齿轮结构及设计
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、基圆
前面已有公式 cosk db dk 进而可得: 基圆直径为 db d cos mz cos
基圆上的齿距 Pb db / z m cos
由此可见:齿数,模数,压力角是决定渐开线形状的 三个基本参数。
3、齿顶高和齿根高 齿顶高用ha 表示,齿根高用hf 表示,齿全高用h 表示:
即 S e p / 2 m / 2
且有 ha ha*m hf (ha* c*)m ha* 、c*分别称为齿顶高系数和顶隙系数,其标准值为:
ha* 1
c* 0.25
顶隙(也称径向间隙)
顶隙 —— 一对相互啮 合的齿轮中,一个齿轮
的齿根圆与另一个齿轮
的齿顶圆之间在连心线
1
' 2
o2' p' o1 p'
rb2 rb1
N2
N2'
o2
o'2
2
'
4、啮合角是随中心距而定的常数
1 返回
•啮合角——— 过节点所作
o1
的两节圆的内公切线(t — t)
与两齿廓接触点的公法线所
夹的锐角。用 '表示。
一对齿廓啮合过程中, t
啮合角始终为常数。当中心 t' 距加大时,啮合角随中心距
三、连续传动的条件
(1)一对渐开线轮齿的啮合过程
一对轮齿在啮合线上啮合的起 始点—— 从动轮2的齿顶圆与 啮合线N1N2的交点B2 一对轮齿在啮合线上啮合的终 止点—— 主动轮的齿顶圆与 啮合线N1N2的交点B1。
实际啮合线—— 线段B1B2 理论啮合线—— 线段N1N2
o1
ra1
N2 B1
rb2 o2
发生线
(1)NK = N K0
(2) 渐开线上任意一点的法线必 切于基圆,切于基圆的直线
Vk
k K
Βιβλιοθήκη Baidu
必为渐开线上某点的法线。
与基圆的切点N为渐开线在
k点的曲率中心,而线段NK 是渐开线在点k处的曲率半径。
N
渐开线上点K的压力角
Pk rk
K0
rb k k
(3在)渐不开考线虑齿摩廓擦各力点、具重有力不和同惯的性
1
n
k
p k1
a
中心距
2 r2
一对齿廓称为共轭齿廓, 理论 上有无穷多对共轭齿廓,其中以 渐开线齿廓应用最广。
节圆
o2
ω2
二、渐开线齿廓
(一)渐开线的形成
发生线
K
N
rb
基圆
K0
k
O
当直线沿一圆周作相切纯滚动时,直线上任一点在与 该圆固联的平面上的轨迹k0k,称为该圆的渐开线。
(二)渐开线的性质
1 rb1
B2N1
ra2 2
(2)重合度及连续传动条件
为保证连续定角速比传动的条件为:B1B2>Pn
即 a B1B2 1
重合度
Pn
1
1
1
N1 N2 B1 B2
N1 B2
N2 B1
N1
N2 B1
B2
(a) B1B2<Pn
(b) B1B2=Pn
(c) B1B2>Pn
重合度的物理意义( a 1.3)
力的压条力件角下,,点一K对离齿基廓圆相中互心啮O合时,
O
齿轮愈上远接,触压点力K角所愈受大到。的正压力方
向与受力点速度方向之间所夹的锐 角,称为齿轮齿廓在该点的压力角。
NOK= k
基圆cos k
rb rk
(4)渐开线的形状取 决于基圆的大小,基 圆越大,渐开线越平 直,当基圆半径趋于 无穷大时,渐开线成 为斜直线。
h ha h f
齿顶圆直径 da d 2ha
齿根圆直径 d f d 2hf
(三)外啮合标准齿轮传动的基本尺寸计算 1.标准齿轮
标准齿轮—— 除模数和压力角为标准值外,分度圆 上的齿厚(S)等于齿槽宽(e),以及齿顶高(ha)、齿根高 (hf)分别与模数(m)之比值均等于标准值的齿轮。
o1
1
o11
r1 rb1 节线
n k N1
r1 rb1
节线
p
N1
k
n
(分度线) p
n
v2
(a)
1 2
分度线 n
v2
(b)
1 2
(2)齿廓公法线为一固定直线nn,与中心线的交点 为固定点P(节点)。啮合时齿轮节圆与分度圆始 终重合,但齿条的节线与分度线位置随中心距的 变化而不同。
P k2
N2
rb2 o2
1 rb1
N1
k1
r2'
2
3、中心距的变化不影响角速比
•渐开线齿廓啮合的中心距
1
可变性——— 当两齿轮
o1
制成后,基圆半径便已确 定,以不同的中心距(a或
a')安装这对齿轮,其传动
N1 N1' P
比不会改变。
p'
i12
1 2
o2 P o1P
rb2 rb1
i1' 2
外啮合直齿轮
内啮合直齿轮
斜齿圆柱齿轮
人字齿圆柱齿轮
齿 轮 齿 条 传 动
2、相交轴齿轮传动
直 齿 圆 锥 齿 轮 传 动
3、两轴相交 错的齿轮机构
交错轴斜齿轮传动
蜗 轮 蜗 杆 传 动
8avi
二、齿轮机构传动的特点
①传动比稳定;
①制造和安装精度要
②传动效率高;
求较高;
优点: ③工作可靠性高; 缺点:
齿根圆(df 和 rf) 分度圆(d 和 r) 齿顶高ha
基圆(db 和 rb) 齿根高hf
rf rb
ra ri
基圆 齿根圆
o
(二)齿轮基本参数的计算公式
1、分度圆与模数
设一齿轮的齿数为 z,其任一圆的直径为di ,该圆
上的齿距为pi,则
di
pi
z
• 模数—— 人为地把 pi / 规定为一些简单的有理数,
第四章
齿轮机构及其设计
§4-1 §4-2 §4-3
§4-4 §4-5
齿轮机构的类型与特点 齿廓啮合基本定律及渐开线齿形 渐开线直齿圆柱齿轮机构的基本 参数和尺寸计算 渐开线直齿圆柱齿轮机构的啮合传动 渐开线斜齿圆柱齿轮机构
§4-1齿轮机构的传动类型和特点
一、齿轮机构的传动类型
1、两轴线平行的圆柱齿轮机构
(1)同侧齿廓为互相平行的直线。
(2)齿条齿廓上各点的压力角均相等,且数值上等
于齿条齿形角。
(3)凡与齿条分度线平行的任一直线上的齿距和模
数都等于分度线上的齿距和模数。 p
hf ha
n n
齿顶线 分度线
se
齿根线
2、渐开线齿轮齿条的啮合特点
(1)齿轮齿条传动的中心距为齿轮中心到齿 条分度线的垂直距离。齿轮齿条传动也具有 中心距可变性。
o2
§4-4、渐开线直齿圆柱齿轮机构的啮合传动
一、一对渐开线直齿圆柱齿轮齿廓的啮合特性 二、正确啮合条件 三、连续传动的条件 四、渐开线齿廓的切削加工原理 五、齿轮机构的传动类型与功用
一、一对渐开线直齿圆柱齿轮齿廓的 啮合特性
1、能保证实现恒定传动比传动
可以证明渐开线齿轮齿廓的啮 合传动满足齿廓啮合基本定律。
o2
o2
(a)
(b)
即必须满足下列条件:
pn1 pn2 即 pb1 pb2 pb
( pb pn ) pb m1 cos1 m2 cos2
•一对渐开线直齿圆柱齿轮的正确啮合条件是: 两轮的模数相等,两轮的压力角相等。
m1 m2 m
1 2
返回
r1' o1
i12
1 2
o2 p o1 p
r2' r1'
rb2 rb1
z2 z1
P k2
N2
rb2 o2
1
rb1
N1
k1
r2'
2
2、啮合线是两基圆的一条内公切线
•啮合线——— 两齿廓啮 合点在机架相固连的坐标 系中的轨迹。
r1' o1
啮合线、齿廓接触点 的公法线、正压力方向线 都是两基圆的一条内公切 线。
'
N2
'
N1
P p'
N1'
t t'
的变化而改变。 啮合角在数值上
等于节圆上的压力角。
N2'
o2
2
o'2
'
cos '
rb1 r1'
rb2 r2'
二、正确啮合条件
两齿轮的相邻两对轮齿分别K在和K'同时接触, 才能使两个渐开线齿轮搭配起来并正确的传动。
o1
o1
N1
N2 k
k
N1
k
k2
N2
欲使两齿轮正确啮合,两轮的法节必k1须相等。
Pn
0.3Pn
0.7Pn
双对齿
啮合区
B1
K'
单对齿啮合区
Pn
0.3Pn
双对齿
啮合区
K
B2
1.3Pn
a 二对齿啮合区长度
实际应用中, a
a
a
许用重合度
(3)重合度与基本参数的关系
o1
B1B2 B1P B2P
而 B1P B1N1 PN1
mz1 2
该比一值个称齿为轮模在数不同m直i径的圆周p上i ,其。模数的大小是不同的。
• 分度圆——— 是齿轮上一个人为地约定的齿轮计
算的基准圆,规定分度圆上的模数和压力角为标准值。
国标压力角的标准值为 =20° 模数的标准系列见GB1357-87,参见表4-2。
d = mz
分度圆上的参数分别用d、r、m、p、e及 表示。 m越大,P愈大,轮齿愈大,抗弯强度也愈高。
刀根线
S=e ha=ha*m hf =(h*a+c*)m
分度圆
中线 m 2
(h*a +c*)m
h*am
* *
sp
*
m
*
b、变位齿轮的切制 齿条刀中线相对于被切齿轮分度圆可能有三种情况
齿条刀中线由切制标准齿轮的位置沿轮坯径向远离或 靠近齿轮中心所移动的距离称为径向变位量x m(简称变 位量),其中x称为径向变位系数(简称变位系数)。
o1 1
o11
r1 rb1 节线
n
r1 rb1
n
N1
k N1
节线
pk
(分度线) p
n
v2
(a)
1 2
分度线 n
v2
(b)
1 2
(3)齿轮齿条传动时无论中心距增大还是减小,其 啮合角始终不变,且数值上等于齿条齿廓的齿形角。
(4)齿条移动的速度为 v2 1r1
o1 1
o11
④结构紧凑;
②不适宜用于两轴 间
⑤使用寿命长。
距离较大的传动。
三、齿轮机构设计内容
①齿轮齿廓形状的设计 内容包括 ②单个齿轮的基本尺寸的设计
③一对齿轮传动设计
§ 4-2齿廓啮合基本定律及渐开线齿形
一、齿廓啮合基本定律
3
对齿轮传动的基本要求是保证
瞬时传动比: i12=1/2= C
P1o3 1
ω1
(5)基圆内无渐开线。
Σ3 Σ1
Σ2
N2 N1
r b1
K
KO2
o2 KO1 o1
(三)渐开线的方程式
以O为中心,以OK0为极轴 的渐开线K点的极坐标方程: Vk
发生线
rk
rb
cosκ
k K
θk invκ tgκκ
Pk rk
invk— 渐开线函数
(k NOK 0 K
ω2 P23
齿廓啮合基本定律
要使两齿轮的瞬时传动比为一
常数,则不论两齿廓在任何位置接
触,过接触点所作的两齿廓公法线 o1 ω1
r 都必须与连心线交于一定点p 。
i12
r2 r1
r1
1
a i12
节圆
又 a r1 r2
r2
a1i12 1 i12
节点
1
凡能满足齿廓啮合基本定律的 n
cos
(tga1
tg
')
ra1 N2 B1
同理 B与2,Pm在无直m关齿2z,2圆而c柱与os齿齿轮数(t中g有关a2,z1mtgax,=z2' )1.,9r8b12。
rb1
B2 P
N1
ra2
又由于 Pn Pb m cos
a
B1B2 Pn
1
2
z1(tga1 tg ') z2 (tga2 02tg ')
N rb k k K0
(
NK 0 rb
k
tg k
k )
O
基圆
§ 4-3 渐开线直齿圆柱齿轮机构 的基本参数和尺寸计算
(一)齿轮基本尺寸的名称和符号
齿数 z 齿槽宽ei齿厚si 齿距pi
同一圆上 pi si ei
齿顶圆(da 和 ra)
齿距pi 齿厚si 齿槽宽ei
分度圆 齿顶圆
r1 rb1 节线
n k N1
r1 rb1
节线
p
N1
k
n
(分度线) p
n
v2
(a)
1
分度线
2
n
v2
(b)
1 2
3、用齿条刀切制轮齿
a、标准齿轮的切制
齿条刀中线与齿轮 坯分度圆相切,并使
* *
它们之间保持纯滚动。 这样切出的齿轮必为
m m
2
2
标准齿轮:
刀顶线
齿顶线 中线
(分度线)
两齿廓在任一瞬时(即任意点k接 触时)的传动比:i12=1/2=?!
1
n
点p是两齿轮廓在点K接触时的相 对速度瞬心,
故有 Vp=1o1p=2o2p
k
(P12) p k1
i12
1 2
O2 P O1P
n
2
由此可见,两轮的瞬时传动比与瞬时接触
点的公法线把连心线分成的两段线段成反比。 o2
返回
四、渐开线齿廓的切削加工原理
范成法 —— 利用轮齿啮合时齿廓曲线互为包络线的 原理来加工齿廓,其中一个齿轮(或齿条)作为刀具, 另一个齿轮则为被切齿轮毛坯,刀具相对于被切齿轮 毛坯运动时,刀具齿廓即可切出被加工齿轮的齿廓。
范成运动 i z
z0
切削运动 进给运动
范成实验的平面图如图
1、渐开线齿条的几何特点
上度量的距离,用C 表
示。 c cm
c
'
o1
r1'
r2' o2
2.标准齿轮传动的中心距
•一对齿轮啮合传动时,中
o1
心距等于两节圆半径之和。
c
'
•标准中心距(标准齿轮无 侧隙传动中心距)
r1'
a r1 r2 r1 r2
m 2
z1
z2
3.标准齿轮几何尺寸计算
r2'
见表4—3
前面已有公式 cosk db dk 进而可得: 基圆直径为 db d cos mz cos
基圆上的齿距 Pb db / z m cos
由此可见:齿数,模数,压力角是决定渐开线形状的 三个基本参数。
3、齿顶高和齿根高 齿顶高用ha 表示,齿根高用hf 表示,齿全高用h 表示:
即 S e p / 2 m / 2
且有 ha ha*m hf (ha* c*)m ha* 、c*分别称为齿顶高系数和顶隙系数,其标准值为:
ha* 1
c* 0.25
顶隙(也称径向间隙)
顶隙 —— 一对相互啮 合的齿轮中,一个齿轮
的齿根圆与另一个齿轮
的齿顶圆之间在连心线
1
' 2
o2' p' o1 p'
rb2 rb1
N2
N2'
o2
o'2
2
'
4、啮合角是随中心距而定的常数
1 返回
•啮合角——— 过节点所作
o1
的两节圆的内公切线(t — t)
与两齿廓接触点的公法线所
夹的锐角。用 '表示。
一对齿廓啮合过程中, t
啮合角始终为常数。当中心 t' 距加大时,啮合角随中心距
三、连续传动的条件
(1)一对渐开线轮齿的啮合过程
一对轮齿在啮合线上啮合的起 始点—— 从动轮2的齿顶圆与 啮合线N1N2的交点B2 一对轮齿在啮合线上啮合的终 止点—— 主动轮的齿顶圆与 啮合线N1N2的交点B1。
实际啮合线—— 线段B1B2 理论啮合线—— 线段N1N2
o1
ra1
N2 B1
rb2 o2
发生线
(1)NK = N K0
(2) 渐开线上任意一点的法线必 切于基圆,切于基圆的直线
Vk
k K
Βιβλιοθήκη Baidu
必为渐开线上某点的法线。
与基圆的切点N为渐开线在
k点的曲率中心,而线段NK 是渐开线在点k处的曲率半径。
N
渐开线上点K的压力角
Pk rk
K0
rb k k
(3在)渐不开考线虑齿摩廓擦各力点、具重有力不和同惯的性
1
n
k
p k1
a
中心距
2 r2
一对齿廓称为共轭齿廓, 理论 上有无穷多对共轭齿廓,其中以 渐开线齿廓应用最广。
节圆
o2
ω2
二、渐开线齿廓
(一)渐开线的形成
发生线
K
N
rb
基圆
K0
k
O
当直线沿一圆周作相切纯滚动时,直线上任一点在与 该圆固联的平面上的轨迹k0k,称为该圆的渐开线。
(二)渐开线的性质
1 rb1
B2N1
ra2 2
(2)重合度及连续传动条件
为保证连续定角速比传动的条件为:B1B2>Pn
即 a B1B2 1
重合度
Pn
1
1
1
N1 N2 B1 B2
N1 B2
N2 B1
N1
N2 B1
B2
(a) B1B2<Pn
(b) B1B2=Pn
(c) B1B2>Pn
重合度的物理意义( a 1.3)
力的压条力件角下,,点一K对离齿基廓圆相中互心啮O合时,
O
齿轮愈上远接,触压点力K角所愈受大到。的正压力方
向与受力点速度方向之间所夹的锐 角,称为齿轮齿廓在该点的压力角。
NOK= k
基圆cos k
rb rk
(4)渐开线的形状取 决于基圆的大小,基 圆越大,渐开线越平 直,当基圆半径趋于 无穷大时,渐开线成 为斜直线。
h ha h f
齿顶圆直径 da d 2ha
齿根圆直径 d f d 2hf
(三)外啮合标准齿轮传动的基本尺寸计算 1.标准齿轮
标准齿轮—— 除模数和压力角为标准值外,分度圆 上的齿厚(S)等于齿槽宽(e),以及齿顶高(ha)、齿根高 (hf)分别与模数(m)之比值均等于标准值的齿轮。
o1
1
o11
r1 rb1 节线
n k N1
r1 rb1
节线
p
N1
k
n
(分度线) p
n
v2
(a)
1 2
分度线 n
v2
(b)
1 2
(2)齿廓公法线为一固定直线nn,与中心线的交点 为固定点P(节点)。啮合时齿轮节圆与分度圆始 终重合,但齿条的节线与分度线位置随中心距的 变化而不同。
P k2
N2
rb2 o2
1 rb1
N1
k1
r2'
2
3、中心距的变化不影响角速比
•渐开线齿廓啮合的中心距
1
可变性——— 当两齿轮
o1
制成后,基圆半径便已确 定,以不同的中心距(a或
a')安装这对齿轮,其传动
N1 N1' P
比不会改变。
p'
i12
1 2
o2 P o1P
rb2 rb1
i1' 2
外啮合直齿轮
内啮合直齿轮
斜齿圆柱齿轮
人字齿圆柱齿轮
齿 轮 齿 条 传 动
2、相交轴齿轮传动
直 齿 圆 锥 齿 轮 传 动
3、两轴相交 错的齿轮机构
交错轴斜齿轮传动
蜗 轮 蜗 杆 传 动
8avi
二、齿轮机构传动的特点
①传动比稳定;
①制造和安装精度要
②传动效率高;
求较高;
优点: ③工作可靠性高; 缺点:
齿根圆(df 和 rf) 分度圆(d 和 r) 齿顶高ha
基圆(db 和 rb) 齿根高hf
rf rb
ra ri
基圆 齿根圆
o
(二)齿轮基本参数的计算公式
1、分度圆与模数
设一齿轮的齿数为 z,其任一圆的直径为di ,该圆
上的齿距为pi,则
di
pi
z
• 模数—— 人为地把 pi / 规定为一些简单的有理数,
第四章
齿轮机构及其设计
§4-1 §4-2 §4-3
§4-4 §4-5
齿轮机构的类型与特点 齿廓啮合基本定律及渐开线齿形 渐开线直齿圆柱齿轮机构的基本 参数和尺寸计算 渐开线直齿圆柱齿轮机构的啮合传动 渐开线斜齿圆柱齿轮机构
§4-1齿轮机构的传动类型和特点
一、齿轮机构的传动类型
1、两轴线平行的圆柱齿轮机构
(1)同侧齿廓为互相平行的直线。
(2)齿条齿廓上各点的压力角均相等,且数值上等
于齿条齿形角。
(3)凡与齿条分度线平行的任一直线上的齿距和模
数都等于分度线上的齿距和模数。 p
hf ha
n n
齿顶线 分度线
se
齿根线
2、渐开线齿轮齿条的啮合特点
(1)齿轮齿条传动的中心距为齿轮中心到齿 条分度线的垂直距离。齿轮齿条传动也具有 中心距可变性。
o2
§4-4、渐开线直齿圆柱齿轮机构的啮合传动
一、一对渐开线直齿圆柱齿轮齿廓的啮合特性 二、正确啮合条件 三、连续传动的条件 四、渐开线齿廓的切削加工原理 五、齿轮机构的传动类型与功用
一、一对渐开线直齿圆柱齿轮齿廓的 啮合特性
1、能保证实现恒定传动比传动
可以证明渐开线齿轮齿廓的啮 合传动满足齿廓啮合基本定律。
o2
o2
(a)
(b)
即必须满足下列条件:
pn1 pn2 即 pb1 pb2 pb
( pb pn ) pb m1 cos1 m2 cos2
•一对渐开线直齿圆柱齿轮的正确啮合条件是: 两轮的模数相等,两轮的压力角相等。
m1 m2 m
1 2
返回
r1' o1
i12
1 2
o2 p o1 p
r2' r1'
rb2 rb1
z2 z1
P k2
N2
rb2 o2
1
rb1
N1
k1
r2'
2
2、啮合线是两基圆的一条内公切线
•啮合线——— 两齿廓啮 合点在机架相固连的坐标 系中的轨迹。
r1' o1
啮合线、齿廓接触点 的公法线、正压力方向线 都是两基圆的一条内公切 线。
'
N2
'
N1
P p'
N1'
t t'
的变化而改变。 啮合角在数值上
等于节圆上的压力角。
N2'
o2
2
o'2
'
cos '
rb1 r1'
rb2 r2'
二、正确啮合条件
两齿轮的相邻两对轮齿分别K在和K'同时接触, 才能使两个渐开线齿轮搭配起来并正确的传动。
o1
o1
N1
N2 k
k
N1
k
k2
N2
欲使两齿轮正确啮合,两轮的法节必k1须相等。
Pn
0.3Pn
0.7Pn
双对齿
啮合区
B1
K'
单对齿啮合区
Pn
0.3Pn
双对齿
啮合区
K
B2
1.3Pn
a 二对齿啮合区长度
实际应用中, a
a
a
许用重合度
(3)重合度与基本参数的关系
o1
B1B2 B1P B2P
而 B1P B1N1 PN1
mz1 2
该比一值个称齿为轮模在数不同m直i径的圆周p上i ,其。模数的大小是不同的。
• 分度圆——— 是齿轮上一个人为地约定的齿轮计
算的基准圆,规定分度圆上的模数和压力角为标准值。
国标压力角的标准值为 =20° 模数的标准系列见GB1357-87,参见表4-2。
d = mz
分度圆上的参数分别用d、r、m、p、e及 表示。 m越大,P愈大,轮齿愈大,抗弯强度也愈高。
刀根线
S=e ha=ha*m hf =(h*a+c*)m
分度圆
中线 m 2
(h*a +c*)m
h*am
* *
sp
*
m
*
b、变位齿轮的切制 齿条刀中线相对于被切齿轮分度圆可能有三种情况
齿条刀中线由切制标准齿轮的位置沿轮坯径向远离或 靠近齿轮中心所移动的距离称为径向变位量x m(简称变 位量),其中x称为径向变位系数(简称变位系数)。
o1 1
o11
r1 rb1 节线
n
r1 rb1
n
N1
k N1
节线
pk
(分度线) p
n
v2
(a)
1 2
分度线 n
v2
(b)
1 2
(3)齿轮齿条传动时无论中心距增大还是减小,其 啮合角始终不变,且数值上等于齿条齿廓的齿形角。
(4)齿条移动的速度为 v2 1r1
o1 1
o11
④结构紧凑;
②不适宜用于两轴 间
⑤使用寿命长。
距离较大的传动。
三、齿轮机构设计内容
①齿轮齿廓形状的设计 内容包括 ②单个齿轮的基本尺寸的设计
③一对齿轮传动设计
§ 4-2齿廓啮合基本定律及渐开线齿形
一、齿廓啮合基本定律
3
对齿轮传动的基本要求是保证
瞬时传动比: i12=1/2= C
P1o3 1
ω1
(5)基圆内无渐开线。
Σ3 Σ1
Σ2
N2 N1
r b1
K
KO2
o2 KO1 o1
(三)渐开线的方程式
以O为中心,以OK0为极轴 的渐开线K点的极坐标方程: Vk
发生线
rk
rb
cosκ
k K
θk invκ tgκκ
Pk rk
invk— 渐开线函数
(k NOK 0 K
ω2 P23
齿廓啮合基本定律
要使两齿轮的瞬时传动比为一
常数,则不论两齿廓在任何位置接
触,过接触点所作的两齿廓公法线 o1 ω1
r 都必须与连心线交于一定点p 。
i12
r2 r1
r1
1
a i12
节圆
又 a r1 r2
r2
a1i12 1 i12
节点
1
凡能满足齿廓啮合基本定律的 n
cos
(tga1
tg
')
ra1 N2 B1
同理 B与2,Pm在无直m关齿2z,2圆而c柱与os齿齿轮数(t中g有关a2,z1mtgax,=z2' )1.,9r8b12。
rb1
B2 P
N1
ra2
又由于 Pn Pb m cos
a
B1B2 Pn
1
2
z1(tga1 tg ') z2 (tga2 02tg ')
N rb k k K0
(
NK 0 rb
k
tg k
k )
O
基圆
§ 4-3 渐开线直齿圆柱齿轮机构 的基本参数和尺寸计算
(一)齿轮基本尺寸的名称和符号
齿数 z 齿槽宽ei齿厚si 齿距pi
同一圆上 pi si ei
齿顶圆(da 和 ra)
齿距pi 齿厚si 齿槽宽ei
分度圆 齿顶圆
r1 rb1 节线
n k N1
r1 rb1
节线
p
N1
k
n
(分度线) p
n
v2
(a)
1
分度线
2
n
v2
(b)
1 2
3、用齿条刀切制轮齿
a、标准齿轮的切制
齿条刀中线与齿轮 坯分度圆相切,并使
* *
它们之间保持纯滚动。 这样切出的齿轮必为
m m
2
2
标准齿轮:
刀顶线
齿顶线 中线
(分度线)
两齿廓在任一瞬时(即任意点k接 触时)的传动比:i12=1/2=?!
1
n
点p是两齿轮廓在点K接触时的相 对速度瞬心,
故有 Vp=1o1p=2o2p
k
(P12) p k1
i12
1 2
O2 P O1P
n
2
由此可见,两轮的瞬时传动比与瞬时接触
点的公法线把连心线分成的两段线段成反比。 o2
返回
四、渐开线齿廓的切削加工原理
范成法 —— 利用轮齿啮合时齿廓曲线互为包络线的 原理来加工齿廓,其中一个齿轮(或齿条)作为刀具, 另一个齿轮则为被切齿轮毛坯,刀具相对于被切齿轮 毛坯运动时,刀具齿廓即可切出被加工齿轮的齿廓。
范成运动 i z
z0
切削运动 进给运动
范成实验的平面图如图
1、渐开线齿条的几何特点
上度量的距离,用C 表
示。 c cm
c
'
o1
r1'
r2' o2
2.标准齿轮传动的中心距
•一对齿轮啮合传动时,中
o1
心距等于两节圆半径之和。
c
'
•标准中心距(标准齿轮无 侧隙传动中心距)
r1'
a r1 r2 r1 r2
m 2
z1
z2
3.标准齿轮几何尺寸计算
r2'
见表4—3