CAN总线基础知识分析

合集下载

CAN总线基础知识

CAN总线基础知识

1.CAN总线是什么?CAN(Controller Area Network)是ISO国际标准化的串行通信协议。

广泛应用于汽车、船舶等。

具有已经被大家认可的高性能和可靠性。

CAN控制器通过组成总线的2根线(CAN-H和CAN-L)的电位差来确定总线的电平,在任一时刻,总线上有2种电平:显性电平和隐性电平。

“显性”具有“优先”的意味,只要有一个单元输出显性电平,总线上即为显性电平,并且,“隐性”具有“包容”的意味,只有所有的单元都输出隐性电平,总线上才为隐性电平。

(显性电平比隐性电平更强)。

总线上执行逻辑上的线“与”时,显性电平的逻辑值为“0”,隐性电平为“1”。

下图显示了一个典型的CAN拓扑连接图。

连接在总线上的所有单元都能够发送信息,如果有超过一个单元在同一时刻发送信息,有最高优先级的单元获得发送的资格,所有其它单元执行接收操作。

2.CAN总线的特点CAN总线协议具有下面的特点:1) 多主控制当总线空闲时,连接到总线上的所有单元都可以启动发送信息,这就是所谓的多主控制的概念。

先占有总线的设备获得在总线上进行发送信息的资格。

这就是所谓的CSMA/CR(Carrier Sense MultipleAccess/Collosion Avoidance)方法如果多个设备同时开始发送信息,那么发送最高优先级ID消息的设备获得发送资格。

2) 信息的发送在CAN协议中,所有发送的信息要满足预先定义的格式。

当总线没有被占用的时候,连接在总线上的任何设备都能起动新信息的传输,如果两个或更多个设备在同时刻启动信息的传输,通过ID来决定优先级。

ID并不是指明信息发送的目的地,而是指示信息的优先级。

如果2个或者更多的设备在同一时刻启动信息的传输,在总线上按照信息所包含的ID的每一位来竞争,赢得竞争的设备(也就是具有最高优先级的信息)能够继续发送,而失败者则立刻停止发送并进入接收操作。

因为总线上同一时刻只可能有一个发送者,而其它均处于接收状态,所以,并不需要在底层协议中定义地址的概念。

can总线知识点梳理

can总线知识点梳理

can总线知识点梳理CAN总线是一种串行通信网络,用于实现分布式实时控制。

它是由德国的BOSCH公司开发的,具有传输速度快、通信距离远、无损位仲裁机制、多主结构等优点。

CAN总线标准只规定了物理层和数据链路层,需要用户自定义应用层。

CAN总线采用差分电压传送,使用两条信号线(CAN_H和CAN_L),静态时均为2.5V左右,显性时,通常电压值为:CAN_H=3.5V,CAN_L=1.5V。

在CAN总线中,多个节点连接,只要有一个为低电平,总线就为低电平,只有所有节点输出高电平时,才为高电平。

CAN总线有5个连续相同位后,就插入一个相反位,产生跳变沿,用于同步,从而消除累积误差。

CAN总线的数据帧结构包括帧起始、仲裁段、控制段、数据段、CRC校验段、应答段和帧结束。

其中,仲裁段决定了报文的优先级,ID值越低,优先级越高。

控制段中包含数据长度代码(DLC),表示数据段的长度。

数据段包含发送的数据,可以有0~8个字节。

此外,CAN总线还支持扩展帧和标准帧两种格式,IDE位表示帧类型(0为标准帧,1为扩展帧),RTR位表示帧类型(0为数据帧,1为远程帧)。

在实际应用中,MCU负责实现对功能电路和CAN控制器的控制,包括初始化CAN控制器参数、通过CAN控制器读取和发送CAN 帧、处理CAN控制器的中断异常、根据接收到的数据输出控制信号等。

同时,接口管理逻辑解释MCU指令,寻址CAN控制器中的各功能模块的寄存器单元,向主控制器提供中断信息和状态信息。

在具体的CAN应用场景中,如汽车行业,现在每一辆汽车上都装有CAN总线。

同时,为了实现不同的功能,不同的CAN标准仅物理层不同,而应用层协议也有多种选择,如CANOpen、DeviceNet、J1939、iCAN等。

can总线的相关知识

can总线的相关知识

can总线的相关知识
摘要:
1.CAN 总线的概述
2.CAN 总线的发展历程
3.CAN 总线的基本原理
4.CAN 总线的主要应用领域
5.CAN 总线的优缺点
正文:
【1.CAN 总线的概述】
CAN 总线,全称为控制器局域网(Controller Area Network),是一种用于实时控制的串行通信总线。

它最初由德国的Robert Bosch GmbH 公司于1980 年代开发,用于汽车电子设备的通信。

如今,CAN 总线已经广泛应用于各种工业自动化领域。

【2.CAN 总线的发展历程】
CAN 总线最初是为了满足汽车电子设备通信的需求而开发的。

随着技术的不断发展,CAN 总线的通信速率、传输距离等性能得到了显著提升,应用领域也不断拓宽。

现在,CAN 总线已经成为工业自动化领域中一种重要的通信方式。

【3.CAN 总线的基本原理】
CAN 总线采用多主控制器结构,所有连接在总线上的节点(设备)都可以发送和接收信息。

CAN 总线采用基于位仲裁的方式实现多节点的通信,确
保了通信的实时性和可靠性。

此外,CAN 总线还具有错误检测和容错能力,使得系统在出现故障时仍能正常运行。

【4.CAN 总线的主要应用领域】
CAN 总线广泛应用于各种工业自动化领域,如汽车电子、机器人控制、智能家居、医疗设备等。

在这些领域中,CAN 总线凭借其高可靠性、实时性、扩展性等特点,成为了一种理想的通信方式。

【5.CAN 总线的优缺点】
CAN 总线的优点包括:高可靠性、实时性;多主控制器结构,系统扩展性强;通信速率和传输距离较远;具有错误检测和容错能力。

CAN总线基础知识总结(建议收藏)

CAN总线基础知识总结(建议收藏)

CAN总线基础知识总结(建议收藏)CAN总线基础知识总结一、CAN总线简介1、CAN总线(Controller Area Network,控制器局域网)是由德国BOSCH(博世)公司在1986年为汽车而设计的,它是一种串行通信总线,只需两根线CAN_H和CAN_L。

2、隐性(逻辑1)与显性(逻辑0)的概念:CAN总线在数据传输过程中,实际上传输的是CAN_H和CAN_L 之间的电位差。

CAN_H只能是高电平(3.5V)或悬浮状态(2.5V),CAN_L只能是低电平(1.5V)或悬浮状态(2.5)V,当CAN_H和CAN_L 都为2.5V 时,是隐性,表示逻辑1,当CAN_H为3.5V、CAN_L都为2.5V时,是显性,表示逻辑0。

表示隐性和显性逻辑的能力是CAN总线仲裁方法的基本先决条件,即所有节点都为隐性时,总线才处于隐性状态;只要有一个节点发送了显性,总线就呈现为显性状态。

3、120?电阻:必须在总线的每一节点的CAN_H和CAN_L之间接一个120?左右的电阻,以避免出现信号反射。

4、CAN技术规范CAN2.0A和CAN2.0B:CAN2.0A只有标准帧(标识符(ID)有11位);CAN2.0B除了标准帧,还有扩展帧(标识符(ID)有29位)。

5、CAN的国际标准ISO11898和ISO11519:CAN 协议经ISO 标准化后有ISO11898和ISO11519两种标准,它们对于数据链路层的定义相同,但物理层不同。

ISO11898 是波特率为125kbps-1Mbps 的CAN高速通信标准。

ISO11519 是波特率为125kbps 以下的CAN低速通信标准。

高速通信标准和低速通信标准的硬件规格也不一样,所以需要选用不同的收发器。

在收发器的规格书上都会注明高速通信用还是低速通信用,或者是符合ISO11898标准还是ISO11519标准。

6、CAN总线协议只定义了物理层和数据链路层,要将CAN总线应用于工程项目中必须制定上层的应用协议。

CAN总线基础知识总结(建议收藏)

CAN总线基础知识总结(建议收藏)

CAN总线基础知识总结一、CAN总线简介1、CAN总线(Controller Area Network,控制器局域网)是由德国BOSCH(博世)公司在1986年为汽车而设计的,它是一种串行通信总线,只需两根线CAN_H和CAN_L。

2、隐性(逻辑1)与显性(逻辑0)的概念:CAN总线在数据传输过程中,实际上传输的是CAN_H和CAN_L之间的电位差。

CAN_H只能是高电平(3.5V)或悬浮状态(2.5V),CAN_L只能是低电平(1.5V)或悬浮状态(2.5)V,当CAN_H和CAN_L都为2.5V 时,是隐性,表示逻辑1,当 CAN_H为3.5V、CAN_L都为2.5V时,是显性,表示逻辑0。

表示隐性和显性逻辑的能力是CAN总线仲裁方法的基本先决条件,即所有节点都为隐性时,总线才处于隐性状态;只要有一个节点发送了显性,总线就呈现为显性状态。

3、120Ω电阻:必须在总线的每一节点的CAN_H和CAN_L之间接一个120Ω左右的电阻,以避免出现信号反射。

4、CAN技术规范CAN2.0A和CAN2.0B:CAN2.0A只有标准帧(标识符(ID)有11位);CAN2.0B除了标准帧,还有扩展帧(标识符(ID)有29位)。

5、CAN的国际标准ISO11898和ISO11519:CAN 协议经ISO 标准化后有ISO11898和ISO11519两种标准,它们对于数据链路层的定义相同,但物理层不同。

ISO11898 是波特率为125kbps-1Mbps 的CAN高速通信标准。

ISO11519 是波特率为125kbps 以下的CAN低速通信标准。

高速通信标准和低速通信标准的硬件规格也不一样,所以需要选用不同的收发器。

在收发器的规格书上都会注明高速通信用还是低速通信用,或者是符合ISO11898标准还是ISO11519标准。

6、CAN总线协议只定义了物理层和数据链路层,要将CAN总线应用于工程项目中必须制定上层的应用协议。

CAN总线原理与应用基础

CAN总线原理与应用基础

CAN总线原理与应用基础CAN(Controller Area Network)总线是一种高可靠性、高性能、实时性强的通信总线,广泛应用于汽车电子、工业控制、机器人等领域。

本文将从CAN总线的基本原理、应用领域以及优势等方面进行详细介绍。

一、CAN总线的基本原理CAN总线是一种串行通信总线,采用非归零码 NRZ(Non-Return-to-Zero)的编码方式。

它由两根线组成,分别是CAN-H(CAN高)和CAN-L (CAN低)。

CAN总线采用差分传输方式,即CAN-H和CAN-L之间的电压差代表了数据的值。

CAN总线的通信速率可以达到1Mbps,具有很高的传输效率。

CAN总线采用了CSMA/CD(Carrier Sense MultipleAccess/Collision Detection)的冲突检测机制,保证了多个节点同时发送数据时不会产生冲突。

当一个节点要发送数据时,首先会监听总线上的电平,如果检测到总线上没有数据传输,则将数据发送出去。

如果多个节点同时发送数据,会发生冲突,此时节点会停止发送数据,并等待一个随机时间后再次发送,以避免冲突。

CAN总线还具有差错检测和纠正的功能。

每个CAN帧都附带有一个CRC(Cyclic Redundancy Check)校验码,接收节点会对接收到的数据进行校验,如果校验失败,则会发送错误帧。

此外,CAN总线还支持错误传播,即如果一个节点发送了错误的数据,其他节点会通过错误帧检测到错误,并进行相应的处理。

二、CAN总线的应用领域1.汽车电子:CAN总线最早应用于汽车电子领域,用于连接汽车内部的各个电子控制单元(ECU),如发动机控制单元、仪表盘、防抱死制动系统等。

CAN总线可以实现这些控制单元之间的数据交换和协调,提高汽车的性能和安全性。

2.工业控制:在工业控制领域,CAN总线被广泛应用于PLC(可编程逻辑控制器)、传感器、执行器等设备之间的通信。

CAN总线可以实现实时的数据传输和控制,提高工业自动化系统的可靠性和性能。

can的知识点总结

can的知识点总结

can的知识点总结一、CAN的起源和发展1993年首次应用于汽车网络通信,它是一种串行网络协议通信系统,广泛应用于汽车领域,其设计初衷是连接各部件以实现可靠的传输和通信能力。

CAN协议特点是高速、实时、可靠、抗干扰能力强,支持多主机,多任务,多帧结构等功能。

二、CAN的基本原理CAN总线是一种串行通信总线,其基本原理是利用两个线进行通讯——CAN_H和CAN_L,并通过差分信号进行通讯。

差分信号指的是CAN_H和CAN_L两根线上的电压相差约2.5V,传输数据时如果CAN_H线上电压高于CAN_L线,则代表逻辑“0”,反之则代表逻辑“1”。

三、CAN的逻辑帧结构CAN中的数据传输以帧的形式进行,帧包括了标识符、控制域、数据域和CRC校验等。

逻辑帧分为标准帧和扩展帧两种,标准帧数据域长度为0-8字节,扩展帧数据域长度可以达到64字节。

四、CAN的速度与通信距离CAN的通信速度可以达到1Mbps,而实际应用中一般选择500kbps为主。

CAN的通信距离可以达到40m左右,但是实际应用中一般不超过10m。

五、CAN的应用领域CAN总线广泛应用于汽车、工程机械、船舶、电力系统、工业控制等领域。

在汽车领域,CAN总线被广泛应用于车载电子控制单元(ECU)之间的数据传输和通信,使得车辆系统可以实现智能化和自动化。

六、CAN的主要特点1. 高可靠性:CAN总线采用了许多技术手段来提高系统的可靠性,如CRC校验、差分传输、冲突检测等。

2. 抗干扰能力强:CAN总线采用了差分传输的方式,使得其对电磁干扰的抗性能非常强。

3. 实时性好:CAN总线支持时间触发,且数据传输速率高,因此实时性较好。

4. 多帧结构的支持:CAN总线支持标准帧和扩展帧,数据域长度可以达到64字节,满足不同应用场景的需求。

5. 主机与多任务支持:CAN总线支持多主机通信和多任务的功能。

七、CAN的局限性1. 数据传输速率有限:CAN总线的最高数据传输速率为1Mbps,对于某些高数据吞吐量的应用场景可能无法满足需求。

CAN总线基础知识

CAN总线基础知识

四、CAN 四、CAN 有哪些技术特点?
CAN控制器局部网主要特征 CAN控制器局部网主要特征 ---工业级总线式串行通信网络标准 ---多主站依据优先权进行总线访问 ---无破坏性的基于优先权的仲裁 ---借助接收滤波的多地址帧传送 ---远程数据请求 ---数据通信配置灵活性 ---数据通信高实时性 ---数据通信高可靠性 ---全系统数据相容性 ---错误检测和出错信令 ---发送期间若丢失仲裁或由于出错而遭破坏的帧可自动重发送 ---暂时错误和永久性故障接点的判别以及故障节点的自动脱离
一、什么是CAN 一、什么是CAN ?
CAN,全称为“Controller Area Network”,即控制器局域 网,是国际上应用最广泛的现场总线之一。最初,CAN被设 计作为汽车环境中的微控制器通讯,在车载各电子控制装置 ECU之间交换信息,形成汽车电子控制网络。比如:发动机 管理系统、变速箱控制器、仪表装备、电子主干系统中,均 嵌入CAN控制装置。 一个由CAN 总线构成的单一网络中,理论上可以挂接无 数个节点。实际应用中,节点数目受网络硬件的电气特性所 限制。例如,当使用Philips P82C250作为CAN收发器时,同 一网络中允许挂接110个节点。CAN 可提供高达1Mbit/s的数 据传输速率,这使实时控制变得非常容易。另外,硬件的错 误检定特性也增强了CAN的抗电磁干扰能力。
CAN是一种多主方式的串行通讯总线,基本设计规范 要求有高的位速率,高抗电磁干扰性,而且能够检测出产生 的任何错误。当信号传输距离达到10Km时,CAN 仍可提供 高达50Kbit/s的数据传输速率。 由于CAN总线具有很高的实时性能,因此,CAN已经 在汽车工业、航空工业、工业控制、安全防护等领域中得到 了广泛应用。

can线基础知识讲解

can线基础知识讲解

CAN线基础知识讲解1. 什么是CAN线?CAN(Controller Area Network)是一种串行通信协议,最初由德国公司Bosch 开发。

CAN总线主要用于车辆内部的通信系统,但现在也被广泛用于工业控制和汽车领域以及航空航天领域。

CAN线是CAN总线的物理连接线路,负责将CAN控制器、传感器、执行器等设备连接起来进行数据通信。

2. CAN线的特点•高可靠性:CAN线采用差分信号传输,抗干扰能力强,即使在噪音干扰较大的环境下,数据传输也可靠。

•实时性强:CAN线采用事件驱动的通信方式,具有较低的延迟,适用于要求实时性的应用场景。

•多路复用:CAN总线支持多个设备在同一根线上进行通信,节约了线路资源。

•灵活性:CAN总线可以动态连接和断开设备,方便系统调试和维护。

3. CAN线的工作原理CAN线采用双绞线作为传输介质,数据传输采用差分信号方式,即在CAN_H和CAN_L两根信号线上传输互补的电压信号。

CAN_H线上的电压高表示逻辑1,CAN_L线上的电压高表示逻辑0,通过CAN控制器的差分比较可以识别信号。

CAN线的通信帧由起始标志、控制字段、数据字段、CRC字段和结束字段组成,通信速率可根据需求配置。

CAN线具有发送器和接收器,通过在总线上抢占通信的方式实现多路复用。

4. CAN线的应用领域CAN线广泛应用于汽车电子控制系统、工业控制系统、医疗设备、航空航天等领域。

在汽车电子控制系统中,CAN线连接了发动机控制单元、传感器、仪表盘、空调控制器等各个设备,实现数据的快速传输和实时控制。

在工业控制系统中,CAN线连接了PLC、传感器、执行器等设备,实现设备之间的数据交换和协同工作。

CAN线也被广泛应用于航空航天领域,连接了航空电子设备、飞行控制系统等,确保了系统的可靠性和实时性。

5. CAN线的发展趋势随着物联网、智能制造等领域的快速发展,CAN线也在不断演进。

未来CAN线将更加智能化、高速化,支持更多的设备连接和更高的数据传输速率。

CAN基础知识

CAN基础知识

CAN基础知识CAN总线是一种数据通信协议,也叫做控制区域网络,它最早被用于汽车领域中的电子控制单元之间的通信。

CAN总线是一种串行通信协议,它具有高可靠性、实时性和高效性等优势。

在现代工业自动化、机器人、航空、航天、军事、医疗和智能家居等领域也有广泛应用。

CAN总线协议的特点:1. 帧结构:CAN总线采用的是分布式控制器结构,总线上的每个设备都可以发送和接收数据。

数据以帧为单位进行传输,一帧数据包括控制信息(例如优先级、长度、发送和接收地址等)和实际数据内容。

帧的结构简单、信息量丰富。

2. 速率:CAN总线的数据传输速率可以达到1Mbps,对于实时性要求高的应用具有很大的优势。

3. 冲突检测:CAN总线采用一种称之为“非破坏性位多投票”机制来解决冲突问题。

当总线上有两个或以上的设备同时发送数据时,位值不同的设备会获得主控权,而位值相同的设备需要继续发送,直到识别出哪个设备获得主控权。

4. 失败机制:当CAN总线上的某个节点出现故障或断开连接时,系统可以及时识别并且调整其它设备的优先级,保证整个系统的可靠性。

5. 远程帧:CAN总线还提供了远程帧的功能,允许设备主动请求数据或汇报错误,从而保障系统的高效性和可控性。

6. 兼容性:CAN总线的协议是开放标准,任何一个符合协议规范的设备可以接入总线,这样就可以保证系统的兼容性和扩展性。

目前,CAN总线的三个主要版本是CAN 2.0A、CAN 2.0B和CAN FD。

CAN 2.0A和2.0B是较早的版本,最大区别在于帧ID的长度和规定。

CAN FD(FlexRay数据链路)是一种新的高速CAN总线协议,可以提供更高的数据传输速率和更大的数据传输容量。

在汽车领域中,CAN总线已成为电子控制单元之间通信的标准协议,包括发动机控制模块(ECM)、变速器控制模块(TCM)、刹车系统、空调系统和仪表盘等。

此外,CAN总线还广泛用于工业自动化领域中的控制系统,如PLC、机器人控制系统、工业网络等。

CAN总线基础(1)— CAN简介及特点

CAN总线基础(1)— CAN简介及特点

1.CAN是什么?CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。

在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。

由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。

为适应“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需要,1986 年德国电气商博世公司开发出面向汽车的CAN 通信协议。

此后,CAN 通过ISO11898 及ISO11519 进行了标准化,现在在欧洲已是汽车网络的标准协议。

现在,CAN 的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。

下图是车载网络的构想示意图。

CAN 等通信协议的开发,使多种LAN 通过网关进行数据交换得以实现。

2.CAN的应用实例3.总线拓扑图CAN 控制器根据两根线上的电位差来判断总线电平。

总线电平分为显性电平和隐性电平,二者必居其一。

发送方通过使总线电平发生变化,将消息发送给接收方。

CAN的连接示意图4.CAN的特点CAN 协议具有以下特点:(1) 多主控制在总线空闲时,所有的单元都可开始发送消息(多主控制)。

最先访问总线的单元可获得发送权(CSMA/CA 方式)。

多个单元同时开始发送时,发送高优先级ID 消息的单元可获得发送权。

(2) 消息的发送在CAN 协议中,所有的消息都以固定的格式发送。

总线空闲时,所有与总线相连的单元都可以开始发送新消息。

两个以上的单元同时开始发送消息时,根据标识符(Identifier 以下称为ID)决定优先级。

ID 并不是表示发送的目的地址,而是表示访问总线的消息的优先级。

两个以上的单元同时开始发送消息时,对各消息ID 的每个位进行逐个仲裁比较。

仲裁获胜(被判定为优先级最高)的单元可继续发送消息,仲裁失利的单元则立刻停止发送而进行接收工作。

CAN总线入门总结

CAN总线入门总结

1. 简介CAN总线由德国BOSCH公司开发,最高速率可达到1Mbps。

CAN的容错能力特别强,CAN控制器内建了强大的检错和处理机制。

另外不同于传统的网络(比如USB或者以太网),CAN节点与节点之间不会传输大数据块,一帧CAN消息最多传输8字节用户数据,采用短数据包也可以使得系统获得更好的稳定性。

CAN总线具有总线仲裁机制,可以组建多主系统。

2. CAN标准CAN是一个由国际化标准组织定义的串行通讯总线。

最初是用于汽车工业,使用两根信号总线代替汽车内复杂的走线。

CAN总线具有高抗干扰性、自诊断和数据侦错功能,这些特性使得CAN总线在各种工业场合广泛使用,包括楼宇自动化、医疗和制造业。

CAN通讯协议ISO-11898:2003标准介绍网络上的设备间信息是如何传递的,以及符合开放系统互联参考模型(OSI)的哪些分层项。

实际通讯是在连接设备的物理介质中进行,物理介质的特性由模型中的物理层定义。

ISO11898体系结构定义七层,OSI模型中的最低两层作为数据链路层和物理层,见图2-1。

图2-1:ISO 11898标准架构分层在图2-1中,应用程序层建立了上层应用特定协议,如CANopenTM协议的通讯链路。

这个协议由全世界的用户和厂商组织、CiA维护,详情可访问CiA网站:can-cia.de。

许多协议是专用的,比如工业自动化、柴油发动机或航空。

另外的工业标准例子,是基于CAN的协议的,由KVASER和Rockwell自动化开发的DeviceNetTM。

3. 标准CAN和扩展CANCAN通讯协议是一个载波侦听、基于报文优先级碰撞检测和仲裁(CSMA/CD+AMP)的多路访问协议。

CSMA的意思是总线上的每一个节点在企图发送报文前,必须要监听总线,当总线处于空闲时,才可发送。

CD+AMP的意思是通过预定编程好的报文优先级逐位仲裁来解决碰撞,报文优先级位于每个报文的标识域。

更高级别优先级标识的报文总是能获得总线访问权,即:标识符中最后保持逻辑高电平的会继续传输,因为它具有更高优先级。

CAN总线(一)---CAN总线基础-qtchen001

CAN总线(一)---CAN总线基础-qtchen001

控制器局域网协议CAN是德国博世公司开发的一套串行总线通讯协议,特别适用于智能设备之间的互联来构成智能系统或子系统。

CAN是一种基于广播通讯机制的协议,这种机制通过使用一种面向消息的传输协议来实现,在这种协议下,不定义具体的站点和站点地址,只定义消息。

而通过消息标识符来区别不同的消息。

而且很容易向一个CAN网络中添加一个节点,当这一节点仅作为接收者时甚至不需要对己有的节点的软硬件做任何的改动。

CAN遵循ISO/OSI标准模型,定义了OSI模型的数据链路层(包括逻辑链路控制子层LLC和媒体访问子层MAC)和物理层。

其中MAC(媒体访问控制子层)是其核心层。

MAC子层可分为完全独立工作的两个部分,即发送部分和接收部分。

图1 CAN总线模型物理层是实现电器控制单元与总线相连的电路。

电器控制单元的总数取决于总线的电力负载。

信号使用差分电压传送,两条信号线被称为CAN_H和CAN_L。

静态时均是2.5v左右,此时状态表示为逻辑“1”,也可以叫做隐性。

用CAN_H比CAN_L高表示逻辑“0”,称为显性,此时通常电压值为CAN_H=3.5V和CAN_L=1.5V。

图2 物理层逻辑电平CAN总线是一种串行数据通信总线,其通信速率最高可达1Mb/s。

CAN系统内两个任意节点之问的最大传输距离与其位速率有关。

当CAN的传输速率达1Mb/s时,最大传输距离为40米,对一般实时控制现场来说足够使用。

CAN采用了CSMA/CD机制实现总线访问。

利用CSMA访问总线,可对总线上信号进行检测,只有当总线处于空闲状态时,才允许发送。

在CAN总线上发送的每一条报文都具有唯一的一个11位或29位数字的ID。

CAN总线状态取决于二进制数“0”而不是“1”,所以ID号越小,则该报文拥有越高的优先权,因此一个为全“0”标识符的报文具有总线上的最高级优先权。

CAN的标准消息帧结构为CAN 2.0A的消息帧格式,也就是CAN消息帧的标准格式,它有11位标识符。

CAN总线详细教程

CAN总线详细教程

CAN总线详细教程CAN总线是一种高速串行通信协议,广泛应用于自动化控制系统、汽车电子、工业设备等领域。

它具有高速传输、可靠性强和抗干扰能力强等优点。

本篇文章将介绍CAN总线的基本原理、通信方式、帧格式以及应用示例等内容。

一、CAN总线基本原理CAN(Controller Area Network)总线是一种多主机、多从机的通信系统,包括一个主控器和多个节点。

主控器负责决定总线上的通信速率和优先级,节点之间的通信通过总线上发送和接收的消息进行。

二、CAN总线通信方式1.基于广播的通信方式:主控器发送的消息会被总线上的所有节点接收。

节点根据消息的标识符判断是否需要对其进行处理。

2.基于点对点的通信方式:主控器发送的消息只会被消息的接收者节点接收。

消息的接收者是通过消息的标识符来确定的。

在实际应用中,一般会结合这两种通信方式来实现复杂的通信需求。

三、CAN总线帧格式1.数据帧:用于实际传输数据。

数据帧包括标识符、控制字段、数据字段和校验字段等。

2.远程帧:用于请求节点发送数据。

远程帧只包括标识符和控制字段。

标识符用于标识消息的类型和优先级,控制字段用于进行错误检测和数据传输的控制。

数据字段包含要传输的数据,校验字段用于检测数据传输过程中是否出现错误。

四、CAN总线应用示例以汽车电子控制系统为例,介绍CAN总线的应用。

在汽车上,CAN总线被广泛应用于发动机控制、刹车系统、空调系统等各种电子控制单元之间的通信。

通过CAN总线,这些电子控制单元可以实现信息的共享和协同工作。

例如,发动机控制单元可以将发动机的运行状态通过CAN总线发送给其他控制单元,供其他控制单元进行相应的控制。

刹车系统可以通过CAN总线获取发动机控制单元的信息,判断是否需要进行制动操作。

空调系统可以根据发动机控制单元的信息,调整空调的工作状态等。

总结:CAN总线是一种高速串行通信协议,具有高可靠性和抗干扰能力强的特点。

它采用差分传输技术,实现多主机、多从机的通信。

can总线轻松入门与实践

can总线轻松入门与实践

can总线轻松入门与实践CAN(Controller Area Network)总线是一种现代的数据通信协议,广泛应用于汽车、机器人、机械等领域。

CAN总线具有高速、可靠、安全等优点,成为现代工业控制领域的重要技术之一。

本文将介绍CAN总线的基本原理、应用场景及实践操作方法。

一、CAN总线的基本原理CAN总线是一种基于串行通信协议的网络,可将所有节点进行整体控制和调度。

其主要原理是:1. 线路结构CAN总线采用双绞线进行数据传输,其中一条线为CANH(高电平),另一条为CANL(低电平)。

CAN总线上可同时存在多个节点,每个节点通过一个终端电阻和CANH、CANL相连,形成一串联的线路结构。

2. 差分信号传输CAN总线上是采用差分信号进行传输的,即CANH/CANL之间的电位差。

由于CAN总线每个节点之间的距离都很近,相互之间干扰的电磁场也是相同的,因此CANH与CANL之间的信号差分截面可以抵消部分干扰产生的电磁波,从而保证数据传输的稳定性和可靠性。

3. 数据帧结构CAN总线的数据帧包括标识符、控制域、数据域和校验码等四个部分。

其中,标识符是CAN总线上唯一的识别符,每个节点通过标识符来区分不同的数据包。

控制域主要用于控制数据帧的传输和接收,数据域用于存储所传输或接收的数据,校验码用于验证数据传输过程中是否出现了错误。

二、CAN总线的应用场景CAN总线主要应用于多种机械设备和工业控制领域中,是当今控制领域的一个核心技术。

下面是一些常见的应用场景:1. 汽车领域CAN总线在汽车领域中广泛应用,可以实现汽车各种系统之间的数据传输和互联,包括发动机控制、转向控制、车身控制、底盘控制、安全控制、多媒体系统等。

2. 机器人领域CAN总线在机器人领域中也被广泛应用,可以实现机器人各个网络之间的数据传输和协作,如运动控制、外围设备和感知器件控制等。

3. 工业控制领域CAN总线被广泛应用于工业控制领域,在制造业、石油化工、能源、交通、医疗等行业中,可以实现智能化、自动化控制和管理等目的,提高生产效率和安全性。

汽车CAN总线技术及故障分析

汽车CAN总线技术及故障分析

汽车CAN总线技术及故障分析CAN总线技术是一种现代汽车中用于通信的标准协议,它可以实现车载电子设备之间的有效通信和数据交换。

CAN总线技术已经成为了现代汽车电子控制系统的主要通信方式。

本文将介绍CAN总线技术的基础知识、应用场景、以及常见的故障分析。

一、CAN总线技术基础知识1.CAN简介CAN(Controller Area Network)总线是欧洲汽车制造商联合开发的一种标准通信协议。

它的特点是稳定可靠、数据传输速率高,可以同时传输多个节点的信息。

2.CAN总线的组成CAN总线由总线、控制器和节点组成。

总线是一根双绞线,连接着所有节点,通过总线将信息传递给各个节点。

控制器是负责对总线上的数据进行传输和处理的设备,控制器可以主动发数据,也可以被动接收数据。

节点是连接在总线上的各种设备,它们可以接收和发送信息。

CAN总线基于广播通讯的方式,它不需要主从节点,各个节点都具有同样的权利来发送和接收信息。

当一个节点需要发送信息时,它会抢占总线,如果其他节点正在传输数据,那么该节点就会等待。

一旦总线被空闲了,该节点就可以把信息发送出去。

CAN总线技术在汽车电子控制系统中具有以下优势:(1)数据传输速率高:CAN总线的数据传输速率可以高达1 Mb/s。

这使得CAN总线可以实现高速数据传输,从而提高了系统的实时性。

(2)通信可靠性高:CAN总线的通信协议采用了差分信号传输技术和冗余技术,这使得CAN总线具有较强的抗干扰能力和误码率。

(3)支持多节点:CAN总线可以支持多节点,可以连接多个传感器和执行器,实现电子控制系统内各个部件之间的信息共享和协同工作。

二、CAN总线应用场景CAN总线技术已经在汽车电子控制系统中得到了广泛的应用。

其中,以下是比较常见的应用场景:1.发动机管理系统:CAN总线可以连接各种传感器和执行器,如氧传感器、喷油嘴、节气门等。

通过CAN总线相互通信,从而实现发动机的良好工作状态。

2.制动系统:CAN总线可以连接制动传感器和制动执行器等,可以实现制动系统控制和信息交换。

CAN基础知识3篇

CAN基础知识3篇

CAN基础知识第一篇:CAN总线介绍及基本特性CAN(Controller Area Network)总线,是一种串行通信总线,广泛应用于建筑自动化、工业自动化、汽车电子和其他控制领域。

CAN总线的优势在于其高速性、高可靠性和实时性能。

本文将介绍CAN总线的基本特性,包括CAN的基本架构、CAN的帧格式和通讯协议、CAN的通讯速率和传输距离,以及常用的CAN总线标准和应用场景。

1. CAN总线架构CAN总线的基本架构由控制器、节点、总线和转换器组成。

其中,控制器负责CAN通讯协议的实现,节点通过总线与控制器进行通讯,并根据通讯协议执行相应的功能。

总线是连接控制器和节点的传输介质,通常采用双绞线作为传输介质,以保证传输信号的可靠性。

转换器主要负责将CAN总线转换为其他串行通讯协议或者其他传输介质。

2. CAN帧格式和通讯协议CAN总线通讯采用基于帧的数据传输方式,每一帧包含一个控制帧和若干个数据帧。

控制帧用于驱动CAN总线工作,包含开始、结束、错误等信息,数据帧用于传输节点之间的数据。

CAN总线通讯协议采用事件驱动机制,控制帧在总线上产生中断事件,通知节点进行相应的操作。

节点产生数据帧时,需要先向控制器进行请求,控制器则决定该帧是否能够传输。

3. CAN总线通讯速率和传输距离CAN总线通讯速率通常在1Mbps到1Kbps之间,不同的CAN总线标准也有所不同。

例如,CAN2.0B标准规定了1Mbps和500Kbps两种通讯速率。

CAN总线的传输距离基于总线的负载和传输介质的质量而定,一般而言,CAN总线的传输距离约为40m至500m之间。

4. CAN总线标准和应用场景目前常用的CAN总线标准有CAN 2.0A、CAN 2.0B、CAN FD等。

CAN 2.0A和CAN 2.0B协议是基于11位标识符的,而CAN FD协议则支持29位标识符和更高的带宽传输。

CAN总线广泛应用于汽车电子、建筑自动化、工业自动化等领域。

CAN总线技术基础

CAN总线技术基础

CAN总线网络节点结构
Application Layer
j1939本质 如何将29ID分类 j1939组织架构
协议查找
单片机
Data Link Layer Physical Layer
总线仲裁机制 位填充机制机制 can报文帧结构
报文打包 can总线容错 网络负载率
信号电平 信号传输、抗干扰
位定时、同步 位编解码
•CAN总线技术基础
报文滤波
报文滤波可以通过软件编程的方式实现,也可以通过硬件(芯片内部的 报文滤波寄存器)实现,但二者实现的原理是相同的,如下图所示:
•CAN总线技术基础
数据帧中的其他场作用
控制场:包括两位保留位(必须为0),和数据长度位(DLC0~DLC3) 数据场:包括最多8个字节的数据 CRC场:是一种算法,对数据进行CRC校验,共15bit,其后跟了一位CRC界 定符——为1(隐性电平) 应答场:为两个1(总线电平为低电平),其中一位为应答间隙,另一位为应 答界定符。成功接收到数据的节点必须发送一位显性位(总线电平为高电平)
隐性电平(逻辑 1):CAN_H 2.5V CAN_L 2.5V
显性电平 隐性电平
•CAN总线技术基础
总线支持的最大节点数目
•CAN总线技术基础
总线支持的最大节点数目
由上表可以看出,常用的两款CAN驱动芯片 支持的总线节点数目都可以满足整车CAN节点需 求,这不是问题。
•CAN总线技术基础
总线长度的思考
CAN总线通过如下几个方面进行错误检测 (1)当节点赢得总线发送权后,会对总线电平进行检测,当发送的电平和检 测到的总线电平不一致时,认为错误 (2)出现6个连续相同的电平时,认为是填充错误 (3)CRC错误,接收数据的节点按照与发送数据的节点相同的方法计算数据 的CRC校验值,如果接收节点的计算结果与数据包中CRC场的数据不一致, 认为是CRC错误 (4)应答错误,在应答场如果没有监控到一个显性电平,那么就认定一个 应答错误 (5)固定位错误,例如:CRC界定符等,其电平是固定的,当监控到该电平 不相符时,认定一个错误 另:总线同步机制也是CAN总线容错的一种方式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CAN总线是由Robert BOSCH公司于1983年开发的汽车用总线系统,用于网络控制单元数据交换。其器位置分布在不同车辆部位,如发动机、变速箱等。CAN总线特点显著,包括传输速度快、相关控制单元可共用传感器,从而减少传感器及信号线路数量,节省空间。其数据传输原理依赖于收发器将数据转化为电信号进行双向传递,以及终端电阻防止数据反射。在维修方面,需要关注CAN总线的特定维修点。数据协议方面,信息通过Bit字节传送,不同电压表示不同信息状态,如车窗玻璃升降器运行状态或冷却液温度读数。
相关文档
最新文档