小学奥数之容斥原理

合集下载

(完整版)小学四年级奥数容斥问题

(完整版)小学四年级奥数容斥问题

容斥问题(一)容斥问题涉及到一个重要的原理——包含与排除原理,也称为容斥原理,即当两个计数部分有重复包含时,为了不重复地计数,应从它们的和中排除重复部分。

这一讲我们先介绍容斥原理1对n个事物,如果采用两种不同的分类标准:按性质a分类与性质b分类(如图1),那么,具有性质a或性质b的事物的个数=Na+Nb-Nab。

例1.一个班有55名学生,订阅《小学生数学报》的有12人,订阅《今日少年报》的有9人,两种报纸都订阅的有5人。

(1)订阅报纸的总人数有多少?(2)两种报纸都没订阅的有多少人?例2.一个旅行社有36人,其中会英语的有24人,会俄语的有18人,两样都不会的有4人,两样都会的有多少人?例3.在1到100的全部自然数中,既不是6的倍数也不是5的倍数的数有多少个?例4.艺术节那天,学校的画廊里展了了每个年级学生的图画作品,其中有23幅画不是五年级的,有21幅画不是六年级的,五、六年级参展的画共有8幅。

其他年级参展的画共有多少幅?练习与思考1.将边长分别为4厘米和5厘米的正方形纸片部分重叠,盖在桌面上(如图6),已知重叠的部分为9平方厘米,两块正方形纸片盖住桌面的总面积是多少平方厘米?2.二(2)班有50名学生,下课后每人都至少做完了一门作业,其中做完语文作业的有35人,做完数学作业的有40人,两种作业都做完的有多少人?3.有62名学生,其中会弹钢琴的有11名,会吹竖笛的有56名,两样都不会的有4名,两样都会的有多少名?4.某校选出50名学生参加区作文比赛和数学比赛,作文比赛获奖的有14人,数学比赛获奖的有12人,有3人两项比赛都获奖的,两项比赛都没获奖的有多少人?5.四(1)班有40个学生,其中有25人参加数学小组,23人参加航模水组,有19人两个小组都参加了,那么,有多少人两个小组都没有参加?6.在一次数学测验中,所有同学都答了第1、2两题,其中答对第1题的有35人,答对第2题的有28人,这两题都答对的有20人,没有人两题都答错。

小学奥数容斥原理

小学奥数容斥原理

容斥原理知识纵横:容斥原理:当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分,这种计数方法叫做容斥原理,也叫包含与排除。

例题求解:【例1】、在1~2003的自然数中,能被2整除或能被5整除的数共有多少个?【例2】、在1~500中,不能被2整除,也不能被3整除,又不能被7整除的数有多少个?【例3】、六年级的160名学生参加期末考试,其中数学得满分的有58名,语文得满分的有53分,英语得满分的有59名,数学、语文都得满分的有17名,数学、英语都得满分的有22名,语文、英语都得满分的有20名,数学、语文、英语都得满分的有10名。

问六年级三科考试都没有得满分的有多少名?【例4】、如图所示,A 、B 、C 分别代表面积为12、28、16的三张不同形状的纸片,它们放在一起盖住的面积为38,且A 与B ,B 与C ,C 与A 公共部分面积为8,7,6,求A 、B 、C 三个图形公共部分的面积。

【例5】、星期日小丰骑自行车去同学A 、B 、C 三家玩,他如果从A 出发经过B 到C ,共行10千米,如果从B 出发经C 达A ,共行13千米,如果从C 出发经过A 到达B ,共行11千米。

问:哪两个同学家之间的距离最短?最短的距离是多少千米?【例5】、如图,在长方形ABCD 中,AD=15厘米,AB=8厘米,四边形OEFG 的面积是9平方厘米,求阴影部分的总面积。

A B C基础夯实1、50以内5的倍数和7的倍数的自然数共有多少个?2、在1至100的全部自然数中,既不是3的倍数也不是5的倍数的数有多少?3、在从1到60的整数中,能被3或4或5整除的数有多少个?4、四(一)班50个学生,每人至少参加了一个兴趣小组,其中37人参加科技组,25人参加美术组,求同时参加两个兴趣小组的人数是多少?5、六(一)班全体同学在期末测试中,语文、数学这两科至少有一门获得优秀,其中有30人语文获得优秀,有32人数学获得优秀,两科都获得优秀的学生有17人。

小学奥数容斥原理

小学奥数容斥原理

小学奥数容斥原理
小学奥数中的容斥原理是一种经典的数学方法,它常常用于解决有关组合计数的问题。

容斥原理可以帮助我们计算两个集合的交集、并集以及差集的元素个数。

具体来说,容斥原理告诉我们,要计算两个集合的并集的元素个数,我们可以先计算每个集合的元素个数,然后减去这两个集合的交集的元素个数。

这样可以避免重复计算。

例如,假设我们有两个集合A和B,集合A中有3个元素,集合B中有4个元素。

如果我们想计算这两个集合的并集的元素个数,根据容斥原理,我们应该先计算集合A的元素个数,再计算集合B的元素个数,然后减去集合A和集合B的交集的元素个数。

另外,容斥原理也可以用于计算三个集合的并集、四个集合的并集,以及更多集合的并集,只需要依次计算每个集合的元素个数,并根据公式依次加减交集的元素个数。

需要注意的是,在应用容斥原理时,我们需要确保计算交集和并集时没有重复计算的情况发生。

这需要我们对问题进行仔细分析和思考,以保证计算结果的正确性。

总之,容斥原理是一种解决组合计数问题的有力工具,在小学奥数中有着重要的应用,通过灵活运用容斥原理,我们可以更快、更准确地解决各类问题。

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

容斥原理森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。

”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有 80 种鸟类。

狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。

”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有 60 种兽类。

最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类 140 种。

”这个统计正确吗?同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是 139 种。

”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。

当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。

由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。

容斥原理 1如果被计数的事物有 A、B 两类,那么, A 类 B 类元素个数总和= 属于 A 类元素个数+ 属于 B 类元素个数—既是 A 类又是 B 类的元素个数。

即A∪B = A+B - A∩B容斥原理 2如果被计数的事物有 A、B、C 三类,那么, A 类和 B 类和 C 类元素个数总和= A 类元素个数+ B 类元素个数+C 类元素个数—既是 A 类又是 B 类的元素个数—既是 A 类又是 C 类的元素个数—既是 B 类又是 C 类的元素个数+既是 A 类又是 B 类而且是 C 类的元素个数。

即A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C容斥原理 1【例 1】★一次期末考试,某班有 15 人数学得满分,有 12 人语文得满分,并且有 4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A 类元素”,“语文得满分”称为“B 类元素”,“语、数都是满分”称为“既是 A 类又是 B 类的元素”,“至少有一门得满分的同学”称为“A 类和 B 类元素个数”的总和。

四年级下册奥数第35讲 容斥问题

四年级下册奥数第35讲   容斥问题

第35周容斥问题专题简析:容斥问题涉及一个重要原理一一包含与排除原理,也叫容斥原理。

当两个计数部分有重复包含时,为了不重复地计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用两种不同的分类标准,按性质a分类与性质b分类(如右图所示),那么具有性质a或性质b的事物的个数是N a 十Nb- Nab。

例1:一个班有48人,班主任在班会上问“谁做完语文作业了?请举手!”有37人举手。

又问:“谁做完数学作业了?请举手!”有42人举手。

最后问“谁语文、数学作业都没有做完?“没有人举手。

求这个班语文、数学作业都完成的人数。

练习一:1、五年级有122 名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。

其中语文成绩优秀的有65 人,数学成绩优秀的有87 人。

语文、数学成绩都优秀的有多少人?2、四(1)班有54 人,订阅<小学生优秀作文》和(数学大世界)两种读物的有13 人,订《小学生优秀作文》的有45 人,每人至少订种读物。

订《数学大世界》》的有多少人?3、学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。

这个文艺组一共有多少人?例2:城中小学选出10名学生参加区作文和数学比赛,结果每人都获奖。

其中有3人两项比赛都获奖,作文比赛获奖的有5 人,求数学比赛获奖的有多少人?练习:1、一个班有55 名学生,他们分别订阅了《小学生数学报》和《中国少年报》。

其中订阅《小学生数学报》的有32 人,两种报纸都订阅的有15 人,求订阅《中国少年报》的有多少人?2、四(1)班有40 个学生,有19 人参加了数学和科技两个兴趣小组。

其中有11人两个小组都没参加,有25人参加数学小组,求有多少人参加了科技小组?3、在四年级96 个学生中调查会下中国象棋和围棋的人数。

调查结果显示:有78人会下中国象棋,有24 人两样都会,还有12人两样都不会。

求会下围棋的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?练习:1、一个旅行社有36 人,其中会英语的有24 人,会法语的有18 人,两样都不会的有4 人。

四年级奥数(40讲)《举一反三》第35讲 容斥原理

四年级奥数(40讲)《举一反三》第35讲 容斥原理

第35讲容斥原理一、专题简析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b 分类(如图),那么具有性质a或性质b的事物的个数=N a+N b-N ab。

Nab NbNa二、精讲精练:例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

练习一1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。

其中语文成绩优秀的有65人,数学优秀的有87人。

语文、数学都优秀的有多少人?2、四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?练习二1、五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了。

那么,有多少人两个小组都没有参加?2、一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人。

两种报纸都没有订阅的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?练习三1、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。

两样都会的有多少人?2、一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。

五年级奥数-容斥原理(一)

五年级奥数-容斥原理(一)

容斥原理(一)
森林里住着100只小白兔,凡是不爱吃萝卜的小白兔都爱吃白菜。

其中爱吃萝卜的小白兔数量是爱吃白菜的小白兔数量的2倍,而不爱吃白菜的小白兔数量是不爱吃萝卜的小白兔数量的3倍。

它们当中有多少只小白兔既爱吃萝卜又爱吃白菜?
有100位旅客,其中有10人既不懂英语,又不懂俄语,有75人懂英语,又83人懂俄语。

那么这100位旅客中既懂英语又懂俄语的有多少人。

在1至2011的自然数中,
⑴能被3或5或7整除的数有个;
⑵能同时被3,5,7整除的有个;
⑶能被3整除,但不能被5和7整除的有个;
⑷能被5和7整除,但不能被3整除的有个。

体育课上,60名学生面向老师站成一行,按老师口令,从左到右报数:1,2,3, (60)
然后,老师让所报的数是4的倍数的同学向后转,接着又让所报的数是5的倍数的同学向后转,最后让所报的数是6的倍数的同学向后转,现在面向老师的学生有________人。

中国田径队的40名运动员在训练基地进行封闭训练,其中男运动员有20名,训练长跑的运动员有15名,训练竞走的女运动员有8名,那么训练长跑的男运动员有多少名?。

奥数五年级第八课 :容斥原理

奥数五年级第八课 :容斥原理

您身边的个性化教育专家——问鼎教育
第八课容斥原理
概念在计数时,必须注意无一重复,无一遗漏。

为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

例题例1 在一次校运动会上,甲班参加田赛的有15人,参加径赛的有12人,既参加田赛又参加了径赛的有7人,没有参加比赛的有21人,那么这个班有多少人?
例2两个边长分别为10厘米、4厘米的正方形重叠在一起,重叠部分的面积为4平方厘米,求这个图所能覆盖的面积。

例3 在1到100的全部自然数中,既不是6的倍数又不是5的倍数的数有多少个?
例4有50个学生,他们穿的裤子是白色的或者黑色的,上衣是蓝色的或红色的,若有14人穿的是蓝色上衣白裤子,31人穿黑裤子,18人穿红上衣,那么穿红上衣黑裤子的学生有多少人?
随堂练习:
1、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的4人,两样都会的有多少人?
2、4个边长是2厘米的正方形平放在桌子上,中间有一个边长是3厘米的正方形重叠在上面,求覆盖桌子的面积。

3、有一根长为240厘米的绳子,从一端开始每隔4厘米作一个记号,每隔6厘米也作一个记号,然后将标记有记号的地方剪断。

问:绳子共被剪成了多少段?
您身边的个性化教育专家——问鼎教育。

小学数学奥林匹克辅导小升初专题容斥原理

小学数学奥林匹克辅导小升初专题容斥原理

小学奥林匹克数学辅导-----------容斥原理在很多计数问题中常用到数学上的一个包含与排除原理,也称为容斥原理.为了说明这个原理,我们先介绍一些集合的初步知识。

在讨论问题时,常常需要把具有某种性质的同类事物放在一起考虑.如:A={五(1)班全体同学}.我们称一些事物的全体为一个集合.A ={五(1)班全体同学}就是一个集合。

例1 B={全体自然数}={1,2,3,4,⋯}是一个具体有无限多个元素的集合。

例2 C={在1,2,3,⋯,100中能被3整除的数}=(3,6,9,12,⋯,99}是一个具有有限多个元素的集合。

集合通常用大写的英文字母A、B、C、⋯表示.构成这个集合的事物称为这个集合的元素.如上面例子中五(1)班的每一位同学均是集合A 的一个元素.又如在例1中任何一个自然数都是集合B的元素.像集合B 这种含有无限多个元素的集合称为无限集.像集合C这样含有有限多个元素的集合称为有限集.有限集合所含元素的个数常用符|A| 、| B| |C|、⋯表示。

记号A∪B表示所有属于集合A或属于集合B的元素所组成的集合.就是右边示意图中两个圆所覆盖的部分.集合A∪B叫做集合A与集合B的并集.“∪”读作“并”,“A∪B”读作“A并B”。

例3 设集合A={1,2,3,4},集合B={2,4,6,8},则A∪B={1,2,3,4,6,8}.元素2、4在集合A、B中都有,在并集中只写一个。

记号A∩B表示所有既属于集合A也属于集合B中的元素的全体.就是上页图中阴影部分所表示的集合.即是由集合A、B的公共元素所组成的集合.它称为集合A、B的交集.符号“∩”读作“交”,“A∩B”读作“A交B”.如例3中的集合A、B,则A∩B={2,4}。

下面再举例介绍补集的概念。

例4 设集合I={1,3,5,7,9},集合A={3,5,7}。

补集(或余集),如右图中阴影部分表示的集合(整个长方形表示集合I).对于两个没有公共元素的集合A和B,显然有|A∪B|=|A|+|B|。

小学奥数之容斥原理知识点

小学奥数之容斥原理知识点

小学奥数之容斥原理知识点容斥原理容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b 的事物的个数=Na+Nb-Nab。

例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

分析与解答:完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。

这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。

所以,这个班语文、数作业都完成的有:79-48=31人。

例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。

又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。

所以,两题都答得不对的有36-33=3人。

例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?分析与解答:要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。

例4:在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?分析与解答:从1到100的自然数中,减去5或6的倍数的个数。

从1到100的自然数中,5的倍数有100÷5=20个,6的倍数有16个(100÷6=16……4),其中既是5的倍数又是6的倍数(即5和6的公倍数)的数有3个(100÷30=3……10)。

小学五年级奥数课件 容斥原理

小学五年级奥数课件 容斥原理
本讲主线
1、掌握两个容斥原理 2、一道经典的拉灯问题
本讲主线
在计数时,必须注意没有重复,没有遗漏。为了使重叠部分不被重 复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先 不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来, 然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏
又无重复,这种计数的方法称为容斥原理
本讲主线
如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总 和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元 素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既 是A类又是B类而且是C类的元素个数。 (A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C)
例题【四】(★ ★ ★ ★ ★ )
在2006盏亮着的电灯,各有一个拉线开关控制,按顺序编号 为1,2,…,2006,将编号为2的倍数的灯的拉线各拉一下;再 将编号为3的倍数的灯拉线各拉一下,最后将编号为5的倍数 的灯的拉线各拉一下,拉完后亮着的灯数为多少盏?
2倍 3倍
5倍
例题【四】(★ ★ ★ ★ ★ )
数学参加人数:40-25=15人 15-10+18-10 =5+8 =13(人)
例题【二】(★ ★ ★ )
1~209这209个自然数中,与209互质的自然是有几个?
互质,没有公约数 分解,209=11×19 11:209÷11=19(个) 19:209÷19=11(个) 11/19:1(个) 大饼:19+11-1=29(个) 答:209-19=180(个)
有编号为1~2010的2010个气球,有一个神枪手,他第一次把 所有编号是3的倍数气球打破;第二次把编号是5的倍数的 气球打破;最后把编号是7的倍数的气球打破。那么,最后 还剩几个是没有被打破的气球?

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)

容斥原理森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。

”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有 80 种鸟类。

狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。

”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有 60 种兽类。

最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类 140 种。

”这个统计正确吗?同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是 139 种。

”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。

当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。

由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。

容斥原理 1如果被计数的事物有 A、B 两类,那么, A 类 B 类元素个数总和= 属于 A 类元素个数+ 属于 B 类元素个数—既是 A 类又是 B 类的元素个数。

即A∪B = A+B - A∩B容斥原理 2如果被计数的事物有 A、B、C 三类,那么, A 类和 B 类和 C 类元素个数总和= A 类元素个数+ B 类元素个数+C 类元素个数—既是 A 类又是 B 类的元素个数—既是 A 类又是 C 类的元素个数—既是 B 类又是 C 类的元素个数+既是 A 类又是 B 类而且是 C 类的元素个数。

即A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C容斥原理 1【例 1】★一次期末考试,某班有 15 人数学得满分,有 12 人语文得满分,并且有 4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A 类元素”,“语文得满分”称为“B 类元素”,“语、数都是满分”称为“既是 A 类又是 B 类的元素”,“至少有一门得满分的同学”称为“A 类和 B 类元素个数”的总和。

小学奥数(3)容斥原理

小学奥数(3)容斥原理

某班有56人,参加语文竞赛的有28人,参加数学竞赛 的有27人,如果两科都没有参加的有25人,那么同时参加 语文、数学两科竞赛的有多少人?
要求两科竞赛同时参加的人数,应先求出至少参加一 科竞赛的人数:56-25=31人,再求两科竞赛同时参加 的人数:28+27-31=24人。
抽屉Байду номын сангаас理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论 怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。 这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般 含义为:“如果每个抽屉代表一个集合,每一个苹果就可以 代表一个元素,假如有n+1个元素放到n个集合中去,其中必 定有一个集合里至少有两个元素。” 抽屉原理有时也被称 为鸽巢原理。它是组合数学中一个重要的原理。
容斥原理
在计数时,必须注意没有重复,没有遗漏。为了使重叠部分不被 重复计算,人们研究出一种新的计数方法,这种方法的基本思想是: 先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出 来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无 遗漏又无重复,这种计数的方法称为容斥原理。
例如:一次期末考试,某班有15人数学得满分,有12人语文得满分,
例题 木箱里装有红色球3个、黄色球5个、蓝色球7 个,若蒙眼去摸,为保证取出的球中有两个球的颜色 相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小 球的数目必须大于3,故至少取出4个小球才能符合要 求。
将400本书分给若干个同学,每人都不超过11张, 至少有多少名同学分到的卡片的张数相同。
我们把分得的1,2,3,…,11这11张卡片看帮11个抽屉, 把学生人数看做物体的个数。如果每个抽屉都有一个物体,那 么就需要有1+2+3+…+11=66(个)物体,即66张卡片,而 400÷66=6……4(张),每个抽屉里有6个物体,还余4个物体, 这4个物体无论怎样放,都会有一个抽屉放了7个物体,所以至 少有7名同学分得的卡片的张数是相同的。

小学奥数知识点 —— 容斥原理

小学奥数知识点 —— 容斥原理

容斥原理容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=Na+Nb-Nab。

例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

分析与解答完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。

这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。

所以,这个班语文、数作业都完成的有:79-48=31人。

例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。

又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。

所以,两题都答得不对的有36-33=3人。

例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?分析与解答:要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。

例4:在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?分析与解答:从1到100的自然数中,减去5或6的倍数的个数。

从1到100的自然数中,5的倍数有100÷5=20个,6的倍数有16个(100÷6=16……4),其中既是5的倍数又是6的倍数(即5和6的公倍数)的数有3个(100÷30=3……10)。

小学奥数之容斥原理

小学奥数之容斥原理

小学奥数之容斥原理容斥原理例1:给定长8厘米,宽6厘米的长方形和边长5厘米的正方形,求这两个图形覆盖桌面的面积。

分析与解:两个图形的重叠部分是一个直角三角形,可以用三种方法求出它的面积:方法一:方法二:方法三:最终答案为67平方厘米。

例2:六一班共有26名学生参加了无线电小组和航模小组,其中有17人参加了无线电小组,14人参加了航模小组,有多少人参加了两个小组?分析与解:如果直接将17人和14人相加,会把两个小组都参加的人算两次,因此需要用容斥原理来计算。

具体地,两个小组都参加的人数等于总人数减去只参加一个小组的人数:另一种方法是:最终答案为5人。

例3:六一班共有46名学生,其中19人会骑自行车,25人会游泳,7人既会骑车又会游泳,有多少人既不会骑自行车也不会游泳?分析与解:首先计算会骑车或会游泳的人数,然后减去既会骑车又会游泳的人数,就得到了既不会骑车也不会游泳的人数:最终答案为9人。

例4:某年级的课外小组分为美术、音乐、手工三个小组,参加美术小组有20人,参加音乐小组有24人,参加手工小组有31人,同时参加美术和音乐两个小组的有5人,同时参加音乐和手工两个小组的有6人,同时参加美术和手工两个小组的有7人,三个小组都参加的有3人,这个年级参加课外小组的同学共有多少人?分析与解:用容斥原理计算总人数,需要减去重复多余的部分。

具体地,先计算参加至少一个小组的人数,然后减去同时参加两个小组的人数,再加上同时参加三个小组的人数:最终答案为60人。

例5:某班有若干学生参加了短跑、投掷和跳远三项检测,其中有4人三项都未达到优秀,其他人至少有一项是优秀。

给定各项检测中达到优秀的人数,求全班人数。

分析与解:用容斥原理计算全班人数,需要减去三项都未达到优秀的人数。

具体地,先计算跑、跳、投至少有一项达到优秀的人数,然后加上三项都未达到优秀的人数:最终答案为42人。

例6:求分母为105的最简真分数的个数。

分析与解:分母为105的最简真分数,可以表示成$a/105$ 的形式,其中 $a$ 是比105小的正整数,且 $a$ 和105互质。

四年级奥数 第35讲 容斥问题

四年级奥数  第35讲  容斥问题

第35周容斥问题专题简析:容斥问题涉及一个重要原理一一包含与排除原理,也叫容斥原理。

当两个计数部分有重复包含时,为了不重复地计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用两种不同的分类标准,按性质a分类与性质b分类(如右图所示),那么具有性质a或性质b的事物的个数是Na 十Nb- Nab。

例1:一个班有48人,班主任在班会上问“谁做完语文作业了?请举手!”有37人举手。

又问:“谁做完数学作业了?请举手!”有42人举手。

最后问“谁语文、数学作业都没有做完?“没有人举手。

求这个班语文、数学作业都完成的人数。

练习一:1、五年级有122 名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。

其中语文成绩优秀的有65 人,数学成绩优秀的有87 人。

语文、数学成绩都优秀的有多少人?2、四(1)班有54 人,订阅<小学生优秀作文》和(数学大世界)两种读物的有13 人,订《小学生优秀作文》的有45 人,每人至少订种读物。

订《数学大世界》》的有多少人?3、学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。

这个文艺组一共有多少人?例2:城中小学选出10名学生参加区作文和数学比赛,结果每人都获奖。

其中有3人两项比赛都获奖,作文比赛获奖的有5 人,求数学比赛获奖的有多少人?练习:1、一个班有55 名学生,他们分别订阅了《小学生数学报》和《中国少年报》。

其中订阅《小学生数学报》的有32 人,两种报纸都订阅的有15 人,求订阅《中国少年报》的有多少人?2、四(1)班有40 个学生,有19 人参加了数学和科技两个兴趣小组。

其中有11人两个小组都没参加,有25人参加数学小组,求有多少人参加了科技小组?3、在四年级96 个学生中调查会下中国象棋和围棋的人数。

调查结果显示:有78人会下中国象棋,有24 人两样都会,还有12人两样都不会。

求会下围棋的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?练习:1、一个旅行社有36 人,其中会英语的有24 人,会法语的有18 人,两样都不会的有4 人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五.容斥原理问题1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( )A 43,25B 32,25 C32,15 D 43,11解:根据容斥原理最小值68+43-100=11最大值就是含铁的有43种2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( )A,5 B,6 C,7 D,8解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。

分别设各类的人数为a1、a2、a3、a12、a13、a23、a123由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①由(2)知:a2+a23=(a3+ a23)×2……②由(3)知:a12+a13+a123=a1-1……③由(4)知:a1=a2+a3……④再由②得a23=a2-a3×2……⑤再由③④得a12+a13+a123=a2+a3-1⑥然后将④⑤⑥代入①中,整理得到a2×4+a3=26由于a2、a3均表示人数,可以求出它们的整数解:当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22又根据a23=a2-a3×2……⑤可知:a2>a3因此,符合条件的只有a2=6,a3=2。

然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。

故只解出第二题的学生人数a2=6人。

3.一次考试共有5道试题。

做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。

如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少?答案:及格率至少为71%。

假设一共有100人考试100-95=5100-80=20100-79=21100-74=26100-85=155+20+21+26+15=87(表示5题中有1题做错的最多人数)87÷3=29(表示5题中有3题做错的最多人数,即不及格的人数最多为29人)100-29=71(及格的最少人数,其实都是全对的)及格率至少为71%六.抽屉原理、奇偶性问题1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。

这时拿出1副同色的后4个抽屉中还剩3只手套。

再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。

把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。

这时拿出1副同色的后,4个抽屉中还剩下3只手套。

根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。

以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)答:最少要摸出9只手套,才能保证有3副同色的。

2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?答案为21解:每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.当有11人时,能保证至少有2人取得完全一样:当有21人时,才能保证到少有3人取得完全一样.3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?解:需要分情况讨论,因为无法确定其中黑球与白球的个数。

当黑球或白球其中没有大于或等于7个的,那么就是:6*4+10+1=35(个)如果黑球或白球其中有等于7个的,那么就是:6*5+3+1=34(个)如果黑球或白球其中有等于8个的,那么就是:6*5+2+1=33如果黑球或白球其中有等于9个的,那么就是:6*5+1+1=324.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)不可能。

因为总数为1+9+15+31=5656/4=1414是一个偶数而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个)。

容斥原理(一)【例题分析】例1. 有长8厘米,宽6厘米的长方形与边长5厘米的正方形。

如图放在桌面上,求这两个图形盖住桌面的面积?分析与解:阴影部分是直角三角形,是两个图形的重叠部分,它的面积是:(平方厘米)方法一:(平方厘米)方法二:(平方厘米)方法三:(平方厘米)答:盖住桌面的面积是67平方厘米。

例2. 六一班参加无线电小组和航模小组的共26人,其中参加无线电小组的有17人,参加航模小组的有14人,两组都参加的有多少人?分析与解:把17人和14人相加,是把两组都参加的人算了两次,所以减去总人数,就是两组都参加的人数(人)。

也可以这样解:(人)或(人)答:两组都参加的有5人。

例3. 六一班有学生46人,其中会骑自行车的有19人,会游泳的有25人,既会骑车又会游泳的有7人,既不会骑自行车又不会游泳的有多少人?分析与解:先求出46人中会骑车或会游泳的有多少人,从中减去会骑车或会游泳的人数,剩下的就是既不会骑车也不会游泳的人数。

(人)(人)答:既不会骑车又不会游泳的有9人。

例4. 某年级的课外小组分为美术、音乐、手工三个小组,参加美术小组有20人,参加音乐小组有24人,参加手工小组有31人,同时参加美术和音乐两个小组有5人,同时参加音乐和手工两个小组有6人,同时参加美术和手工两个小组的有7人,三个小组都参加的有3人,这个年级参加课外小组的同学共有多少人?分析与解:图中的5、6、7人都是两两重叠的部分,图中的3人是三个重叠的部分,要从三个组的总人数中减去重复多余的部分。

(人)答:这个年级参加课外小组的有60人。

例5. 某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,请你算出全班人数。

短跑投掷跳远跑跳跑投跳投三项19 21 20 9 10 6 3分析与解:根据题意画出如下图要求全班有多少人,先要求出跑、跳、投至少有一项达到优秀的人数,加上三项都未达到优秀的,就是全班人数。

(人)(人)答:全班有42人。

例6. 分母是105的最简真分数有多少个?分析与解:这些分数是最简真分数,所以分子应小于105,只能是1—104中的自然数,而且分子与105要互质。

因为,所以分母不能是3的倍数或5的倍数或7的倍数。

所以,要求有多少个最简真分数,实际上就是求1—104这104个自然数中不能被3、5、7整除的数有多少个。

因此要先求出能被3整除或能被5整除或能被7整除的数有多少个。

能被3整除的数:(个)能被5整除的数:(个)能被7整除的数:(个)能同时被3和5整除的数:能同时被3和7整除的数:能同时被5和7整除的数:(个)(个)答:分母是105的最简真分数有48个。

【模拟试题】(答题时间:30分钟)1. 有三个面积各为50平方厘米的圆放在桌面上,两两相交的面积分别是8、10、12平方厘米,三个圆相交的面积是5平方厘米,求三个圆盖住桌面的面积?2. 某区有100名外语教师懂英语或日语,其中懂英语的有75名,既懂英语又懂日语的有20人。

只懂日语的有多少名?3. 某班数学测验时有10人得优,英语得优有12人,两门都得优有3人,两门都没得优的有26人。

全班有多少人?4. 六年级一班春游,带矿泉水的有18人,带水果的有16人,这两种至少带一种的有28人,求两种都带的有多少人?5. 在1至100的自然数中,不能被2整除的数或不能被3整除或不能被5整除的数共有多少个?容斥原理(二)【例题分析】例1. 有25人参加跳远达标赛,每人跳三次,每人至少有一次达到优秀。

第一次达到优秀的有10人,第二次达到优秀的有13人,第三次达到优秀的有15人,三次都达到优秀的只有1人。

只有两次达到优秀的有多少人?分析与解:“每人至少有一次达到优秀”说明没有三次都没达到优秀的。

要求只有两次达到优秀的人数,就是求重叠两层的部分(图中阴影部分)。

(人)答:只有两次达到优秀的有11人。

例2. 在一个炎热的夏日,几个小朋友去冷饮店,每人至少要了一样冷饮,其中有6人要了冰棍,6人要了汽水,4人要了雪碧,只要冰棍和汽水的有3人,只要冰棍和雪碧的没有,只要汽水和雪碧的有1人;三样都要的有1人。

问:共有几个小朋友去了冷饮店?分析与解:根据题意画图。

方法一:(人)方法二:(人)答:共有10个小朋友去了冷饮店。

例3. 有28人参加田径运动会,每人至少参加两项比赛。

已知有8人没参加跑的项目,参加投掷项目的人数与参加跑和跳两项的人数都是17人。

问:只参加跑和投掷两项的有多少人?分析与解:“每人至少参加两项比赛”说明没有不参加的,也没有参加一项比赛的,我们可以在下图中参加一项的区域用0表示。

(人)答:只参加跑和投掷两项的有3人。

有8人没参加跑的项目,说明这8只参加投跳,因为没人必须两项,又不含跑.参加投掷项目的人数是17,所以没参与投掷,也就是只参加跑跳=28-17=11.同时参加跑和跳两项的人数17人(没有只是二字),所以三项的=17-11=6,所以参加跑和投掷两项的有17-8-6=3例4. 某校六年级二班有49人参加了数学、英语、语文学习小组,其中数学有30人参加,英语有20人参加,语文小组有10人。

老师告诉同学既参加数学小组又参加语文小组的有3人,既参加数学又参加英语和既参加英语又参加语文的人数均为质数,而三种全参加的只有1人,求既参加英语又参加数学小组的人数。

分析与解:根据已知条件画出图。

三圆盖住的总体为49人,假设既参加数学又参加英语的有x人,既参加语文又参加英语的有y人,可以列出这样的方程:整理后得:由于x、y均为质数,因而这两个质数中必有一个偶质数2,另一个质数为7。

答:既参加英语又参加数学小组的为2人或7人。

例5. 某班同学参加升学考试,得满分的人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没得满分者3人。

相关文档
最新文档