恰好OP⊥AB.若OP=1,AB=4,则BC:AC等于()A.B.C.D.4.已知⊙O的半径OA长为,若OB=,则可以得到的正确图形可能是()A.B.C.D.5.如图,已知△ABC内接于⊙O,点P在⊙O内,点O在△P AB内,若∠C=50°,则∠P 的度数可以为()A.20°B.50°C.110°D.80°6.如图,AD是△ABC外接圆的直径.若∠B=64°,则∠DAC等于()A.26°B.28°C.30°D.32°7.如图,线段AB=6,C为线段AB上的一个动点,以AC、BC为边作等边△ACD和等边△BCE,⊙O外接于△CDE,则O半径的最小值为()A.6B.C.2D.38.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=13,CD=5,AB=12,则⊙O的直径等于()A.B.15C.13D.179.已知⊙O的半径为4cm.若点P到圆心O的距离为3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.与⊙O的位置关系无法确定10.如图,在平面直角坐标系中,C(0,4),A(3,0),⊙A半径为2,P为⊙A上任意一点,E是PC的中点,则OE的最小值是()A.1B.C.2D.二.填空题(共5小题)11.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.12.(2019•衡阳)已知圆的半径是6,则圆内接正三角形的边长是.13.(2018•凉山州)如图,△ABC外接圆的圆心坐标是.14.(2018•临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.15.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP,OP,则△AOP面积的最大值为.三.解答题(共5小题)16.如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.17.如图,已知△ABC及其外接圆,∠C=90°,AC=10.(1)若该圆的半径为5,求∠A的度数;(2)点M在AB边上(AM>BM),连接CM并延长交该圆于点D,连接DB,过点C作CE垂直DB的延长线于E.若BE=3,CE=4,试判断AB与CD是否互相垂直,并说明理由.18.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l 交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△P AC∽△PDF;(2)若AB=5,=,求PD的长.19.如图,在△ABC中,BD平分∠ABC,交△ABC外接圆于另一点D.点E在BA延长线上,DE=DB.(1)求证:EA=BC;(2)若EB=8,BC=2,求ED2﹣CD2的值.20.如图,△ABC是⊙O的内接三角形,AC=BC,D为上一点,延长DA至点E,使CE=CD.(1)求证:AE=BD;(2)若AC⊥BC,求证:AD+BD=CD.答案与解析一.选择题(共10小题)1.如图,⊙O是△ABC的外接圆,半径为R,∠A=45°,连接OB、OC,则边BC的长为()A.R B.R C.R D.【分析】根据圆周角定理得到∠BOC=90°,根据等腰直角三角形的性质即可得到结论BC=OB=R,【解答】解:∵∠A=45°,∴∠BOC=90°,∵半径为R,∴OB=OC=R,∴BC=OB=R,故选:A.【点评】此题考查了三角形的外接圆与外心,圆周角定理、勾股定理,等腰直角三角形的性质,熟练正确圆周角定理是解决本题的关键.2.如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述不正确的是()A.O是△AEB的外心,O不是△AED的外心B.O是△BEC的外心,O不是△BCD的外心C.O是△AEC的外心,O不是△BCD的外心D.O是△ADB的外心,O不是△ADC的外心【分析】根据三角形的外心得出OA=OC=OA,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【解答】解:连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OA,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OE≠OD,即O不是△AED的外心,OA=OE=OB,即O是△AEB的外心,OA=OC=OE,即O是△ACE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:D.【点评】本题考查了正方形的性质和三角形的外心与外接圆,能熟记知识点的内容是解此题的关键,注意:三角形的外心到三个顶点的距离相等,正方形的四边都相等.3.如图,△ABC是⊙O的内接三角形,把沿BC折叠后,与弦AB交于点P,恰好OP⊥AB.若OP=1,AB=4,则BC:AC等于()A.B.C.D.【分析】连接AO并延长交⊙O于点M,过点O作OD⊥BM于点D,过点A作AN⊥BC 于点N,由垂径定理和圆周角定理可得∠ABM=90°,AP=PB=AB=2,由三角形中位线可得BM=2OP=2,OD=2,由锐角三角函数可得AN=2CN,由勾股定理可求AC 的长,由等腰三角形的性质可得BN=AN,即可求解.【解答】解:如图,连接AO并延长交⊙O于点M,过点O作OD⊥BM于点D,过点A 作AN⊥BC于点N,∵AM是直径∴∠ABM=90°∵OP⊥AB∴AP=PB=AB=2,且AO=OM∴BM=2OP=2∴点M与点P关于BC对称,∴∠CBA=∠CBM=45°∵OD⊥BM,∴BD=DM=1,且AO=OM∴OD=AB=2,∵∠C=∠M,∴tan∠C=tan∠M=∴设CN=a,则AN=2a,∴AC==a,∵AN⊥BC,∠ABC=45°∴AN=BN=2a,∴BC=3a,故选:B.【点评】本题考查了三角形的外接圆和外心,折叠的性质,圆的有关知识,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.4.已知⊙O的半径OA长为,若OB=,则可以得到的正确图形可能是()A.B.C.D.【分析】根据点到直线的距离和圆的半径的大小关系判断点与圆的位置关系即可.【解答】解:∵⊙O的半径OA长为,若OB=,∴OA<OB,∴点B在圆外,故选:A.【点评】本题考查了点与圆的位置关系,解题的关键是根据数据判断出点到直线的距离和圆的半径的大小关系,难度不大.5.如图,已知△ABC内接于⊙O,点P在⊙O内,点O在△P AB内,若∠C=50°,则∠P 的度数可以为()A.20°B.50°C.110°D.80°【分析】延长AP交圆O于D,连接BD,根据三角形的外角的性质得到∠APB>∠ADB >50°,于是得到结论.【解答】解:延长AP交圆O于D,连接BD,则∠ADB=∠C=50°,∴∠APB>∠ADB>50°,∵点O在△P AB内,∴∠APB<90°,∴∠P的度数可以为80°,故选:D.【点评】本题考查了三角形的外接圆与外心,三角形的外角的性质,圆周角定理,熟练掌握圆周角定理是解题的关键.6.如图,AD是△ABC外接圆的直径.若∠B=64°,则∠DAC等于()A.26°B.28°C.30°D.32°【分析】根据圆周角定理得到∠ACD=90°,∠ADC=∠B=64°,然后利用互余计算∠DAC的度数.【解答】解:∵AD为直径,∴∠ACD=90°,∵∠ADC=∠B=64°,∴∠DAC=90°﹣64°=26°.故选:A.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.7.如图,线段AB=6,C为线段AB上的一个动点,以AC、BC为边作等边△ACD和等边△BCE,⊙O外接于△CDE,则O半径的最小值为()A.6B.C.2D.3【分析】分别作∠A与∠B角平分线,交点为P.由三线合一可知AP与BP为CD、CE垂直平分线;再由垂径定理可知圆心O在CD、CE垂直平分线上,则交点P与圆心O重合,即圆心O是一个定点;连OC,若半径OC最短,则OC⊥AB,由△AOB为底边4,底角30°的等腰三角形,可求得OC=.【解答】解:如图,分别作∠A与∠B角平分线,交点为P.∵△ACD和△BCE都是等边三角形,∴AP与BP为CD、CE垂直平分线.又∵圆心O在CD、CE垂直平分线上,则交点P与圆心O重合,即圆心O是一个定点.连接OC.若半径OC最短,则OC⊥AB.又∵∠OAC=∠OBC=30°,AB=6,∴OA=OB,∴AC=BC=3,∴在直角△AOC中,OC=AC•tan∠OAC=3×tan30°=.故选:B.【点评】本题考查了三角形的外接圆与外心,需要掌握等边三角形的“三线合一”的性质,三角形的外接圆圆心为三角形的垂心,点到直线的距离垂线段最短以及解直角三角形等知识点.难度不大,注意数形结合数学思想的应用.8.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=13,CD=5,AB=12,则⊙O的直径等于()A.B.15C.13D.17【分析】作直径AE,连接BE,如图,先利用勾股定理计算出AD=12,根据圆周角定理得到∠ABE=90°,∠AEB=∠ACB,则可判断△ABE∽△ADC,然后利用相似比求出AE 即可.【解答】解:作直径AE,连接BE,如图,∵AD⊥BC,∴∠ADC=90°,∴AD==12,∵AE为直径,∴∠ABE=90°,∴∠ABE=∠ADC,而∠AEB=∠ACB,∴△ABE∽△ADC,∴=,即=,∴AE=13,即⊙O的直径等于13.故选:C.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.9.已知⊙O的半径为4cm.若点P到圆心O的距离为3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.与⊙O的位置关系无法确定【分析】直接根据点与圆的位置关系进行判断.【解答】解:∵点P到圆心的距离为3cm,而⊙O的半径为4cm,∴点P到圆心的距离小于圆的半径,∴点P在圆内,故选:A.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.10.如图,在平面直角坐标系中,C(0,4),A(3,0),⊙A半径为2,P为⊙A上任意一点,E是PC的中点,则OE的最小值是()A.1B.C.2D.【分析】如图,连接AC,取AC的中点H,连接EH,OH.利用三角形的中位线定理可得EH=1,推出点E的运动轨迹是以H为圆心半径为1的圆.【解答】解:如图,连接AC,取AC的中点H,连接EH,OH.∵CE=EP,CH=AH,∴EH=P A=1,∴点E的运动轨迹是以H为圆心半径为1的圆,∵C(0,4),A(3,0),∴H(1.5,2),∴OH==2.5,∴OE的最小值=OH﹣EH=2.5﹣1=1.5,故选:B.【点评】本题考查点与圆的位置关系,坐标与图形的性质,三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,正确寻找点E的运动轨迹,属于中考选择题中的压轴题.二.填空题(共5小题)11.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为5或5.【分析】如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC =AB=5,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC =OB=5.【解答】解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD=OB=,∴BC=AB=5,如图2,当∠DOB=90°,∴∠BOC=90°,∴△BOC是等腰直角三角形,∴BC=OB=5,综上所述:若△OBD是直角三角形,则弦BC的长为5或5,故答案为:5或5.【点评】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.12.(2019•衡阳)已知圆的半径是6,则圆内接正三角形的边长是6.【分析】易得正三角形的中心角为120°,那么中心角的一半为60°,利用60°的正弦值可得正三角形边长的一半,乘以2即为正三角形的边长.【解答】解:如图,圆半径为6,求AB长.∠AOB=360°÷3=120°连接OA,OB,作OC⊥AB于点C,∵OA=OB,∴AB=2AC,∠AOC=60°,∴AC=OA×sin60°=6×=3,∴AB=2AC=6,故答案为:6.【点评】本题考查的是三角形的外接圆与外心,先利用垂径定理和相应的三角函数知识得到AC的值是解决本题的关键.13.(2018•凉山州)如图,△ABC外接圆的圆心坐标是(4,6).【分析】因为BC是线段,AB是正方形的对角线,所以作AB、BC的垂直平分线,找到交点O即可.【解答】解:作线段BC的垂直平分线,作AB的垂直平分线,两条线相交于点O所以O的坐标为(4,6)故答案为:(4,6)【点评】本题考查了线段的垂直平分线及三角形的外心.三角形三边的垂直平分线的交点是三角形的外心.解决本题需仔细分析三条线段的特点.14.(2018•临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.【分析】根据题意作出合适的辅助线,然后根据圆的相关知识即可求得△ABC外接圆的直径,本题得以解决.【解答】解:设圆的圆心为点O,能够将△ABC完全覆盖的最小圆是△ABC的外接圆,∵在△ABC中,∠A=60°,BC=5cm,∴∠BOC=120°,作OD⊥BC于点D,则∠ODB=90°,∠BOD=60°,∴BD=,∠OBD=30°,∴OB=,得OB=,∴2OB=,即△ABC外接圆的直径是cm,故答案为:.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.15.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP,OP,则△AOP面积的最大值为.【分析】当P点移动到过点P的直线平行于OA且与⊙D相切时,△AOP面积的最大,由于P为切点,得出MP垂直于切线,进而得出PM⊥AC,根据勾股定理先求得AC的长,进而求得OA的长,根据△ADM∽△ACD,求得DM的长,从而求得PM的长,最后根据三角形的面积公式即可求得.【解答】解:当P点移动到过点P的直线平行于OA且与⊙D相切时,△AOP面积的最大,如图,∵过P的直线是⊙D的切线,∴DP垂直于切线,延长PD交AC于M,则DM⊥AC,∵在矩形ABCD中,AB=3,BC=4,∴AC==5,∴OA=,∵∠AMD=∠ADC=90°,∠DAM=∠CAD,∴△ADM∽△ACD,∴=,∵AD=4,CD=3,AC=5,∴DM=,∴PM=PD+DM=1+=,∴△AOP的最大面积=OA•PM=××=,故答案为:.【点评】本题考查了圆的切线的性质,矩形的性质,平行线的性质,勾股定理的应用以及三角形相似的判定和性质,本题的关键是判断出P处于什么位置时面积最大.三.解答题(共5小题)16.如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.【分析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论..【解答】解:(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,,∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r﹣2,∵CE2+OE2=OC2,∴32+(r﹣2)2=r2,解得r=,∴AD=,∵AE=AD﹣DE,∴AE=﹣2=.【点评】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.17.如图,已知△ABC及其外接圆,∠C=90°,AC=10.(1)若该圆的半径为5,求∠A的度数;(2)点M在AB边上(AM>BM),连接CM并延长交该圆于点D,连接DB,过点C作CE垂直DB的延长线于E.若BE=3,CE=4,试判断AB与CD是否互相垂直,并说明理由.【分析】(1)先证明AB是⊙O的直径,根据半径可以求出AB,根据勾股定理求出BC,得出BC=AC,从而求出∠A的度数;(2)先根据题意作出图形,根据勾股定理求出BC,再证明∠A=∠CDE.由直角三角形ABC可以得出tan A===,可得tan∠CDE=tan A=.在Rt△CDE中,可以求出DE,从而求出BD=5=BC,由OC=OD得出OB⊥CD,即AB⊥CD.【解答】解:(1)∵∠C=90°,∴AB为△ABC外接圆的直径,∵该圆的半径为5,∴AB=10,∴在Rt△ABC中,AC2+BC2=AB2.∵AC=10∴102+BC2=(10)2.∴BC=10,∴AC=BC.∴∠A=∠B.∴∠A==45°;(2)AB与CD互相垂直,理由如下:由(1)得,AB为直径,取AB中点O,则点O为圆心,连接OC,OD.∵CE⊥DB,∴∠E=90°.∴在Rt△CBE中,BE2+CE2=BC2.即32+42=BC2.∴BC=5.∵,∴∠A=∠BOC,∠CDE=∠BOC.∴∠A=∠CDE.∵∠ACB=90°,∴在Rt△ACB中,tan A===.∴tan∠CDE=tan A=.又∵在Rt△CED中,tan∠CDE=,∴=.即=.∴DE=8.∴BD=DE﹣BE=8﹣3=5.∴BC=BD.∴∠BOC=∠BOD.∵OC=OD,∴OM⊥CD.即AB⊥CD.【点评】本题考查了三角形的外接圆,圆的有关性质和计算,锐角三角函数,勾股定理等知识,熟练掌握三角形和圆的有关知识是解题的关键.18.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l 交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△P AC∽△PDF;(2)若AB=5,=,求PD的长.【分析】(1)根据AB⊥CD,AB是⊙O的直径,得到=,∠ACD=∠B,由∠FPC =∠B,得到∠ACD=∠FPC,结论可得;(2)连接OP,由=,得到OP⊥AB,∠OPG=∠PDC,根据AB是⊙O的直径,得到∠ACB=90°,由于AC=2BC,于是得到tan∠CAB=tan∠DCB=,得到==,求得AE=4BE,通过△OPG∽△EDG,得到=,然后根据勾股定理即可得到结果.【解答】(1)证明:连接AD,∵AB⊥CD,AB是⊙O的直径,∴=,∴∠ACD=∠B=∠ADC,∵∠FPC=∠B,∴∠ACD=∠FPC,∴∠APC=∠ACF,∵∠F AC=∠PDF,∴△P AC∽△PDF;(2)连接OP,则OA=OB=OP=AB=,∵=,∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=2BC,∴tan∠CAB=tan∠DCB=,∴==,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴=,∴==,∴GE=,OG=,∴PG==,GD==,∴PD=PG+GD=.【点评】本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG∽△EDG是解题的关键.19.如图,在△ABC中,BD平分∠ABC,交△ABC外接圆于另一点D.点E在BA延长线上,DE=DB.(1)求证:EA=BC;(2)若EB=8,BC=2,求ED2﹣CD2的值.【分析】(1)连接AD,由等腰三角形的性质得到∠E=∠DBA,由角平分线的性质得到∠DBC=∠DBA,根据全等三角形的性质即可得到结论;(2)过D作DH⊥AB于H,于是得到EH=EB=4,根据勾股定理即可得到结论.【解答】(1)证明:连接AD,∵DE=DB,∴∠E=∠DBA,∵BD平分∠ABC,∴∠DBC=∠DBA,∴∠DBC=∠E,∵∠EAD=∠BCD,∴△DBC≌△DEA(AAS),∴EA=BC;(2)解:过D作DH⊥AB于H,∵DE=DB,DH⊥AB,∴EH=EB=4,∵EA=BC=2,∴AH=EH﹣EA=2,∵∠DBC=∠DBA,∴CD=AD,CD2=AD2,∵ED2=HD2+HE2=HD2+16,AD2=HD2+HA2=HD2+4,∴ED2﹣CD2=16﹣4=12.【点评】本题考查了三角形的外接圆和外心,圆周角定理,勾股定理,全等三角形的判定和性质,正确的作出辅助线是解题的关键.20.如图,△ABC是⊙O的内接三角形,AC=BC,D为上一点,延长DA至点E,使CE=CD.(1)求证:AE=BD;(2)若AC⊥BC,求证:AD+BD=CD.【分析】(1)先证出△AEC≌△BDC,只要再找一对角相等就可以了,利用边相等,可得∠CAB=∠CBA,∠CEA=∠CDE,而∠CAB=∠CDB=∠CDE,故∠CEA=∠CDB,(CE=CD,∠CAE=∠CBD)再利用SAS可证出△AEC≌△BDC.(2)利用(1)中的全等,可得,AE=BD,∠ECA=∠DCB,那么就有∠ECD=∠ECA+∠ACD=90°,根据勾股定理得DE =CD,而DE=AD+AE=AD+BG,所以有AD+BD =CD.【解答】证明:(1)∵△ABC是⊙O的内接三角形,AC=BC,∴∠ABC=∠BAC,∵CE=CD,∴∠CDE=∠CED;又∵∠ABC=∠CDE,∴∠ABC=∠BAC=∠CDE=∠CED,(同弧上的圆周角相等)∴∠ACB=∠DCE,∴∠BCD=∠ACE,在△AEC和△BDC中,,∴△AEC≌△BDC(SAS),∴AE=BD.(2)∵AC⊥BC,∴∠ACB=90°,∴∠DCE=90°;又∵CD=CE,∴△DCE为等腰直角三角形,∴DE =CD,又∵DE=AD+AE且AE=BD,∴AD+BD =CD.【点评】本题利用了同弧上的圆周角相等,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,还有圆内接四边形的外角等于其内对角等知识.21。
苏科版九年级(上册)数学第二章 对称图形—圆 单元综合检测卷【含答案】
![苏科版九年级(上册)数学第二章 对称图形—圆 单元综合检测卷【含答案】](https://img.taocdn.com/s3/m/13e009f077eeaeaad1f34693daef5ef7ba0d1210.png)
苏科版九年级(上册)数学第二章 对称图形—圆 单元综合检测卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在相应位置上)1.(本题3分)如图,AB 为⊙O 的直径,点C 在⊙O 上,若50OCA ∠=︒,4AB =,则BC 的长为( )A .103πB .109πC .59π D .518π 2.(本题3分)在一个圆中任意画4条半径,则这个圆中有扇形( )A .4个B .8个C .12个D .16个3.(本题3分)如图,半径为5的⊙A 中,弦BC ED ,所对的圆心角分别是BAC ∠,EAD ∠.已知6DE =,180BAC EAD ∠+∠=︒,则弦BC 的弦心距等于( )A B C .4 D .34.(本题3分)如图所示,AB 是O 的直径,PA 切O 于点A ,线段PO 交O 于点C ,连接BC ,若36P ∠=︒,则B 等于( )A .27︒B .32︒C .36︒D .54︒5.(本题3分)如图,半圆的圆心为0,直径AB 的长为12,C 为半圆上一点,⊙CAB =30°,AC 的长是( )A .12πB .6πC .5πD .4π6.(本题3分)如图,一块直角三角板ABC 的斜边AB 与量角器的直径重合,点D 对应54°,则⊙BCD 的度数为( )A .54°B .27°C .63°D .36°7.(本题3分)如图,半径为3的⊙O 内有一点A ,OA P 在⊙O 上,当⊙OP A 最大时,S ⊙OP A 等于( )A .32BCD .18.(本题3分)如图,点A 、B 、C 在O 上,,CD OA CE OB ⊥⊥ ,垂足分别为D 、E ,若40DCE ∠=︒,则ACB ∠的度数为( )A .140︒B .70︒C .110︒D .80︒9.(本题3分)如图是某几何体的三视图及相关数据,则下面判断正确的是( )A .a >cB .b >cC .a 2+4b 2=c 2D .a 2+b 2=c 2 10.(本题3分)O 的半径为5,同一个平面内有一点P ,且OP =7,则P 与O 的位置关系是( ) A .P 在圆内 B .P 在圆上 C .P 在圆外 D .无法确定二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在相应位置上)11.(本题3分)如图,将长为8cm 的铁丝首尾相接围成半径为2cm 的扇形.则S =扇形________2cm .12.(本题3分)如图,在O 中,半径OC 垂直AB 于,8,2D AB CD ==,则O 的半径是_____.13.(本题3分)如图,四边形ABCD 内接于⊙O ,且四边形OABC 是平行四边形,则⊙D =______.14.(本题3分)如图,AB 是⊙O 的弦,点C 在过点B 的切线上,且OC ⊙OA ,OC 交AB 于点P ,已知⊙OAB =22°,则⊙OCB =__________.15.(本题3分)已知圆心角为120的扇形的面积为212cm π,则扇形的弧长是________cm .16.(本题3分)如图,在矩形ABCD 中,AB=4,AD=3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是__________.17.(本题3分)在一个圆中,有个圆心角为160°的扇形,则这个扇形的面积是整个圆面积的________. 18.(本题3分)如图,⊙ABC 内接于⊙O ,若⊙OBC=25°,则⊙A=_____.19.(本题3分)如图,Rt ABC △中,90C ∠=︒,30ABC ∠=︒,6AB =.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA DE =,则AD 的取值范围是______.20.(本题3分)如图是一个圆锥的主视图,根据图中标出的数据(单位:cm ),计算这个圆锥侧面展开图圆心角的度数为_______.三、解答题(本大题共10小题,共60分,请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)21.(本题5分)如图所示是一个纸杯,它的母线延长后形成的立体图形是圆锥,该圆锥的侧面展开图是扇形OAB,经测量,纸杯开口圆的直径为6cm,下底面直径为4cm,母线长EF=9cm,求扇形OAB的圆心角及这个纸杯的表面积.(结果保留根号和π)22.(本题5分)如图,大正方形的边长为8厘米,求阴影部分的周长和面积(结果保留π)23.(本题5分)如图所示,⊙B=⊙OAF=90°,BO=3 cm,AB=4 cm,AF=12 cm,求图中半圆的面积.24.(本题5分)某地出土一个明代残破圆形瓷盘,为复制该瓷盘需确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心(不要求写作法、证明和讨论,但要保留作图痕迹)25.(本题5分)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为216cm,求半圆的半径.26.(本题5分)如图,某工厂要选一块矩形铁皮加工成一个底面半径为20 cm,高为的圆锥形漏斗,要求只能有一条接缝(接缝忽略不计),请问:选长、宽分别为多少厘米的矩形铁皮,才能使所用材料最省?=,以AB为直径的O分别交BC,AC于点D,27.(本题6分)已知:如图,在ABC中,AB ACE,连结EB,交OD于点F.⊥.(1)求证:OD BE(2)若DE =,5AB =,求AE 的长.28.(本题6分)如图,O 的两条弦//AB CD (AB 不是直径),点E 为AB 中点,连接EC ,ED . (1)直线EO 与AB 垂直吗?请说明理由;(2)求证:EC ED =.29.(本题8分)如图,在Rt⊙ABC 中,90C ∠=︒,AD 平分⊙BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)30.(本题10分)如图,在Rt ⊙ABC 中,⊙C =90°,以BC 为直径的⊙O 交斜边AB 于点M ,若H 是AC 的中点,连接MH .(1)求证:MH 为⊙O 的切线.(2)若MH =32,AC BC =34,求⊙O 的半径. (3)在(2)的条件下分别过点A 、B 作⊙O 的切线,两切线交于点D ,AD 与⊙O 相切于N 点,过N 点作NQ ⊙BC ,垂足为E ,且交⊙O 于Q 点,求线段NQ 的长度.答案1.B解:⊙⊙OCA=50°,OA=OC,⊙⊙A=50°,⊙⊙BOC=2⊙A=100°,⊙AB=4,⊙BO=2,⊙BC的长为:10021819ππ⨯=故选B.2.C解:图中有四条半径,以其中一条半径为始边,可以找到3个扇形, 所以可以把这个图分成4×3=12个扇形,故选C.3.D解:作AH⊙BC于H,作直径CF,连结BF,如图,⊙⊙BAC+⊙EAD=180°,⊙BAC+⊙BAF=180°,⊙⊙DAE=⊙BAF,⊙DE BF=,⊙DE=BF=6,⊙AH⊙BC,⊙CH=BH,而CA=AF,⊙AH为⊙CBF的中位线,⊙AH=12BF=3,故选:D.4.A⊙PA 切O 于点A ,⊙90PAO ∠=︒,⊙36P ∠=︒,⊙903654POA ∠=︒-︒=︒, ⊙1272B POA ∠=∠=︒, 故A .5.D解:如图,连接OC ,⊙OA =OC ,⊙CAB =30°,⊙⊙C =⊙CAB =30°,⊙⊙AOC =120°,⊙弧AC 的长度l =12064180ππ⨯=. 故选:D .6.C⊙一块直角三角板ABC 的斜边AB 与量角器的直径重合, ⊙点A. B. C. D 都在以AB 为直径的圆上,⊙点D 对应54°,即⊙AOD=54°, ⊙⊙ACD=12⊙AOD=27°, ⊙⊙BCD=90°−⊙ACD=63°.故选C.7.B解:如图所示:OA 、OP 是定值,PA OA ∴⊥时,OPA ∠最大,在直角三角形OPA 中,OA =3OP =,PA ∴=12OPA S OA AP ∆∴=⋅12==. 故选:B .8.C解:在优弧AB 上取一点F ,连接AF ,BF .⊙,CD OA CE OB ⊥⊥ ,⊙⊙CDO=⊙CEO=90°.⊙40DCE ∠=︒,⊙⊙O=140°,⊙⊙F=70°,⊙⊙ACB=180°-70°=110°.故选C .9.D由题意可知该几何体是圆锥,根据勾股定理得,a 2+b 2=c 2故选:D .10.C解:因为75OP =>,所以点P 与圆O 的位置关系是点在圆外,故选:C11.4⊙扇形周长等于铁丝的长为8 cm ,扇形的半径是2 cm ,⊙扇形弧长是4 cm ,⊙12S lr=扇形214242cm=⨯⨯=.故4.12.5设⊙O的半径为r,则OD=r-2,⊙OC⊙AB,⊙AD=BD=12AB=4,在Rt⊙AOD中,⊙OD2+AD2=OA2,⊙(r-2)2+42=r2,解得r=5,即⊙O的半径为5.故5.13.60°⊙四边形ABCD内接于⊙O,⊙⊙D+⊙B=180°,由圆周角定理得,⊙D=12⊙AOC,⊙四边形OABC为平行四边形,⊙⊙AOC=⊙B,⊙2⊙D=180°−⊙D,解得,⊙D=60°,故60.14.44°连接OB,⊙BC是⊙O的切线,⊙OB⊙BC,⊙⊙OBA+⊙CBP=90°,⊙OC⊙OA,⊙OA=OB ,⊙OAB=22°,⊙⊙OAB=⊙OBA=22°,⊙⊙APO=⊙CBP=68°,⊙⊙APO=⊙CPB ,⊙⊙CPB=⊙ABP=68°,⊙⊙OCB=180°-68°-68°=44°,故答案为44°15.4π令扇形的半径和弧长分别为R 和l ,则S=2120360R π=12π, ⊙R=6cm , ⊙l=0208161π⨯=4πcm . ⊙扇形的弧长为4πcm .16.35r <<.根据勾股定理可求得BD=5,三个顶点A 、B 、C 中至少有一个点在圆内,点A 与点D 的距离最近,点A 应该在圆内,所以r>3,三个顶点A 、B 、C 中至少有一个点在圆外,点B 与点D 的距离最远,点B 应该在圆外,所以r<5,所以r 的取值范围是35r <<.17.49160°÷360°=49 故答案为.4918.65°.连接OC .⊙OB=OC ,⊙OBC=25°⊙⊙BOC=130°, ⊙⊙A=12⊙BOC=65°. 故答案是:65°.19.23AD ≤<以D 为圆心,AD 的长为半径画圆,当圆与BC 相切,如图⊙,DE BC ⊥时,30ABC =︒∠, ⊙12DE BD =, ⊙DA DE =⊙2DB DA =6AB =,2AD DE ∴==⊙DE 到BC 的最短距离为2⊙2AD ≥当圆与BC 相交时,如图⊙,若交点为B 和C ,则132AD AB ==, ⊙3AD < AD ∴的取值范围是23AD ≤<.20.120⊙圆锥的底面半径为1,⊙圆锥的底面周长为2π,⊙圆锥的高是⊙圆锥的母线长为3,设扇形的圆心角为n°, ⊙32180n ππ⨯==2π,解得n=120.即圆锥的侧面展开图中扇形的圆心角为120°.故答案为120°.21.40度 49π2cm解:由题意可知:BA =6πcm , CD =4π,设⊙AOB=n ,AO=R ,则CO=R ﹣9,由弧长公式得:l =180n R π,⊙618041809n nR nR ⨯=⎧⎨⨯=-⎩,解得:n=40,R=27,故扇形OAB 的圆心角是40度.⊙R=27,R ﹣9=18,⊙S 扇形OCD = 12×4π×18=36π(cm 2),S 扇形OAB = 12×6π×27=81π(cm 2),纸杯侧面积=S 扇形OAB ﹣S 扇形OCD =81π﹣36π=45π(cm 2),纸杯底面积=π•22=4π(cm 2)纸杯表面积=45π+4π=49π(cm 2).22.(16)4π+厘米;(32)8π+平方厘米解:周长:π×8×14×2+8×12×4 =8π×12+16=4π+16(厘米);面积:8×8×12+π×282÷()×12=32+8π(平方厘米).答:阴影部分的周长是4π+16厘米,面积是32+8π平方厘米.23.图中半圆的面积是169π8cm 2. 解:如图,⊙在直角⊙ABO 中,⊙B =90°,BO =3 cm ,AB =4 cm ,⊙AO 5 cm.则在直角⊙AFO 中,由勾股定理,得到FO 13 cm ,⊙图中半圆的面积=12π×2FO ⎛⎫ ⎪⎝⎭2=12π×169π169π88=(cm 2). 答:图中半圆的面积是169π8cm 2. 24.作图见解析. 在圆上取两个弦,根据垂径定理,垂直平分弦的直线一定过圆心,所以作出两弦的垂直平分线即可.25.R =.如下图所示,圆心为A ,设大正方形的边长为2x ,圆的半径为R ,⊙正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,⊙AE BC x ==,2CE x =,⊙小正方形的面积为216cm ,⊙小正方形的边长4cm EF DF ==,由勾股定理得,22222R AE CE AF DF =+=+,即()2222444x x x +=++,解得4x =,⊙R =.26.选长为90 cm,宽为60 cm的矩形铁皮,才能使所用材料最省.⊙圆锥形漏斗的底面半径为20cm,高为,⊙圆锥的母线长为R==60(cm).设圆锥的侧面展开图的圆心角为n°,则有60180nπ⨯=2π×20,解得:n=120.方案一:如图⊙,扇形的半径为60 cm,矩形的宽为60 cm,易求得矩形的长为cm.此时矩形的面积为60⨯(cm2).方案二:如图⊙,扇形与矩形的两边相切,有一边重合,易求得矩形的宽为60 cm,长为30+60=90(cm),此时矩形的面积为90×60=5 400(cm2).⊙>5400,⊙方案二所用材料最省,即选长为90 cm,宽为60 cm的矩形铁皮,才能使所用材料最省.27.(1)见解析;(2)3(1)证明:⊙AB为⊙O的直径,⊙⊙AEB=90°,⊙AB=AC,⊙⊙C=⊙ABC.⊙BO=OD,⊙⊙ODB=⊙ABC,⊙⊙C=⊙ODB,⊙OD//AC,⊙OD⊙BE;(2)解:⊙OD⊙BE,⊙弧BD=弧DE,⊙AB=5,则OB=OD=52,设OF=x,则DF=52-x,⊙BF2=BD2-DF2=OB2-OF2,即2-(52-x)2=(52)2-x 2, 解得x=32, ⊙OF//AE ,OA=OB , ⊙AE=2OF=2×32=3. 28.(1)直线EO 与AB 垂直.理由见解析;(2)证明见解析.解:(1)直线EO 与AB 垂直.理由如下:如图,连接EO ,并延长交CD 于F .⊙ EO 过点O ,E 为AB 的中点,EO AB ∴⊥.(2)EO AB ⊥,//AB CD ,EF CD ∴⊥.⊙ EF 过点O ,CF DF ∴=,EF ∴垂直平分CD ,EC ED ∴=.29.(1)证明见解析 (2)23π(1)连接OD .⊙OA =OD ,⊙⊙OAD =⊙ODA .⊙⊙OAD =⊙DAC ,⊙⊙ODA =⊙DAC ,⊙OD ⊙AC ,⊙⊙ODB =⊙C =90°,⊙OD ⊙BC ,⊙BC 是⊙O 的切线. (2)连接OE ,OE 交AD 于K .⊙AE DE =,⊙OE ⊙AD .⊙⊙OAK =⊙EAK ,AK =AK ,⊙AKO =⊙AKE =90°,⊙⊙AKO ⊙⊙AKE ,⊙AO =AE =OE ,⊙⊙AOE 是等边三角形,⊙⊙AOE =60°,⊙S 阴=S 扇形OAE ﹣S ⊙AOE 2602360π⋅⋅=2223π=- 30.(1)证明见解析;(2)2;(3)4813. 解:(1)连接OH 、OM ,⊙H 是AC 的中点,O 是BC 的中点⊙OH 是⊙ABC 的中位线 ,⊙OH ⊙AB ,⊙⊙COH =⊙ABC ,⊙MOH =⊙OMB又⊙OB =OM ,⊙⊙OMB =⊙MBO ,⊙⊙COH =⊙MOH ,在⊙COH 与⊙MOH 中,⊙OC =OM ,⊙COH =⊙MOH ,OH =OH⊙⊙COH ⊙⊙MOH (SAS ),⊙⊙HCO =⊙HMO =90°,⊙MH 是⊙O 的切线;(2)⊙MH 、AC 是⊙O 的切线,⊙HC =MH =32, ⊙AC =2HC =3, ⊙AC BC =34, ⊙BC =4 ,⊙⊙O 的半径为2;(3)连接OA 、CN 、ON ,OA 与CN 相交于点I , ⊙AC 与AN 都是⊙O 的切线 ,⊙AC =AN ,AO 平分⊙CAD ,⊙AO ⊙CN ,⊙AC =3,OC =2 ,⊙由勾股定理可求得:A O ⊙12AC •OC =12AO •CI ,⊙CI ,⊙由垂径定理可求得:C N =13, 设OE =x ,由勾股定理可得:2222CN CE ON OE -=-, ⊙22144(2)413x x -+=-, ⊙x =1013, ⊙CE =1013, 由勾股定理可求得:EN =2413, ⊙由垂径定理可知:NQ =2EN =4813.。
九年级上册数学第二章单元测试卷(含答案)
![九年级上册数学第二章单元测试卷(含答案)](https://img.taocdn.com/s3/m/9a11407e0a1c59eef8c75fbfc77da26925c5960b.png)
九年级上册数学第二章单元测试卷(含答案)第二章单元测试卷[时间:120分钟分值:150分]一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.方程(x+1)(x-2)=0的根是()A.x=-1 B.x=2C.x1=1,x2=-2 D.x1=-1,x2=22.用配方法解一元二次方程x2+8x+7=0,则方程可变形为() A.(x-4)2=9 B.(x+4)2=9C.(x-8)2=16 D.(x+8)2=573.已知α是一元二次方程x2-x-1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5C.1.5<α<2 D.2<α<34.已知关于x的一元二次方程3x2+4x-5=0,下列说法正确的是(B)A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定5.若x=-2 是关于x的一元二次方程x2-52ax+a2=0的一个根,则A的值为()A.1或4 B.-1或-4C.-1或4 D.1或-46.某县为了大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造和更新.2016年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2018年投资7.2亿元人民币,那么每年投资的增长率为() A.20%或-220% B.40%C.120% D.20%7.三角形两边长分别为3和6,第三边是方程x2-13x+36=0的根,则三角形的周长为()A.13 B.15C.18 D.13或188.从正方形的铁片上截去2 c m宽的长方形,余下的面积是48 c m2,则原来的正方形铁片的面积是()A.8 c m2B.32 c m2C.64 c m2D.96 c m29.若关于x的方程x2+2x+A=0不存在实数根,则A的取值范围是()A.A<1 B.A>1C.A≤1 D.A≥110.x1,x2是关于x的一元二次方程x2-mx+m-2=0的两个实数根,是否存在实数m使1x1+1x2=0成立?则正确的结论是()A.m=0 时成立B.m=2 时成立C.m=0 或2时成立D.不存在二、填空题(本大题共6个小题,每小题4分,共24分)11.已知x1=3是关于x的一元二次方程x2-4x+C=0的一个根,则方程的另一个根x2=__ ____.12.一小球以15 m/s的速度竖直向上抛出,它在空中的高度h(m)与时间t(s)满足关系式:h=15t-5t2,当t=_________时,小球高度为10 m.小球所能达到的最大高度为________m.13.若关于x的一元二次方程x2-x+m=0有两个不相等的实数根,则m的值可能是_____________(写出一个即可).14.菱形的两条对角线长分别是方程x2-14x+48=0的两实根,则菱形的面积为________.15.已知关于x的一元二次方程x2+(2k+1)x+k2-2=0的两根为x1,x2,且(x1-2)(x1-x2)=0,则k的值是___________.16.如果关于x的方程Ax2+2x+1=0有两个不相等的实数根,则实数A的取值范围是________________.三、解答题(本大题共9个小题,共96分)17.(16分)解方程:(1)(x+8)2=36;(2)x (5x +4)-(4+5x )=0;(3)x 2+3=3(x +1);(4)2x 2-x -1=0(用配方法).18.(8分)已知关于x 的方程x 2+x +n =0有两个实数根-2,m ,求m ,n 的值.19.(10分)先化简,再求值:m -33m 2-6m ÷? ??m +2-5m -2,其中m 是方程x 2+2x -3=0的根.20.(10分)有一个两位数等于其各位数字之积的3倍,其十位数字比个位数字小2,求这个两位数.21.(10分)利用一面墙(墙的长度不限),另三边用58 m长的篱笆围成一个面积为200 m2的矩形场地,求矩形的长和宽.22.(10分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2015年市政府共投资3亿元人民币建设了廉租房12万平方米,2017年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,2017年建设了多少万平方米廉租房?23.(10分)当m为何值时,一元二次方程(m2-1)x2+2(m-1)x +1=0?(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?24.(10分)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?25.(12分)在矩形ABCD中,AB=6 cm,BC=12 cm,点P从点A沿边AB向点B 以1 cm/s的速度移动;同时点Q从点B沿边BC 向点C以2 cm/s的速度移动,设运动时间为t s.问:(1)几秒后△PBQ的面积等于8 cm2?(2)是否存在t,使△PDQ的面积等于26 cm2?参考答案一、1.D 2.B3.C【解析】解方程x 2-x -1=0,得x =1±52,∵α是方程x 2-x -1=0较大的根,∴α=1+52.∵2<5<3,∴3<1+5<4,∴32<1+52<2.4.B 5.B 6.D 7. A 8.C9.B【解析】∵方程不存在实数根,∴Δ=4-4A <0,解得A >1.10.A【解析】∵x 1,x 2是关于x 的一元二次方程x 2-mx +m -2=0的两个实数根,∴x 1+x 2=m ,x 1x 2=m -2.假设存在实数m 使1x 1+1x 2=0成立,则x 1+x 2x 1x 2=0,∴m m -2=0,∴m =0.当m =0时,方程为x 2-2=0,此时Δ=8>0,∴m =0符合题意.二、11.1 【解析】∵x 1+x 2=4,x 1=3,∴x 2=1.12. 1或2 454【解析】当小球高度为10 m 时,有10=15t -5t 2,解得t 1=1,t 2=2.小球达到的高度h =15t -5t 2=-5(t 2-3t )=-5? ????t -322+454,故当t =32时,小球达到的最大高度为454 m.13. 0(答案不唯一) 14. 2415.-2或-94【解析】先由(x 1-2)(x 1-x 2)=0,得出x 1-2=0或x 1-x 2=0,再分两种情况进行讨论:①如果x 1-2=0,将x =2代入x 2+(2k +1)x +k 2-2=0,得4+2(2k +1)+k 2-2=0,解得k =-2;②如果x 1-x 2=0,由Δ=(2k +1)2-4(k 2-2)=0,解得k =-94.综上所述,k 的值是-2或-94.16. A <1且A ≠0【解析】由题意,得Δ=4-4A >0且A ≠0,解得A <1且A ≠0.三、17.(1) 解:直接开平方,得x +8=±6,∴x 1=-2,x 2=-14. 4分(2) 解:提公因式,得(4+5x )(x -1)=0,则4+5x =0或x -1=0.∴x 1=-45,x 2=1. 8分(3)解:整理,得x 2-3x =0,分解因式,得x (x -3)=0,则x =0或x -3=0,∴x 1=0,x 2=3. 12分(4)解:方程两边同除以2,得x 2-12x -12=0,移项,得x 2-12x =12,配方,得? ??x -142=916,开平方,得x -14=±34,∴x 1=1,x 2=-12.16分18.解:将x =-2代入原方程,得(-2)2-2+n =0, 1分解得n =-2, 3分因此原方程为x 2+x -2=0, 5分解得x 1=-2,x 2=1, 7分∴m =1. 8分19.解:原式=m -33m (m -2)÷? ??m 2-4m -2-5m -2 =m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3), 4分∵m 是方程x 2+2x -3=0的根,∴m =-3或m =1. 6分当m =-3时,原式无意义; 8分当m =1时,原式=13m (m +3)=13×1×(1+3)=112. 10分 20.解:设个位数字为x ,则十位数字为(x -2),这个两位数是[10(x -2)+x ].2分根据题意,得10(x -2)+x =3x (x -2),整理,得3x 2-17x +20=0,5分解得x 1=4,x 2=53(不合题意,舍去).8分当x =4时,x -2=2,∴这个两位数是24. 10分21.解:设垂直于墙的一边为x 米, 1分依题意得x(58-2x)=200. 3分解得x1=25,x2=4. 6分∴另一边为8米或50米. 9分故矩形长为25米,宽为8米或长为50米,宽为4米. 10分22.解:(1)设每年市政府投资的增长率为x,1分根据题意,得3(1+x)2=6.75,3分解得x1=0.5=50%,x2=-2.5(不合题,舍去). 5分则每年市政府投资的增长率为50%. 6分(2)6.753×12=27(万平方米).则2017年建设了27万平方米廉租房. 10分23.解:Δ=[2(m-1)]2-4(m2-1)=-8m+8. 1分(1)根据题意,得-8m+8>0,且m2-1≠0,2分解得m<1且m≠-1. 4分(2)根据题意,得-8m+8=0,且m2-1≠0,可知无解,6分则方程不可能有两个相等的实数根. 7分(3)根据题意,得-8m+8<0,且m2-1≠0,8分解得m>1. 10分24.解:设应降价x元,则售价为(60-x)元,销售量为(300+20x)件,1分根据题意,得(60-x-40)(300+20x)=6 080,5分解得x1=1,x2=4,8分又需使顾客得实惠,故取x=4,即定价为56元,故应将销售单价定为56元. 10分25.解:(1)设x秒后△PBQ的面积等于8 cm2.∵AP=x,QB=2x.∴PB=6-x. ∴12(6-x)·2x=8,2分解得x1=2,x2=4,4分故2秒或4秒后△PBQ的面积等于8 cm2. 5分(2)假设存在t使得△PDQ的面积为26 cm2,6分则72-6t-t(6-t)-3(12-2t)=26,8分整理得,t2-6t+10=0,∵Δ=36-4×1×10=-4<0,∴原方程无解,11分∴不存在t,使△PDQ的面积等于26 cm2. 12分。
九年级数学上册笫二章数据离散程度测试题苏科版
![九年级数学上册笫二章数据离散程度测试题苏科版](https://img.taocdn.com/s3/m/318bdff14028915f804dc2e0.png)
九年级数学上册笫二章数据离散程度测试题(苏科版)数据的离散程度单元练习:姓名学号评估一.选择题(20分)1.在统计中,样本的方差可以反映这组数据的()A.平均状态B.分布规律C.离散程度D.数值大小2.样本方差计算式S2=[(x1-30)2+(x2-30)2+…+(xn-30)2]中,数字90和30分别表示样本中的A.众数、中位数B.方差、标准差C.样本中数据的个数、平均数D.样本中数据的个数、中位数()3.甲、乙、丙三名射击运动员在某场测试中各射击20次,3人的测试成绩如下表:甲的成绩环数78910频数4664乙的成绩环数78910频数6446丙的成绩环数78910频数5555则甲、乙、丙3名运动员测试成绩最稳定的是A.甲B.乙C.丙D.3人成绩稳定情况相同()4.下列说法中,错误的有()①一组数据的标准差是它的方差的平方;②数据8,9,10,11,1l的众数是2;③如果数据x1,x2,…,xn的平均数为,那么(x1-)+(x2-)+…(xn-)=0;④数据0,-1,l,-2,1的中位数是l.A、4个B、3个C、2个D、l个5.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是()A.甲、乙射中的总环数相同B.甲的成绩稳定C.乙的成绩波动较大D.甲、乙的众数相同二.填空题(20分)6.数据-5,6,4,0,1,7,5的极差为___________ 7.一组数据中若最小数与平均数相等,那么这组数据的方差为________。
8.已知数据1,2,3,4,5的方差为2,则11,12,13,14,15的方差为_________,标准差为_______。
9.一组数据x1,x2,…,xn的方差为S2,那么数据kx1-5,kx2-5,…,kxn-5的方差为.标准差为.10.某校初三年级甲、乙两班举行电脑汉字输入比赛,两个班能参加比赛的学生每分钟输入汉字的个数,经统计的个数,经统计和计算后结果如下表:班级参加人数平均字数中位数方差甲55135149191乙55135151110有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班同学比赛成绩的波动比乙班学生比赛成绩的波动大。
人教版苏科版初中数学—数据的分析(经典例题含答案)
![人教版苏科版初中数学—数据的分析(经典例题含答案)](https://img.taocdn.com/s3/m/9c8ade4f6d175f0e7cd184254b35eefdc8d31534.png)
一、平均数(一)算数平均数据分析例题答案数例1.一组12个数据的平均数为28,其中一个数据为25.8,那么另外11个数据的平均数是.28.2例1.变式1.有m 个数的平均值是x ,n 个数的平均值是y ,则这m n +个数的平均值是.mx ny m n++例1.变式2.某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是(C )A.30吨B.31吨C.32吨D.33吨例1.变式3.学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘成了条形统计图(如图),则30名学生参加活动的平均次数是(C)A .2B .2.8C .3D .3.3(二)加权平均数例2.某汽车配件厂在一个月(30天)中的零件产量如下:有2天是51件,3天是52件,5天是53件,9天是54件,6天是55件,4天是56件,1天是57件.则平均日产量是件.54例2.变式1.某班有50名学生,数学期中考试成绩为90分的有9人,84分的有12人,73分的有10人,65分的有13人,56分的有2人,45分的有4人,计算这个班学生的数学期中考试平均成绩(保留小数点后第一位)()()190984127310651356245473.750x =⨯+⨯+⨯+⨯+⨯+⨯=分例2.变式2.再一次数学测试中,某班25名男生的平均成绩是86分,23名女生的平均成绩是82分,求这些学生的平均成绩。
(结果精确到0.01分)()8625822384.082523x ⨯+⨯=≈+分例2.变式3.某公司欲招聘一名推销员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下:(百分制)候选人面试笔试甲9087乙8494(1)如果公司认为面试和笔试成绩同等重要,谁将被录取?()()90+872=88.5=84+942=89.x x =÷÷∴甲乙,乙会被录取(2)如果公司认为,作为推销员,面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权.计算甲、乙两人各自的平均成绩,看看谁将被录取.()()906+87410=88.8=846+94410=88.x x =⨯⨯÷⨯⨯÷∴甲乙,甲会被录取(三)一组数据经过一定变化得到的一组新数据的平均数例3.已知数据1210,,x x x 的平均数为a ,111230,,x x x 的平均数为b ,那么1230,,x x x 的平均数为.102030a b+例3.变式1.有3个数据的平均数为6,有7个数据的平均数是9,则这10个数的平均数是.例3.变式2.已知数据12345,,,,x x x x x 的平均数为a ,则数据123454,4,4,4,4x x x x x 的平均数为;1234542,42,42,42,42x x x x x -----的平均数为.8.1例3.变式3.已知数据x 1,x 2,x 3的平均数为a ,数据y 1,y 2,y 3的平均数是b ,则数据3x 1+y 1,3x 2+y 2,3x 3+y 3的平均数为(D )A .3+a +bB .3(a +b )C .a +bD .3a +b二、中位数与众数(一)中位数例4.学校团委组织“阳光助残”捐款活动,九年级(1)班学生捐款情况如下表:捐款金额/元5102050人数/人10131215则学生捐款金额的中位数是(D )A.13元B.12元C.10元D.20元例4.变式1.已知一组数据23,27,20,18,x ,12,若它们的中位数是21,那么数据x 是(B )A.23B.22C.21D.20例4.变式2.已知一组数据20,20,x ,15的中位数与平均数相等,那么这组数据的中位数是(D )A.15 B.17.5C.20D.20或17.5例4.变式3.已知数据a ,a ,b ,c ,d ,b ,c ,c ,且a <b <c <d ,则这组数据的中位数、平均数分别为(A )A .223,28b c a b c d++++B .223,28a c a b c d++++C .222,8a b c d c +++D .233,8a b c d a +++(二)众数例5.下列说法中错误的是(C )A.一组数据的平均数、众数和中位数可能是同一个数B.一组数据的众数可能有多个C.数据中的中位数可能不唯一D.众数、中位数和平均数是从不同的角度描述了一组数据的集中趋势例5.变式1.某青年排球队12名队员的年龄情况如下表,则12名队员年龄的(D)年龄(岁)1819202122人数14322A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁例5.变式2.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:则这20户家庭该月用电量的众数和中位数分别是(A )A .180度,160度B .160度,180度C .160度,160度D .180度,180度例5.变式3.为了丰富课外活动,班委会准备利用周日组织全班同学去观看一场球类比赛,为了吸引更多的同学参与,事先做了“你最喜欢的球类活动”问卷调查,获得的信息如图所示,假如你是这个班级的体育委员,你会组织观看的比赛是(C)A.足球比赛B.篮球比赛C.排球比赛D.乒乓球比赛(三)平均数、中位数及众数的特征例6.某男子篮球队在10场比赛中,投球所得的分数分别为80,86,95,86,79,65,98,86,90,81,则该球队10场比赛得分数的众数为,中位数为.8686例6.变式1.一名射击运动员连续射靶10次,其中3次射中10环,5次射中9环,1次射中8环,1次射中7环,则平均每次射中环数为环,这次射击中环数的众数为环,这次射击中环数的中位数是环.999例6.变式2.为了了解中学生穿鞋的鞋号情况,对某中学七年级(2)班的20名女生所穿鞋号统计如下:那么由这20名女生的鞋号组成的一组数据的平均数是,中位数是,众数是,鞋厂最感兴趣的是数.22.5522.523众例6.变式3.下表是食品营养成分表的一部分:(每100克食品中可食部分营养成分的含量)蔬菜种类绿豆芽白菜油菜卷心菜菠菜韭菜胡萝卜(红)碳水化合物(克)4344247在表中提供的碳水化合物的克数所组成的数据中,中位数是克,平均数是克.44(四)平均数、中位数及众数的综合例7.当5个整数从小到大排列时,其中位数为4,如果这个数据组的唯一众数是6,则这5个整数可能的最大的和是(A)A.21B.22C.23D.24例7.变式1.10位学生分别购买如下尺码的鞋子:20,20,21,22,22,22,22,23,23,24(单位:cm),这组数据的平均数、中位数、众数三个指标中鞋店老板最喜欢的是.众数例7.变式2.已知一组数据:-2,-2,3,-2,x,-1.若这组数据的平均数是0.5,则这组数据的中位数是.-1.5例7.变式3.如下图,反映了某校初中三年级甲、乙两班学生的体育中考成绩.(1)不用计算,根据统计图,请判断哪个班级学生的体育成绩好一些.(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?请写出来.(3)如果依次将不及格、及格、中、良好、优秀记为55分,65分,75分,85分,95分,请分别计算甲、乙两班学生体育成绩的平均值.(1)甲班;(2)中,中;(3)()()155+1065+207511858957850555+1065+207510855957550x x ⨯⨯⨯+⨯+⨯==⨯⨯⨯+⨯+⨯==甲乙分分三、从统计图分析数据的集中趋势(一)根据统计图中的数据求平均数、中位数和众数例8.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图.则这组数据的众数和平均数分别是(C )A.7,7B.8,7.55C.7,7.55D.8,6例8.变式1.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分四个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是(C)A.2.25B.2.5C.2.95D.3例8.变式2.如图是我市某景点6月份1-10日每天的最高气温折线统计图,由图中信息可知该景点这10天的最高气温的中位数是℃.26例8.变式3.同学们对戒烟方式进行调查,并将调查结果整理后分别制成了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)这次调查中同学们一共调查了多少人?(2)请你把两种统计图补充完整(3)求以上五种戒烟方式人数的众数.(1)这次调查中同学们调查的总人数为20÷10%=200(人).(2)统计图如图(扇形统计图与条形统计图).(3)以上五种戒烟方式人数的众数是20.四、数据的离散程度(一)极差、方差、标准差例9.数据2,3,3,5,7的极差是(D)A.2B.3C.4D.5 2.例9.变式1.数据90,91,92,93的标准差是.5 2例9.变式2.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是环,方差为.82例9.变式3.甲、乙两台机床同时加工直径为100mm的零件,为了检验产品的质量,从产品中各随机抽出6件进行测量,测得数据(单位:mm)如下:甲机床:99,100,98,100,100,103;乙机床:99,100,102,99,100,100.(1)分别求出上述数据的平均数及方差;甲平均数为100mm,方差为7 3.乙平均数为100mm,方差为1.(2)根据(1)计算结果,说明哪一台机床加工这种零件更符合要求.因为甲乙平均数相同,乙的方差更小,所以乙机床加工这批零件更符合要求.(二)运用平均数、中位数、众数、方差进行综合评价例10.为了从甲、乙、丙三位同学中选一位或两位选手参加数学竞赛,下表是甲、乙、丙三位同学前五次数学测验的成绩(成绩满分100分):测验(次)12345甲(分)70819896100乙(分)6585858798丙(分)6070959798(1)请你填写甲、乙、丙三位同学前五次的数学成绩统计表(下表)平均数中位数方差甲89135.2乙8485丙95251.6平均数:84,中位数:96,方差:113.6.(2)如果只选派一名学生参加数学竞赛,你认为应该派谁?请说明理由;略.提示:根据甲、乙两学生的射击环数的平均数、众数、方差来进行合理评价,只要有道理即可例10.变式1.一次科技知识竞赛,两组学生的成绩如下表所示:已经算得两个组的平均分都是80分,请根据学过的统计知识,进一步判断两个组在这次竞赛中的成绩谁优谁次,并说明理由.解:甲组成绩的众数90分,乙组成的众数为70分,从成绩的众数看,甲组成绩好些.s 2甲=1251013146+++++×[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=150×(2×900+5×400+10×100+13×0+14×100+6×400)=172,s 2乙=150×(4×900+4×400+16×100+2×0+12×100+12×400)=256,因为s 2甲<s 2乙,所以甲组成绩较好.甲、乙两组成绩的中位数、平均分都是80分,其中甲组成绩在80分以上(含80分)的有33人,乙组成绩在80分以上(含80分)的有26人,所以从这一角度看,甲组成绩较好.甲组成绩高于90(含90分)的有14+6=20(人),乙组成绩高于90(含90分)的有12+12=24(人),因为乙组成绩集中在高分段的人数多,同时乙组得满分的人数比甲组得满分的人数多6人,从这一角度看,乙组成绩较好.例10.变式2.为了从甲、乙两名学生中选择一人参加法律知识竞赛,在相同条件下对他们的法律知识进行了10次测验,成绩如下(单位:分)(1)请填写下表:(2)利用(1)的信息,请你对甲、乙两个同学的成绩进行分析.解:(1)第二行从左到右依次填:84:14.4,第三行从左到右依次填:90;0.5.(2)甲、乙成绩的中位数、平均数都是84.①甲成绩的众数是84,乙成绩的众数是90,从成绩的众数看,乙的成绩好;②甲成绩的方差是14.4,乙成绩的方差是34,从成绩的方差看,甲的成绩相对稳定;③甲成绩85分以上(不含85分)的频率为0.3,乙成绩85分以上(不含85分)的频率为0.5,从85分以上的频率看,乙的成绩好.例10.变式3.随着某市社会经济的发展和交通状况的改善,该市的旅游业得到了高速发展.某旅游公司对该市一企业个人旅游年消费情况进行问卷调查,随机抽查部分员工,记录每个人年消费金额,并将调查数据适当整理,绘制成尚不完整的统计表和统计图(如图).组别个人年消费金额x /元频数(人数)A x ≤200018B 2000<x ≤4000aC 4000<x ≤6000bD 6000<x ≤800024E x >800012合计120根据以上信息解答下列问题:(1)a =________,b =________,并将条形统计图补充完整;(2)在这次调查中,个人年消费金额的中位数出现在________组;(3)若这个企业有3000名员工,请你估计个人旅游年消费金额在6000元以上的人数.解:(1)36;30补全条形统计图如图:(2)C (3)因为24120=0.2,12120=0.1,所以估计个人旅游年消费金额在6000以上的人数为3000×(0.2+0.1)=900(人)。
专题3.1数据的集中趋势和离散程度(章节复习能力强化卷)学生版
![专题3.1数据的集中趋势和离散程度(章节复习能力强化卷)学生版](https://img.taocdn.com/s3/m/a5544213f6ec4afe04a1b0717fd5360cba1a8da1.png)
20232024学年苏科版九年级上册册章节知识讲练专题3.1 数据的集中趋势和离散程度(章节复习+能力强化卷)知识点01:平均数1.算术平均数一般地,如果有n 个数,那么=12+nx x x n++…叫做这n 个数的算术平均数,简称平均数.“”读作“x 拔”.通常,平均数可以用来表示一组数据的“集中趋势”.细节剖析:平均数的大小与一组数据里的 有关系,其中任一数据的变动都会引起 的变动,所以平均数容易受到 的影响. 2.加权平均数一组数据的平均数,不仅与这组数据中 的值有关,而且与各个数据的 有关.我们把衡量各个数据 叫做权.按照这种方法求出的平均数,叫做.12n x ,x ,x ,…x x加权平均数的计算公式为:若数据出现次,出现次,出现次……出现次,这组数据的平均数为,则 (其中n=+++…+) “权”越大,对平均数的影响就 .加权平均数的分母恰好为细节剖析:(1)越大,表示的个数越多,“权”就越重,也就越 .(2)加权平均数实际上是算术平均数的另一种表现形式,是平均数的知识点02:众数和中位数1.众数叫做这组数据的众数.当一组数据中有较多的重复数据时,常用众数来描述细节剖析:(1)一组数据的众数一定出现在这组数据中;一组数据的众数可能 (2)众数是一组数据中 据而不是 2.中位数一般地,将一组数据按 排列,如果数据的个数是奇数,那么处于 叫做这组数据的中位数;如果数据的个数是偶数,那么处于 叫做这组数据的中位数.当一组数据中 ,通常用中位数来描述这组数据的集中趋势.细节剖析:(1)一组数据的中位数是 的;一组数据的中位数不一定出现在这组数据中. (2)由一组数据的中位数可以知道中位数以上和以下的数据知识点03:平均数、中位数与众数的联系与区别联系:平均数、中位数和众数都反映了区别:平均数容易受 的影响;中位数与 有关,个别数据的波动对 没影响;众数主要研究各 ,当一组数据中 出现时,可用众数来描述.在一组存在极端值的数据中,用 作为表示这组数据特征的统计量有时会更贴近实际.1x 1f 2x 2f 3x 3f k x k f x 1f 2f 3f k f k f k x一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•惠来县模拟)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如图所示,则这些运动员成绩的中位数为()A.160 B.165 C.170 D.1752.(2分)(2023•鼓楼区校级开学)《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并作出明确规定.某班有7名学生已经学会炒的菜品的种数依次为:2,4,3,2,5,2,3.则这组数据的众数和中位数分别是()A.2,2 B.2,2.5 C.2,3 D.3,33.(2分)(2023春•松北区期末)某班学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,但S甲2<S乙2,则考核成绩比较稳定的是()A.甲组B.乙组C.甲、乙两组一样稳定D.无法确定4.(2分)(2023•凤凰县三模)随着人们对垃圾分类的认识不断增强,垃圾分类的知识不断被普及,我国的垃圾分类的水平也日益提高,一些高科技含量的垃圾箱也应运而生,例如:智能垃圾箱就分为“有害垃圾、可回收垃圾”等若干箱体.居民通过刷卡、号、人脸识别等身份识别方式进行自动开箱投放,自动进行称重,然后换算出可以现金提现或在礼品兑换机兑换实物礼品的积分.已知某小区7个家庭一周换算的积分分别为23,25,25,23,30,27,25,关于这组数据,中位数和众数分别是()A.25,23 B.25,25 C.23,25 D.23,235.(2分)(2023•惠城区校级开学)在今年的八年级期末考试中,我校(1)(2)(3)(4)班的平均分相同,方差分别为=20.8,=15.3,=17,=9.6四个班期末成绩最稳定的是()A.(1)班B.(2)班C.(3)班D.(4)班6.(2分)(2023•徐州二模)为计算某样本数据的方差,列出如下算式S2=,据此判断下列说法错误的是()A.样本容量是4 B.样本的平均数是4C.样本的众数是3 D.样本的中位数是37.(2分)(2023•朝阳)学校篮球队队员进行定点投篮训练,每人投篮10次,其中5名队员投中的次数分别是:6,7,6,9,8,则这组数据的众数和中位数分别是()A.6,6 B.7,6 C.6,7 D.7,88.(2分)(2023春•通州区期末)方差的统计含义:表示一组数据的每个数()A.偏离它的众数的差的平均值B.偏离它的平均数的差的绝对值的平均值C.偏离它的中位数的差的平方数的平均值D.偏离它的平均数的差的平方数的平均值9.(2分)(2023•梁溪区模拟)某水果店“五一”假期每天销售某种水果的数量(单位:kg)分别为:58,62,60,64,62.则这组数据的众数、中位数分别为()A.62,62 B.64,62 C.62,60 D.64,6010.(2分)(2023•绍兴模拟)为更好地学习贯彻“第十四届全国人大会议”精神,牢记使命担当,奋进新时代,筑梦新征程.某校举办了“第十四届全国人大会议”知识竞赛,某班参赛的6名同学的成绩(单位:分)分别为:82,84,85,87,88,90.则这组数据的中位数是()A.84 B.85.5 C.86 D.86.5二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•崇川区校级开学)如果一组数据a1,a2,…,a6的方差是7,那么一组新数据2a1+5,2a2+5,…,2a6+5的方差是.12.(2分)(2023春•巴南区期末)某校招募校园活动主持人,甲候选人的综合素质、普通话、才艺展示成绩如表所示.测试项目综合素质普通话才艺展示测试成绩90 86 91根据实际需求,该校规定综合素质、普通话和才艺展示三项测试得分按5:3:2的比例确定最终成绩,则甲候选人的最终成绩为 分.13.(2分)(2022秋•道县期末)今年8月,我市为了缓解旱情,发射人工降雨火箭,实施人工降雨工作,在一场人工降雨中,道县测得10个面积相等区域(区域用①~⑩表示)的降水量如下表所示,则可估计道县这次的平均降雨量为 mm . 区域 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 降水量(单位:mm )1112131420181617101914.(2分)(2023•平遥县二模)如图是甲、乙两名射击运动员10次射击训练成绩的统计图,如果甲、乙这10次射击成绩的方差为s 甲2,s 乙2,那么s 甲2s 乙2.(填“>”,“=”或“<”)15.(2分)(2023•罗山县三模)为促进学生德、智、体、美、劳全面发展,某县开展了跳绳比赛.某校为选拔一名1分钟跳绳比赛运动员,组织了几次预选赛,其中甲、乙、丙、丁四名运动员较为突出,他们在几次选拔赛中成绩平均数与方差如下表.根据表中数据,学校要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择 运动员.(填“甲”或“乙”或“丙”或“丁)”一甲乙丙丁平均数/个195 190 195 190方差 3.6 3.6 7.4 7.416.(2分)(2023•遵义模拟)据了解,遵义市将在2023年8月举行全市中学生运动会,某校准备从甲、乙两名学生中选一名学生参加100m项目,两人选拔赛的成绩如下表,根据表格信息,选一名发挥稳定的学生参加比赛,则选择运动员应为.(填“甲”或“乙”)甲乙平均数12″06 12″06方差方差S2 3.2 2.817.(2分)(2023•李沧区一模)为了了解某班学生每天使用零花钱数(单位:元)的情况,小王随机调查了15名同学,结果如下表:每天使用零花钱数 1 2 3 5 6人数 2 5 4 3 1则这15名同学每天使用零花钱的众数和中位数分别是.18.(2分)(2023春•柯桥区期中)已知一组数据x1,x2,x3,......x20的方差7,则2x1﹣1,2x2﹣1, (2x20)﹣1的方差为.19.(2分)(2023•容县一模)将一组数据按照从小到大的顺序排列为:﹣1,0,4,x,6,8,若中位数为5,则这组数据的众数为.20.(2分)(2023•余姚市二模)在垃圾分类知识竞赛中,10名学生得分情况如表,那么这10名学生所得分数的众数是.人数(人) 3 4 2 1得分(分)80 85 90 95三.解答题(共8小题,满分60分)21.(6分)(2022秋•泰山区校级期末)甲、乙两班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,根据两个班选手的进球数,制作了如下统计图及数据分析表.班级平均数中位数众数甲7 b c乙a7 7(1)写出表格中a,b,c的值:a=,b=,c=;(2)已知甲班选手进球数的方差为2.6,求乙班选手进球数的方差;(3)如果要从这两个班中选出一个班参加学校的投篮比赛,你认为应该选择哪个班比较合适?为什么?22.(6分)(2023•鼓楼区校级开学)综合与实践【问题情境】数学课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各1片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:1 2 3 4 5 6 7 8 9 10芒果树3.8 3.7 3.5 3.4 3.84.0 3.6 4.0 3.6 4.0叶的长宽比2.0 2.0 2.0 2.4 1.8 1.9 1.8 2.0 1.3 1.9荔枝树叶的长宽比【实践探究】分析数据如下:平均数中位数众数方差3.74 m4.0 0.0424芒果树叶的长宽比1.912.0 n0.0669荔枝树叶的长宽比【问题解决】(1)上述表格中:m=,n=.(2)通过数据,同学们总结出了一些结论:①A同学说:“从树叶的长宽比的方差来看,芒果树叶的形状差别比荔枝树叶”.(填“小”或者“大”)②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的倍.”(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.23.(8分)(2023春•宜州区期末)为了解某年级学生的理化生实验操作情况,随机抽查了若干名学生的实验操作得分(满分为10分),并制作了如下所示的统计图.根据以上信息,解答下列问题:(1)本次随机抽查的学生人数为,m=;(2)抽取得分数据中,平均数为分,众数为分,中位数为分;(3)若该年级有800名学生,估计该年级理化生实验操作得满分的有多少人?24.(8分)(2023•龙华区一模)习近平指出:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”为了解学生的阅读情况,佳佳从七、八年级分别随机抽查了40名学生(已知两个年级学生人数相同),调查了他们在校期间的阅读情况,根据调查情况得到如下统计图表:年级参加阅读人数星期一星期二星期三星期四星期五七年25 30 a40 30级20 26 24 30 40八年级合计45 56 59 70 70 Array(1)a=;(2)八年级参加阅读学生的平均阅读时间的中位数为;(3)七年级学生参加阅读人数的众数为;(4)估计该校七、八年级共1120名学生中这五天平均每天参加阅读的人数.25.(8分)(2023•海淀区校级开学)第19届亚运会将于今年9月23日在杭州开幕,中国将再次因体育盛会引来全球目光,同时也掀起了运动热潮.某校举办了一场游泳比赛,9年级初选出10名学生代表.将10名学生代表200米自由泳所用时间数据整理如下:a.10名学生代表200米自由泳所用时间(单位:秒):260,255,255,250,248,246,246,246,220,205b.10名学生代表200米自由泳所用时间的平均数、中位数、众数(单位:秒):平均数中位数众数243.1 m n(1)写出表中m,n的值;(2)部分同学因客观原因没有参加选拔,学校决定,若5次日常训练的平均用时低于10名学生代表中的一半同学,且发挥稳定,就可以加入代表团.①甲乙两位同学5次日常训练的用时如下表,请你判断,两位同学更有可能加入代表团的是(填“甲”或“乙”);第一次第二次第三次第四次第五次甲同学日常训练用时246 255 227 266 236乙同学日常训练用时246 255 239 240 250②丙同学前4次训练的用时为270,255,249,240,他也想加入代表团,若从日常训练平均用时的角度考虑,则第5次训练的用时t的要求为:.26.(8分)(2023春•番禺区期末)如图统计的是一个路口某时段来往车辆的车速情况,请运用你所学的统计知识,写一份简短的报告,让交警知道在这个时段,该路口来往车辆的车速情况(如最大车速,车速数据的中位数、众数、平均数等),并对数据作一个简要分析.27.(8分)(2023•遵义模拟)2023年全国双手采茶大赛在我省遵义市湄潭县举行,各参赛代表队以茶为媒、以茶会友.下表是甲、乙两个代表队各10名选手的采茶量(单位:克),并进行了数据整理和分析.1 2 3 4 5 6 7 8 9 10甲队401 412 394 412 420 438 449 438 458 438 乙队420 404 398 426 433 435 435 453 461 435平均数中位数众数甲队426 429 a乙队430 b435根据表中数据,解答下列问题.(1)表中a的值是,b的值是;(2)根据以上数据分析,甲、乙两支参赛队中,哪支队更容易获奖,请说明理由;(3)为尽可能获奖,请你为选手写一条合理的建议.28.(8分)(2023•绿园区校级模拟)为了解某年25个地区第一季度快递业务收入的情况,收集了这25个地区第一季度快递业务收入(单位:亿元)的数据,并对数据进行了整理、描述和分析,给出如下信息.a.排在前5位的地区第一季度快递收入的数据分别为:534.9,437.0,270.3,187.7,104.0.b.其余20个地区第一季度快递业务收入的数据的频数分布表如下:快递业务收入x0≤x<20 20.≤x<40 40≤x<60 60≤x<80 一频数 6 10 1 3c.第一季度快递业务收入的数据在20≤x<40这一组的是:20.2,20.4,22.4,24.2,26.1,26.5,28.3,34.4,39.1,39.6.d.排在前5位的地区、其余20个地区、全部25个地区第一季度快递业务收入的数据的平均数、中位数如下表:前5位的地区其余20个地区全部5个地区平均数306.78 29.9 n中位数270.3 m x根据以上信息,解答下列问题:(1)表中m的值为,x的值为.(2)在下面3个数中,与表中n的值最接近的是(填序号):①3s②85③150(3)根据(2)中的数据,预计这25个地区这一年全年快递业务总收入是亿元.。
苏科版数学九年级上册第二章数据的离散程度检测(含答案)-.docx
![苏科版数学九年级上册第二章数据的离散程度检测(含答案)-.docx](https://img.taocdn.com/s3/m/8e6435cc6c175f0e7dd137c3.png)
第二章数据的离散程度检测一、选择题(每题3分,共15分)1.数学老师对小明的5次数学模拟考试进行统计分析,判断小明的成绩是否稳定,老师需要知道小明这5次成绩的().A.平均数或中位数B.方差或极差C.众数或频率D.频数或众数2.分别测得甲、乙两种水稻各10穴的分篥数后,计算出的样本方差分别为S甲2=11, S 乙J3.4,由此可以估计().A.甲种水稻的分菓更整齐;B.乙种水稻的分菓更整齐C.两种水稻的分葉整齐程度相同;D.两种水稻的分藥整齐程序不能比3.若数据2, x, 4, 8的平均数是4,则这组数据的极差和方差分别是().A. 6 和 6B. 6 和 16C. 4 和 24D. 4 和 164.数据 501, 502, 503, 504, 505, 506, 507, 508, 509 的标准差是().A. —B.-V15C.-V15D.-V53 3 3 35.若一组数据縮…,為的方差是5,则一组新数据2出,2出,…,2為的方差是(). A. 5 B.10 C. 20 D. 50二、填空题(每题3分,共18分)6.数据3, 0, 2, 3, 9的极差为 _______ ・7.一个运动员连续打靶5次,成绩分别是8环,6环,10环,7环,9环,这组成绩的标准差为 _________ ・8.少年军校准备从甲、乙、丙这3位同学中选拔一人参加全市射击比赛,他们在选拔赛中打靶10次的平均环数是匚甲二匚乙二8.3,方差是S甲=1.5, S乙J2. 8, S丙2=3.2.根据以上信息,你认为应该推荐____ 同学参加比赛.9.己知一个样本:1, 3, 5, x, 2,它的平均数为3,这个样本的方差是___________ .10.若一组数据xi, X2,…,Xn的方差为9,则数据2xi-3, 2x2-3,…,2x n~ 3的标准差是 ______ .11.甲、乙两班举行文字录入比赛,参赛学生每分钟录入文字的个数统计后如下表:班级参赛人数中位数方差平均字数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同,②乙班优秀的人数多于甲班(每分钟录入文字2150个为优秀),③甲班成绩的波动比乙班大.上述结论中,正确的是________________ (把你认为正确结论的序号都填上).三、解答题(第12〜13题每题8分,第14题11分,第15题12分,第16〜17题每题14分,共67分)12.求下列数据的平均数、极差、方差和标准差(保留2位小数):5, 7, 9, 9, 10, 11, 13, 14.13.九年级(1)、(2)班各有49名学生,两个班在一次数学测验中的成绩统计如下表:班级平均分中位数众数标准差九年级(1)班79 87 70 19.8九年级(2)班八)79 70 5.2(1)请你对下面的一段话给予简要分析:九年级(1)班的小刚回家对妈妈说:“昨天数学测验,全班平均分是79分,考70 分的人最多,我得了 85分,在班上可算上游了!”(2)请你根据表中数据,对两个班的测验情况进行简要分析,并提出数学建议.14.要从甲、乙、丙这3名射击运动员屮选拔一人参加比赛,在选拔赛中,他们每人各打10发子弹,成绩如下表:甲10 10 9 10 9 9 9 9 9 9乙10 10 10 9 10 8 8 10 10 8丙10 9 8 10 8 9 10 9 9 9根据成绩,应选择谁参加比赛?15.为了从甲、乙两名学生屮选拔一人参加竞赛,学校每个月对他们的学习进行一次测验,如图是两人赛前5次测验成绩的折线统计图.(1)分别求出甲、乙两名学生5次测验成绩的平均数、极差及方差;(2)如杲你是他们的辅导教师,应选派哪一名学生参加这次竞赛.请结合所学习的统计知识说明理由.二三四五月份16.班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲585 596 610 598 612 597 604 600 613 601乙(H3618 58057161S593585 590 598 624 (1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5. 96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6. 10m就能打破记录,那么你认为为了打破记录应选择谁参加这项比赛?17.在某次数学测试中,甲、乙两班的成绩如下:分数50 60 70 80 90 100甲班/人 2 5 10 13 14 6乙班/人 4 4 16 2 12 12请你根据已学习的统计知识分析两个班的成绩.答案:1. B2. B3. A4. B5. C6. 127.逅8.甲9. 2 10. 6 11.①②③12.平均数为9. 75,极差为9. 00,方差为7. 69,标准差为2. 77.13.(1)从平均数看,小刚的分数超过了平均分,的确是考70分的人最多,但从分数的中位数看,小刚比中位数低,因此他在班上属于中下游;(2)略14.从成绩來看:(1)甲、乙的平均数都是93,丙的平均数是91,所以淘汰丙;(2)虽然甲、乙的平均数都是93,但的方差小于乙的方差,说明甲比较稳定,有利于在射击比赛中取得好成绩.所以,应选择甲参加比赛.15.(1) I甲二匚乙二80,极差甲二25,极差乙=20, S甲TO, S乙~50; (2)选派乙参加.16.(1)甲 601.6cm,乙 599. 3cm;(2)极差:甲 28cm,乙 44cm.方差:甲 65.84,乙 284.21;(3)说法不惟一,只要有道理即可.可以说甲运动员成绩比较稳定,因为其方差、极差都比较小,也可以说甲的平均成绩比乙好.还可以说乙比较有潜力, 因为乙的最高成绩比甲的好等;(4)在10次比赛中,甲运动员有9次成绩超过596cm,而乙仅有5次,因此一般应选甲运动员参加这项比赛,但若要打破610cm的跳远记录,则一般应选乙运动员.17.可先计算两班的平均数都是80分.(1)用众数进行分析:甲班成绩的众数是90,乙班成绩的众数是70,所以用众数比较,甲班的成绩好于乙班;(2)用方差进行分析:S甲-172, S乙J256,所以S甲?<S乙考虑成绩的稳定性,甲班好于乙班;(3)用中位数进行分析:两个班的中位数都是80分,甲班在中位数以上(包括80分) 的学生共33人,乙班在中位数以上(包括80分)的学生共26人,所以甲班成绩好于乙班;(4)甲班学生高于90分(包括90分)的学生共20人,乙班学生高于90分(包括90 分)的学生共24人,从满分成绩来看,甲班比乙班少6人,从优等生角度看,乙班成绩好于甲班.。
数据的集中趋势与离散程度九年级数学上学期期末考试真题汇编(苏科版)
![数据的集中趋势与离散程度九年级数学上学期期末考试真题汇编(苏科版)](https://img.taocdn.com/s3/m/961ae46b68eae009581b6bd97f1922791688be12.png)
专题10数据的集中趋势与离散程度一.选择题(共4小题)1.(2021秋•沭阳县期末)已知一组数据2,3,5,x,5,3有唯一的众数3,则x的值是()A.3B.5C.2D.无法确定【分析】根据众数的定义,结合这组数据的具体情况进行判断即可.【解答】解:在这组已知的数据中,“3”出现2次,“5”出现2次,“2”出现1次,要使这组数据有唯一的众数3,因此x所表示的数一定是3,故选:A.【点评】本题考查众数的定义,掌握一组数据中出现次数最多的数据是这这组数据的众数是正确判断的关键.2.(2022春•崇川区期末)某校准备选派甲、乙、丙、丁中的一名队员代表学校参加市直跳绳比赛,表中是这四名队员选拔赛成绩的平均数和方差,你觉得最适合的队员是()甲乙丙丁平均数(个/分)201180201180方差2.45.5132.4 A.甲B.乙C.丙D.丁【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加即可.【解答】解:∵甲、丙成绩的平均数大于乙、丁成绩的平均数,∴从甲和丙中选择一人参加比赛,∵S甲2<S丙2,∴最适合的队员是甲;故选:A.【点评】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.3.(2021秋•灌云县期末)小明统计了15天同一时段通过某路口的汽车流量如表:(单位:辆)汽车流量142145157156天数2256则这15天在这个时段通过该路口的汽车平均流量是()A.153B.154C.155D.156【分析】根据加权平均数的定义列式求解即可.【解答】解:这15天在这个时段通过该路口的汽车平均流量是142×2+145×2+157×5+156×615=153,故选:A .【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.4.(2021秋•镇江期末)王老师为了了解本班学生每周课外阅读时间,抽取了10名同学进行调查,调查结果统计如下: 时间/小时 4 5 678 人数24a b1那么这组数据的中位数和众数分别是( ) A .4,4B .5,4C .5,5D .都无法确定【分析】先根据数据的总个数得出a +b =3,再利用众数和中位数的定义求解即可. 【解答】解:∵一共抽取10名同学, ∴a +b =10﹣2﹣4﹣1=3,∴这组数据中5出现次数最多,有4次, ∴众数为5,中位数是第5、6个数据的平均数,而第5、6个数据均为5, ∴这组数据的中位数为5+52=5,故选:C .【点评】此题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 二.填空题(共4小题)5.(2022春•海安市期末)现有甲、乙两支排球队,每支球队队员身高的平均数均为1.82米,方差分别为S 甲2=3.7,S 乙2=4.2,则身高较整齐的球队是 甲 队. 【分析】根据方差的意义解答. 【解答】解:∵s 甲2<s 乙2, ∴身高较整齐的球队是甲队. 故答案为:甲.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(2022春•通州区期末)在学校举行的“庆祝建团百年”诗歌朗诵比赛中,评委分别从演讲内容、演讲能力、演讲效果这三方面打分,小华这三项得分的成绩分别为90分,80分,80分,最后再按5:3:2的得分比例计算最终得分,则小华的最终得分是 85 分. 【分析】根据题目中的数据和加权平均数的计算方法,可以求出小华的最终得分. 【解答】解:根据题意得:90×5+80×3+80×25+3+2=85(分),∴小华的最终得分是85分. 故答案为:85.【点评】本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法. 7.(2021秋•灌云县期末)一组数据:2,3,2,5,3,7,5,x ,它们的众数是5,则这组数据的中位数是 4 .【分析】根据众数的定义先求出x 的值,再根据中位数的定义即可得出答案. 【解答】解:∵数据2,3,2,5,3,7,5,x 的众数是5, ∴5出现的次数是3次, ∴x =5,数据重新排列是:2,2,3,3,5,5,5,7, 所以这组数据的中位数是3+52=4,故答案为:4.【点评】本题考查了众数、中位数,解题的关键是理解众数、中位数的概念,并根据概念求出一组数据的众数、中位数.8.(20211名记者,某应聘者参加了3项素质测试,成绩如下:测试项目 采访写作 计算机操作创意设计 测试成绩(分)828580如果将采访写作、计算机操作和创意设计的成绩按5:2:3计算,则该应聘者的素质测试平均成绩是 82 分.【分析】根据加权平均数的定义计算可得. 【解答】解:该应聘者的素质测试平均成绩是82×5+85×2+80×35+2+3=82(分),故答案为:82.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义. 三.解答题(共4小题)9.(2022春•海安市期末)某校组织学生参加“防疫卫生知识竞赛”(满分为150分),为了了解某班学生在这次竞赛中的表现,现随机抽取该班10名同学的竞赛成绩制表如下:成绩1481219088868581学生数1211131请根据表中信息,解答下列问题:(1)这10名学生竞赛成绩的平均数是99分,中位数是87分;(2)一名学生的成绩是98.5分,他的成绩如何?【分析】(1)求出各个数据之和,再除以数据个数即可得平均数;先把这些数据从小到大排列,只要找出最中间的两个数,即可得出中位数;(2)根据中位数、平均数所反映一组数据的整体情况进行判断即可.【解答】解:(1)这10名学生竞赛成绩的平均数是110×(148+121×2+90+88+86+85×3+81)=99(分),将这10名同学的竞赛成绩从小到大排列,处在中间位置的两个数的平均数为(86+88)÷2=87(分),因此中位数是87分,故答案为:99,87;(2)∵样本中位数为87分,平均数是99,∴一名学生的成绩是98.5分,他的成绩在班中处于平均水平,名次在中上.【点评】本题考查中位数、平均数,掌握中位数、平均数的计算方法是解决问题的前提,理解平均数受极端值的影响是正确判断的关键.10.(2021秋•仪征市期末)某中学九年级学生共进行了五次体育模拟测试,已知甲、乙两位同学五次模拟测试成绩的平均分相同,小明根据甲同学的五次测试成绩绘制了尚不完整的统计表,并给出了乙同学五次测试成绩的方差的计算过程.甲同学五次体育模拟测试成绩统计表:次数第一次第二次第三次第四次第五次成绩(分)252927a30小明将乙同学五次模拟测试成绩直接代入方差公式,计算过程如下:S乙2=15[(26﹣28)2+(28﹣28)2+(27﹣28)2+(29﹣28)2+(30﹣28)2]=2(分2)根据上述信息,完成下列问题:(1)a的值是29;(2)根据甲、乙两位同学这五次模拟测试成绩,你认为谁的体育成绩更好?并说明理由;(3)如果甲再测试1次,第六次模拟测试成绩为28分,与前5次相比,甲6次模拟测试成绩的方差将变小.(填“变大”“变小”或“不变”)【分析】(1)根据乙同学的方差计算过程可以确定五次测试成绩的平均分,根据甲、乙两位同学五次模拟测试成绩的总分相同列方程可得a的值;(2)利用方差作比较可得结论;(3)根据方差的意义可得.【解答】解:(1)由题意得:25+29+27+a+30=28×5,解得:a=29,故答案为:29;(2)乙的体育成绩更好,理由是:∵x甲=x乙=28,∴S甲2=15×[(25﹣28)2+(29﹣28)2+(27﹣28)2+(29﹣28)2+(30﹣28)2]=3.2(分2),∴S乙2<S甲2,∵两人的平均成绩相同,但乙的方差较小,说明乙的成绩更稳定,∴乙的体育成绩更好.(3)因为第六次模拟测试成绩为28分,前5次测试成绩的平均数为28分,所以甲6次模拟测试成绩的方差变小.故答案为:变小.【点评】本题考查了平均数、方差的知识.解题的关键是牢记方差和平均数定义及计算公式.11.(2022春•崇川区期末)新冠肺炎疫情初期,我市教育局积极响应国家“停课不停学”的号召,推出了“线上课堂”.为了解直属中学八年级学生每天参加“线上课堂”的时间,随机调查了市直属中学的八年级学生.根据调查结果,绘制出如图统计图、表(不完整),请根据相关信息,解答下列问题.时间/h3.544.555.56人数329696m35264(1)本次调查的八年级学生共为800,表格中m=160;(2)本次统计的这组数据中,市直属中学八年级学生每天参加“线上课堂”时间的众数是5.5h;(3)若市直属中学八年级学生约有10000名,请估计学生每天参加“线上课堂”的时间为5h及其以上的人数.【分析】(1)根据3.5h的人数和所占的百分比,可以计算出本次共调查的学生人数,然后即可计算出m的值;(2)根据表格中的数据,可以写出相应的众数;(3)根据表格中的数据,可以计算出该校八年级学生每天听“空中课堂”的时间为5h 的人数.【解答】解:(1)本次共调查的学生人数为:32÷4%=800,m=800×20%=160.故答案为:800,160;(2)由统计表可知,本次统计的这组数据中,市直属中学八年级学生每天参加“线上课堂”时间的众数是5.5h.故答案为:5.5h;(3)10000×20%=2000(人).估计学生每天参加“线上课堂”的时间为5h及其以上的人数为2000人.【点评】本题考查众数、中位数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.12.(2022春•如皋市期末)为增强学生的防疫意识,学校拟选拔一支代表队参加市级防疫知识竞赛,甲、乙两支预选队(每队各10人)参加了学校举行的选拔赛,选拔赛满分为100分.现对甲、乙两支预选队的竞赛成绩进行整理、描述和分析,下面给出了部分信息:a.甲队10名学生的竞赛成绩是:92,84,92,92,96,84,92,100,82,96b.甲、乙两队学生竞赛成绩统计表:组别甲队乙队平均分9187中位数m85众数n93方差31.430(1)在甲、乙两队学生竞赛成绩统计表中,m=92,n=92;(2)学校准备从甲,乙两支预选队中选取成绩前10名(包括第10名)的学生组成代表队参加市级比赛,小聪的成绩正好是甲乙两队中某一队成绩的中位数,但他却落选了,请判断小聪所属的队伍,并说明理由.【分析】(1)根据中位数和众数的定义求解即可;(2)根据中位数的意义求解即可.【解答】解:(1)将甲队10名学生的竞赛成绩重新排列为:84,84,82,92,92,92,92,96,96,100,所以这组数据的中位数m=92+922=92,n=92,故答案为:92、92;(2)小聪应该属于乙队.理由:∵甲队的中位数为92分高于乙队的中位数85分,∵小聪的成绩正好是本队成绩的中位数,却不是甲、乙两队成绩的前20名,∴小聪应该属于乙队.【点评】此题考查了中位数,众数以及方差,解题的关键是根据图表得出解题所需数据及中位数的定义和意义.一.选择题(共4小题)1.(2021秋•涟水县期末)一组数据1,x,5,7的中位数与众数相等,则该组的平均数是()A.3.5B.4.5C.5.5D.6【分析】众数可能是1或5或7,因此分别对众数是1或者众数是5或者众数是7三种情况进行讨论,再根据平均数公式计算即可求解.【解答】解:①当众数是1时,这组数据为:1,1,5,7,中位数是(1+5)÷2=3,∵中位数与众数不相等,∴不符合题意;②当众数是5时,这组数据为:1,5,5,7,中位数是5,∵中位数与众数相等,∴该组的平均数是(1+5+5+7)÷4=4.5;③当众数是7时,这组数据为:1,5,7,7,中位数是(5+7)÷2=6,∵中位数与众数不相等,∴不符合题意;则该组的平均数是4.5.故选:B.【点评】本题结合众数与中位数考查了确定一组数据的平均数的能力.正确运用分类讨论的思想是解答本题的关键.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.2.(2020秋•泰兴市期末)若甲、乙两个样本的平均数相等,方差分别为1.75、1.96,则下列说法正确的是()A.甲比乙稳定B.甲、乙一样稳定C.乙比甲稳定D.无法比较【分析】根据方差的意义求解即可.【解答】解:∵甲、乙两个样本的方差分别为1.75、1.96,∴甲比乙稳定,故选:A.【点评】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3.(2021秋•沭阳县校级期末)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【分析】根据平均数,方差的定义计算即可.【解答】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.【点评】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.4.(2021•建邺区二模)某校进行垃圾分类的环保知识竞赛,进入决赛的共有15名学生,他们的决赛成绩如表所示:100959085决赛成绩/分人数/名 2 8 2 3则这15名学生决赛成绩的中位数和平均数分别是( ) A .95,97B .95,93C .95,86D .90,95【分析】根据平均数和中位数的定义求解即可.【解答】解:这15名学生决赛成绩的中位数是95分,平均数为100×2+95×8+90×2+85×315=93(分),故选:B .【点评】本题主要考查平均数和中位数,解题的关键是掌握中位数和加权平均数的定义. 二.填空题(共4小题)5.(2022•扬州模拟)某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是 85 . 【分析】直接根据中位数的定义求解.【解答】解:将这6位同学的成绩重新排列为75、75、84、86、92、99, 所以这六位同学成绩的中位数是84+862=85,故答案为:85.【点评】本题考查了中位数的概念.找中位数时需要对这一组数据按照从大到小或从小到大的顺序进行排序.6.(2022•淮阴区校级开学)在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1S 甲2=1.2,S 乙2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的 甲 .(填“甲或乙”) 【分析】根据方差的意义解答即可. 【解答】解:∵S 甲2=1.2,S 乙2=1.6, ∴S 甲2<S 乙2,则甲、乙两人在这次射击训练中成绩稳定的是甲. 故答案为:甲.【点评】本题考查了方差的意义,方差越小,越稳定.7.(2016春•江阴市期中)有一组数据如下:1,3,a ,5,7,它们的平均数是4,则这组数据的方差是 4 .【分析】先由平均数的公式计算出a 的值,再根据方差的公式计算即可. 【解答】解:∵数据1,3,a ,5,7的平均数是4, ∴a =4×5﹣1﹣3﹣5﹣7=4,∴这组数据的方差是s 2=15[(1﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(7﹣4)2]=4.故答案为4.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+…+(x n−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.(2022•扬州)某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两选手成绩的方差分别记为S甲2、S乙2,则S甲2>S乙2.(填“>”“<”或“=”)【分析】直接根据图表数据的波动大小进行判断即可.【解答】解:图表数据可知,甲数据偏离平均数数据较大,乙数据偏离平均数数据较小,即甲的波动性较大,即方差大,故答案为:>.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三.解答题(共4小题)9.(2022秋•海陵区校级期中)甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a771.2乙7b8c(1)a=7,b=7.5,c=4.2.(1)填空:(填“甲”或“乙”).从中位数的角度来比较,成绩较好的是乙;从众数的角度来比较,成绩较好的是乙;成绩相对较稳定的是甲.(3)从甲、乙两名队员中选一名队员参加比赛,选谁更合适,为什么?【分析】(1)根据平均数、中位数、方差的定义分别计算即可解决问题;(2等,根据众数即可解答;根据方差的意义即可解答;(3)根据表格中的数据可以得到应选派哪一名队员参赛,注意本题答案不唯一,只要合理即可.【解答】解:(1)a=110×(5+2×6+4×7+2×8+9)=7,b=12×(7+8)=7.5,c=110×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=4.2,故答案为:7,7.5,4.2;(2)由表中数据可知,甲,乙平均成绩相等,乙的中位数,众数均大于甲,说明乙的成绩好于甲,乙的方差大于甲.从平均数和中位数的角度来比较,成绩较好的是乙;从平均数和众数的角度来比较,成绩较好的是乙;成绩相对较稳定的是甲.故答案为:乙,乙,甲;(3)选乙,理由:甲、乙两名队员平均成绩一样,但乙的中位数比甲高,众数比甲高,说明乙的高分比甲多,所以选乙更合适.(答案不唯一).【点评】本题考查了条形统计图、折线统计图、平均数、中位数、众数、方差等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.(2022•海门市二模)峰峰老师为了解所教1班、2班同学们(各有40名学生)的经典文化知识掌握情况,从两个班级中各随机抽取10名学生进行了检测,成绩(百分制)如下:1班:79,85,73,80,75,59,87,70,75,97. 2班:92,45,80,82,72,81,94,83,70,81. 峰峰老师的简要分析:平均分 众数 中位数 方差 1班 78 75 77 964 2班7881811704请你解决以下问题:(1)若对这两个班级的所有学生都进行检测,估计这两个班级内成绩为优秀(不少于80分)的学生一共有多少人?(2)比较这两个班级的经典文化知识掌握情况,哪个班级更好些?并说明理由(至少从两个不同的角度比较).【分析】(1)用样本估计总体即可;(2)结合表格中的平均数、众数、中位数以及方差等数据解答即可. 【解答】解:(1)3+1+5+220×100%×(40+40)=44(人),答:估计这两个班级内成绩为优秀(不少于80分)的学生一共有44人;(2)从平均数看,均为78,说明两个班的学生对经典文化知识掌握的总体水平相当; 从众数,中位数看,均是2班略高于1班,说明2班掌握的总体水平略优于1班; 从方差看,1班的方程比2班小,1班数据离散程度相对小一些,说明1班所有同学经典文化知识掌握的水平相对均衡; 从方差看,1班比2班好.综上所述,2班同学对经典文化知识掌握情况更好一些.【点评】本题考查了中位数、众数和方差的意义以及用总体估计样本,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数据;方差是用来衡量一组数据波动大小的量. 11.(2022•南通一模)某校组织学生参加“防疫卫生知识竞赛”,为了解竞赛情况,从两个年级各抽取10名学生的成绩(满分为100分).收集数据:七年级:90,95,95,80,85,90,80,90,85,100;八年级:85,85,95,80,95,90,90,90,100,90.分析数据:平均数中位数众数方差七年级89m9039八年级n90p q根据以上信息回答下列问题:(1)m=90,n=90,p=90;(2)从方差的角度看,八年级的成绩更稳定(填“七年级”或“八年级”);(3)通过数据分析,你认为哪个年级的成绩比较好?说明理由;【分析】(1)根据中位数、平均数、方差、众数的意义和建设方法进行即可;(2)根据平均数和方差进行比较即可;(3)根据平均数和方差的大小进行比较即可.【解答】解:(1)七年级10名学生成绩从小到大排列,处在中间位置的两个数都是90,因此七年级学生成绩的中位数为90,即m=90;八年级学生成绩的平均数为80+85×2+90×4+95×2+10010=90,即n=90;八年级学生成绩出现次数最多的是90,共出现4次,因此众数是90,即P=90;故答案为:90,90,90;(2)八年级学生成绩较好,理由是:七年级学生成绩的方差q=110[(80﹣90)2+(85﹣90)2×2+(95﹣90)2+(100﹣90)2]=30,即p=30;八年级学生成绩的平均数比七年级学生平均成绩要高,而方差八年级比七年级的要小,因此八年级成绩较好,故答案为:八年级;(3)八年级成绩更好.两个年级中位数和众数相同,八年级的平均数比七年级高,方差比七年级小,故八年级成绩更好.如学生只回答平均数或只回答方差扣两分.【点评】本题考查平均数、中位数、方差、众数,理解平均数、中位数、方差、众数的定义是正确解答的前提,掌握平均数、中位数、方差、众数的计算方法是解决问题的关键.12.(2021秋•灌南县期末)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号 2号 3号 4号 5号 总数 甲班 89 100 96 118 97 500 乙班1009511091104500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考. 请你回答下列问题:(1)甲班的优秀率为40%,乙班的优秀率为 60% ;甲班5名学生比赛成绩的中位数是 97 个,乙班5名学生比赛成绩的中位数是100个; (2)求两班比赛数据的方差;(3)根据以上几条信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由. 【分析】(1)优秀率就是优秀的人数与总人数的百分比; (2)根据平均数和方差的概念计算. (3)根据计算出来的统计量的意义分析判断. 【解答】解:(1)乙班的优秀率:35×100%=60%;把甲班5名同学踢的个数从小到大排列为:89,96,97,100,118, 则甲班5名学生比赛成绩的中位数是97个; 故答案为:60%,97;(2)甲班的平均数是:(89+100+96+118+97)÷5=100(个), 甲班的方差S甲2=[(89﹣100)2+(100﹣100)2+(96﹣100)2+(118﹣100)2+(97﹣100)2]÷5=94乙班的平均数是:(100+95+110+91+104)÷5=100(个), 乙班的方差S乙2=[(100﹣100)2+(95﹣100)2+(110﹣100)2+(91﹣100)2+(104﹣100)2]÷5=44.4;(3)冠军奖杯应发给乙班,理由如下:因为两班总数相等,但乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,成绩更稳定,综合评定乙班踢毽子水平较好.【点评】本题考查了中位数、平均数和方差等概念以及运用.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动.。
第3章 数据的集中趋势和离散程度 苏科版九年级上册数学单元测试卷(含详解)
![第3章 数据的集中趋势和离散程度 苏科版九年级上册数学单元测试卷(含详解)](https://img.taocdn.com/s3/m/6046fa8ab8f3f90f76c66137ee06eff9aef849f4.png)
2024-2025学年九年级上册数学单元测试卷第3章《数据的集中趋势和离散程度》一、单选题(每题3分,共24分)A.10元6.已知一组数据的平均数为①平均数不变;②众数不变;③中位数不变;④方差不变;⑤极差不变;其中说法正确的有( )A.①②③⑤别是( ).已知个正数,,,,,且,则新一组数据,,,,,的中位数是( )....二、填空题(每题4分,共40分),则这组数据的方差是..已知数据、、、、、、、的众数是,则这组数据的平均数是..某鱼塘放养鱼苗万条根据这几年的经验知道,鱼苗成活率为.一段时间后准备打捞出售第一次网出条,称得平均每条鱼重千克,第二次网出条,称得平均每条鱼重千克,第三次网出条,称得平均每条鱼重千克,鱼塘中的鱼总质量大约是万千克精确到万位小颖连续次数学考试成绩与这次成绩的平均分的差值分别为,,,,,则这次成绩.甲、乙两射击运动员进行次射击,甲的成绩是,,,,,,,,,,乙的成绩如图所示.则甲、乙射击成绩的方差之间关系是___(填“”,=,“”)..某公司欲招聘一名创作总监,对名应试者进行了三项素质测试,他们的各项测试成绩如下表所测试成绩应试者创新能力计算机能力公关能力甲若将创新能力、计算机能力、公关能力三项得分按的比例确定各人的最终得分,则本次招聘中应试者将被录用(填“甲”或“乙”).15.如果一组数据的平均数是3,那么数据,,,,的平均数是.16.甲、乙两个班级各20名男生测试“引体向上”,成绩如图所示:设甲、乙两个班级男生“引体向上”个数的方差分别为和,则.(填“”,“”或“=”)17.小明本学期数学平时作业、期中考试、期末考试的成绩分别是90分、86分、95分,各项占学期成绩分别为30%、30%、40%,小明本学期的数学学期成绩是分.18.某校为了解九年级学生“一分钟跳绳”的整体水平,随机抽取了该年级50名学生进行测试,并将所得数据整理后,绘制了如图所示的频数分布直方图(每组数据包括左端值,但不包括右端值),若以各组数据的中间值(如:60≤x<80的中间值为70)代表该组数据的平均水平,则可估计该校九年级学生“一分钟跳绳”的平均次数约为次(精确到个位)三、解答题(一共9题,共76分)19.(本题8分)甲、乙两位同学本学年11次数学单元测验成绩(整数)的统计如图所示.b.两部影片分时段累计票房如下上映影片2月12日-18日累计票房(亿元)2月19-21日累计票房(亿元)甲(以上数据来于中国电影数据信息网)a=________,b=________c=________(1)在频数分布直方图中,自左向右第四组的频数为________.(2)学生评委计分的中位数是________分;(3)计分办法规定:老师、学生评委的计分各去掉一个最高分、一个最低分,分别计算平均分,并且)学生捐款的众数是______,该班共有多少名同学?)请将图②的统计图补充完整;并计算图①中“10元”所在扇形对应的圆心角度数;)计算该班同学平均捐款多少元?分)某校九年级开展男、女学生数学学习竞赛.从全体九年级学生中随意抽取男生、女生名同学,进行“十分制”答题对抗赛,竞赛成绩结果(单位:分)如下:,8,7,7,8,9,9,10:,6,2,7,7,9,8,9.参考答案一、单选题(每题3分,共24分)1.C【详解】解:班级数学成绩排列后,最中间一个数或最中间两个分式的平均数是这组成绩的中位数,半数同学的成绩位于中位数以下,∴小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:C.2.C【详解】解:他5次射击的成绩从小到大排列为:7,7,8,8,10,A、他5次射击成绩的平均数,,故本选项正确,不符合题意;B、该组成绩数据的方差,故本选项正确,不符合题意;C、该组成绩的中位数是7.5,故本选项错误,符合题意;D、∵7和8都出现了2次,出现的次数最多,∴该组成绩的众数是7,8,故本选项正确,不符合题意.故选:C.3.C【详解】解:由于15个人中,第8名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这15位同学的分数的中位数.故选:C.4.B【详解】解:A、原来数据的平均数是,添加数字3后平均数为,平均数发生了变化,故不符合题意;B、原来数据的中位数是2,添加数字3后中位数仍为2,故符合题意;C、原来数据的众数是2,添加数字3后众数为2和3,故不符合题意;D、原来数据的方差,添加数字3后的方差,故方差发生了变化,故不符合题意;故选:B.5.C【详解】如图,平均价格为,故选:C.6.B【详解】一组数据的平均数为,设这组数据的个数为个,若在这组数据中添加一个数据,得到一组新的数据,则一组新的数据的平均数为,平均数不变,说法正确;一组数据的平均数为,若在这组数据中添加一个数据,得到一组新的数据,众数可能会变,说法错误;一组数据的平均数为,若在这组数据中添加一个数据,得到一组新的数据,中位数可能会变,说法错误;一组数据的平均数为,若在这组数据中添加一个数据,得到一组新的数据,数据个数增加,每个数据减去平均数的平方的和不变,方差变小,说法错误;一组数据的平均数为,若在这组数据中添加一个数据,得到一组新的数据,最大的数据和最小的数据没有改变,极差不变,说法正确.说法正确的是.故选:B.7.A【详解】把这些数据从小到大排列,最中间的两个数是第、个数,中位数即这两个数的平均数,全班名同学的成绩的中位数是:;出现了次,出现的次数最多,则众数是;故选:A.8.D【详解】解:∵,,,,是5个正数,且,∴,∴数据,,,,,的中位数是,故选D.二、填空题(每题4分,共40分)9.2【详解】解:由平均数公式得:,解得,则,故答案为:2.【详解】解:∵数据、、、、、、、的众数是,∴;∴这组数据的平均数为:;故答案为:6.511.24【详解】解:∵平均每条鱼的重量:(千克);∴池塘中鱼的重量:(千克),∵,故答案为:24.12.3【详解】解:小颖连续5次数学考试成绩与这5次成绩的平均分的差值分别为2,1,,0,3,;故答案为:3.13.【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9,乙的成绩为8,9,7,10,7,9,10,7,10,8,,,甲的方差,乙的方差∴.故答案为:.14.乙【详解】解:由题意可得:甲的得分:(分)乙的得分:(分)∵故答案为:乙.【详解】解:数据的平均数为3,,,数据,,,,的平均数是1.16.【详解】解:由扇形图知,甲班男生“引体向上”个数分布情况为:5个的5人,6个5人,7个5人,8个5人,乙班男生“引体向上”个数分布情况为:5个的6人,6个4人,7个4人,8个6人,甲班男生“引体向上”个数分布较为均匀、稳定,∴,故答案为:.17.【详解】解:小明上学期的数学平均分是,故答案为:.18.【详解】解:故答案为:.三、解答题(一共9题,共76分)19.(1)甲的平均数为,方差为;乙的平均数为,方差为(2)应选甲同学参加比赛,理由见解析【详解】(1)解:甲的成绩分别为,,,乙的成绩分别为,,,(2)应选甲同学参加比赛,因为甲超过平均分的次数比乙多,比乙更容易获得高分.20.(1)36.5;37(2)(3)【详解】(1)∵将这组数据从小到大排列后处于最中间的两个数分别是36,37∴中位数∵37出现次数最多∴众数是37故答案为:36.5,37(2)极差故答案为:12(3)21.(1)(2)②③(3)【详解】(1)解:影片乙单日票房从小到大排序为,,,,,,一共7个数据,所以影片乙单日票房的中位数为:,故答案为:;(2)解:①甲票房从2月12日到16日单日票房逐日增加,17日18日逐日下降,所以甲的单日票房逐日增加说法不正确②,,,,所以甲单日票房的方差小于乙单日票房的方差正确;③甲超过乙的差值从15日开始分别为, 15日,16日,17日,18日,所以在第一周的单日票房统计中,甲超过乙的差值于2月17日达到最大正确.说法中所有正确结论的序号是②③,故答案为:②③;(3)解:乙票房截止到21日收入为:亿,甲票房前7天达到亿,2月19日-21日三天内影片甲的累计票房至少为:亿.故答案为:.22.(1)7,6,7(2)(3)选择乙同学,理由见解析【详解】(1)甲数据从小到大排列,第5、6位都是6,故中位数为;甲的平均数,乙的数据中7最多有4个,所以众数,故答案为:7,6,7;(2)∵,∴故答案为:<;(3)选择乙同学,理由:乙同学的中位数和众数都比甲的大,并且乙的方差比甲小,成绩比较稳定.23.(1)3,10(2)(3)甲社区居民对新冠病毒疫苗接种相关问题的认知情况掌握较好,理由:甲社区居民对新冠病毒疫苗接种相关问题的认知情况的中位数较高.【详解】(1)解:由频数的统计方法可得,,故答案为:3,10;(2)解:将甲社区的25名居民的成绩从小到大排列,处在中间位置的一个数为91分,即甲社区的中位数,乙社区25名居民的成绩中出现次数最多的是90分,共出现5次,因此乙社区的众数,答:,;(3)解:甲社区居民对新冠病毒疫苗接种相关问题的认知情况掌握较好,理由:甲社区居民对新冠病毒疫苗接种相关问题的认知情况的中位数较高.24.(1)5(2)95(3)97【详解】(1)由题可知该数据的个数为20个,自左向右第四组的频数;(2)学生计分从小到大排列为:91,93,94,95,95,95,95,96,97,98,因此中位数为95;(3)解:设表示有效成绩平均分,则,∵,∴.∵共有10位老师当评委,去掉一个最高分、一个最低分后有位评委,∴老师评委有效总得分为.在x、91、98三个数中留下的数为,∴.25.(1);该班共有名同学(2),图见解析(3)【详解】(1)解:由于捐元的有人,所占比例为%,故总人数%人;捐元的人数人,所以元是捐款额的众数;故答案为:元.(2)如图:(人)∴图①中“元”所在扇形对应的圆心角度数为(3)平均数=;因此该班同学平均捐款为元.26.(1),(2)女生组胜出,理由见解析【详解】(1)男生的对抗赛成绩的平均数,男生的对抗赛成绩的方差,女生的对抗赛成绩的平均数,女生的对抗赛成绩的方差;(2)∵男生的对抗赛成绩的平均数和女生的对抗赛成绩的平均数相同,,∴女生的成绩更稳定,∴女生组胜出.27.(1)80(2)八年级1班学生的成绩更为优异,理由见解析【详解】解:(1)共有25个数据,第13个数落在80≤x<90这一组中,此组最小的数为第13个数,所以八年级1班学生的成绩的中位数为80;故答案为80;(2)八年级1班学生的成绩更为优异.理由如下:八年级1班学生的成绩的平均数比2班高,1班的中位数比2班的中位数大,并且1班的众数为85,比2班的众数大,1班的方差比2班小,比较稳定.。
苏科版九年级数学上册第2章达标检测卷附答案
![苏科版九年级数学上册第2章达标检测卷附答案](https://img.taocdn.com/s3/m/1c68afe3866fb84ae55c8d14.png)
苏科版九年级数学上册第2章达标检测卷一、选择题(每题3分,共24分)1.若⊙O 的面积为25π,在同一平面内有一个点P ,且点P 到圆心O 的距离为4.9,则点P 与⊙O 的位置关系为( )A .点P 在⊙O 外B .点P 在⊙O 上C .点P 在⊙O 内D .无法确定 2.如图,⊙O 是△ABC 的外接圆,∠BOC =120°,则∠BAC 的度数是( )A .70°B .60°C .50°D .30°3.如图,⊙O 的半径为13,弦AB 的长度是24,ON ⊥AB ,垂足为N ,则ON =( )A .5B .7C .9D .114.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =7,点D 在边BC 上,CD =3,⊙A 的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外,那么⊙D 的半径r 的取值范围是( )A .1<r <4B .2<r <4C .1<r <8D .2<r <8 5.如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC .若∠ABC =105°,∠BAC =25°,则∠E 的度数为( )A .45°B .50°C .55°D .60°6.如图,在△ABC 中,∠ACB =90°,∠ABC =30°,AB =2.将△ABC 绕直角顶点C 逆时针旋转60°得△A ′B ′C ,则点B 转过的路径长为( ) A.π3 B.3π3 C.2π3 D .π7.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为( )A .60°B .90°C .120°D .180° 8.如图,点A 、B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC =1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A.2+1 B.2+12 C .22+1 D .22-12 二、填空题(每题2分,共20分)9.如图,在圆内接四边形ABCD 中,若∠A 、∠B 、∠C 的度数之比为4:3:5,则∠D 的度数是________.10.如图,P A 、PB 是⊙O 的切线,切点分别为A 、B ,若OA =2,∠P =60°,则AB ︵的长为________.11.如图,⊙O 中,AB ︵=AC ︵,∠BAC =50°,则∠AEC 的度数为________. 12.如图,AB 是⊙O 的直径,BD 、CD 分别是过⊙O 上点B 、C 的切线,且∠BDC =110°.连接AC ,则∠A 的度数是________.13.如图,已知AB 是半圆O 的直径,弦CD ∥AB ,CD =8,AB =10,则CD 与AB 之间的距离是________.14.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=________°. 15.一个圆锥形漏斗,某同学用三角板(部分)测得其高度的尺寸如图所示(单位:cm),则该圆锥形漏斗的侧面积为________cm2.16.据《汉书律历志》记载:“量者,龠(yuè)、合、升、斗、斛(hú)也”斛是中国古代的一种量器,“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆”,如图所示.问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的周长为________尺.(结果用最简根式表示)17.如图,AC⊥BC,AC=BC=4,以BC长为直径作半圆,圆心为点O.以点C 为圆心,BC长为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是________.18.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径是7,则GE+FH的最大值是________.三、解答题(19~22题每题6分,其余每题8分,共56分)19.如图,AB是⊙O的直径,点C是圆上一点,连接AC和BC,过点C作CD ⊥AB于点D,且CD=4,BD=3,求⊙O的周长.20.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC.(2)若⊙O的半径为4,∠BAC=60°,求DE的长.21.已知点A、B在半径为1的⊙O上,直线AC与⊙O相切,OC⊥OB,连接AB交OC于点D.(1)如图①,求证:AC=CD;(2)如图②,OC与⊙O交于点E,若BE∥OA,求OD的长.22.“不在同一条直线上的三个点确定一个圆”.请你判断平面直角坐标系内的三个点A(2,3),B(-3,-7),C(5,11)是否可以确定一个圆.23.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O 上一点,连接BP并延长,交直线l于点C,恰有AB=AC.(1)求证:AB是⊙O的切线;(2)若PC=25,OA=5,求⊙O的半径.24.如图,AB与⊙O相切于点C,OA、OB分别交⊙O于点D、E,CD=CE.(1)求证:OA=OB;(2)已知AB=43,OA=4,求阴影部分的面积.25.如图,一座拱形公路桥,圆弧形桥拱的水面跨度AB=80米,桥拱到水面的最大高度为20米.(1)求桥拱的半径.(2)现有一艘宽60米,顶部截面为长方形且高出水面9米的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.26.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时,如图①,连接OC,求∠DOC的度数.(2)当直线CD与半圆O相交时,如图②,设另一交点为E,连接AE,OC,若AE∥OC.①试猜想AE与OD的数量关系,并说明理由;②求∠ODC的度数.答案一、1.C 2.B 3.A 4.B 5.B6.B【点拨】∵∠ACB=90°,∠ABC=30°,AB=2,∴AC=12AB=1.∴BC=AB2-AC2=22-12= 3.∴点B转过的路径长为60π·3180=3π3.7.C8.B【点拨】如图,∵点C为坐标平面内一点,BC=1,∴C在以B为圆心,半径为1的圆上,取OD=OA=2,连接CD,又∵AM=CM,∴OM是△ACD的中位线,∴OM=12CD,当OM最大时,CD最大,而当D,B,C三点共线,且C在DB的延长线上时,CD最大,即OM最大,∵OB=OD=2,∠BOD=90°,∴BD=22,∴CD=22+1,∴OM=12CD=2+12,即OM的最大值为2+12.二、9.120°10.43π11.65°12.35°13.3【点拨】过点O作OH⊥CD于H,连接OC,则CH=DH=12CD=4,在Rt△OCH中,OH=52-42=3,所以CD与AB之间的距离是3.14.215【点拨】∵A,B,C,D四点共圆,∴∠B+∠ADC=180°.又∵A,C,D,E四点共圆,∴∠E+∠ACD=180°.∴∠ACD+∠ADC+∠B+∠E=360°.∵∠ACD+∠ADC=180°-35°=145°,∴∠B+∠E=360°-145°=215°.15.15π16.42【点拨】如图,∵四边形CDEF为正方形,∴∠D=90°,CD=DE,∴CE 为直径,∠ECD =45°,由题意得AB =2.5,∴CE =2.5-0.25×2=2, ∴CD =CE 22=2,∴正方形CDEF 的周长为42尺.17.53π-23 【点拨】如图,连接CE .∵AC ⊥BC ,AC =BC =4,以BC 为直径作半圆,圆心为点O ,以点C 为圆心,BC 为半径作弧AB , ∴∠ACB =90°,OB =OC =OD =2,BC =CE =4. 又∵OE ∥AC , ∴∠COE =90°. ∵OC =2,CE =4,∴∠CEO =30°,∠ECB =60°,OE =2 3.∴S 阴影=S 扇形CBE -S 扇形OBD -S △OCE =60π×42360-14π×22-12×2×23=5π3-2 3.18.10.5 【点拨】当GH 为⊙O 的直径时,GE +FH 有最大值.易知当GH 为直径时,E 点与O 点重合,∴AC 也是直径,AC =14.∵∠ABC 是直径上的圆周角,∴∠ABC =90°,∵∠C =30°,∴AB =12AC =7.∵点E 、F 分别为AC 、BC 的中点,∴EF =12AB =3.5,∴GE +FH =GH -EF =14-3.5=10.5.三、19.解:∵AB 是⊙O 的直径,∴∠ACB =90°,在Rt △CBD 中,∵CD =4,BD=3,∴BC=CD2+BD2=42+32=5.设AD=x,则42+x2=(x+3)2-52,解得x=16 3.∴AB=163+3=253,∴⊙O的周长是253π,20.(1)证明:如图,连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵DC=BD,∴AB=AC.(2)解:由(1)知AB=AC,∵∠BAC=60°,∠ADB=90°,∴△ABC是等边三角形,∠BAD=30°. ∴∠C=60°.在Rt△BAD中,∠BAD=30°,AB=8,∴BD=4,∴DC=4.∵DE⊥AC,∴∠DEC=90°,∴∠CDE=30°,∴CE=12DC=2.∴DE=CD2-CE2=2 3.21.(1)证明:∵直线AC与⊙O相切,∴OA⊥AC,∴∠OAC=90°,即∠OAB+∠CAB=90°. ∵OC⊥OB,∴∠BOC=90°,∴∠B+∠ODB=90°.而∠ODB =∠ADC , ∴∠ADC +∠B =90°. ∵OA =OB , ∴∠OAB =∠B ,∴∠ADC =∠CAB ,∴AC =CD . (2)解:∵∠BOC =90°,OB =OE , ∴△OBE 为等腰直角三角形, ∴∠OEB =45°. ∵BE ∥OA ,∴∠AOC =∠OEB =45°, ∴△OAC 为等腰直角三角形, ∴AC =OA =1,OC =2OA =2, 而CD =CA =1, ∴OD =OC -CD =2-1.22.解:设经过A ,B 两点的直线对应的函数关系式为y =kx +b . ∵A (2,3),B (-3,-7), ∴⎩⎨⎧2k +b =3,-3k +b =-7.解得⎩⎨⎧k =2,b =-1.∴经过A ,B 两点的直线对应的函数关系式为y =2x -1. 当x =5时,y =2×5-1=9≠11, ∴点C (5,11)不在直线AB 上, 即A ,B ,C 三点不在同一条直线上.∴平面直角坐标系内的三个点A (2,3),B (-3,-7),C (5,11)可以确定一个圆. 23.(1)证明:如图,连接OB . ∵OA ⊥l , ∴∠P AC =90°, ∴∠APC +∠ACP =90°. ∵AB =AC ,OB =OP ,∴∠ABC =∠ACB ,∠OBP =∠OPB .∵∠BPO =∠APC ,∴∠ABC +∠OBP =90°,即∠OBA =90°, ∴OB ⊥AB , ∴AB 是⊙O 的切线.(2)解:设⊙O 的半径为r ,则AP =5-r ,OB =r . 在Rt △OBA 中,AB 2=OA 2-OB 2=52-r 2, 在Rt △APC 中,AC 2=PC 2-AP 2=(25)2-(5-r )2. ∵AB =AC ,∴52-r 2=(25)2-(5-r )2, 解得r =3,即⊙O 的半径为3. 24.(1)证明:连接OC . ∵AB 与⊙O 相切于点C ,∴OC ⊥AB .∴∠ACO =∠BCO =90°. ∵CD =CE , ∴∠AOC =∠BOC . 在△AOC 和△BOC 中,⎩⎨⎧∠AOC =∠BOC ,OC =OC ,∠ACO =∠BCO ,∴△AOC ≌△BOC ,∴OA =OB .(2)解:∵△AOC ≌△BOC ,∴AC =BC =12AB =2 3.∵OB =OA =4,且△OCB 是直角三角形,∴根据勾股定理,得OC =OB 2-BC 2=2,∴OC=12OB,∴∠B=30°,∴∠BOC=60°.∴S阴影=S△BOC-S扇形OCE=12×2×23-60π×22360=23-23π.25.解:(1)如图,设点E是桥拱所在圆的圆心.过点E作EF⊥AB于点F,延长EF交⊙E于点C,连接AE,则CF=20米.由垂径定理知,F是AB的中点,∴AF=FB=12AB=40米.设圆E的半径是r米,由勾股定理,得AE2=AF2+EF2=AF2+(CE-CF)2,即r2=402+(r-20)2.解得r=50.∴桥拱的半径为50米.(2)这艘轮船能顺利通过.理由如下:如图,设MN=60米,MN∥AB,EC与MN的交点为D,连接EM,易知DE⊥MN,∴MD=30米,∴DE=EM2-DM2=502-302=40(米).∵EF=EC-CF=50-20=30(米),∴DF=DE-EF=40-30=10(米).∵10米>9米,∴这艘轮船能顺利通过.26.解:(1)∵直线CD与半圆O相切,∴∠OCD=90°.∵OC=OA,CD=OA,∴OC=CD,∴∠DOC=∠ODC=45°,即∠DOC的度数是45°.(2)①AE=OD.理由如下:如图,连接OE.∵OC=OA,CD=OA,∴OC=CD,∴∠COD=∠CDO.∴∠OCE=2∠CDO,∵AE∥OC,∴∠EAD=∠COD,∴∠EAD=∠CDO,∴AE=DE.∵OA=OE,∴∠OAE=∠OEA,∴∠DOE=2∠EAD,∴∠DOE=∠OCE.∵OC=OE,∴∠DEO=∠OCE,∴∠DOE=∠DEO,∴OD=DE,∴AE=OD.②由①得,∠DOE=∠DEO=2∠ODC. ∵∠DOE+∠DEO+∠ODC=180°,∴2∠ODC+2∠ODC+∠ODC=180°,∴∠ODC=36°.九年级数学上册期末达标检测卷一、选择题(每题4分,共40分)1.已知a,d,c,b是成比例线段,其中a=3 cm,b=2 cm,c=6 cm,则d的长度为()A.4 cm B.1 cm C.9 cm D.5 cm2.在反比例函数y=k-1x图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是()A.k<0 B.k>0 C.k<1 D.k>13.对于抛物线y=-12(x+2)2+3,有下列结论:①抛物线的开口向下;②对称轴为直线x=2;③顶点坐标为(-2,3);④当x>2时,y随x的增大而减小.其中正确结论的个数为()A.1 B.2 C.3 D.44.如图,在▱ABCD中,E是AD边的中点,连接BE并延长交CD的延长线于点F,则△EDF与△BCF的周长之比是()A.1:2 B.1:3 C.1:4 D.1:55.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AC=5,BC =2,则sin∠ACD的值为()A.52 B.2 55 C.53 D.236.如图,P为线段AB上一点,AD与BC相交于点E,∠CPD=∠A=∠B,BC 交PD于点F,AD交PC于点G,则图中相似三角形有()A.1对B.2对C.3对D.4对7.如图,在直角平面坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的相似比为13的位似图形△OCD ,则点C 的坐标为( )A .(-1,-1) B.⎝ ⎛⎭⎪⎫-43,-1 C.⎝ ⎛⎭⎪⎫-1,-43 D .(-2,-1) 8.如图,在笔直的海岸线l 上有A ,B 两个观测站,且AB =2 km.从A 站测得船C 在北偏东45°方向,从B 站测得船C 在北偏东22.5°方向,且tan 22.5°=2-1,则船C 离海岸线l 的距离(即CD 的长)为( ) A .4 kmB .(2+2)kmC .2 2 kmD .(4-2)km9.如图,已知边长为4的正方形EFCD 截去一角成为五边形ABCDE ,其中AF=2,BF =1.在AB 上找一点P ,使得矩形PNDM 有最大面积,则矩形PNDM 面积的最大值为( ) A .8B .12C.252D .1410.如图,在平面直角坐标系中,抛物线y =-x 2+2 3x 的顶点为A ,且与x轴的正半轴交于点B ,点P 为该抛物线对称轴上一点,则OP +12AP 的最小值为( ) A.3+2214B.3+232C .3D .2 3二、填空题(每题5分,共20分)11.如图,在由边长相同的小正方形组成的网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点P ,则tan ∠APD 的值是________.12.如图,点P 是反比例函数y =43x (x >0)图象上一动点,在y 轴上取点Q ,使得以P ,Q ,O 为顶点的三角形是含有30°角的直角三角形,则符合条件的点Q 的坐标是________________.13.如图是二次函数y =ax 2+bx +c (a ≠0)的图象,其与x 轴的交点的横坐标分别为x 1,x 2,其中-2<x 1<-1,0<x 2<1,下列结论:①abc >0;②4a -2b +c <0;③2a -b <0.其中正确的有____________(填序号).14.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,使点C 恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,使点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG +DF =FG .其中正确的有____________(填序号).三、解答题(15~18题每题8分;19,20题每题10分;21,22题每题12分;23题14分,共90分)15.计算:(-1)2 022-6tan30°+⎝ ⎛⎭⎪⎫12-2+|1-3|.16.已知抛物线y =12x 2-4x +7与直线y =12x 交于A ,B 两点(点A 在点B 左侧).(1)求A ,B 两点的坐标;(2)求抛物线顶点C 的坐标,并求△ABC 的面积.17.如图,在△ABC中,AB=43,AC=10,∠B=60°,求△ABC的面积.18.如图,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O 为位似中心,将△ABC放大为原来的2倍得到△A′B′C′.(1)在图中第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)计算△A′B′C′的面积.19.如图,已知在正方形ABCD中,BE平分∠DBC,交CD边于点E,将△BCE 绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG·BG=4,求BE的长.20.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数表达式,并画出这个函数的图象;(2)若反比例函数y2=kx的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.21.如图,某大楼DE的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:3,AB=8米,AE=12米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:2≈1.414,3≈1.732)22.某公司经销一种绿茶,每千克成本为50元.经市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体表达式为w=-2x+240.设这种绿茶在这段时间内的销售利润为y元,解答下列问题:(1)求y与x的函数表达式;(2)当x取何值时,y的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2 250元的销售利润,销售单价应定为多少?23.矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图①,已知折痕与边BC交于点O.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.答案一、1.B 2.D3.C【点拨】∵a<0,∴抛物线的开口向下,①正确;抛物线y=-12(x+2)2+3的对称轴为直线x=-2,②错误;顶点坐标为(-2,3),③正确;④抛物线开口向下,当x>2时,图象是下降趋势,y随x的增大而减小,④正确.故选C.4.A【点拨】在▱ABCD中,AD=BC,AD∥BC,∵E是AD的中点,∴DE=12AD=12BC.由AD∥BC可得,△EDF∽△BCF.它们的周长比等于相似比,∴周长比等于ED BC=12BC:BC=1:2.故选A.5.C【点拨】∵在Rt△ABC中,∠ACB=90°,AC=5,BC=2,∴AB =AC 2+BC 2=(5)2+22=3. ∵∠ACB =90°,CD ⊥AB , ∴∠ACD +∠BCD =90°,∠B +∠BCD =90°,∴∠ACD =∠B , ∴sin ∠ACD =sin B =AC AB =53. 故选C.6.C 【点拨】∵∠CPD =∠A ,∠D =∠D ,∴△ADP ∽△PDG ,∴∠APD =∠PGD ,∴∠FPB =∠AGP .∵∠CPF =∠B ,∠C =∠C ,∴△CPF ∽△CBP ,∴∠CFP =∠CPB ,∴∠PFB =∠APG ;在△AGP 和△BPF 中,∠AGP =∠BPF ,∠APG =∠BFP ,∴△AGP ∽△BPF .故选C. 7.B 8.B9.B 【点拨】延长NP 交EF 于点G ,设PG =x ,则PN =4-x . ∵PG ∥BF ,∴△APG ∽△ABF , ∴AG AF =PG BF ,即AG 2=x 1, 解得AG =2x ,∴PM =EG =EA +AG =2+2x ,∴S 矩形PNDM =PM ·PN =(2+2x )(4-x )=-2x 2+6x +8=-2⎝ ⎛⎭⎪⎫x -322+252(0≤x ≤1),当x =1时,矩形PNDM 的面积最大,最大值为12.故选B .10.C 【点拨】连接AB ,过点P 作PC ⊥AB 于点C .设抛物线的对称轴与x 轴的交点为点D .易求出抛物线的对称轴为直线x =3,顶点A (3,3),故BD =OD =3,AD =3,在Rt △ABD 中,tan ∠BAD =BD AD =33,∴∠BAD =30°,∴PC =12AP .当O ,P ,C 三点共线时,OP +PC 的长最短,最短距离为sin ∠OBC ·OB =sin 60°×2 3=3.∴OP +12AP 的最小值为3.故选C.二、11.212.(0,23)或(0,2)或⎝ ⎛⎭⎪⎫0,833或(0,8) 13.①②③ 【点拨】①∵图象开口向下, ∴a <0,∵图象的对称轴在y 轴左侧, ∴-b2a <0,而a <0,∴b <0, ∵图象与y 轴的交点在正半轴上, ∴c >0,∴abc >0,故结论正确. ②∵-2<x 1<-1,∴当x =-2时,y =4a -2b +c <0,故结论正确. ③∵-2<x 1<-1,0<x 2<1, ∴-b2a >-1,∵a <0, ∴2a -b <0,故结论正确. 故正确的结论有①②③.14.①③④ 【点拨】∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处, ∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10, ∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确.HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AGDF ,∴△ABG 与△DEF 不相似,∴②错误.∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确.∵AG +DF =3+2=5,而FG =5,∴AG +DF =FG ,∴④正确.三、15.解:原式=1-6×33+4+3-1=4- 3.16.解:(1)联立⎩⎪⎨⎪⎧y =12x 2-4x +7,y =12x ,解得⎩⎨⎧x =2,y =1或⎩⎪⎨⎪⎧x =7,y =72.∴A (2,1),B ⎝ ⎛⎭⎪⎫7,72.(2)∵y =12x 2-4x +7=12(x -4)2-1, ∴顶点C 的坐标为(4,-1).过顶点C 作CD ∥x 轴交直线y =12x 于点D ,如图.在y =12x 中,令y =-1,得12x =-1,解得x =-2,∴CD =6,∴S △ABC =S △BCD -S △ACD =12×6×⎝ ⎛⎭⎪⎫72+1-12×6×(1+1)=7.5.17.解:过点A 作AD ⊥BC 于点D .在Rt △ABD 中,AD =AB ·sin B =4 3×32=6,BD =AB ·cos B =4 3×12=2 3.在Rt △ACD 中,CD =AC 2-AD 2=102-62=8, ∴BC =BD +CD =2 3+8.∴S △ABC =12BC ·AD =12×(23+8)×6=63+24. 18.解:(1)如图.(2)S △A ′B ′C ′=4×4-12×2×2-12×2×4-12×2×4=6.19.(1)证明:∵BE 平分∠DBC , ∴∠DBG =∠CBE ,根据旋转的性质,得∠EDG =∠CBE , ∴∠DBG =∠EDG , 又∵∠DGB =∠EGD , ∴△BDG ∽△DEG .(2)解:由(1)知△BDG ∽△DEG , ∴BG DG =DGEG ,∴DG 2=EG ·BG . ∵EG ·BG =4,∴DG 2=4, ∴DG =2(负值舍去).∵∠EDG =∠CBE ,∠DEG =∠BEC , ∴∠BGD =∠BCE =90°. ∴∠BGF =∠BGD =90°.又∵BG =BG ,∠DBG =∠FBG , ∴△DBG ≌△FBG .∴DG =FG ,∴DF =2DG =4, 由题意可知,BE =DF , ∴BE =4.20.解:(1)由题意得,y 1=||x ,即y 1=||x =⎩⎨⎧x ,x ≥0,-x ,x <0.函数图象如图所示.(2)①∵点A的纵坐标为2,点A在函数y1的图象上,∴||x=2,即x=±2.∴点A 的坐标为(2,2)或(-2,2).∴k=±4.②当k=4时,图象如图①,当y1>y2时,x的取值范围为x<0或x>2;当k=-4时,图象如图②,当y1>y2时,x的取值范围为x<-2或x>0. 21.解:(1)过点B作BG⊥DE于点G,如图.在Rt△ABH中,tan ∠BAH=13=33,∴∠BAH=30°,∴BH=12AB=4(米).∴点B距水平面AE的高度BH为4米.(2)由(1)知BH=4(米),∴GE=BH=4(米),AH=4 3(米).∴BG=HE=AH+AE=(4 3+12)米.在Rt△BGC中,∠CBG=45°,∴CG=BG=(4 3+12)米.在Rt△ADE中,∠DAE=60°,AE=12米,∴DE=AE·tan ∠DAE=12·tan 60°=12 3(米).∴CD=CG+GE-DE=4 3+12+4-12 3=16-8 3≈16-8×1.732≈2.1(米).∴广告牌CD的高度约为2.1米.22.解:(1)由题意得y=(x-50)·w=(x-50)·(-2x+240)=-2x2+340x-12 000,∴y与x的函数表达式为y=-2x2+340x-12 000.(2)y=-2x2+340x-12 000=-2(x-85)2+2 450,∴当x=85时,y的值最大.(3)当y=2 250时,可得-2(x-85)2+2 450=2 250,解这个方程,得x1=75,x2=95,根据题意知,x=95不合题意,故舍去,∴销售单价应定为75元/千克.23.(1)①证明:如图,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°, ∴∠1+∠3=90°.由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°. ∴∠3=∠2. 又∵∠C =∠D , ∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA , ∴OP P A =CP DA =12.∴CP =12AD =4,AP =2OP . 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42. 解得x =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不变.作MQ ∥AN ,交PB 于点Q ,如图.∵AP =AB ,MQ ∥AN ,∴∠APB=∠ABP=∠MQP.∴MP=MQ.又∵BN=PM,∴BN=QM.∵MQ∥AN,∴∠QMF=∠BNF,∠MQF=∠FBN,∴△MFQ≌△NFB.∴QF=FB.∴QF=12QB.∵MP=MQ,ME⊥PQ,∴EQ=12PQ.∴EF=EQ+QF=12PQ+12QB=12PB.∵PC=4,BC=8,∠C=90°. ∴PB=82+42=4 5,∴EF=12PB=2 5.∴动点M,N在移动的过程中,线段EF的长度不变,恒为2 5.。
苏科版数学九年级上册 第3章《数据的集中趋势和离散程度》单元测试卷(含答案)
![苏科版数学九年级上册 第3章《数据的集中趋势和离散程度》单元测试卷(含答案)](https://img.taocdn.com/s3/m/0f606cc7c8d376eeaeaa318a.png)
第3章《数据的集中趋势和离散程度》综合测试卷考试时间:90分钟 满分:120分一、精心选一选(每题3分,共24分)1.某班7个兴趣小组的人数分别为4,4,5,x ,6,6,7.已知这组数据的平均数为5,则这组数据的中位数是( )A. 7B. 6C. 5D. 42.某班10名学生校服尺寸与对应人数如下表所示:则这10名学生校服尺寸的众数和中位数分别为( )A. 165 cm ,165 cmB. 165 cm ,170 cmC. 170 cm ,165 cmD. 170 cm ,170 cm3.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( )A. 1B. 6C. 1或6D. 5或64.某班45名同学某天每人的生活费用统计如下表:对于这45名同学这天每人的生活费用,下列说法不正确的是( )A.平均数是20元B.众数是20元C.中位数是20元D.极差是20元5.在某校“我的中国梦”演讲比赛中,有17名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前9名,不仅要了解自己的成绩,还要了解这17名学生成绩的( )A.众数B.方差C.平均数D.中位数6.李华根据演讲比赛中九位评委所给的分数制作了如下表格:若要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )A.平均数B.众数C.方差D.中位数7.下列说法正确的是( )A.若甲组数据的方差: 20.39S =甲,乙组数据的方差: 20.25S =乙,则甲组数据比乙组数据稳定B.从1,2,3,4,5中随机抽取一个数,是偶数的可能性比较大C.数据3,5,4,1,-2的中位数是3D.若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖8.某市测得一周的PM2.5的日均值(单位:微克/立方米)如下:31,30,34,35,36,34,31,对这组数据,下列说法正确的是( )A.众数是35B.中位数是34C.平均数是35D.方差是 6二、细心填一填(每题3分,共21分)9.小明同学参加射击训练,共射击了八发子弹,环数分别是7,10,9,8,7,9,9,8,则这组数据的中位数为 .10.下表纪录的是某组女生在一次跳绳练习中跳绳的次数及相应的人数,则该组女生本次练习中跳绳次数的平均数为 .11.两组数据:3,a ,2b ,5与a ,6,b 的平均数都为6,若将这两组数据合并为一组数据,则这组新数据的中位数为 .12.为响应“书香校园”建设的号召,在全校形成良好的人文阅读氛围,某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是 h.13.“微信发红包”是一种时下流行的娱乐方式,为了解所在单位员工春节期间使用微信发红包的情况,小红随机调查了15名同事,结果如下表:则此次调查中平均每个红包的钱数的众数为 元,中位数为 元.14.植树节时,九(1)班6个小组的植树棵数分别是5,7,3,x ,6,4.已知这组数据的众数是5,则该组数据的平均数为 .15.已知一组数据1x ,2x ,3x ,4x ,5x 的平均数是2,方差为13,那么另一组数据132x -,232x -,332x -,432x -,532x -的方差为 .三、耐心解一解(共75分)16.(9分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表(单位:分):(1)根据三项得分的平均数,从高到低确定三名应聘者的排名顺序;(2)该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,请你说明谁被录用.17. (10分)我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分学生的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5 h ”部分的圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.18. (10分)为了解某校1500名初中生冬季最喜欢的体育活动,该校随机抽取了校内部分学生进行调查,整理样本数据,得到下列统计图.根据以上信息回答下列问题:(1)共抽取了 名校内学生进行调查,扇形图中m 的值为 ;(2)通过计算补全条形统计图;(3)在各个项目被调查的学生中,男、女生人数比例如下表:根据这次调查,估计该校初中生中,男生人数是多少?19.(10分)八(1)班五位同学参加学校举办的数学素养竞赛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章数据的离散程度检测题【本试卷满分100分,测试时间90分钟】一、选择题(每小题3分,共30分)1.在学校对学生进行的晨检体温测量中,学生甲连续10天的体温与36 ℃的上下波动数据为:0.2,0.3,0.1,0.1,0,0.2,0.1,0.1,0.1,0,则对这10天中该学生的体温波动数据分析不正确的是( )A.平均数为0.12B.众数为0.1C.极差为0.3D.方差为0.022.对甲、乙两名同学100米短跑进行5次测试,他们的成绩通过计算得;,=0.025,=0.026,下列说法正确的是()A.甲短跑成绩比乙好B.乙短跑成绩比甲好C.甲比乙短跑成绩稳定D.乙比甲短跑成绩稳定3.(2011湖南益阳中考)“恒盛”超市购进一批大米,大米的标准包装为每袋30 kg,售货员任选6袋进行了称重检验,超过标准重量的记作“+”,不足标准重量的记作“-”,他记录的结果是那么这6袋大米重量..的平均数和极差分别是( )A.0,1.5B.29.5,1C.30,1.5D.30.5,04.数据70、71、72、73的标准差是()A. B.2 C. D.5.样本方差的计算公式中,数字20和30分别表示样本的()A.众数、中位数B.方差、标准差C.数据的个数、平均数D.数据的个数、中位数6.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么所求出的平均数与实际平均数的差是()A.3.5B.3C.0.5D.-37.一组数据的方差为,将该组数据的每一个数据都乘2,所得到的一组新数据的方差是()A. B. C.2 D.48.体育课上,八年级(1)班两个组各10人参加立定跳远,要判断哪一组成绩比较整齐,通常需要知道两个组立定跳远成绩的()A.平均数B.方差C.众数D.频率分布9.(2011山东德州中考)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是( )A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员得分的平均数大于乙运动员得分的平均数D.甲运动员的成绩比乙运动员的成绩稳定10.已知一组数据:-1,x,0,1,-2的平均数是0,那么这组数据的方差是()A. B.2 C.4 D.10二、填空题(每小题3分,共24分)11.对某校同龄的70名女学生的身高进行测量,其中最高的是169 ㎝,最矮的是146 ㎝,对这组数据进行整理时,可得极差为 .12.某校九年级甲、乙两班举行电脑汉字输入比赛,两个班能参加比赛的学生每分钟输入汉班级参加人数平均字数中位数方差甲55 135 149 191乙55 135151 110有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是___________(填序号).13.一组数据1,3,2,5,的平均数为3,那么这组数据的标准差是______________.14.已知数据1,2,3,4,5的方差为2,则11,12,13,14,15的方差为_____________ ,标准差为__________.15.数据,,,的平均数为,标准差为5,那么各个数据与之差的平方和为__________.16.甲、乙两人进行射击比赛,在相同条件下各射击10次,他们的平均成绩均为7环,10次射击成绩的方差分别是:=3,=1.2,则两人成绩较稳定的是__________(填“甲”或“乙”).17.已知一组数据,,,的平均数是2,方差是,那么另一组数据,,,的平均数是_____________,方差是_____________.18.一组数据中若最小数与平均数相等,那么这组数据的方差为_______________.三、解答题(共46分)19.(6分)(2011山东济宁中考)上海世博会自2011年5月1日到10月31日,历时184天.预测参观人数达7 000万人次.如图是此次盛会在5月中旬入园人数的统计情况.(1)请根据统计图完成下表:众数中位数极差入园人数/万(2)推算世博会期间参观总人数与预测人数相差多少?20. (6分)从A、B两种品牌的火柴中各随机抽取10盒,检查每盒的根数,数据如下:(单位:根)A:99,98,96,95,101,102,103,100,100,96;B:104,103,102,104,100,99,95,97,97,99.分别计算两组数据的极差、平均数及方差.21.(8A B C D E 平均分标准差数学71 72 69 68 70英语88 82 94 85 76 85(1)求这5位同学在本次考试中数学成绩的平均分和英语成绩的标准差.(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分高的考试成绩更好,请问A同学在本次考试中,数学与英语哪个学科考得更好?22.(8分)甲、乙两人在相同的条件下各射靶10次,每次命中的环数如下:甲:9,7,8,9,7,6,10,10,6,8;乙:7,8,8,9,7,8,9,8,10,6.(1)分别计算甲、乙两组数据的方差;(2)根据计算结果比较两人的射击水平.23.(9分)甲、乙两个小组各10名同学进行英语口语会话练习,各练习5次,他们每个同学合格的次数分别如下:甲组:4,1,2,2,1,3,3,1,2,1; 乙组:4,3,0,2,1,3,3,0,1,3.(1)如果合格3次以上(含3次)作为及格标准,请你说明哪个小组的及格率高? (2)请你比较哪个小组的口语会话的合格次数比较稳定? 24.(9分)(2011浙江丽水中考)王大伯几年前承办了甲、乙两片荒山,各栽100棵杨梅树,成活98%,现已结果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和; (2)试通过计算说明,哪个山上的杨梅产量较稳定?杨梅树编号3636483436404050乙山甲山产量(千克)第二章数据的离散程度检测题参考答案一、选择题1.D 解析:,故D不正确.2.C 解析:由于,所以甲比乙短跑成绩稳定.3.C4.C5.C6.D解析:设其他29个数据的和为,则实际的平均数为,所求的平均数为,故.7.D 解析:由于方差是一组数据中各数据与它们的平均数的差的平方的平均数,当各数据都乘2时,它们的差的平方就都乘4,所以最后的方差应是原来方差的4倍.8.B9.D10.B 解析:因为这组数据的平均数是0,则-1+x+0+1+(-2)=0,所以x=2.从而这组数据的方差为2,故选B.二、填空题11.23 解析:(cm).12. ①②③解析:由于乙班学生的平均数为135,中位数为151,说明有一半以上的学生都达到每分钟150个以上,而甲班学生的中位数为149,说明不到一半的学生达到150个以上,说明乙班优秀人数比甲班优秀人数多,故②正确;由平均数和方差的意义可知①③也正确.13.解析:由这组数据的平均数为3,得x=4,从而可求得这组数据的标准差是.14.2 解析:根据方差的定义进行求解.15.100 解析:由于数据的标准差为5,故方差为25,由,得.16.乙17.4 3 解析:由题意得,则,方差为.18.0解析: 一组数据中若最小数与平均数相等,则每个数据都相等.从而方差为0.三、解答题19.解:(1)24,24,16.(2)(万).答:世博会期间参观总人数与预测人数相差约2 418.4万.20.解: A组数据的极差为103-95=8,平均数为,方差为.B组数据的极差为104-95=9,平均数为,方差为.21.解: (1)数学成绩的平均分为70,英语成绩的标准差为6.(2)A同学数学成绩的标准分是;英语成绩的标准分是.可以看出数学成绩的标准分高于英语成绩的标准分,所以A同学的数学成绩要比英语成绩考得好.22.解: (1)甲的平均数为,方差为.乙的平均数为,方差为.(2)由(1)可得,所以甲、乙两人的平均水平相同,但乙的方差比甲小,说明乙的稳定性比甲好.23.解:(1)由数据可以看出甲组10名同学中有3名同学合格3次以上(含3次),乙组10名同学中有5名同学合格3次以上(含3次),故乙组的及格率高.(2)甲组数据的平均数为,方差为.乙组数据的平均数为,方差为.可知甲组的口语会话的合格次数比较稳定.24.解:(1)甲山上4棵树的产量分别为:50千克、36千克、40千克、34千克,所以甲山产量的样本平均数为:千克;乙山上4棵树的产量分别为:36千克、40千克、48千克、36千克,所以乙山产量的样本平均数为:千克.甲、乙两山杨梅的产量总和为:2×100×98%×40=7 840(千克).(2);.所以.答:乙山上的杨梅产量较稳定.。